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Authors are very grateful to the reviewers for the careful inspection of the original manuscript. The 

comments gave rise to some thinking, which resulted in corrections and additions both in the text 

and in the figures of the manuscript. We are also thankful to the tips on usage of symbols, spelling 

and phrasing utilized in the text. Here below we present answers to comments from both 

reviewers. The text in blue and green fonts is the feedback on original manuscript kindly provided 

by Henning Löwe and Edwin Waddington respectively. Replies of the authors to specific 

comments in given in the black font text found below the comment in question. 

  

 

Henning Löwe: 
In the paper the authors retrive profiles of thermal conductivity of near-surface snow/firn in 
Svalbard as optimization parameters from a comparison of the numerical solution of the heat 
equation with thermistor (chain) measurements buried over several years. The optimization is 
restricted to the dry zone. 
In my opinion, using intermediate complexity (few parameter) models to constrain physical 
properties from measurements via optimization is often more conclusive over a mere comparison 
with more complex (many parameter) models. Even though this method is not new, the work is 
apparently sound and the authors come to a clear and important conclusion, namely that common 
density based parametrizations are insufficient for the thermal conductivity in near-surface firn. 
While I would immediately agree on this funding on physical grounds (see comments), I don't fully 
understand how the assumption that ρ and k are used as independent optimization parameters 
(which is certainly not true) may affect this finding. A little more discussion seems required here. 
This and other things are listed in the comments below. 
But overall, the manuscript is well written and the methods are thoroughly described such that the 
paper warrants publication after revisions have been made. 
 

Specific comments: 

 

(p2/l10): In literature there is some inconsistency about effective: In the context of upscaling (e.g. 

Calonne 2011) effective is used in the sense of macroscopic, even if conduction only. Sometimes 

effective is used when the mix of conductive and phase-change processes is meant. 

 

Here we use the term effective thermal conductivity following the Sturm et al., 1997 understanding 

of it. It thus includes both the pure conduction (through the rigid ice matrix and air in pores) and 

the latent heat fluxes. It is, obviously, not possible to distinguish between the two components 

using our method. We also think that in the framework of glacier mass balance simulation it is 

more practical to operate the effective thermal conductivity in its wider sense. The text was 

rephrased to exclude misinterpretation. 

 

 

(p2/l29): Another discussion of uncertainties can be found in [2]. 

True, the text is edited and now contains the reference. 

 

 

(p3/l10): Maybe also [1] should be mentioned due to the similarity to the present work. The 

extension to wet snow might be relevant in the future. 
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True, the text is edited and now contains the reference. 

 

 

(p3/l6): We have shown in [3] how the structural anisotropy can be quantitatively utilized to correct 

the bias/scatter in density-based parametrizations for k. The parametrization has been confirmed 

for tundra snowpacks with strong variability in structural anisotropy [4]. In a nutshell, if snow or 

firn is subject to temperature gradient (TG) metamorphism the structure is reorganized with almost 

no or little changes in density but with an increase in structural anisotropy that causes e.g. an 

increase in thermal conductivity. For near surface snow in perennial snowpacks the anisotropy 

stems from TG metamorphism from the persistent temperature gradient in the top part from the 

pentration of the annual heat wave into the firn. Anisotropy in near-surface arctic or antarctic firn 

is well discussed, e.g. in [5]. From this point of view the results obtained in the present paper are 

consistent with reported influences of structural anisotropy on physical properties in snow/firn. 

 

In principle the optimization method suggested here could be readily utilized to infer the anisotropy 

parameter Q directly by plugging the parametrization k(ρ,Q) from [3] into the heat equation (3) 

and subsequently optimizing over ρ and Q instead of ρ and k. This would also heal the fact that k 

and ρ are (erroneously) treated as uncorrelated optimization parameters, while, in contrast, 

density and anisotropy can be effectively regarded as two independent geometrical features of 

the microstructure (values for Q should likely lie in the range [0.33, 0.45]) It must be kept in mind 

though that the parametrization from [3] must fail somewhere at very high snow/firn densities, but 

the limit of validity has not been explored yet. While a comprehensive analysis in this direction is 

certainly beyond the scope of the paper, a simple test in this direction could help to provide some 

confidence, that the main conclusion is not affected by existing correlations between k and ρ. 

 

That is a good point. Indeed, the multiannual firn pack at Lomonosovfonna has been subjected to 

multiple cycles of annual temperature fluctuations and can be expected to have developed 

structural anisotropy resulting also in a difference in vertical and horizontal thermal conductivity. 

The short summer season at the study site, yet results in several weeks when the entire firn pack 

gets temperate (although not necessarily with a direct influence of liquid water on the 

microstructure), which likely decreased the effect of constructive temperature-gradient 

metamorphism. Below the depth of ca 1-2 m (roughly the net annual accumulation layer) firn is 

rather dense and temperature gradient are not as steep as in the near subsurface layers, which 

altogether does not favor the development of faceted crystals. At the same time another source 

of structural anisotropy at somewhat larger scales may be seen in the preferential water flow, 

known to occur at the site. This may be at least one of the explanations for the overall higher 

optimized k values compared to k=f(ρ) functions based on measurements in seasonal snow 

packs. The corresponding part in the discussion is edited. 

 

Referring to the comment above and also to the text in the “General comments” section of the 

review, we would like to note that the independence between optimized parameters k and ρ is not 

seen as a problem. The optimization of ρ values is done here only to allow for some flexibility in 

the density values going into the forward model and by this appreciate the facts of uncertainty in 
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measured density values and of the “non-representativeness” of single core records at the lateral 

scales of ca 10 m. The 1D heat conduction equation has three parameters characterizing the 

media: thermal conductivity, density and specific heat capacity. The first two can vary in a large 

range and are thus included in the optimization, the latter was not reported to vary much and is 

thus taken as constant. These considerations were expressed in page 7 line 17-20 of the TC 

Discussion paper. Secondly, generally speaking, producing realistic values for two independent 

parameters is a more challenging optimization task compared to a search of two dependent 

variables. So the fact that the optimization does not «go crazy» and still produces realistic density 

values is seen as a demonstration of the robustness of the method. 

 

“Optimizing over ρ and Q instead of ρ and k”, as suggested by the Reviewer is challenging 

primarily because there is no empirical data to constrain the Q values, like there is for density. 

The detailed empirical data on snow/firn structure (from e.g. microscope observations, thin 

sections of 3D microtomography) is not available for the site. Q will be more or less a free 

parameter. 

 
 
(p7/l4): Either the functional should be denoted by Fτ,ϱ instead of Fτ,ς or otherwise measured 
densities denoted by ς (check throughout) 
 
That was, indeed, a mistake. The equations and text were edited. 
 
 
(p7/l14): The statement that there is no data on error estimates of density measurements in 
snow/firn is a too brave. 
 
Agreed, in a general case it would be, indeed, doubtful to claim that no estimates of accuracy in 
density measurements are available. What was intended to say is that only one core was drilled 
every April and therefore we lack empirical data on the basis of which more or less trust can be 
given to different density measurements along the vertical profiles. The text was edited. 
 
 
(p7/l15): I think at least a quick sensitiviy should be made (i guess that has been done anyway) 
on the value of γ. This is directly related to the assumed accurcacy of density measurements. 
 
Indeed, such tests were done but the results were not included in the original manuscript. A quick 
sensitivity check by varying γ from 10-5 to 107 has shown that too small γ values lead to oscillatory 
optimal ρ values and too large γ values tends to give a non-optimal solution. Here below are the 
results for the 4 spring domains. Results for 2012 are now included in the manuscript along with 
some insights on behavior of the cost function around its minima, 
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(p8/l18):  →... and A is defined as... 
 
Agreed, text edited. 
 
 
(p13/l6): either replace ”reduction" by “increase" or “wrong" by “right"? 
 
Agreed, text edited. 
 
 
 
(p13/l27): Maybe use $\bar{A}_{ij}$ instead of $\bar{A_{ij}}$, the latter looks like superscript 
minus... 
 
Agreed, text edited. 
 
 
 
(p13/l30): Just a thought: The different error pattern is probably an effect of the high variability 
in the stratigraphy in 2014. From the exactly known stationary solution of Eq (3) one can infer 
that the temperature at a particular location involves the harmonic mean of the entire conductivity 
profile, which is highly affected by the vertical variability. A similar mathematical structure likely 
governs the transient problem used for the optimization, so I would expect that (synthetically) 
decreasing the fluctuations in the density profile from 2014 (e.g. using a running mean of 
measured densities for the optimization) would lead to a different spatio-temporal uncertainty 
pattern. 
 
Explanation of the spatiotemporal pattern in sensitivity A for the fall 2014 domain has “drunk a lot 
of blood” from all coauthors. Although the above considerations regarding the vertical links 
between k and rho values are absolutely valid, the particularly spiky density curve measured in 
the 2014 core can hardly provide an explanation. The forward model uses the values of k and rho 
generated at the previous step of the optimization routine (or initial guess in case it is the first 
iteration of the optimization routine). Thus it is not the spiky blue curve from Fig. 1 but the 1-m 
spaced smoothed red (yellow for fall 2014) curve that is used in the forward thermal conduction 
model. The 1-m spaced density values are then piecewise-linearly interpolated to a finer 0.1 
spaced grid and the optimization tends to minimize the misfit between this interpolated density 
profile and the measured profile. This point was not clearly expressed in the original manuscript 
(see p. 6, l. 27-31), which is now corrected to avoid misinterpretations. It can further be noted that 
the same density profile is used for the spring 2014 domain, which, however does not show a 
similar behavior of the sensitivities A. 
 
 
(p12): It might be interesting to illustrate the behavior of the cost function, which lives on high-
dimensional space, in the vicinity of the minimum, e.g. as a function on a 2d subspace of density 
and conductivity for one location in space. 
 
One way to investigate the cost function close to the optimum is to look at its Hessian matrix H, 
the matrix of second order derivatives of the 16 variables we use: ρ*, k*. It is composed of the 
matrices A, B and W in the paper and the eigenvalues of the 16x16 matrix tell about the 
behavior at the optimum. H is always positive definite and we have found a minimum. If some of 
the eigenvalues are very small compared to the other ones, then the minimum in the directions 
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given by the corresponding eigenvectors is not well defined. These results are now included in 
the updated manuscript as figure 4 and text referring to it. 
 
 
(p15/l27): In my opinion, the assumed uncertainty of 1 kg/m3 is unrealistically low anyway. (See 
comment above on) BTW: The method section should maybe include a quick recap on how 
densities were actually measured from the firn core. 

 

The derived sensitivities are scalable as long as the perturbations are kept relatively small (ca 

<10% of the variable range). Thus the choice of the value 1 kg m-3 for the density perturbation is 

driven solely by the fact that this is a unit value. If one, for example, is interested in the expected 

effect of a 5 kg m-3 density perturbation, the reported sensitivities can be simply multiplied by 5. 

That was highlighted at page 8, lines 6-7 and page 15, lines 25-27 of the TC Discussion 

manuscript. 

 

We see that as an unnecessary redundancy to repeat the details of the field and cold lab routines 

applied to derive the density measurements used here. The information along with the data from 

the cores drilled in 2012-2014 was given in the earlier Journal of Glaciology paper 

(https://doi.org/10.1017/jog.2016.118). 

  

https://doi.org/10.1017/jog.2016.118
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Edwin Waddington: 
 

1 Overview 
This paper is a thorough and commendable analysis of a set of shallow borehole temperature 
measurements from Lomonosovfonna, Svalbard, using a least-squares analysis to infer an 
effective relation between thermal conductivity and density while rigorously accounting for 
measurement errors in temperature, sensor depth, and firn density. Although the uncertainty 
analysis is relatively standard, the attention to detail is exceptional. 
 
My major concern is that a “best” relation between conductivity and density may not exist. 
Although density is likely the most important control on conductivity, I expect that the 
microstructural texture of the firn is also very important. I would expect that the range of effective 
conductivities from the various studies (e.g. Figure 7) is due primarily to differing microstructural 
textures. 
 
For example, firn with large grain-to-grain bonds should conduct heat significanltly better than firn 
of the same density with less-well-developed bonds. Although this study restricted modeling to 
periods with no melting of ice or freezing of water, nonetheless the presence of transient meltwater 
at other times has probably modified the microstructures in significant ways. The 
Lomonosovfonna conductivity is greater than in Sturm et al. (1997), and in Calonne et al. (2011) 
at all densities, perhaps due to greater amounts of melting? 
 
Measuring microstructures with micro-CT scans is time consuming and expensive, and is not 
common (yet), but it may be needed to further advance the conductivity relations. In the meantime, 
any additional field data (e.g. by hand lens or other tools) on bond size, and grain size or 
elongation, might provide the next helpful step. 
 

I am not saying this is a fatal flaw for the current paper, only that this point might merit more 
discussion in the manuscript. 
 
We agree that the structure of the snow/firn pack is one of the missing parameters in the k=f(ρ) 
parameterizations. That was also pointed out by Henning Löwe. However, we do not see how the 
available empirical data on stratigraphy can be applied in the current study. In the revised 
manuscript the discussion chapter (4.6) contains more information about the possible relations 
between the snow/firn structure at the level of grains and ca 0.1-1 m.  
 
 
In my view, the paper will be suitable for publication in The Cryosphere after revisions. 
 
 
1.1 Scientific points 

• Have you considered solving for themal diffusivity, as colleagues at Dartmouth have done, 
rather than for conductivity? Since k and ρ are both included in diffusivity, there is only 
one parameter to find. Does that decrease the scatter in the solutions? In the analysis in 
the manuscript, ρ seems to show up more as a complication than as a valuable result, and 
there is no comparison of inferred density against a transient densification model. Or is it 
more important to try to resolve both k and ρ? 

 
It appears that the role of density ρ in the optimization routine was not explained thoroughly 
enough in the original manuscript. With reference to the reply on the comment from Henning Löwe 
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to page 3, line 6 the following can be repeated: the optimization of ρ values is done here only to 
allow for some flexibility in the density values going into the forward model and by this appreciate 
the facts of uncertainty in measured density values and of the “non-representativeness” of single 
core records at the lateral scales of ca 10 m. The 1D heat conduction equation has three 
parameters characterizing the media: thermal conductivity, density and specific heat capacity. 
The first two can vary in a large range and are thus included in the optimization, the latter was not 
reported to vary much and is thus taken as constant. These considerations were expressed in 
page 7 line 17-20 of the TC Discussion paper. 
 
There are many other ways to formulate the optimization problem. We chose ρ and k as optimized 

parameters mainly because both have an empirical proxy to compare with: for ρ it is the density 

measured in cores and for k it is the measured temperature. We assume no prior knowledge 

about the relation between the parameters and the linear relation between k and ρ is computed 

in Fig. 8. Other alternatives to determine ρ and k are 

• replace k in (6) by ρκ and solve for the scalar or space dependent diffusivity κ and ρ 

• replace ρ in (6) by k/κ and solve for κ and k 

• let ρ=ϱ and k= ρκ and insert into (6) and solve for κ 

• k depend on ρ and Q as in eq (2) in Löwe et al 2013, replace k in (6) by this formula and 

optimize for ρ and Q (suggested by H. Löwe) 

The optimal solutions will be slightly different in all cases but additional criteria are needed to 

select the best one. 

 
The optimized k and density values can be used to calculate the thermal diffusivity. These results 
were reported in the chapter 4.6 of the original manuscript along with the comparisons with the 
Giese and Hawley (2015). 
 
 

• The manuscript focuses primarily on comparisons with two other models, i.e. Sturm et al. 
(1997), and Calonne et al. (2011). However, there are other models in the literature. Below 
is a brain dump of references relating to conductivity - some of these are already cited, 
and some are not. Could plotting up predictions from all these other models give readers 
a better sense of the spread among the current models, and therefore the importance of 
overlooked physical properties such as microstructure? Perhaps not adding clutter to 
Figure 7, but making an additional figure? 

 
Anderson EA (1976) A point energy and mass balance model of a snow cover. 

(doi:10.1016/S0074-6142(99)80039-4) 
Brandt RE and Warren SG (1997) Temperature measurements and heat transfer in near-surface 

snow at the South Pole. J. Glaciol. 43(144), 339–351 Thermal properties and temperature 
distribution of snow/firn on the Law Dome ice cap, Antarctica. Antarct. Res. 2(2), 38–46 

Lüthi MP and Funk M (2001) Modelling heat flow in a cold, high-altitude glacier: Interpretation of 
measurements from Colle Gnifetti, Swiss Alps. J. Glaciol. 47(157), 314–324 
(doi:10.3189/172756501781832223) 

Riche F and Schneebeli M (2013) Thermal conductivity of snow measured by three independent 
methods and anisotropy considerations. Cryosphere 7(1), 217–227 (doi:10.5194/tc-7-217-
2013) 

Schwander J, Sowers T, Barnola J-M, Blunier T, Fuchs A and Malaizé B (1997) Age scale of the 
air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. 
Res. Atmos. 102(D16), 19483–19493 (doi:10.1029/97JD01309) 
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Schwerdtfeger P (1963) Theoretical derivation of the thermal conductivity and diffusivity of snow. 
IAHS Publ 61, 75–81 http://iahs.info/uploads/dms/061007.pdf 

Sturm M, Holmgren J, König M and Morris K (1997) The thermal conductivity of seasonal snow. 
J. Glaciol. 43(143), 26–41 (doi:10.1017/S0022143000002781) 

Van Dusen MS (1929) Thermal conductivity of non-metallic solids. International critical tables of 
numerical data, physics, chemistry and technology. McGraw-Hill New York, 216–217 

Yen Y-C (1981) Review of Thermal Properties of Snow, Ice, and Sea Ice. CRREL Rep. 81-10, 1–
27 http://acwc.sdp.sirsi.net/client/search/asset/1005644 

 
The parameterizations k = f(ρ) are numerous and we do not see the review of the past work on 
the density-thermal conductivity relations as an aim of the present manuscript. The figure below 
illustrates the spread in the functions found in literature. The revised manuscript contains one 
additional parameterization: Riche and Schneebeli (2013) based their equation on measurements 
in faceted and depth hoar crystals and suggest consistently higher k values than the predictions 
according to Sturm and Calonne k = f(ρ) relations. The updated figure provides more insights on 
the spread the ρ – k equations in literature.  
 

 
 
 

• Page 6, Equation (5) - Equation (5) uses the arithmetic mean of conductivity k at the nodal 
midpoints. This should be adequate for the exercise here, but for cases where the 
conductivity gets very small or zero, it is preferable to use the geometric mean (2kiki+1)/(ki 
+ ki+1), which actually goes to zero to prevent heat transfer across the interface when one 
of the bounding conductivites is zero, and prevents heat leakage to a node with very low 
conductivity. e.g. see page 44 in Patankar (1980), or many other texts. 

Patankar, S.V., 1980. Numerical heat transfer and fluid flow, Hemisphere. 

http://iahs.info/uploads/dms/061007.pdf
http://acwc.sdp.sirsi.net/client/search/asset/1005644
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True. Yet, we prefer to keep the more standard and straightforward finite difference discretization 
based on arithmetical mean. It is second order accurate in the grid size and is the best one can 
achieve involving three grid points. We suggest that the choice is further justified by the fact that 
the vertical spacing is quite fine (0.1 m), the vertical gradients in k are not large and the minimal 
optimized k value is 0.2 W/(m K). 
 
 

 Page 7, Equation (6) and line 15 - The objective function has to be nondimensional, since you 
are mixing temperature values and density values. Therefore, the weighting term σρi cannot 
be set to unity as stated - it must be set to some characteristic density factor. 

 
True, in the revised manuscript units of density are added to the weighting term σρi. 
 
 
• Page 11, Line 13 - Why is L assumed to be 1 meter? 

 
The term L is used as a way to help reader imagine what the term ε is 
(equation 25 reads: ε=L - (L2-d2)0.5), and make the errors E[δk] in equation 22 more intuitively 
understandable. L is set to 1 m to simulate the situation when the thermistor cable bounces from 
one side of the borehole wall to the other one with a period of 1 m. 

 
 

• Figures 2 and 4. - The units on the horizontal axes look impossible. For example, how can 
Spring 2013 begin only 40 days after Spring 2012 ends, and only 99 days after 21 April, 2012? 

 
There is no error in the time scale, but a clarification is indeed needed: the scale is not continuous 
and time “goes faster” between the domains 1-2, 2-3 and 3-4. To optimize the usage of figure- 
and page-space, the time gaps between the first 4 domains are set to 40 days. To exclude 
misinterpretation of the figure, corresponding remarks are added to captions of figures 2 and 4. 
 
 
1.2 Editorial points and clarity 

• A table of variables would be helpful for readers. 
Care was taken make sure that all symbols appearing in equations come with a proper 
explanation to avoid misintepretations. We suggest that it would be excessive to have a table of 
variables in this manuscript. However, in case the The Cryosphere Journal allows to have tables 
listing used symbols/variables in the published papers and the Reviewer repeatedly encourages 
authors to include such a table, we will be happy to provide it for the convenience of the potential 
readers. 
 
 

• Data are always plural. The word is often used incorrectly with a singular verb in the text. 
 

Agreed, corresponding editions are introduced. 
 
 

• The units of conductivity are usually expressed as W (m K)-1. Is there a reason for 
separating the Watts into Joules per second? However you decide to do it, at least be 
consistent. For example, Page 13, line 127 - J(Kms)-1 vs Page 12, line 24, J(smK)-1. 
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There was no specific reason for using [J (s m K)-1] apart from it being the most basic 
representation of the parameter units. In the revised manuscript we consistently use [W] in place 
of [J/s]. 

 
 

• Page 15, line 27 - Where does the K-3 come from? 
 
Agreed, that was a mistake originating from copy-pasting the units in Latex, corresponding 
editions are introduced. 
 
 

• Page 1, Line 13: As a basic physical property of a medium temperature of snow, firn and 
ice controls multiple processes occurring therein and at the glacier surface. I do not 
understand what this sentence is trying to say. Perhaps some commas could help? 

 
Agreed, comma added after “medium”. 
  
 

• Page 2, Line 5: Since most temperature fluctuations occur at the surface, the dominant 
direction of heat flux is vertical: If temperature fluctuations are due to weather and climate, 
of course they are maximum at the surface, (particularly when latent-heat effects are 
negligible), but they actually occur at all depths. What message is this sentence trying to 
convey? 

 
Agreed, the aim with the phrase was to justify usage of 1D heat conduction equation in place of 
a 3D equation which applies in a general case and is given earlier. A phrase clarifying that the 
point of the sentence is to state that the heat flux in near surface layers of a glacier is meant. 
 
 

• Page 12, Line 11 - Spell pattern 
 
Agreed, text edited. 
 
 

• Page 2, line 4 - Cuffey and Paterson is a big book. It helps readers when you include a 
page number. Page 5, line 9 - Same comment. Page 6, line 6 - Same comment. Page 16, 
line 14 - Same comment. 

 
Agreed, text edited. 
 
 

• The abbreviation ca is used frequently for the latin circa, or ”approximately”. If the authors 
do not want to say approximately, then the appropriate abbreviation is c. 

 
Yes, everywhere, where “ca” is used, “approximately” is meant. 
 
 

• Page 3, Line 20: The accumulation and melt rates estimated respectively from repeated 
radar surveys (Pälli et al., 2002; Van Pelt et al., 2014) and modeled surface energy and 
mass fluxes (Van Pelt et al., 2012) are 0.58–0.75 and 0.34 m w.e.year-1, respectively. The 
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subject of this sentence is very complicated, such that readers may not recognize it as a 
complete sentence on first reading. Can you re-write it in a simpler way? 

 
Agreed, text edited to present the information in two separate sentences. 
 
 

• Page 3, line 20: What scale (in meters) is intended by local-scale variability? 
 
The lateral scales of variability in stratigraphy studied in by Marchenko et al. (2017a) is 10 m. Text 
is edited. 
 
 

• Page 9, line 3 - Something went wrong with the meters units. J(smK)-1? 
 
Exactly, there were some issues with Latex commands. Text is edited. 
 
 

• Page 15, line 26 - Writing kgm-1, the gm can look like grams, causing some reader 
hesitation. 

 
Yes, there were some spaces missing. Text is edited to exclude misinterpretation. 
 
 

• Page 16, line 12 - Summit is a named location, so it should be capitalized. 
 
Agreed, text edited. 
 
 

• Figure 4 - It would help readers if you could add Spring, Fall, and Year labels, as on Figure 

2. 

 
We now added a remark to the figure caption, stating that the horizontal axis is the same as in 
Figure 2. We think that adding multiple text labels to the figure will make figure too busy, it is 
already packed quite densely. 
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List of changes in the manuscript 
With respect to the original version uploaded in December 2018 

 

1) A new figure appearing in the revised manuscript as Figure 4 is added to address 
the comments from both Reviewers. It illustrates the feedback of optimized thermal 
conductivity (k) and density (ρ) on changes in parameter γ, balancing the two terms 
in the cost function F (equation 6). Text is updated too and now contains a 
description of how the results in Figure 4 were derived (chapter 3.3.4) and a 
description of the results (page 14, line 8-13). 

2) Figure 7 (now Figure 8) was updated. We removed the linear fits to k-ρ pairs 
optimized for individual domains and left only the fit based on all data. At the same 
time we added a curve illustrating the k=f(ρ) equation suggested by Riche and 
Schneebeli (2013). The text of the chapter 4.6 was updated to accommodate these 
changes and to also include a discussion of the role of structure of the snow/firn 
profile on the thermal conductivity values. 

3) The description of the optimization routine in chapter 3.2 is updated to more clearly 
present the role of density term in the cost function and its behavior in the forward 
and inversion routine. 

4) Captions to Figure 2 and 5 in the revised manuscript are updated. That is done to 
minimize the chance of misinterpretation of the horizontal axis. 

5) Inspired by the comments from Reviewers, multiple corrections are introduced to 
the text and equations to eliminate inconsistencies in the symbols applied, usage 
of words and punctuation. 
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Abstract. Accurate description of snow and firn processes is necessary for estimating the fraction of glacier surface melt that

contributes to runoff. Most processes in snow and firn are to a great extent controlled by the temperature therein and in the

absence of liquid water, the temperature evolution is dominated by the conductive heat exchange. The latter is controlled by the

effective thermal conductivity k. Here we reconstruct the effective thermal conductivity of firn at Lomonosovfonna, Svalbard,

using an optimization routine minimizing the misfit between simulated and measured subsurface temperatures and densities.5

The optimized k∗ values lie in the range from 0.2 to 1.6 W (m K)−1 increase downwards and over time. The results are

supported by uncertainty quantification experiments, according to which k∗ is most sensitive to systematic errors in empirical

temperature values and their estimated depths, particularly in the lower part of the vertical profile. Compared to commonly

used density-based parameterizations our k values are consistently larger, suggesting a faster conductive heat exchange in firn.

1 Introduction10

Glaciers and ice sheets are important indicators of past and ongoing climate changes. Under the influence of temperature fluc-

tuations at the surface the subsurface glacier temperature also changes. As a basic physical property of a medium, temperature

of snow, firn and ice controls multiple processes occurring therein and at the glacier surface.

Climate-induced glacier mass change is strongly affected by the state of snow and firn, where liquid water generated at

the surface of glaciers during the ablation period can be refrozen, by this reducing runoff. The magnitude of liquid water15

refreezing is largely dependent on the subsurface temperature (e.g., Trabant and Mayo, 1985). A snow/firn pack reaching lower

temperatures during the winter season is able to refreeze a larger amount of water during and after the ablation season. Warmer

snow and firn experience faster metamorphism (e.g., Jordan et al., 2008) and gravitational densification (Ligtenberg et al.,

2011). The distribution of temperature under the glacier surface also defines the ground heat flux, which contributes to the

energy balance at the surface, and is thus important for simulation of the surface energy fluxes and melt rates. In addition, cold20

ice is more viscous and less prone to deformation (e.g. Weertman, 1983). Therefore, a cold glacier can be expected to exhibit

lower flow velocities, provided that other environmental parameters are equal. Thus the processes of mass and energy exchange
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occurring at glaciers are in tight interaction with the subsurface temperature, which needs to be either measured or simulated,

if measurements are not possible.

In the absence of liquid water the changes in subsurface temperature are defined by the process of thermal conduction

described by Fourier’s law (Cuffey and Paterson, 2010, page 403), according to which the heat flux (Q) is proportional to

its thermal conductivity (k) and to the spatial temperature gradient (∇T ): Q = −k∇T . Since most temperature fluctuations5

occur at the surface, the dominant direction of heat flux in near surface glacier layers is vertical: Q=−k dT
dz , where z is the

vertical coordinate. Sturm et al. (1997) indicated that several processes contribute to the temperature changes occurring in a

subfreezing porous snow and firn, namely: conduction through the rigid ice matrix, conduction through the air in pores and

latent heat transport through the pores due to sublimation and condensation of water vapor. To underline that fact and because

all three processes are essentially driven by the temperature gradient (e.g., Bartelt and Lehning, 2002) here we use the term10

effective thermal conductivity (k) following Sturm et al. (1997) to describe the ability of snow, firn and ice to transport thermal

energy. Along with density (ρ) and specific heat capacity (C) k is used to calculate thermal diffusivity (κ) as κ= k (ρ C)−1.

Due to the direct connection between k of a medium and temperature changes therein, most empirical estimates of k are

based on temperature measurements (Sturm et al., 1997). Continuous measurements of natural temperature fluctuations in

snow and firn allow to derive κ and k values either using Fourier-type analysis or optimization techniques. Diurnal temperature15

fluctuations penetrate down to ca 1 m and the associated phase lag and/or amplitude dampening occurring with depth can be

used to reconstruct the effective thermal conductivity of seasonal snow (e.g., Sergienko et al., 2008; Osokin and Sosnovsky,

2014). Annual fluctuations penetrate down to ca 10 m and thus k estimates for thick firn packs using the method require a

long data series undisturbed by the influence of liquid water (Dalrymple et al., 1966; Weller and Schwerdtfeger, 1971; Giese

and Hawley, 2015). Alternatively, κ and k values in the heat equation can be determined by minimizing the misfit between20

simulated and measured natural evolution of temperature in snow and firn (e.g., Tervola, 1989; Zhang and Osterkamp, 1995;

Yang, 1998). Brandt and Warren (1997) applied this method for near-surface snow at the South Pole, Sergienko et al. (2008)

for the snow pack on a drifting iceberg and Oldroyd et al. (2013) for the seasonal snow pack on an Alpine glacier.

Another option is to induce a heat flux in the snow pack using a heat source and register the temperature response in either an

object with well-known properties that is in contact with both the heat source and the snow or in snow pack itself. The former25

method is known as the needle probe technique and is widely used to measure in-situ effective thermal conductivity of porous

materials including snow (e.g., Lange, 1985; Singh, 1999; Morin et al., 2010). In the latter case the snow sample is placed on

a heated plate controlling the vertical heat flux and the respective temperature gradient is measured and the relation between

the two values yields k (e.g., Calonne et al., 2011; Riche and Schneebeli, 2013). Sturm et al. (1997) provided an extensive

overview of the above named methods and associated uncertainties, which was followed up by further insights into possible30

biases of needle probe measurements (Riche and Schneebeli, 2010).

A novel technique for estimation of k of snow was suggested by Kaempfer et al. (2005) and further developed by Calonne

et al. (2011) and Riche and Schneebeli (2013). The method relies on numerical simulation of processes contributing to the heat

flux driven by the temperature gradient based on detailed 3-D X-ray micro-tomography images of the snow matrix. It allows

to obtain the k tensor for relatively small snow samples.35

2



Published k values for snow and firn vary from 0.1 to 2.5 W (m K)−1 with a strong correlation with density, which justifies

the use of density as a proxy to calculate the effective thermal conductivity for modelling purposes (e.g., Sturm et al., 1997;

Riche and Schneebeli, 2013). The considerable spread in values suggested by different parameterizations is explained by

the inconsistency in applied measurement techniques and associated uncertainties and also by the influence of snow and firn

parameters other than density. That can be temperature, grain size and contact area, pore diameter and interconnectivity and5

anisotropy of the k property.

The purpose of the present study is to reconstruct the values of effective thermal conductivity of a thick snow and firn

pack at Lomonosovfonna, Svalbard, based on evolution of subsurface temperature and firn density measured in 2012–2015.

Effective thermal conductivity of firn is derived for five distinct periods by minimizing the misfit between the measured and

simulated subsurface temperature evolution. The method is promising, particularly for thick firn packs, to our knowledge is has10

not been applied for the purpose so far, although Sergienko et al. (2008) employed similar routines for a seasonal snow pack

and Nicolsky et al. (2007) for permafrost. Fourier analysis applied earlier for a thick firn pack at the Summit of the Greenland

ice sheet (Giese and Hawley, 2015) can not be used here due to the influence of melt water and retrieving snow samples for

direct measurements using heated plate or needle probe methods is logistically challenging. Estimates of the firn k values are

complemented by uncertainty quantification experiments exploring propagation of possible biases in empirical data through15

the applied models.

2 Field data

We use data on subsurface density and temperature evolution collected at Lomonosovfonna, Svalbard, a flat ice field nourishing

several outlet glaciers. The field site is at 78.824◦N, 17.432◦E, 1200 m asl, which is well above the equilibrium line, estimated

to be at ca 720 m asl (Van Pelt et al., 2012). The local glacier thickness is 192±5.1 m (Pettersson, 2009, unpublished dataset;20

Van Pelt et al., 2013) of which the firn layer constitutes ca 20 m (Wendl, 2014). The accumulation rates estimated from

repeated radar surveys (Pälli et al., 2002; Van Pelt et al., 2014) are 0.58–0.75 m w.e. year−1. The melt rates simulated by a

model describing surface fluxes of energy and mass (Van Pelt et al., 2012) are 0.34 m w.e. year−1. The net annual accumulation

rates resulting in the relative vertical shifts of the glacier surface are estimated at 1.12 (April 2012–2013), 1.32 (April 2013–

2014) and 0.9 (April 2014–2015) m. The first two values are based on readings at mass balance stake S11 (see Fig. 1a in25

Marchenko et al., 2017a) and the last one is derived by minimizing the misfit between temperature profiles measured in April

2015 by the thermistor strings installed in April 2014 and in April 2015. The firn pack at Lomonosovfonna is heavily influenced

by the percolation and refreezing of melt water (Marchenko et al., 2017b) which results in prominent variability of subsurface

stratigraphy at the scale of 10 m (Marchenko et al., 2017a).
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2.1 Subsurface density

Four shallow firn cores (9.5 cm diameter) were drilled at Lomonosovfonna in April 2012 - 2015 using a Kovacs core drill. The

density and stratigraphy profiles (Figure 1) for the first three cores were presented in detail by Marchenko et al. (2017a) along

with the details on field and laboratory procedures applied. Similar routines were applied in 2015.

2.2 Subsurface temperature5

2.2.1 Equipment

Subsurface temperature was measured using multiple thermistors grouped in several strings. They were placed in boreholes

with 5.5 cm diameter drilled by a Kovacs auger. The boreholes were then backfilled by drill chips and loose snow to minimize

the perturbation of the snow and firn media. In 2012–2014 nine thermistor strings were placed in a rectangular 3 × 3 grid with

a separation of 3 m between neighboring boreholes (Marchenko et al., 2017a, b). In April 2015 only one thermistor string was10

installed.

All thermistor strings were custom manufactured at Uppsala University using a multi-leaded cable with PVC jacket and uni-

curve NTC thermistors. In 2015 the cable was placed in multiple 2 m long rigid plastic tubes to ensure a precise and constant

separation between neighboring sensors. The sensors were fed through holes in the tubes and fixed at their outer surface for a

better contact with the sounded environment.15

The thermistor strings were scanned using a Campbell Scientific CR10X data logger and several relay multiplexors. Each

thermistor was connected in series with a reference resistor and precisely measured excitation voltage was applied to the circuit.

Voltage drop over the reference resistor was measured and then converted first to corresponding resistances of the sensors and

then to temperature values using Ohm’s law and recommendations provided by thermistor manufacturer.

The evolution of subsurface temperature was recorded during four time periods: 21 April – 19 October 2012, 22 April – 1220

July 2013, 17 April 2014 – 11 April 2015 and 15 April – 9 July 2015. The frequency of measurements is shown by the color

bar in bottom of Figure 2. During the first two periods it was once every 3 h, during the fourth period it was once every 1 h.

During the third period the frequency varied and was once every 1 h during 17 April–31 July 2014 and 15 April–9 July 2015,

once every 3 h during 1 August–31 October 2014 and once every 12 h from 1 November 2014 to 14 April 2015. The strings

installed in 2012, 2013 and 2014 contained up to 128 thermistors covering depth from 0.5 to 12 m with a vertical separation25

varying from 0.25 to 2 m (Marchenko et al., 2017b; see Figure 2 therein). In 2015 the string contained 31 sensors separated by

0.25–1 m covering a similar depth interval.

2.2.2 Data post-processing

Several post-processing routines were applied to the measurements of the subsurface temperature evolution. Firstly, the indi-

vidual thermistors were calibrated against 0 ◦C by applying an offset defined as the mode (most frequent value) of the values30
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measured during July 1–September 1. During this period subsurface temperature is most likely to reach 0 ◦C. The value serves

as a natural upper limit for the snow and firn temperature and is well interpreted from plots of measured values against time.

Secondly, spline interpolation was applied to interpolate the data from each thermistor string to a common vertical grid with

0.1 m spacing between neighboring nodes. During April 2012–2015 the subsurface temperature was simultaneously measured

by several thermistor strings and thus the interpolated dataset was subsequently averaged horizontally to produce a single series5

τ describing subsurface temperature changes in time (superscript n) and depth (subscript i):

τni =
1

q

q∑
m=1

τnim, (1)

where τnim is the temperature measured by the m-th thermistor string and q is the total number of strings. In 2015 only one

thermistor string was installed and thus no averaging was applied. To characterize the spread in temperature values measured

at the same depth and time but by different instruments the corresponding standard deviations were calculated as10

(σnτi)
2 =

1

q− 1

q∑
m=1

(τnim− τni )2. (2)

3 Modelling

The evolution of subsurface temperature in the upper 10–15 m of a glacier is mostly controlled by two processes: conductive

heat flow and refreezing of liquid water accompanied by release of the latent heat (Cuffey and Paterson, 2010, page 403).

Configuring the computational domains to minimize the influence of non-conductive heat fluxes, we compute the effective15

thermal conductivities for the firn profile at Lomonosovfonna and assess their sensitivity to errors in empirical data used in the

simulations.

The computational procedure is as follows. Within the forward model (see Sect. 3.1) the heat equation is approximated

numerically and then solved for the temperature with a given conductivity k and density ρ. The two parameters are then

iteratively adjusted to derive conductivity k∗ and density ρ∗ minimizing the difference between the simulated and measured20

subsurface temperature and density (see Sect. 3.2). To quantify the uncertainties associated with k∗ we first define the feedback

of simulated temperature to change in individual conductivity values. These results are then used to compute the sensitivity of

conductivity to errors in the empirically derived:

– temperature values (see Sect. 3.3.1),

– in depths of temperature values (see Sect. 3.3.2) and25

– density values (see Sect. 3.3.3).

These routines were coded using MATLAB R-2018a software. All computations on a laptop with four cores Intel(R) i7-4600

CPU 2.1GHz are obtained in less than 10 s.

The time periods are chosen to minimize the influence of water refreezing on the evolution of subsurface temperature. They

are referred to as "spring 2012", "spring 2013", "spring 2014", "fall 2014" and "spring 2015" and cover correspondingly 2130
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April – 19 June 2012, 22 April – 1 June 2013, 18 April – 4 July 2014, 25 September 2014 – 11 April 2015 and 15 April – 9 July

2015. Furthermore, temperature above -2 ◦C are excluded from the analysis to avoid the influence of latent heat fluxes from

firn volumes with increased water content as the freezing front propagates through them. To minimize the potential influence

of near surface processes (radiation penetration, wind effects) on the results, we disregard the temperature values measured

above the depth of 1 m referenced to the glacier surface at the moment of instrument installation.5

3.1 Conduction model setup

The model is based on Fourier’s law of heat conduction. The temperature of the firn T (◦C) at depth z (m) and time t (s) is

governed by the one dimensional equation:

ρ(z) C
∂T

∂t
=

∂

∂z
(k(z)

∂T

∂z
), (3)

where ρ is the subsurface density (kg m−3),C = 2027 J (kg K)−1 is the specific heat capacity calculated using the temperature10

dependent function from (Cuffey and Paterson, 2010, page 400) for the temperature of -10◦C, and k is the effective thermal

conductivity (W (m K)−1). Given k(z), ρ(z) along with initial and boundary conditions, Eq. (3) is solved forward in time for

T (z, t).

The numerical solution of the Eq. (3) is based on a discretization with the time step ∆t and space step ∆z. The spatial

and temporal derivatives are approximated using the Crank-Nicolson method (Dahlquist and Björck, 2003) with central finite15

differences in space and trapezoidal rule in time. Let Tni be the temperature T (zi, t
n) at tn = n∆t, n= 1, . . . ,N and zi =

i∆z, i= 1, . . . ,Mn. The number of time steps is N and the number of nodes in space Mn varies in time. The solution at zi is

advanced in time from tn to tn+1 as:

ρiC
Tn+1
i −Tni

∆t
=

1

2

(
DTn+1

i +DTni
)
, n= 1, . . . ,N − 1, (4)

where DTni is the spatial temperature derivative at zi approximated by:20

DTni =
(ki+1 + ki)(T

n
i+1−Tni )− (ki + ki−1)(Tni −Tni−1)

2∆z2
. (5)

Collecting terms in (4) with Tn+1 on the left hand side and terms with Tn on the right hand side, a tridiagonal system of linear

equations can de derived and solved for Tn+1
i by a direct method. The time integration is unconditionally stable and second

order accurate in space and time (Dahlquist and Björck, 2003).

At each time step the computations are performed for Mn nodes from the top at z1 = 1 m to the bottom at zMn where the25

temperature is just below -2◦C, which minimizes the influence of the latent heat release at the freezing front. Thus the depth

of the lower boundaries of the simulation domains zMn increases over time following the downward propagation of the -2◦C

isotherm as shown by the white curves in Figure 2. The vertical step (∆z) follows the depth interval in the empirical dataset

and is 0.1 m. The chosen time step is 1 h and in case the measurement period is larger than that, linear interpolation is used to

derive the values missing in the upper and lower boundary conditions. The model is initialized in each of the five time periods30
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using measured temperature values τ1i . The upper and lower boundary conditions are of Dirichlet type and are determined by

the temperatures measured at z1 and zMn : Tn1 = τn1 and TnMn = τnMn .

The density ρ(z) and effective thermal conductivity k(z) at depths zi are constrained using piecewise linear interpolation

based on J nodes vertically spaced by 1 m. Since the forward model is used within an inversion routine (see section 3.2)

optimizing the J 1-m spaced ρ and k values, the latter are given by an arbitrary initial guess at the first inversion iteration5

and later by the results of the previous inversion iteration. For the domains covering spring seasons J equals 8 and is 6 in

fall 2014 with the uppermost value corresponding to the upper boundary of the computational domain. The choice of J value

is a compromise between coarse vertical resolution of the optimized parameters (low J) and insufficient amount of data to

constrain a very detailed k∗ profile (high J). Too large J will result in an oscillatory optimal solution for k.

3.2 Inverse routine10

The effective thermal conductivity k in (5) is unknown. Therefore, the above described forward model is used in an optimiza-

tion routine to iteratively derive the values of the effective thermal conductivity and density that minimize objective function

Fτ,%(k,ρ). Following Smith (2013), the latter is defined by the sums of squared differences between the simulated and mea-

sured temperature and density:

Fτ,%(k,ρ) =

N∑
n=1

Mn∑
i=1

1

(στni )2
(Tni (k,ρ)− τni )

2
+ γ

Mn∑
i=1

1

(σ%i)
2

(ρi− %i)2 , (6)15

and the optimization routine attempts to minimize Fτ,%(k,ρ) by adjusting the conductivity k and density ρ values used in

simulations. In eq. (6) Tni (k,ρ) and τni are the simulated and measured temperature values at time tn and depth zi, %i is the

density measured at depth zi. For the spring domains % profiles are taken from the cores drilled within a couple of days from the

start of simulation and for the fall 2014 domain we reuse the density data from the core drilled in April 2014. The deviations

of the simulated temperature values from empirical data are weighted by the variances (στni )2 in temperature values from20

different thermistor strings but at the same time and depth (see Eq. (2)). This results in lower significance of simulation errors

when the measurements are less certain. It is thus assumed that measurement errors are independent and normally distributed

with zero mean and variance (στni )2. Since only one shallow core was drilled every year, empirical data are not available to

quantify the errors in density measurements, the weighting term σ%i was set to 1 kg m−3. The value γ = 10 is chosen to keep

the balance between the temperature and density terms in F such that the optimal solutions are smooth and ρ is close to the25

measurements in l2-norm. The choice of γ depends on the size of the data N , Mn as well as the magnitudes of τ and %.

Choice of the cost function in (6)) does not assume any correlation between k and ρ. This relation is derived later in

Section 4.6 based on the optimized k and ρ values. The primary aim here is to derive the optimal k values at J nodes.

Optimization of the densities used by the forward model is included in the optimization to allow for flexibility in the parameter

ρ, since the measurements in single firn cores are uncertain and may be not representative at the scale ca 10 m covered by30

thermistor measurements. The second term on the right hand side of equation (6) can be interpreted as a Bayesian prior guess

(Smith, 2013; Calvetti and Somersalo, 2007) adding extra information about ρ or a regularization of the density according to

Tikhonov (Calvetti and Somersalo, 2007).
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Introduce the vectors:

T = (T 1
1 ,T

2
1 , . . . ,T

N
1 ,T

1
2 , . . . ,T

N
2 ,T

1
3 , . . . ,T

N
M )T ,

τ = (τ11 , τ
2
1 , . . . , τ

N
1 , τ

1
2 , . . . , τ

N
2 , τ

1
3 , . . . , τ

N
M )T ,

ρ= (ρ1,ρ2, . . . ,ρM )T ,

%= (%1,%2, . . . ,%M )T ,

where M = maxnM
n. Let the diagonal matrices W have Wjj = 1/(στni )2, j =N(i− 1) +n, n= 1, . . . ,N, i= 1, . . . ,Mn,

and Wjj = 0, j =N(i− 1) +n, n= 1, . . . ,N, i=Mn + 1, . . . ,M, on the diagonal. Then F in Eq. (6) can be written as:

Fτ,%(k,ρ) = (T − τ)TW (T − τ) + γ(ρ− %)T (ρ− %). (7)5

The diagonal elements of W vanish when i >Mn since the sums in Eq. (6) are restricted to i≤Mn.

The optimal k∗ and ρ∗ minimize F in Eq. (6) and (7) and the solution of the nonlinear least squares optimization problem

can be written as:

(k∗,ρ∗) = argmin
k,ρ

Fτ,%(k,ρ). (8)

It is solved by the lsqnonlin function in MATLAB.10

3.3 Uncertainty quantification

Results of the optimization routine largely rely on the empirical data used to guide the routine. The sensitivity of optimized k∗

values is explored separately for the errors in measured temperature, depths of empirically derived temperature values (both

affecting the vertical temperature gradient) and measured density values by applying uncertainty quantification techniques

described in (Smith, 2013). The results of the sensitivity estimates are only valid for relatively small errors on the order of ca15

5 – 10 % of the parameter value in question.

3.3.1 Temperature

Errors δτ in the measured temperature values τ in Eq. (6) propagate to the effective thermal conductivities k∗ derived from the

optimization problem in Eq. (8). Here we first inverse the logic and calculate the feedback of simulated temperature values T

to relatively small perturbations in individual k∗ values. These results are then used to define the response of optimized thermal20

conductivities to possible errors in temperature data.

In general, temperature deviations resulting from perturbation δk in the effective thermal conductivity vector k∗ can for time

tn and depth zi be described by the equation:

Tni (k∗ + δk,ρ∗)−Tni (k∗,ρ∗) =

J∑
j=1

Anijδkj , (9)

where Anij represent the local temperature responses at tn and zi to unit perturbations in kj , j = 1, . . . ,J . The full sensitivity25

matrix A describes the spatio-temporal distribution of the deviations between temperature simulations done using perturbed
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and not perturbed effective thermal conductivities. A is defined as:

A=

A1
11 A1

12 · · · A1
1J

...
...

AN11 AN12 · · · AN1J

A1
21 A1

22 · · · A1
2J

...
...

ANM1 ANM2 · · · ANMJ

. (10)

Each row corresponds to specific indices in time, n= 1, . . . ,N , and space, i= 1, . . . ,M and columns correspond to different k

values j = 1, . . . ,J and in a general case J is not fixed to 6 or 8 and can be equal to M . Then the matrix form of Eq. (9) is:

T (k∗ + δk,ρ∗) = T (k∗,ρ∗) +Aδk. (11)5

To derive the J columns in the sensitivity matrixA in Eq. (10) the forward model (see Eq. (3)) was run J times consecutively

perturbing the individual thermal conductivities k∗ j , j = 1, 2 . . . ,J by the value ∆k. The elements of A are approximated by

the finite difference formula:

Anij =
Tni (k∗ + δkj ,ρ∗)−Tni (k∗,ρ∗)

∆k
, (12)

where the entries of δkj are zero except for the j:th one which is ∆k = 10−6 W (m K)−1. Note that a perturbation of k∗j will10

change all values of k(z) between zj−1 and zj+1 due to the linear interpolation for k. The full matrixA can be used to quantify

deviations in the optimal k∗ given an assumption regarding the possible errors in measured temperature values. Since the upper

and lower boundary conditions are given by τn1 and τnMn for every k, the elementsAn1j andAnMnj for j = 1, . . . ,J, n= 1, . . . ,N,

in A in Eq. (10) are zero. Consequently, we do not assess the effect of errors in the temperature measurements on k∗ through

the values used to initialize and force the forward model.15

If we now assume that δτ are perturbations in the temperature data τ , that will result in deviations δk of the optimized

thermal conductivity values from the original estimate k∗. The optimization problem in Eq. (8) now has the solution:

k∗ + δk = argmin
k

Fτ+δτ,%(k,ρ∗). (13)

If δτ in Eq. (13) is small and ρ∗ is fixed, then using Eq. (7) and Eq. (11) one can show that δk in Eq. (13) satisfies:

ATWAδk =ATWδτ. (14)20

By linearising the dependence of Tj(k∗ + δk,ρ∗)−T (k∗,ρ∗) on δk in Eq. (11), we arrive at a linear least squares problem to

solve for δk in Eq. (14):

δk = (ATWA)−1ATWδτ =Aτδτ. (15)
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The weight matrix W in Eq. (15) is used to select only those values of δτ that are inside the computational domain. Columns

in the sensitivity matrix Aτ correspond to the different k∗j nodes and individual element express the feedback to be expected

from the respective thermal conductivity value to unit perturbations at different depths and moments in time.

It is further assumed that errors in temperature measurements δτ are independent in space and constant in time and can be

expressed as:5

δτ = Eδς, (16)

where the elements of column vector δς are normally distributed random variables δςi ∼N (0,s2i ), i= 1, . . . ,M , with zero

mean and standard deviations si. The elements of the MN ×M matrix E are zero except for Eki = 1, k =N(i− 1) +n, n=

1, . . . ,N, i= 1, . . . ,M . Then the error in τni is δτni = δςi. The expected values of δk can be evaluated using Eq. (15) and Eq.

(16):10

E[δk] =AτEE[δς] = 0, (17)

and the variances are found on the diagonal of the covariance matrix

Cov[δk] = E[(Aτδτ)(Aτδτ)T ] =AτE[δτδτT ]ATτ

=AτEE[δςδςT ]ETATτ =AτESETATτ ,
(18)

where S is a square, diagonal M ×M matrix with s2i on the diagonal. In the numerical experiments for the first four time

periods when nine thermistor strings were used si is taken as the time average of στni in Eq. (2): s2i =
1

N

∑N
n=1σ

2
τni

and for15

spring 2015 when only one thermistor string was used as a vertically uniform value of s2i = 0.02.

3.3.2 Depth of temperature sensors

The process of conductive heat flow is governed by the spatial temperature gradient
∂T

∂z
. Uncertainty in the empirical estimates

of the gradient depends not only on the accuracy and precision of the measured temperature values, but also on the possible

biases in the estimates of the depths of the sensors. Real positions of the latter may differ from the ones assumed according20

to the original design due to the curvature of the thermistor cable in the borehole. Here possible biases in z are converted to

possible biases in T using the definition of the temperature gradient and the uncertainty in k∗ is quantified using Aτ in Eq.

(15).

The error in vertical separation of the temperature values attributed to depths zi and zi+1 is assumed to be constant in time

and is denoted by δεi+1. Then25

zi+1 = zi + ∆z+ δεi+1 = z1 + i∆z+
i+1∑
j=1

δεj = z1 + i∆z+ δzi+1, (19)

where i= 1, . . . ,Mn− 1, δzi is the cumulative error in depth. At z1 we have the error δz1 = δε1. If δεi, i= 1, . . . ,Mn, are

normally distributed random variables independent of each other and with the mean values ε and variances σ2
z , δεi ∼N (ε,σ2

z),
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then δzi ∼N (iε, iσ2
z). With the lower triangular M ×M matrix R in

R=


1 0 · · · 0

1 1 · · · 0
...

1 1 · · · 1

 ,

the relation between local (δε) and cumulative (δz) depth errors is δz =Rδε.

Temperature perturbation value δτni can be expressed using the temperature gradient and the position error δzi as

δτni = δzi
∂T

∂z

∣∣∣∣
z=zi,t=tn

. (20)5

Let the elements of the matrix T be zero except for Tki = ∂T
∂z

∣∣
z=zi,t=tn

, where k =N(i− 1) +n, n= 1, . . . ,N, i= 1, . . .M .

Then δτ = T δz = T Rδε. Thus, the minimal δk in Eq. (13) satisfies Eq. (14) with the solution

δk = (ATWA)−1ATWT Rδε=Azδε, (21)

with elements of the matrix Az expressing the response of the k∗ value in question to unit perturbations in depths of empirical

temperature values (cf. with Aτ in Eq. (15)). The expected value of δk is10

E[δk] =AzE[δε] = εAzeM , (22)

where eM is a vector of length M with elements 1. Since stretching of the cable in a borehole is not likely, both δε and E[δk]

values are rather negative than positive.

In line with Eq. (18), the covariance in δk is

Cov[δk] =AzCov[δε]ATz = σ2
zAzA

T
z . (23)15

The variances of δk are found on the diagonal of Cov[δk]

Var[δkj ] = σ2
z

Mn∑
i=1

A2
zji (24)

and tell how the variances σ2
z are magnified through δε and to the variances in thermal conductivity estimates.

In the absence of empirical estimates of deviation of the real depths of sensors with respect to the designed ones, the

quantification of ε is based on the fact that the vertical deviation of the direction of cable with thermistors is constrained by the20

walls of the borehole separated by diameter d= 0.05 m. The uncertainty ε can be expressed as:

ε= L −
√
L2− d2, (25)

where L is the typical separation between two points on the cable where it touches the walls of the borehole. In case L is

assumed to be equal to 1 m, ε is 1.3 mm.
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3.3.3 Density

Both the forward model and the optimization routine rely on the empirical data on the subsurface density. To assess the

sensitivity of optimized thermal conductivity values k∗ to errors in density data % we first assess the feedback of simulated

errors to deviations in ρ∗ and then translate these results to perturbations δk using the matrix Aτ (see Eq. (15)).

The sensitivity of the temperature due to perturbations δρ in ρ is computed following the logic of Eq. (9). The sensitivity5

matrix B is defined as:

Tni (k∗,ρ∗ + δρ) = Tni (k∗,ρ∗) +

J∑
j=1

Bnijδρj , (26)

or in matrix form:

T (k∗,ρ∗ + δρ) = T (k∗,ρ∗) +Bδρ, (27)

with the elements Bnij in B calculated and ordered in the same manner as in A in Eq. (10) and (12). A perturbation δρ can10

be interpreted as a perturbation in the temperature δτ =−Bδρ in the first term of (7) and by Eq. (15) it follows that the

perturbation in k∗ will be

δk =−(ATWA)−1ATWBδρ=−Aρδρ. (28)

The second term in Eq. (7) has no influence on the solution here since we minimize over k.

3.3.4 Hessian of the objective function15

The behavior of the objective function Fτ,%(k,ρ) in (6) and (7) close to the optimum k∗,ρ∗ is determined by the Hessian matrix

H:

H =

 ATWA ATWB

BTWA BTWB+ γI

 , (29)

where A, B, W and γ are defined in (11), (27), (7) and (6) and I is the identity matrix. A small perturbation δχ= (δk,δρ) of

k∗,ρ∗ will change Fτ,% by δχTHδχ. The Hessian H is positive definite with positive eigenvalues and orthogonal eigenvectors20

when γ > 0. Thus, k∗,ρ∗ is a local minimum of Fτ,%. In the direction δχ of an eigenvector with a large eigenvalue, the optimum

is well defined but in a direction along an eigenvector corresponding to a small eigenvalue the uncertainty in the optimum is

larger.

4 Results and discussion

4.1 Measured subsurface density and temperature25

The subsurface glacier profile observed in the cores consists of snow and firn with multiple ice lenses (Figure 1). The measured

snow and firn density (%) varies from 350 to 900 kg m−3 with a gradual increase downward and occasional spikes corresponding
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to the ice layers apparent from the stratigraphical record. Compared with the measured values, the optimized densities (ρ∗)

show similar ranges and the overall pattern of an increase with depth (Figure 1).

The evolution of subsurface temperature τni measured during five periods used for the simulations is shown in Figure 2.

The position of the upper boundary shifts upward following the snow accumulation at the surface. The evolution of deep

temperature outside of the melt season generally follows the surface temperature with significant dampening with depth and5

time delay of the amplitude. During fall 2014 temperature continuously decreases at all depths. During the four spring seasons

the same pattern is observed only below ca 3-4 m, while the upper part of the profile experienced warming. The measured

temperature generally increases with depth, however, the opposite tendency is observed for the upper ca 1-2 m of the profile

in the spring seasons, particularly towards the end of the simulation periods. The simulation domains where Eq. (3) is solved

and k and ρ are optimized in Eq. (8) are bound by the white curves limiting the area with temperature values colder than10

-2◦C and depths at the time of instrument installation larger than 1 m. The snow and firn temperature measured in April–May

2014 is significantly lower than the values registered at similar depths below the surface in April–May of the following year

(Figure 2). Based on this finding we suggest that the late part of the winter season in 2014 (February–April) was colder than

in 2015. This finding is supported by the data from an AWS at Nordenskiöldbreen (600 m asl), according to which in 2015

March and April were warmer than in 2014 by 2.5 and 6◦C correspondingly (description of AWS and data can be found at:15

http://www.projects.science.uu.nl/iceclimate/aws/). The vertical temperature gradients measured in 2015 on April 11 and 15 by

the thermistor strings installed a year earlier and by the new installation are in good correspondence (Figure 2). This suggests

that during one year (April 2014–April 2015) gravitational densification of snow and firn did not result in significant change

of the separation between sensors and justifies the usage of time-constant density profiles in our simulations.

4.2 Optimized thermal conductivity values k∗20

The effective thermal conductivities k∗ optimized according to the Eq. (8) range from 0.2 to 1.6 W (m K)−1 and are presented

in Figure 3B. The values consistently increase with depth at the rate of ca 0.11 W (m2 K)−1 on average and somewhat slower

in the fall of 2014. The temporal change in k∗ values can also be assessed with reference to Figure 3B since the profiles for

different domains are plotted with a vertical offset accounting for the surface accumulation. The overall tendency is increase

in k∗ over time with an average rate of 0.09 W (m K year)−1. Provided that the surface accumulation rates at the field site are25

slightly above 1 m, this is less than the expected value from the vertical gradient in k∗. In the absence of a physical process that

could result in a decrease of the firn effective thermal conductivity k∗ over time, the apparent lowering of optimized k∗ values,

such as seen between 8 and 10 m from spring 2012 to spring 2013, is attributed to the uncertainties in empirical data such as

temperature readings, depths of individual sensors, density measurements and estimates of the surface accumulation rate.

The uncertainty bar for each k∗ value is calculated following Eq. (18) and denotes the intervals of one standard deviation30

from the mean value. The bars take into account only the possible errors in subsurface temperature measurements quantified

through the time-averaged standard deviations in values from different thermistor strings (Figure 3A). Compared with the k∗,

the uncertainty values are generally small and are between ca 0.03 and 0.25 W (m K)−1. The overall increase in uncertainty

of k∗ values with depth is due to the downward decrease in temporal and spatial temperature gradients and also in the number
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of measurements with temperature below -2 ◦ C. Altogether this results in increase of chances for the optimization routine

to converge to a "wrong" k∗ value based on biased temperature simulations resulting from it, as the biases are smaller and

lesser in number than in the upper part of the profile. The deepest k∗ values in spring 2012 and 2013 exhibit outstandingly

high uncertainty values, which is explained by the fact that the values are found at depths where temperature never reaches

below -2 ◦C and are thus constrained only through the part of the linear fit to the k∗ value above that lies within the simulation5

domain. Due to the lack of data and large variances of the temperature measurements deep down, the deepest k∗ values in each

of the two domains in 2012 and 2013 are likely not reliable.

In Figure 4, the optimal k∗ (A) and ρ∗ (B) values are computed for the spring 2012 domain for different γ. The result varies

for the extreme values of γ but is consistent for intermediate γ. The k∗ and ρ∗ values are indistinguishable for γ = 10,103 and

γ = 10,103,107, respectively. The eigenvector for the smallest eigenvalue (Figure 4C) shows that the uncertainty is largest for10

the deepest k∗ values when γ ≥ 10 in agreement with Figure 3B. When γ = 10−5 then the regularization of ρ is insufficient

with oscillations in the solution and an eigenvector with large entries and uncertainty for all ρ values. The results for other

seasons are similar.

4.3 Sensitivity of k∗ to errors in temperature measurements

The results of sensitivity experiments exploring the feedback (Aτ in Eq. (15)) of k∗ values to errors in subsurface temperature15

measurements τni are presented in Figure 5. The black markers close to the right border of each dataset show the positions of

k∗ points. The color at any specific point in depth zi and time tn corresponds to the response of the k∗ j value at the depth

indicated by the black circle marker to a unit change in temperature (1 ◦C) at depth zi and time tn. The sensitivity is set to zero

outside of the computational domain, the lower boundary of which is shown by the black curves.

It can also be noted that here we analyse the k∗ feedback to errors in individual temperature values within the dataset used20

to constrain the optimization routine. For the first four calculation domains (spring 2012-2014 and fall 2014) this data are the

result of lateral averaging of data from nine (q = 9 in Eq. (1)) thermistor strings. Although the strings are coupled to the same

data logger, the errors in temperature measurements can be assumed to be at least partly independent. Thus sensitivities Aτ to

temperature errors coming from single thermistor strings and not laterally averaged datasets can be expected to be lower than

indicated by color coding in Figure 5 by a factor of
√
q = 3.25

Optimized k∗ values are not very sensitive to single errors in subsurface temperature data: for j = 1 . . .7 (panels A - G in

Figure 5) the expected response of the thermal conductivity values k∗j to a 1 ◦C error varies between−1.1·10−3 and 1.1·10−3

W (m K)−1, corresponding to the Āτj−3σAτj and Āτj +3σAτj , where Āτj and σAτj are the mean and standard deviation of

the Aτj values. However, as it was demonstrated earlier (see the error bars in Figure 3B), a systematic time-independent bias

in temperature data can result in notable deviations of the k∗ estimates.30

Sensitivities Aτ for the fall 2014 domain exhibit a distinctively different range and pattern of spatiotemporal change of

values with respect to the spring seasons. The reasons for that are not completely understood and elucidation may require

additional empirical data from other fall seasons. It can be noted that during the period from September 2014 to April 2015

14



the dominant tendency in the change of surface temperature was decrease, which induced continuous cooling of the subsurface

profile.

Several patterns in the spatiotemporal distribution of the sensitivitiesAτ can be noted. In most cases the sign of the sensitivity

is positive between the depths of k∗ j−1 and k∗ j and negative between the depths of k∗ j and k∗ j+1 if k∗ j is the k value

being tested for sensitivity (depth is marked by the black circle in Figure 5). This pattern is reversed when considering depth5

levels further away from the circles (between k∗ j−2 and k∗ j−1 and between k∗ j+1 and k∗ j+2) and the period of alternation

roughly corresponds to the spacing between k∗ values which is 1 m. This result is explained through changes in the vertical

temperature gradient induced by the temperature perturbations. The overall pattern in the vertical change of temperature is to

increase downwards, thus a temperature increase at a certain depth results in increase of the temperature gradient just above and

decrease just below that depth. These changes in temperature gradient are respectively compensated by negative and positive10

deviations in k values. Due to the piecewise-linear interpolation of k profile based on J k∗ values, a perturbation in k∗j also

affects the thermal conductivities below and above it. Therefore k∗ j−1 and k∗ j+1 adjacent to k∗ will display the tendency

opposite to the one demonstrated by k∗ j to compensate for the associated changes in the heat flux. This pattern is also apparent

when comparing different panels in Figure 5.

In most cases k∗ is most sensitive to temperature errors ca 0.5 – 1 m above and below its evaluation level, which is evidenced15

by the more intense colors in the sensitivity fields found in vicinity of the black circle markers. The amplitude of cycles with

alternating sign demonstrated by the sensitivityAτ fades away with distance from the perturbed k∗. The k∗ values found deeper

down in the vertical profile appear to be more sensitive to errors in temperature, as is seen in more intensive colors around the

circular markers in panels E — H of Figure 5 compared to panels A — D in the same figure.

4.4 Sensitivity of k∗ to errors in depths of temperature measurements20

The feedback of optimized thermal conductivities to errors in depths of temperature values used to constrain the optimization

routine (Az in Eq. (21)) is presented in Figure 6, where different panels show results for the five simulation domains. The color

of a point corresponding to index j and depth z indicates the expected bias in k∗ j found at depth highlighted by the black circle

in column j given a negative bias of -1 cm in depth of temperature values at depth z. The sensitivities Az for the lowermost

k∗j values (j = 8 for the spring domains and j = 6 for the fall 2014) are significantly larger than for other k∗j nodes due to25

propagation of the corresponding high Aτ values (Figure 5 G, H) to the Az matrices as is shown in Eq. (15) and (21). These

results are not shown.

In Figure 6 blue anomalies in vicinity of the markers indicate that the largest response of k∗j can be expected to depth errors

just below and just above the depth zj . This pattern is expected since the assumed depth perturbations are negative, which

increases the vertical temperature gradient and is compensated by lower k∗ values to keep the same heat flux. Secondly, the30

alternating pattern in the sensitivity of k∗, noted in the previous section, can also be seen in the Az matrices, particularly for

the deeper thermal conductivities with larger indices j: farther away in the vertical direction from the circular markers the

negative anomalies in Az are replaced by less negative and even positive values and then switch back to significantly negative

range. This behaviour of the sensitivity is caused by the piecewise linear interpolation applied to derive the 0.1 m-spaced k
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profile used in the forward model from 1 m-spaced optimized k∗ values. In an attempt to preserve the heat flux and minimize

the misfit between measured and simulated measurements the optimization routine will tend to overestimate the k∗ j+1 and

k∗ j−1 values in case k∗ j is forced to be too low due to the perturbation in depths of temperature values. The uncertainties

Az in Figure 6 are notably larger above the circular markers The thermal conductivities are much more sensitive to errors in

depths of temperature values occurring above the depth level than below because of the accumulation of the position errors5

from upper levels to the bottom. Another reason is probably that the vertical temperature gradients are larger in the upper part

of the profile. At the same time, due to the influence of the cable weight, thermistor strings can be expected to experience less

coiling in the shallow part of a borehole, possibly compensating the larger Az values there.

Assuming that thermistor strings are in contact with the borehole walls every L= 1 m (see Eq. (25)), the mean values of δk

in Eq. (22) are on the order of -0.02—0.07 W (m K)−1 for k∗1 – k∗6 and significantly larger lower down in the profile, where10

temperature gradients are lower and the amount of available empirical data is less (Table 1). The expected uncertainty is 3–8

times larger for the domain covering fall 2014, which is most likely caused by the larger temperature gradients during the early

period of subsurface cooling. It can be noted that the uncertainty δk in Eq. (22) is scaled by ε in Eq. (25), suggesting that if

L = 0.5 m, the values in Table 1 will increase almost by a factor of two. The results for the variance in Table 1 using Eq. (24)

show how the variance σ2
z in the positional error is magnified as a variance of the error in k. If σz ≈ ε then

√
Var[δk]≈ 0.0115

for most k-values, a rather small standard deviation.

4.5 Sensitivity of k∗ to errors in density

The results of experiments exploring the sensitivity of optimized thermal conductivities to possible errors in density are pre-

sented in Figure 7. All panels in the figure are dominated by colors corresponding to the positive sensitivity values, suggesting

that the general tendency is an increase in k∗ in response to an overestimation of density in the empirical dataset. Negative20

values correspond to k∗j values found in the lower part of the profile (j = 6 . . .8), which are generally less reliable.

Thermal conductivity appears to be more sensitive to density errors occurring above the depth level in question. This par-

ticularly applies to the biases in ρ2. It is still in the upper part of the subsurface profile were density is relatively low and the

relative importance of 1 kg m−3 mistake in density is large. These values are not exceeded by the Aρ1 found above, most

probably, because of the constraints imposed by the upper boundary condition on temperature errors: Aτ is always zero at the25

upper boundary of the calculation domain.

In the absence of empirical data to quantify possible errors in density, it can be noted thatAρ values presented in Figure 7 can

be scaled by any assumed value E[δρ] to derive errors E[δk] to be expected from k∗ values. It follows that a bias of 50 kg m−3

will result in k∗ deviation of up to 0.1 W (m K)−1.
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4.6 Comparison of k∗ with earlier published results

The relation between optimized effective thermal conductivities and densities is shown in Figure 8 using markers and the

associated linear fit:

k = 0.301 · 10−2ρ− 0.724 (30)

is illustrated by the thick black line. Also shown are the predictions from published similar fits. The Sturm et al. (1997)5

approximation relies on multiple needle probe measurements. The Calonne et al. (2011) and Riche and Schneebeli (2013)

parameterizations are constrained by k values quantified using numerical modelling of the effective thermal conductivity

tensor based on detailed three-dimensional micro tomographic models of snow samples. It can also be noted that all three

parameterizations are based on k measured in seasonal snow and the datasets included only a few samples with density above

500 kg m−3, while our results are based on measurements in firn with generally higher density.10

Almost all k∗ values are larger than the effective thermal conductivities predicted by the first two parameterizations and

the difference increases for larger densities. At the same time, the linear fit to k∗ and ρ∗ pairs appears to be closest to the

Riche and Schneebeli (2013) parameterization. The latter is based on measurements done on faceted and depth hoar samples

developing under strong temperature gradient and resulting in anisotropy of the bulk thermal conductivity with larger k in

the vertical direction. At Lomonosovfonna, the faceted crystals developing close to the surface are likely affected by the tem-15

perate conditions during the melt season. Below the depth of ca 1—2 m the vertical temperature gradients are not as high

and the mobility of water vapour in pores is reduced due to higher density, which altogether should limit the development of

microstructural anisotropy. At the same time, it can be hypothesized that the preferential water flow in snow/firn, reported from

the site (Marchenko et al., 2017b), can result in prominent vertically elongated structures below the surface of Lomonosov-

fonna, favouring anisotropy at a larger spatial scale and faster heat transfer in the vertical direction. The obvious variability in20

dependence between k∗ and ρ∗ values across different domains is a further indication of the fact that the vertical dynamics in

k∗ are caused not only by the changes in density and proxies describing the snow/firn structure at the scale of processes active

in its metamorphism are to be included in the k = f(ρ) functions along with the density (Löwe et al., 2013). At the scale of

grains such data can be derived using X-ray tomography (e.g. Kaempfer et al., 2005) and at the scale of 0.1 — 1 m detailed

radar surveys can be used (e.g. Dunse et al., 2008; Marchenko et al., 2017a).25

The findings regarding effective thermal conductivity values presented above can also be compared with the results of Giese

and Hawley (2015), who applied Fourier analysis to continuous temperature measurements and derived the thermal diffusivity

value (κ) of 25 ± 3 m2 year−1 in the top 30 m of firn pack Greenland Summit. Based on our optimized effective thermal

conductivity (k∗) and density (ρ∗) values and the specific heat capacity of ice (C) at -10 ◦C (Cuffey and Paterson, 2010,

page 400), the thermal diffusivity (κ∗) is calculated as κ∗ = k∗ (ρ∗ C)−1. The resulting κ∗ values lie in the range from 7.55 to30

48.77 m2year−1 with the mean value and standard deviations of 25.48 and 7.52 m2year−1 respectively, providing a prominent

match with the results from Giese and Hawley (2015). It can be noted that quantification of k∗ using optimization technique

requires a much less extensive dataset in terms of time and depth coverage. Furthermore, since infiltration of melt water in the
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summer interrupts the conductive heat exchange in firn at Lomonosovfonna, it is not possible to apply Fourier analysis used

by Giese and Hawley (2015) on our data.

5 Conclusions

The evolution of subsurface temperature was measured in firn at Lomonosovfonna, Svalbard, using several thermistor strings

during April 2012 and July 2015. The data cover five periods when the subsurface profile is at least partly at subfreezing con-5

ditions. Combined with the density measurements from four cores it was used to reconstruct the effective thermal conductivity

and the density of the firn layers. For that we applied an optimization routine minimizing the mean squared difference between

the measured and simulated temperature evolutions and the measured and computed density.

The optimized effective thermal conductivity k∗ of the firn pack at Lomonosovfonna varies from 0.4 to 1.05 W (m K)−1

increasing downwards in a maximal likelihood approach for all the time periods. According to the results of sensitivity analysis,10

k∗ is not very sensitive to systematic temperature offsets. Overestimation of the separation between sensors resulting from

possible tortuosity of the cable in the borehole leads to overestimation of the k∗ values. Positive deviation in density estimates

also result in overestimation of the k∗ values, while negative density biases lead to an underestimation of effective thermal

conductivity.

The k∗ results are notably higher than the k values predicted by widely used empirical parameterizations based on the firn15

density measurements (Sturm et al., 1997; Calonne et al., 2011) and originally constrained by measurements of ρ and k in

seasonal snow. This suggests a possible underestimation of the subsurface heat fluxes by firn models relying on the equations.

In regions with climate similar to the one observed in Svalbard this is of particular importance for the cold season as the period

of conductive cooling is significantly longer than conductive warming occurring in spring before the onset of melt. Thus the

refreezing capacity of the firn pack at Lomonosovfonna by the onset of melt is likely to be be underestimated when simulated20

using the parameterizations by Sturm et al. (1997) and Calonne et al. (2011).
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Table 1. Expected deviations of thermal conductivities (E[δk] in Eq. (22)) and the corresponding standard deviations (
√

Var[δk], see Eq.

(23), (24)) given the magnitude of thermistor string coiling in the boreholes is expressed by L= 1 m (see Eq. (25)) and σz = 1 cm.

E[δk] k∗1 k∗2 k∗3 k∗4 k∗5 k∗6 k∗7 k∗8

Spring 2012 -0.046 -0.040 -0.051 -0.050 -0.045 -0.002 0.054 1.575

Spring 2013 -0.051 -0.044 -0.024 -0.018 -0.008 0.037 0.217 0.926

Spring 2014 -0.021 -0.042 -0.028 -0.045 -0.028 0.010 0.111 -0.103

Fall 2014 -0.118 -0.132 -0.187 -0.230 -0.244 -0.131

Spring 2015 -0.029 -0.069 -0.020 -0.039 -0.032 -0.016 0.069 0.138√
Var[δk] k∗1 k∗2 k∗3 k∗4 k∗5 k∗6 k∗7 k∗8

Spring 2012 0.073 0.063 0.077 0.069 0.068 0.074 0.123 1.779

Spring 2013 0.085 0.076 0.041 0.035 0.036 0.07 0.237 1.063

Spring 2014 0.042 0.063 0.051 0.065 0.047 0.061 0.146 0.196

Fall 2014 0.175 0.189 0.258 0.316 0.331 0.344

Spring 2015 0.051 0.1 0.035 0.06 0.048 0.042 0.087 0.153
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Figure 1. Subsurface stratigraphy and density in four cores recovered in April 2012 (A), 2013 (B), 2014 (C) and 2015 (D). Also shown are

the density profiles simulated using maximum likelihood approach in Eq. (8).
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Figure 2. Measured evolution of subsurface temperature. The vertical axis is referenced to the glacier surface in April 2015. The horizontal

axis is referenced to the 21th April 2012 and is linear for the periods covered by measurements: 21 April – 19 June 2012 ("spring 2012"), 22

April – 1 June 2013 ("spring 2013"), 18 April – 4 July 2014 ("spring 2014"), 25 September 2014 – 11 April 2015 ("fall 2014") and 15 April

– 9 July 2015 ("spring 2015") and arbitrary between the domains. White curves indicate the upper and lower boundaries of the simulation

domains. The color bars along the horizontal axis show the intervals between measurements: yellow - 1 h, blue - 3 h and green - 12 h.
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Figure 3. A: Time-averaged standard deviations in subsurface temperature measured by different thermistor strings (si). B: Optimized

effective thermal conductivity values (k∗) calculated following Eq. (8) with error bars according to Cov[δk] in Eq. (18) assuming temperature

errors shown in panel A.
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Figure 4. The optimal solutions k∗ (A) and ρ∗ (B) in the spring 2012 domain for different values of γ in equation (7). The black curve in B

shows measured density values. C: absolute values of the eigenvector with the smallest eigenvalue of the Hessian H in equation (29).
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Figure 5. Sensitivity (Aτ in Eq. (15)) of effective thermal conductivities (k∗j) to errors in the temperature measurements. Panels A, B - H

correspond to j = 1,2, . . . ,8, in each case the depth of k∗ j is highlighted by black circle, depths of other k∗ values are shown by black dots.

The color at a certain point in depth and time corresponds to the feedback of the k∗ j value found at the depth shown by the black circle to

a unit error in temperature (+ 1 ◦C) at that depth and time. Black curves indicate the lower boundaries of the computational domains, below

them the sensitivity is set to 0. The horizontal axes are the same as in Figure 2.
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Figure 6. Sensitivity (Az in Eq. (21)) of effective thermal conductivities k∗j to errors in depths of temperature values. Panels correspond to

different calculation domains: spring 2012 (A), spring 2013 (B), spring 2014 (C), fall 2014 (D) and spring 2015 (E). In all panels the color of

a point in column j and depth z shows the feedback on effective thermal conductivity value k∗j found at the depth highlighted by the black

(white in D) circle to an error in depth of temperature value (1 cm) made at depth z.

29



Figure 7. Sensitivity (Aρ in Eq. (28)) of effective thermal conductivities k∗j to errors in density. Panels correspond to different calculation

domains: spring 2012 (A), spring 2013 (B), spring 2014 (C), fall 2014 (D) and spring 2015 (E). In all panels the color of a point in column j

and depth z shows the feedback of effective thermal conductivity value k∗j found at the depth highlighted by the white circle to a unit error

in density (1 kgm−3) made at depth z.
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Figure 8. Relation between effective thermal conductivities k and densities ρ. Markers illustrate the results of optimization routine, the black

line shows the linear fit based on all k∗-ρ∗ pairs. The light blue, ruby and green curves show quadratic k = f(ρ) functions according to

(Sturm et al., 1997), (Calonne et al., 2011) and (Riche and Schneebeli, 2013).
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