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Abstract

In this paper, we evaluate the neXtSIM sea ice model with respect to the observed scaling
invariance properties of sea ice deformation in the spatial and temporal domains. Using an
Arctic set-up with realistic initial conditions, state-of-the-art atmospheric reanalysis forcing
and geostrophic currents retrieved from satellite data, we show that the model is able to re-5

produce the observed properties of these scaling in both the spatial and temporal domains
over a wide range of scales and in particular their multi-fractality. The variability of these
properties during the winter season are also captured by the model. We also show that the
simulated scaling exhibit a space-time coupling, a suggested property of brittle deformation
at geophysical scales. The ability to reproduce the multi-fractality of these scaling is cru-10

cial in the context of downscaling model simulation outputs to infer sea ice variables at the
sub-grid scale, and also has implication in modeling the statistical properties of deformation-
related quantities such as lead fractions, and heat and salt fluxes.

1 Introduction

The fact that sea ice deformation maps look similar at different scales, with highly local-15

ized deformation features intersecting with a wide range of intersection angles (e.g., Hutch-
ings et al., 2005; Wang, 2007; Hutter et al., 2019), suggests scale-invariance in the spa-
tial domain (Erlingsson, 1988). We note that scale-invariance in space is also observed in
sea ice for other deformation-related quantities, such floe sizes (Rothrock and Thorndike,
1984; Matsushita, 1985) and keel profiles (Rothrock and Thorndike, 1980). Comprehensive20

datasets of sea ice drift are now available at different spatial and temporal resolutions, from
50 m/10 min (Oikkonen et al., 2017), 400 m/2 days (Thomas et al., 2004, 2007, 2009) to
5-10 km/3 days (Kwok, 2001; Stern and Moritz, 2002). Analyses of these datasets have
confirmed the presence of scale-invariance and, in particular, has confirmed that sea ice
deformation is highly localized in both space and time.25
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In the spatial domain, deformation is observed to be concentrated along quasi one-
dimensional, so-called linear kinematic features (LKFs) organized in “web-like arrays” (Kwok
et al., 1998; Thomas et al., 2007) that can be clearly identified over a wide range of space
scales (Thomas et al., 2007; Linow and Dierking, 2017; Hutter et al., 2019). Sea ice de-
formation also appears to be a self-similar, highly localized process in the time domain.5

Isolated, short-duration fracturing events of various intensity occur over a wide range of
frequencies. These events also sustain larger-scale deformation, maintaining the LKFs “ac-
tive” for many days Coon et al. (2007). The reorganization and formation of new LKFs occur
in response to changes in the large scale atmospheric forcing (Kwok, 2001), and perma-
nent deformation with high deformation rates in the ice pack is mainly synchronous with10

high winds events (Oikkonen et al., 2017).

A quantitative indication of scale-invariance in sea ice deformation is given by the shape
of the distribution of deformation rate invariants (i.e. shear and divergence) and of the total
deformation rates, which we refer to here as ε̇. These probability density functions (P ) have
indeed been shown to be “heavy-tailed”, i.e., dominated by extreme values, following a15

power law decay of the type

P (ε̇)∼ ε̇−γ , (1)

where γ is an exponent larger than 1 that depends on the spatial and time scale considered
(Lindsay and Stern, 2003; Marsan et al., 2004; Rampal et al., 2008; Hutchings et al., 2011;
Bouillon and Rampal, 2015b). This important characteristic expresses scale-invariance, as20

it is impossible from a power law distribution to determine the scale of a given deformation
even by comparing the relative number of deformation events of different sizes.

Localization in the time and space domain is revealed by scaling analysis of the deforma-
tion rate invariants. In such analysis, deformation rates are estimated at different spatial and
temporal scales, by such methods as “coarse-graining” (see section 3 for more details). Es-25

timated using coarse-graining analysis (e.g., Lindsay and Stern, 2003; Marsan et al., 2004;
Bouillon and Rampal, 2015b) or dispersion analysis of pair of buoys (Rampal et al., 2008),
the mean sea ice deformation rate has been shown to vary with the spatial scale, L, and
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temporal scale of observation, T , as

〈ε̇〉 ∼ L−β, (2)

〈ε̇〉 ∼ T−α, (3)

respectively, hence following a power law. The scaling exponents, β and α are both equal
or greater than zero and quantify the degree of localization of the deformation. In the space5

domain, β = 0 characterizes the homogeneous deformation of an elastic solid or viscous
fluid, i.e., a deformation that does not depend on the spatial scale, while β = 2, i.e. the
topological dimension for the 2D-like sea ice cover, corresponds to a single "point" concen-
trating all of the deformation in an otherwise undeformed material (Rampal et al., 2008).
Conversely, in the time domain, α = 0 corresponds to a homogeneous deformation and10

a single, temporally isolated deformation event corresponds to the limit of α = 1 (Rampal
et al., 2008). This scaling has been shown to hold over a very wide range of space and time
scales (Rampal et al., 2008; Oikkonen et al., 2017; Weiss, 2017), with that α and β larger
than 0, even for time scales on the order of the winter season and for space scales on the
order of the length of the Arctic basin. This result indicates the absence of a characteris-15

tic time and/or space scale for the mean sea ice deformation over these scales and, as a
consequence, that sea ice deformation can not be assumed homogeneous over time/space
scales relevant for Arctic system simulations.

The fact that sea ice deformation is characterized by heavy-tailed statistical distribution,
i.e. dominated by extreme events, also indicates that the mean (moment of order 1) is not20

a sufficient quantity to describe the distribution of deformation rates at a given time/space
scale. Higher moments of the distribution of deformation rates, such as the variance (order
2) and skewness (order 3), should indeed also be explored to better describe the distribution
and the associated process of sea ice deformation, and considered in temporal and scaling
analyses as proposed in this study.25

While the value of the scaling exponents β and α for the first moment (the mean) de-
scribes the rate at which the magnitude of deformation events decreases with the scale
of observation, it is the change in the value of β and α with respect to the moment q of
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the distribution that indicates how the temporal and spatial localization itself changes with
the magnitude of deformation events. This change can be described by so-called structure
functions of the form

β(q) = aq2 + bq, (4)

α(q) = cq2 + dq, (5)5

(6)

in space and time respectively. In the case of a linear structure function, i.e. no curvature or
equivalently a= 0 or c= 0, the scaling is said to be mono-fractal. In the case where both
coefficients a and b or c and d are positive the structure functions are convex, meaning that
the higher order moments of the distribution therefore increase much faster than the lower10

order moments with decreasing scale of observation. In other words, large deformation
events are more localized in time and space than smaller events, corresponding to the
definition of a multi-fractal scaling (e.g., Kolmogorov, 1962; Lovejoy and Schertzer, 2007).
Note that in the literature multifractality is also called intermittency when present in the
time dimension and heterogeneity when present in the spatial dimension. The largest the15

curvature, the stronger the degree of multifractality of the scaling.
Spatial scaling analysis of sea ice deformation retrieved from radar or buoy drift data

show a clear multi-fractal scaling expressed by a power law scaling of the first, second, and
third moments, ranging from the resolution of the data up to hundreds of km (e.g., Marsan
et al., 2004; Rampal et al., 2008; Hutchings et al., 2011; Bouillon and Rampal, 2015a).20

Recently, Weiss and Dansereau (2017) have suggested, based on the combination of all
available data, including the ones of Oikkonen et al. (2017), that this multi-fractality also
holds in the time domain, over a period of 3 to 160 days. We note that multi-fractality in
space has also been observed for open water densities (Weiss and Marsan, 2004) and
lead fractions (Olason et al., 2019), and in time for shear stress amplitudes (Weiss and25

Marsan, 2004) and principal stress directions (Weiss, 2008).
These properties of sea ice deformation imply that observations of these quantities avail-

able at large scales can be statistically related, i.e, downscaled, to the same quantities at
5
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smaller, unresolved scales. In the case of model simulations, downscaling of outputs could
be particularly valuable to infer quantities at the sub-grid and/or sub-time-step scale. In this
context, the capability to reproduce mono- versus the multi-fractality of these properties be-
comes very important. Indeed, if one was to estimate the distribution of a variable at the
sub-grid scale based on a model that would not reproduce the observed multi-fractality,5

but only a mono-fractality, then the downscaled distribution of this variable would greatly
underestimate extreme values.

The multi-fractal behaviour of sea ice has been the subject of a large number of in-
teresting studies and is hypothesized to be of significant importance for sea-ice rheology
(e.g., Weiss and Dansereau, 2017). Bouillon and Rampal (2015a) and Rampal et al. (2016)10

showed that previous versions of neXtSIM were capable of reproducing the spatial scaling
and multi-fractal behaviour of the ice, with a very weak temporal scaling reported by Ram-
pal et al. (2016). Spreen et al. (2017) and Bouchat and Tremblay (2017) have used some
scaling analysis to investigate their respective viscous-plastic models, without going into the
full details of a multi-fractal analysis or considering the temporal scaling. Hutter et al. (2018)15

on the other hand does a full multi-fractal analysis of the spatial and temporal scaling in
a viscous-plastic model. Their work shows that with a model running at ∼1 km resolution
they can reproduce reasonably good spatial scaling and multi-fractality down to the 10 km
scale and up to 200 km; it is not shown how well the scaling holds down to the actual model
resolution and their spatial scaling does not hold beyond the 200 km scale. They report20

inconsistent temporal scaling with a reasonably good temporal scaling when considering
the full domain (where they don’t report on multi-fractality), and no temporal scaling in the
region covered by the EGPS data they compare to. They also only report temporal scaling
for up to 30 days. Hutter et al. (2019) appear to improve on these results, but as this paper
is still under review further detailing of their results is premature.25

The observed self-similarity and multi-fractality in the deformation and related charac-
teristics of sea ice actually poses great challenges to the development of sea ice models,
in particular in the continuum framework. On the one hand, the momentum and evolution
equations for sea ice properties are based on mean variables. On the other hand, however,
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the observed multi-fractality in sea ice deformation implies that there is not a clear separa-
tion of scales between the strain rate due to mesoscale (50-100 m) heterogeneities in the
ice (leads, ridges, etc.) and the strain rates at 10 to 100 km scale. Consequently, no scale
appears appropriate to homogenize sea ice motion and thereby define a mean velocity or
deformation rate for model resolution ranging from 50 m to 100 km.5

In the absence of a characteristic space/time scale for the sea ice deformation perhaps
the best a continuum framework for sea ice modelling can do is to correctly reproduce the
statistics of deformation from the smallest scales resolved (the nominal scale) to the largest
scale, i.e. from the resolution of the grid in space and the model time step in time, to the size
of the Arctic basin and the time scale of a season. This is one of the motivation in developing10

neXtSIM, the numerical model used in the current study. Such localization at the nominal
scale is the most faithful representation of the discontinuous nature of sea ice possible in
a continuum model. Knowing the importance of essentially discontinuous features, such
as leads, for atmosphere–ocean interaction modulated by sea ice (e.g. Smith, 1974; Kozo,
1983; Esau, 2007; Marcq and Weiss, 2012), we can expect the effect of using an ice model15

which localizes features at the nominal scale to be essential for improving the representation
of this interactions in a coupled system.

This paper consists in the last step in validating neXtSIM against sea ice deformation
statistics. While previous work have shown that the model reproduces the observed scaling
of sea ice deformation (Bouillon and Rampal, 2015a; Rampal et al., 2016) in space, the20

temporal scaling and multi-fractality of both types of scaling have not yet been demonstrated
for this model. The comparison performed here is based on satellite observations of sea ice
deformation and winter-long simulations over the Arctic Ocean.

Section 2.1 and 2.2 discuss the recent developments of neXtSIM, the simulation setup
and the observations. Section 3 describes the methodology used to perform the multi-fractal25

scaling analyses on both the model and observational data. Results of these analyses are
presented in Section 4 and discussed in Section 5.

7
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2 Model and observations

2.1 Model and simulation setup

neXtSIM is a finite elements sea ice model that uses a moving Lagrangian mesh. Its orig-
inal dynamical component was based on the Elasto-Brittle (EB) mechanical framework of
Amitrano et al. (1999), first implemented in the context of sea ice by Girard et al. (2011)5

to account for brittle fracturing processes and the associated spatial localization of defor-
mation. This framework was later adapted by Bouillon and Rampal (2015b) and Rampal
et al. (2016) for long-term simulations of the Arctic sea ice cover including thermodynami-
cal processes and advection, using a Lagrangian treatment of the equations of motion and
a dynamical remeshing scheme. Year-long simulations were presented in Rampal et al.10

(2016) and evaluated with respect to sea ice area, extent, volume, drift, and deformation.
For example, the simulated deformation rates were demonstrated to be in good agreement
with observations on the basis of their scaling properties in space.

However, the Elasto-Brittle model does not, by definition, include a physical mechanism
for irreversible deformations, as it is based on a strictly linear-elastic constitutive law. It15

therefore cannot represent the transition between the small, elastic deformations associ-
ated with the fracturing of the ice cover and the permanent, potentially large, post-fracturing
deformation that dissipates internal stresses. It is therefore not suited to represent the dy-
namical behavior of a fractured ice cover over long (>day) time scales and cannot represent
fully the properties of sea ice deformation in time.20

The recent Maxwell-Elasto-Brittle (MEB) rheology addresses this limitation of the EB
framework by including a mechanism for the relaxation of internal stresses that depends on
the degree of fracturing of the sea ice cover (Dansereau et al., 2016). It is implemented in
the current version of neXtSIM, which is used for this study. Another addition to the model
is the introduction of a three-thickness-categories scheme that represents explicitly the thin25

and newly-formed ice. The other model components (thermodynamics, slab ocean, etc.)
remain unchanged relative to the version presented by Rampal et al. (2016).

8
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All of the relevant equations of the current version of neXtSIM are presented in the appen-
dices (Sections A1 for the dynamical core and A2 for the three-thickness-categories scheme
and sea ice thermodynamics). The numerics (spatial and temporal discretizations, advec-
tion scheme and numerical solvers) are the same as described in Rampal et al. (2016).

The initial mesh is generated in pre-processing over a pan-Arctic region by using the5

mesh generator presented in Remacle and Lambrechts (2016) with a prescribed mean res-
olution (i.e. mean length of the edges of the triangular elements) of 10 km. The coasts are
defined from the Global Self-consistent, Hierarchical, High-resolution Geography Database1.
The domain is restricted to the central Arctic by putting open boundaries on the lines cutting
the Bering Strait from (-166.0 , 67.7 N) to (-170.7, 65.7 N) and cutting the Canadian Arctic10

Archipelago from (-59.0, 76.7 N) to (-121.0 ,69.5 N) and on the 2-segments line cutting
the Greenland and Barents and Kara Seas by joining the coordinates (-19.0, 77.0N), (11.0,
73.0 N), (22.0, 72.9 N), (43.9, 76.1 N), (75.4, 75.7 N) and (88.5, 73.6 N). We checked that
using a larger domain with open conditions much further from the zone of interest does not
impact the results presented in this paper.15

The atmospheric forcing consists of the 10 m wind velocity, 2 m air temperature, mixing
ratio, mean sea level pressure, total precipitation amount and snow fraction, and incoming
short-wave and long-wave radiation. All of these quantities are provided as three-hourly
means and on a 30 km spatial resolution grid from the atmospheric state of the Arctic
System Reanalysis2 (Bromwich et al., 2016).20

The ice-ocean surface stress is computed from monthly ocean surface geostrophic cur-
rents derived as in Armitage et al. (2017) from the Arctic sea surface height data obtained
from altimeters by Armitage et al. (2016). The provided fields surface height fields have
a hole of missing data around the North Pole that we filled using a linear interpolation be-
tween the northernmost available points and their mean. A smoother is applied to the ocean25

1GSHHS_f_L1.shp, downloaded from https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/
latest/gshhg-shp-2.3.5-1.zip, accessed 1 February 2017

2https://rda.ucar.edu/datasets/ds631.0, ASRv1 30-km, formerly ASR final version, Byrd Polar Re-
search Centre/The Ohio State University. Accessed 15 April 2015

9
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velocity components in the filled area to avoid spurious oscillations due to the interpolation
method. The final ocean currents forcing is at a spatial resolution of 50 km. The slab ocean
salinity and temperature are nudged towards the daily sea surface temperature and salinity
data provided as daily means and at 12.5 km spatial resolution over the Arctic region by
the TOPAZ4 reanalysis3 (Sakov et al., 2012) with a nudging time scale equal to 30 days.5

TOPAZ4 is a coupled ocean and sea ice data assimilation system for the North Atlantic and
the Arctic that is based on the HYCOM ocean model and the ensemble Kalman filter data
assimilation method using 100 dynamical members. A 23-year reanalysis has been com-
pleted for the period 1991–2013 and is the multi-year physical product in the Copernicus
Marine Environment Monitoring Service. The ocean depth, H , used for the basal stress10

parametrization comes from the 1 arc-minute ETOPO1 global topography4 (Amante and
Eakins, 2009).

Our reference simulation starts on November 15th, 2006. The level of damage of the
ice cover (see appendix A1) is initially set to zero where sea ice is present. Initial sea ice
concentration and thickness are set from a combination of the TOPAZ4 reanalysis, and the15

OSISAF climate data record (Tonboe et al., 2016) and ICESAT5 Kwok et al. (2009) datasets
respectively.

2.2 Satellite observations

We use the Lagrangian displacement data produced by the RADARSAT Geophysical Pro-
cessor System (RGPS) as described in Kwok et al. (1998). This dataset covers the Western20

Arctic for the period 1996–2008 and provides trajectories of sea ice “points” initially located
on a 10 km regular grid (http://rkwok.jpl.nasa.gov/radarsat/lagrangian.html). The positions
of these points are updated when two successive SAR images are available. The time inter-
val between two updates is typically 3 days. For the present analysis we use the data cov-

3available at http://marine.copernicus.eu/services-portfolio/access-to-products/
4available at https://www.ngdc.noaa.gov/mgg/global/
5available at https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/seaicethickness-satobs-arc.

html

10

http://rkwok.jpl.nasa.gov/radarsat/lagrangian.html
http://marine.copernicus.eu/services-portfolio/access-to-products/
https://www.ngdc.noaa.gov/mgg/global/
https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/seaicethickness-satobs-arc.html
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ering the winter period 2006-12-03 to 2007-04-30 from the reprocessed RGPS Lagrangian
displacement product, so-called RGPS Image Pair Product, introduced and used in Bouillon
and Rampal (2015b) (section 2.2).

3 Methodologies for scaling analysis

Scaling analyses of sea ice deformation can be performed with two approaches: a so-called5

coarse-graining method as in e.g. Marsan et al. (2004) or buoys dispersion method as in
Rampal et al. (2008) (using pairs of buoys) or in Oikkonen et al. (2017) (using triplets of
buoys). We use a similar method as Oikkonen et al. (2017) for this study, i.e. computing
velocity gradients from the trajectories of triplets of points. The nominal resolution for a
scaling analysis is defined as the square root of the surface area of the polygon considered.10

For example, the minimal spatial resolution that can be achieved with the RGPS dataset
when using the 3-sided polygons obtained from a Delaunay triangulation is about 7.5 km.
This also set the nominal spatial resolution of the analysis presented in this study.

Drifters in the model are seeded at the location of the RGPS grid points as of December 3,
2016. The RGPS grid for this initialization is undeformed and the points are regularly spaced15

by 10 km. The positions of the simulated drifters are updated at each model time step until
the end of the simulation or until the ice concentration drops to zero (through melting or
opening of a lead). Both the RGPS and simulated trajectories are filtered for the presence
of coasts, with a proximity threshold of 100 km. Only the trajectories spanning the same
time periods in both the simulation and RGPS dataset are considered in the calculation of20

the deformation and their statistics. This selection lead to discarding about 1% only of the
total trajectory dataset, and does not affect the results of the analyses presented in this
paper. However, we apply this selection in order to make our comparison between model
and observations as much consistent and clean as possible.

Triplets of drifting points are defined as the result of Delaunay triangulation of the initial25

positions of the tracked RGPS points, which ensures that the associated polygons are in-
dependent, i.e., non-overlapping. The exact same triplets of points are considered in the

11
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model for the analysis, meaning that we follow the exact same set of triplets of trajectories
(or triangles) in the model and in the observations. The polygons after initiation are defined
by the positions of their three nodes at any given time. We stress the fact that the simulated
trajectories are not reinitialized every 3 days to match the RGPS positions; only the initial
positions are identical between the RGPS and the model trajectories.5

To perform a spatial scaling analysis of sea ice deformation, one needs to consider triplets
of points with different spacing, i.e. different sizes of polygons. In order to obtained sets of
polygons of different surface areas, we perform successive Delaunay triangulation through
the clouds of points defined by the initial positions of the RGPS points, using increasingly
sub-sampled clouds of these points. Each set of contiguous polygons obtained using this10

process is associated to a spatial scale, L, defined as the mean of the square root of the
polygon surface areas obtained from the triangulation, i.e from 7.5 to 580 km in this study.
We note that due to the finite size of the Arctic basin and the largest spatial scale of 580 km
considered here, the number of triplets available for the statistical analyses decreases by a
factor (570/7.5)2 as the space scale increases from 7.5 to 580 km. To perform a temporal15

scaling analysis of sea ice deformation, one also need to consider the positions of triplets
of drifters separated by different times T . The number of available triplets for our analysis
in the time domain therefore also decreases as the time scale considered increases due to
the finite time covered by our simulation (about 5 months) which is constrained by the fact
that we wish to limit our analysis to the winter period, i.e. from early December to mid-April.20

For each available polygon, the total deformation rate is calculated as:

ε̇tot =
√
ε̇2shear + ε̇2div (7)

where ε̇shear and ε̇div are the two invariant, shear and divergence respectively, of the defor-
mation rate. These invariant are estimated using a contour integral calculation as follows:
The spatial derivatives of the components u and v of the velocity calculated at a given time25

scale T are obtained by calculating the contour integrals as in Kwok et al. (2008) and Bouil-
lon and Rampal (2015b) around the boundary of each polygon associated to a given space

12
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scale L:

ux =
1

A

∮
udy (8)

uy =− 1

A

∮
udx (9)

vx =
1

A

∮
vdy (10)

vy =− 1

A

∮
vdx, (11)5

where A is the encompassed area of the polygon equal to L2. For example, ux is approxi-
mated by:

ux =
1

A

n∑
i=1

1

2
(ui+1 +ui)(yi+1− yi), (12)

where n= 3 and subscript n+ 1 = 1. The shear rates ε̇shear and divergence rates ε̇div are
then computed as:10

ε̇shear =

√
(ux− vy)2 + (uy + vx)2, (13)

ε̇div = ux + vy. (14)

The distribution of total deformation rates is constructed from each given coupled space/time
scale (L, T ), and their first 3 moments are calculated as 〈ε̇qtot〉 where q = 1,2,3 is the mo-
ment order.15

Below we discuss some issues that are inherent to the data and our method and their
impact in terms of the robustness of the statistics calculated here.

– With time, the triangular elements can become too distorted, in which case their length
scale, L, is poorly defined. Applying a test for distortion based on the smallest angle

13
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of the polygons and discarding the most distorted ones was found to affect the results
in terms of the slope of the scaling, and the goodness of the fit of the power law fit of
the scaling. Hence here we discard from the analysis the polygons having a minimum
angle of 30 degrees or less.

– The RGPS trajectories are not sampled at regular time intervals, contrary to the model,5

due to the irregular interval between two satellite orbits. The mean sampling is of
about 3 days, and 90% of trajectories are sampled with a frequency between 2.5
and 3 days. Because sea ice deformation depends on the time scale (see results of
section 4.2) one should make sure to use similar sampling times for the observations
and the model when computing and comparing deformation rates estimates. To deal10

with this issue, we performed a sub-sampling of the RGPS trajectory dataset using
a nearest-neighbour interpolation of the original positions at 3-day intervals, but only
when the RGPS drifter’s position is available within plus or minus 6 hours around
the interpolation target time. The positions simulated by the model, that are outputted
every 3 hours from midnight to midnight each day, are taken to match the sub-sampled15

RGPS time series obtained as described above.

– The 3-days RGPS sampling additionally places a lower bound on the time scales one
can explore when comparing the simulated and observed deformation rates. In the
present analysis, we therefore restrict ourselves to time scales equal or greater than
3 days.20

We find that the relative number of available polygons is what has the largest impact on
the deformation statistics. Some facts therefore need to be kept in mind when performing a
scaling analysis over a finite period of time. In the time domain, in particular, this entails that
sea ice deformation is better sampled, i.e., more triplets are available, for the early than for
the late part of the period. In the present case, the computed statistics are therefore more25

representative of early than late winter. This effect is even more important for the larger time
scales: polygons separated by small time scales T will indeed approximately sample the
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entire period while for large time scales, more polygons will be available at the beginning
than at the end of the period.

4 Results

Figure 1 shows the maps of the 3-days total, shear and absolute deformation rates simu-
lated by the model and estimated from the RGPS data at the same locations. Note that to5

obtain a better spatial coverage, these maps are showing all simulated or observed defor-
mation rates for the period of 7 days centered on 4 February 2007. The probability density
functions of the simulated and observed total, shear and absolute divergence deformation
rates from the snapshots of Figure 1 are shown on Figure 2. All distributions exhibit a power-
law tail, with almost identical slopes of about -3, similar to what e.g., Marsan et al. (2004)10

found in their study, and with a remarkable agreement between the model and the observa-
tions for each invariant of the deformation. From the statistical point of view, this implies that
one needs to consider higher moments than the mean of the distributions to fully describe
the statistics of the sea ice deformation process (Sornette, 2006). In the scaling analysis
presented in the following sections, we thus systematically calculate the 3 first moments of15

the distributions of deformation rates.

4.1 Spatial scaling analysis

Figure 3 (left panel) shows the winter mean of the spatial scaling analysis for the observa-
tions and model calculated for a T = 3 days temporal scale. We found that both model and
observations statistics are following power-laws. We use logarithmically spaced bins and20

applied an ordinary least square method to the binned data in log-log space to get reason-
ably accurate estimate of the power-law fits (Stern et al., 2018). The deformation rates are
very well captured by the model across scales. However, the first, second moments of the
distributions are slightly overestimated by the model compared to the observations, what-
ever the spatial scale considered. For example, at the nominal scale of 7.5 km, the first and25

second moments are overestimated by a factor of 2 compared to the observations. This
15
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may be due to one or several of the following factors: (1) inaccuracies in the atmospheric
forcing (2) our choice of mechanical parameters values and (3) the value of the atmospheric
drag coefficient (e.g. Bouchat and Tremblay, 2017). It is especially important to note that
the simulated deformation rate has not been tuned with respect to the MEB mechanical
parameters in the present simulations. We consider such tuning to be out of the scope of5

this study, which focuses on the ability to reproduce the observed scaling (exponents of the
power laws) and, in particular, their multi-fractal property (non-linearity of the structure func-
tion). The simulated and observed structure functions (i.e. the dependence of the scaling
exponents to the moment order) β(q) are shown in Figure 3 (right panel). The spatial scal-
ing obtained for both the model and the RGPS are clearly multi-fractal, as their structure10

functions can be both approximated by a quadratic function as defined by equation (4) with
coefficients a= 0.11 and 0.13, respectively. These values, corresponding to the curvature of
the structure functions, are very close to those reported in previous studies (a= 0.13 - 0.14;
Marsan et al., 2004; Rampal et al., 2016). The bars are estimated from the minimal and
maximal local scaling exponent values, as in Bouillon and Rampal (2015a) and correspond15

to upper-bound estimates. This good agreement is a relevant indication that the scaling in
the simulated deformation fields is consistent with that observed between 7.5 and 580 km.

Using successive and contiguous snapshots throughout the winter, a time-series of the
value of the spatial scaling exponent β obtained for the mean deformation rates (q = 1)
is calculated, and plotted on Figure 4. It shows that the spatial scaling exponent varies20

between -0.1 and -0.34. These exponents are in good agreement with the 1-month running
means of the scaling exponents calculated by Stern and Lindsay (2009) for the entire period
covered by the RGPS dataset (1996-2008). The scaling exponent for the mean is about -0.2
on average over the whole winter period for the simulated and observed total deformation
rates, which is also the value found by Marsan et al. (2004) for a snapshot of deformation25

rates calculated over a 3-days period centred on 6 November 1997. We note also that the
model reproduces well the observed variability of the scaling exponent throughout the whole
period.
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We further characterize the properties of the spatial scaling for both the model and obser-
vations by exploring its dependence on the temporal scale, T . We find that the estimated
spatial scaling exponent, β, decreases with increasing T , although this behavior is only
obvious for the moments of order 2 and 3 (Figures 5 and 6, left panels). This seems to
correspond to the existence of space-time coupling of the scaling properties of sea ice de-5

formation. This property was originally suggested by Rampal et al. (2008) from the result
of their scaling analysis of buoy pairs dispersion, and was further explained in Marsan and
Weiss (2010) as being a possible characteristic of brittle deformation at geophysical scales.
To our knowledge, this is the first time such coupling is obtained from a sea ice model
simulation ran at such relatively coarse spatial resolution. The origin of this coupling has10

been previously proposed to be linked to the complex correlation patterns related to chain
triggering of ice-quakes (Marsan and Weiss, 2010). Further study is, however, needed to
explore this hypothesis, which is out of the scope of this paper.

We also note a decrease of the multi-fractal character of the spatial scaling (i.e. the
curvature of β(q)) when increasing the time scales from T = 3 to T = 96 days (Figures15

5 and 6, right panels). For both the model and the observations, we observe the multi-
fractality property is present for all scales considered in this study although a decrease of
the degree of multi-fractality is observed as the scale increases. The curvature values are
decreasing from 0.115 to 0.054 for the model and from 0.13 to 0.063 for the observations
following a power-law (Figure 7). While the general behaviour of decreasing the degree of20

multi-fractality of the spatial scaling as the time scale increases is captured by the model, we
note that the degree of multi-fractality of the deformation is systematically underestimated
by the model compared to the observations. This could either be attributed to inaccurate
position or lacking of extreme events in the atmospheric forcing, or to an inadequate or
insufficiently tuned parameterization of the damage healing in the model. In any case, the25

reason for this discrepancy should be further explored but is out of scope of the present
paper.
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4.2 Temporal scaling analysis

The results of the temporal scaling analysis for L= 7.5 km is shown on Figure 8 (left panel).
We see a robust and very similar power-law scaling for the two first moments (q = 1,2)
for both the model and observations between T = 3 days (i.e., the temporal resolution of
the observations) and T = 96 days. In previous studies based on drifting buoy trajectories5

whose positions are sampled at higher frequency, it has been suggested that the temporal
scaling for the mean total deformation holds down to 1 hour (Hutchings et al., 2011). A re-
cent study based on very high resolution ship radar measurements has demonstrated that
it holds down even to 10 min (Oikkonen et al., 2017). Here, we obtain a perfect agreement
between the slope (about -0.3) of the temporal scaling for the mean deformation rates esti-10

mated by Oikkonen et al. (2017), and that estimated from the RGPS data and the present
model simulations.

We note, however, that the third moment of the distributions are slightly underestimated
by the model at all time scales. This means that the proportion of extreme deformation
events compared to lower ones is too small or that their values are too low in the simu-15

lation. This may come from the inaccuracy of the relatively coarse (30 km) atmospheric
reanalysis we use to force our model and that is known to poorly resolve the most extreme
low pressure systems, a common shortcoming of all the available global or regional atmo-
sphere reanalysis to date. Another explanation could be the fact that we have not tuned
the MEB rheology parameters to reproduce the proportion of extreme deformation events20

versus the lower ones. In this rheology, the coupling between the damage and the mechan-
ical behavior of sea ice is non-linear and it is therefore expected that varying parameter
values can change the proportion of the simulated extreme events, i.e., the skewness of the
distribution of deformation rates.

As in the spatial domain, the temporal scaling is found to be multi-fractal for the model and25

observations, and the match is remarkably good. The curvature values (i.e. the coefficient
c in equation 5 are 0.67 for the model and 0.62 for the observations. This suggests that
the multi-fractal character of the temporal scaling is stronger than the spatial scaling and

18



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

possibly a robust property of sea ice deformation, at least in the winter time, independent of
the observed change in sea ice cover state and the associated shift of its dynamical regime
during the period 1996-2006 (e.g., Rampal et al., 2009a, b). We note that the values of
curvature of the structure functions obtained here cannot be directly compared to the one
reported in Weiss and Dansereau (2017) since in their paper the authors are plotting the5

normalized moments 〈ε̇qtot〉
1/q of the distribution versus the temporal scale instead of the

actual moments 〈ε̇qtot〉 as we do here.
We also investigate the dependence of the temporal scaling on the spatial scale of obser-

vation, L, for both the model and RGPS data (Figures 9 and 10, left panels). We find that
the scaling exponent, α, decreases with L. Similar to the spatial scaling analysis performed10

in Section 4.1, we find here the signature of a space-time coupling in the scaling properties
of sea ice deformation. The multi-fractal character of the temporal scaling holds at all the
spatial scales considered here (L= 7.5 to L= 580 km), and is similar in the model and ob-
servations (Figures 9 and 10, right panels). The curvature values are going from 0.67 down
to 0.37 for the model and from 0.63 to 0.35 for the observations following a power-law (Fig-15

ure 11). The decrease in the degree of multi-fractality of the temporal scaling as the space
scale increases as seen in the observations is remarkably well captured by the model.

5 Discussion

Our statistical analyses have shown that the neXtSIM model reproduces correctly the dis-
tribution of sea ice deformation rates, its scaling properties in both the space and time20

domains and its multi-fractal behavior. In particular, it is the first time that multi-fractality in
the time domain is shown to be reproduced in a sea ice model.

The MEB rheology was developed with the aim of improving the representation of the
physics of sea ice continuum models by including the ingredients hypothesized by Weiss
and Dansereau (2017) to possibly play an important role in the emergence of multi-fractal25

heterogeneity and intermittency of sea ice deformation. This hypothesis is based on the
analysis of observational data that have highlighted the existence of multi-fractality of sea
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ice deformation in space and time (Rampal et al., 2008; Bouillon and Rampal, 2015b; Weiss
and Dansereau, 2017) and on a close and arguably sound analogy that can be made with
other large scale solids sharing these properties such as the Earth crust (Weiss et al.,
2009). According to Weiss and Dansereau (2017) the ingredients are: a threshold mech-
anism for brittle fracturing, some disorder that represents the natural heterogeneity of the5

material at the mesoscale, long-range elastic interactions within the ice cover that promote
avalanches of fracturing events through a cascading mechanism, post-fracturing relaxation
of elastic stresses through viscous-like relaxation, and a slow restoring/healing mechanism
of the sea ice mechanical properties. We argue that the results obtained here are at least
showing that a model including these ingredients can indeed reproduce some aspects of10

sea ice dynamics complexity.
We show here that the spatial scaling of sea ice deformation simulated in a realistic setup

by neXtSIM holds down to the nominal resolution of the mesh, a result that is in agreement
with previous analyses of the MEB model in idealized simulations (Dansereau et al., 2016)
and realistic ones (Rampal et al., 2016). It means that neXtSIM does not need to be run at15

higher spatial resolution in order to reproduce the observed scalings, as e.g. Hutter et al.
(2018) do when running at about 1 km resolution in order to resolve sea ice deformation
at scale of about 10 km. Localizing the deformation at the nominal model resolution also
means that related quantities, such as ridges, leads, and linear kinematic features should
be better resolved, although this is not investigated directly here. We note that using a20

Lagrangian mesh then helps preserving such features, once formed, but plays no role in
their formation.

We show also that this spatial localization and the multi-fractal character of the simulated
mean sea ice deformation is resolution-independent in this setup. This is what is shown on
figure 12. However, and despite the fact that the scaling remains multi-fractal when neXtSIM25

runs at coarser resolutions (e.g., 15 or 30 km), the level of multi-fractality is decreasing with
decreasing resolution. Indeed, the second and third moments of deformation rates from the
15 and 30 km runs differ from the results obtained from the 7.5 km run (figure 12, right
panel), which suggests an underestimation of extreme deformation events at the smaller
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spatial scales with increasing model resolution. Nevertheless, the representation of multi-
fractality at all resolutions implies that neXtSIM could be adequately used to explore a wider
range of space-time scales than that covered by the currently available observations of the
global Arctic. In particular, it could allow to “zoom in” and explore the statistical properties of
sea ice deformation at the sub-satellite observations scales, which are of increasing inter-5

ests for both regional to global climate modelling and operational forecasting. A model that
could otherwise not represent the multi-fractal character of sea ice deformation and would
only reproduce a mono-fractal scaling would greatly underestimate extreme deformation
events and their impact on sea ice conditions at such scales like e.g., the presence or not
of leads and ridges.10

A model that allows reproducing sea ice deformation and its scaling properties down to its
nominal resolution does not preclude the need for appropriate sub-grid scale parametriza-
tions. On the contrary, we believe that physically sound parametrizations are indeed re-
quired and that the knowledge of the distribution of deformation rates at the the sub-grid
scale made possible by neXtSIM could be highly valuable in terms of informing these15

parametrizations. An appropriate sub-grid scale parametrization links the deformation sim-
ulated at the scale of the grid cell with the scale at which deformation really occurs within
the ice cover, which is the size of individual leads and ridges.

We moreover argue that, as sea ice deformation is strongly tied to other model variables,
such as drift, lead fraction and thickness distribution, a proper simulation of these variables20

is a necessary prerequisite to using models for investigating various coupled ocean–ice–
atmosphere processes, and their impact on their immediate vicinity and on the polar climate
system. For example, the accuracy of neXtSIM in reproducing the observed statistical prop-
erties of sea ice deformation as demonstrated in this paper is thought to go hand-in-hand
with its capability in representing the observed properties of lead fraction. This is the subject25

of a parallel study that is about to be submitted.
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6 Conclusions

In this study we have compared the deformation rates simulated by neXtSIM to those de-
rived from RGPS observations by comparing their distributions and how these distributions
scale in time and space. The conclusions of our analysis are:

– The neXtSIM model reproduces well the first, second and third moments of the statis-5

tical distribution of observed sea ice deformation rates and how it scales in space and
time. In particular, this is the first time the observed scaling invariance in the tempo-
ral domain (i.e. intermittency) of sea ice deformation is shown to be reproduced by a
model on a realistic Pan-Arctic setup over such a large range of scales.

– Sea ice deformation rates calculated over a temporal scale of 3 days scale in space10

from the scale of the model (mesh resolution)/observations up to about 700 km in a
multi-fractal manner.

– Sea ice deformation rates calculated over a spatial scale of 7.5 km scale in time over
the range 3 days–3 months in a multi-fractal manner.

– A space-time coupling in the scaling properties of sea ice deformation is shown to be15

reproduced by the model. This suggests that neXtSIM could be a proper tool to study
the physical meaning and origin of this coupling, in the context of brittle deformation
of geophysical solids.

– The simulated mean sea ice deformation rates and their associated scaling invariance
characteristics are resolution-independent, i.e., when running the neXtSIM model at20

resolutions of 7.5, 15 or 30 km. The most extreme deformation events may be missed
however if running at coarser resolutions, i.e. the second and third order moments
may be underestimated compared to the high-resolution run.

– As the mono versus multi-fractal character of the scaling of deformation rates is the
discriminating factor for the heterogeneity and intermittency of the deformation, we25
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suggest that a multi-fractal scaling analysis could be considered as a meaningful vali-
dation step before further analyzing sea ice model outputs that could be influenced by
sea ice dynamics.

– The good agreement between the model and observations motivates the use of neXtSIM
as a tool to further investigate physical processes that are highly sensitive to sea ice5

deformation.

Appendix A: Model description

This section presents the dynamical and thermodynamical components of neXtSIM. The
wave-in-ice module implemented by Williams et al. (2017) is not included here. Prognostic
sea ice variables are listed in Table 1 and all parameter values are listed in table 2.10

A1 Dynamical core

The evolution equation for sea ice velocity comes from vertically integrating the horizontal
sea ice momentum equation as follows:

ρiH
Duuu

Dt
=∇ ·

(
Hσσσ
)

+τττa +τττw +τττ b− ρiH
(
fkkk×uuu+ g∇η

)
. (A1)

The parameter ρi is the ice density, H is the mean ice thickness per unit grid cell area,15

σσσ is the sea ice internal stress tensor, τττa, τττw and τττ b are the surface wind, ocean and
basal stresses, respectively, and are defined as in Rampal et al. (2016). The parameter f
is the Coriolis frequency, kkk is the upward pointing unit vector, g is the acceleration due to
gravity and η is the ocean surface elevation. In the region with only thin ice or with thick-ice
thickness lower than a given threshold (defining our ice edge), the momentum equation is20

replaced by a Laplacian equation so that the velocity linearly decreases from the ice edge to
the nearest coast (see Samaké et al. (2017)). The additional ice pressure term introduced
in Rampal et al. (2016) is not included here.
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Following Dansereau et al. (2016), the evolution equation for the internal stress takes the
form of the Maxwell constitutive law:

Dσσσ

Dt
+
σσσ

λ
= EKKK : ε̇εε(uuu) (A2)

where λ is the relaxation time for the stress, E, is the elastic modulus and ε̇εε, the strain rate
tensor, is defined as5

ε̇εε(uuu) =
1

2

(
∇uuu+ (∇uuu)T

)
. (A3)

Plane stresses conditions are assumed and the stiffness tensorKKK reads(KKK : εεε)11
(KKK : εεε)22
(KKK : εεε)12

=
1

1− ν2

1 ν 0
ν 1 0

0 0
1− ν

2


 ε11ε22

2ε12

 (A4)

where ν is Poisson’s ratio.
As in Dansereau et al. (2016), both the elastic modulus, E, and the relaxation time are10

functions of the ice concentration, A, and the level of damage, d. The level of damage is
a scalar, grid-scale variable that represents the density of fractures at the sub-grid scale.
Its value is 0 for an undamaged and 1 for a “completely” damaged material, which we note
is the opposite convention compared to Dansereau et al. (2016). The elastic modulus is a
linear function of d:15

E(A,d) = E0(1− d)f(A), (A5)

where E0 is the undamaged elastic modulus and f(A) introduces a dependence on the ice
concentration via the following exponential function:

f(A) = e−c
∗(1−A), (A6)
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where c∗ is the ice compactness parameter introduced by Hibler (1979). As in Dansereau
et al. (2016), the relaxation time is a power function of d:

λ(d) = λ0(1− d)α−1, (A7)

where λ0 is its undamaged value and α is a constant exponent greater than 1. Here, we
use the values α = 5 and λ0 = 107s ( 115 days) (as in the realistic Maxwell-EB simulations5

of Dansereau et al., 2017) to ensure that the relaxation of stresses is virtually zero over an
undamaged ice cover but is significant when the ice is damaged.

The evolution of the damage is controlled by the location of the predicted stress state
relative to the failure envelope, which as in Rampal et al. (2016) is defined in terms of the
principal stress components10

σ1 =−σ11 +σ22
2

+

√(
σ11−σ22

2

)2

+σ212 (A8)

σ2 =−σ11 +σ22
2

−

√(
σ11−σ22

2

)2

+σ212, (A9)

with the convention that compressive stresses are positive.
Here, the envelope combines a Mohr-Coulomb failure criterion and a maximum tensile

and compressive stress. The three criteria are given by15

σ1− qσ2 ≤ σc (Mohr-Coulomb criterion), (A10)

−σ1 +σ2
2

≤ σT max (tensile stress criterion), (A11)

σ1 +σ2
2

≤ σNmax (compressive stress criterion), (A12)

where q =
[(
µ2 + 1

)1/2
+µ
]2

, σc = 2c[
(µ2+1)1/2−µ

] , µ is the internal friction coefficient, c is

the cohesion, σT max is the maximal tensile strength and σNmax the maximum compres-20
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sive strength (see table 2). The cohesion, c, is scaled as a function of the model spatial
resolution, as described in Bouillon and Rampal (2015a).

When one of the damage criteria is met, d is modified by multiplying (1− d) with Ψ, or

d← 1−Ψ(1− d), (A13)

where5

Ψ =


σc

σ1−qσ2 if σ1− qσ2 > σc
2σT max
−σ1+σ2 if − σ1+σ2

2 > σT max
2σN max
σ1+σ2

if σ1+σ22 > σNmax.

(A14)

Healing is included here to represent the counteracting effect of refreezing of water within
leads on the level of damage of the ice cover. It is implemented via a constant term in the
damage evolution equation:

Dd

Dt
=

(1− d)(1−Ψ)

Td
− 1

Th
, (A15)10

where Th is the characteristic time for healing and Td, the characteristic time for damaging
(Dansereau et al., 2016).

A2 Ice thickness redistribution and thermodynamics

neXtSIM includes a multi-category model inspired from Stern and Rothrock (1995), i.e.
considering 3 categories: thick ice, thin ice and open water. In our implementation the thin15

ice is only newly formed ice, so ice will only be transferred from the thin-ice category to
thick ice, but not in the reverse direction. In addition, we don’t apply additional open water
source terms, and nor do we use the formulation of Gray and Morland (1994) to keep the ice
concentration less than 1. (We simply redistribute ice and snow volume if this occurs.) Thin
ice is described by its concentration, At, and volume per unit area, Ht, and snow volume20

per unit area, hs,t. Thick ice is described by the concentration, A, volume per unit area, H ,
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and snow volume per unit area, hs. We assume that the thin ice has no mechanical strength
and simply follows the motion of the surrounding thick ice.

Note the total ice concentration and volume per unit area are A+At and H +Ht, and
the total snow volume per unit area is hs +hs,t.

Thin ice thickness is considered to be uniformly distributed with thickness ht =Ht/At5

required to be between hmin = 5 cm and hmax = 27.5 cm. The evolution equations for A,
H , hs, At, Ht and hs,t have the following form:

Dφ

Dt
=−φ∇ ·uuu+ Ψφ +Sφ, (A16)

where
Dφ

Dt
is the material derivative that is defined for any scalar as

Dφ

Dt
=
∂φ

∂t
+ (uuu · ∇)φ. (A17)10

Here∇·uuu is the divergence of the horizontal velocity, Ψφ a sink/source term due to ridging,
and Sφ a thermodynamical sink/source term. Volume conservation is imposed by setting
ΨH =−ΨHt and Ψhs =−Ψhs,t and an additional constraint is that At +A≤ 1.

The evolution of A, H , At and Ht is computed following three main steps (variables
updated in each step are denoted with a prime):15

1. Advection: The scheme solves the equation:

Dφ

Dt
=−φ∇ ·uuu, (A18)

for each conserved scalar quantity (A, H , At, Ht, etc.). For this paper, we use the
purely Lagrangian scheme presented in Rampal et al. (2016). After this step the con-
centration could be larger than 1.20

2. Mechanical redistribution: The scheme imposes the limit At +A≤ 1 on the total ice
area by following those steps:
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(a) Compute the new open water concentration as:

A0 = max(0,1−A−At); (A19)

a source term for the open water could be added here (as in Stern and Rothrock,
1995) to represent sub-grid-scale convergence/divergence.

(b) Compute the new thin ice concentration as:5

A′t = max(0,min(1,1−A−A0)) (A20)

(c) Compute the transfer of thin ice if A′t <At by setting:

H ′t =Ht
A′t
At

(A21)

h′s,t = hs,t
A′t
At

(A22)

H ′ =H + (Ht−H ′t) (A23)10

h′s = hs + (hs,t−h′s,t) (A24)

∆A=
At−A′t

ζ
. (A25)

Here, we have transferred ice and snow volume from thin to thick ice in a con-
servative manner, but we will not try to conserve ice area: ζ is an aspect ratio
parameter (tuned to 10) which causes ridging to preferentially increase ice thick-15

ness over ice area.

(d) Compute the new thick ice concentration as:

A′ = max(0,min(1,1−A′t−A0 + ∆A)) (A26)

(e) Apply more ridging if (A′+A′t)> 1 by setting A′ = 1−A′t.
28
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3. Growth/melt: The source/sink terms from the thermodynamics are computed by ap-
plying the zero-layer Semtner (1976) vertical thermodynamics to the new ice category
and that of Winton (2000) for the thick ice, as if the thickness was uniform and equal to
H/A for the thick ice and Ht/At for the thin ice. Freezing of open water is computed
as in Rampal et al. (2016) such that heat loss from the ocean that would cause super5

cooling is redirected to ice formation. The newly formed ice is transferred to the thin
ice category and is assumed to have a thickness equal to hmin. The transfer from the
thin ice to the thick ice and the lateral melting of thin ice is computed by applying the
bounding limit hmax — if ht > hmax, then we update the variables as follows:

h′t = hmax, (A27)10

A′t =
hmax−hmin
ht−hmin

At, (A28)

H ′t =A′t ∗h′t, (A29)

h′s,t =
A′t
At
hs,t, (A30)

H ′ =H − (H ′t−Ht), (A31)

A′ =A− (A′t−At), (A32)15

h′s = hs− (h′s,t−hs,t). (A33)

The form of the reduction in thin ice concentration in (A28) is a little arbitrary, but we
wanted to allow the possibility of the thin ice completely changing into thick ice at
some point.
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Figure 1. Divergence, shear and total sea ice deformation rates in per day (top to bottom), as
simulated by the model (left column) and observed from satellite (right column). The deformation
rates are calculated over a time scale of 3 days. In order to get a better spatial coverage, we show
all the deformation rates calculated within the period of 7 days centred on 4 February 2007. The
model field is masked to match spatially with the RGPS data coverage
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Figure 2. Probability density functions of the absolute divergence, shear and total deformation rates
showed on the maps of figure 1 for the model (cyan) and the RGPS observations (black). The
deformations are calculated over a time scale of 3 days, and a spatial scale of 7.5 km (mean of the
squared root of triangle’s surface areas and for which the deformations are calculated). Power law
fits of the tails of the distributions for the model and the RGPS observations and for each invariant
give similar exponents ranging from -2.9 and -3.2. The dashed line is shown for reference and
corresponds to a power-law with an exponent equal to -3.
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Figure 3. Spatial scaling analysis of the observed (black) and simulated (blue) total deformation
rate calculated over a time scale of 3 days from the motion of the same triplets in the model and
the RGPS dataset. Left panel: Moments 〈ε̇qtot〉 of order q = 1,2 and 3 of the distributions of the total
deformation rate ε̇tot calculated at a temporal scale of 3 days and space scales varying from 7.5
to 580 km. The solid lines indicate the associated power-law scaling 〈ε̇qtot〉 ∼ L−β(q). Right panel:
Corresponding structure functions β(q) for both the model and observation, where β indicates the
exponent of the power laws fits and q is the moment order. The bars indicate the deviation from the
power law as they correspond to the minimum and maximum power-law exponents obtained for two
successive spatial scales as in Bouillon and Rampal (2015a) and can be viewed as an estimation of
the goodness of the fit.
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Figure 4. Time series of spatial scaling exponents for the mean total deformation (i.e. q = 1) cal-
culated for individual snapshots and at a temporal scale of T = 3 days for the model (cyan) and
the RGPS observations (black). The dashed line is shown only for reference and corresponding to
the value of 0.2 reported in Marsan et al. (2004) for the 3-day deformation calculated over a period
centered on 6 November 1997.
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Figure 5. Same as Figure 3 but for the model at various temporal scales.
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Figure 6. Same as Figure 3 but for the observations at various temporal scales.
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Figure 7. Curvature of the structure function as a function of the time scale T for the model (cyan
dots) and the RGPS observations (black dots). The dashed lines are power-law fits (in the least-
squared sense) through the data.
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Figure 8. Temporal scaling analysis of the total deformation rate derived from the motion of the
same triplets with initial surface area of 7.5 km for the Model (cyan) and the RGPS observations
(black). Left panel: Moments 〈ε̇qtot〉 of order q = 1,2 and 3 of the distributions of the total deformation
rate ε̇tot calculated at a spatial scale of 7.5 km and time scales varying from 3 to 100 days. The solid
lines indicate the associated power-law scaling 〈ε̇qtot〉 ∼ t−α(q). Grey dots correspond to the mean
total deformation rates obtained by Oikkonen et al. (2017) at a same spatial scale of 7.5 km and for
time scales ranging from 3 hours to 1 day. Right panel: Corresponding structure functions α(q) for
both model and RGPS observations where α indicates the exponent of the power laws fits, and q
is the moment order. The bars indicate the deviation from the power law as they correspond to the
minimum and maximum power-law exponents obtained for two successive temporal scales and can
be viewed as an estimation of the goodness of the fit.
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Figure 9. Same as Figure 8 but for the model at various spatial scales.
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Figure 10. Same as Figure 8 but for the RGPS observations at various spatial scales.
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Figure 11. Curvature of the structure function as a function of the space scale L for the model (cyan
dots) and the RGPS (black dots). The dashed lines are power-law fits (in the least-squared sense)
to the data.
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Figure 12. Spatial scaling analysis of the simulated deformation derived from the motion of triplets
over a time scale of T = 3 days in 3 different model runs, at 7.5, 15 and 30 kilometers resolution
respectively. Left panel: Moments 〈ε̇qtot〉 of order q = 1,2 and 3 of the distributions of the total de-
formation rate ε̇tot calculated at a temporal scale of 3 days and for spatial scales varying from 7.5
to 580 kilometers. The solid lines indicate the associated power-law scaling 〈ε̇qtot〉 ∼ L−β(q) as in
figure 3. Right panel: Corresponding structure functions β(q) where β indicates the exponent of the
power-law fits, and q is the moment order. The bars indicate the deviation from the power law as
they correspond to the minimum and maximum power-law exponents obtained for two successive
spatial scales as in Bouillon and Rampal (2015a) and thus correspond to upper-bound estimates
and can be viewed as an estimation of the goodness of the fit.
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Table 1. List of variables used in neXtSIM.

Symbol Name Meaning Unit
H sea ice thickness volume of ice per unit area m
hs snow thickness volume of snow per unit area m
A sea ice concentration surface of ice per unit area -
Ht thin sea ice thickness volume of ice per unit area m
hs,t snow thickness on thin ice volume of snow per unit area m
At thin sea ice concentration surface of ice per unit area -
d sea ice damage 0=undamaged, 1=completely damaged ice -
uuu sea ice velocity horizontal sea ice velocity m s−1

σσσ sea ice internal stress planar internal stress N m−2
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Table 2. Parameters used in the model with their values for the simulation at 7.5 km resolution used
for this study.

Symbol Meaning Value Unit
ρa air density 1.3 kg m−3

ca air drag coefficient 4.9× 10−3 -
θa air turning angle 0 degree
ρw water density 1025 kg m−3

cw water drag coefficient 5.5× 10−3 -
θw water turning angle 25 degrees
ρi ice density 917 kg m−3

ν Poisson coefficient 0.3 -
µ internal friction coefficient 0.7 -
E0 undamaged elastic modulus 50.0 MPa
∆x mean distance between mesh nodes 10 km
∆t time step 200 s
c cohesion 25 kPa

σNmin tensile strength −21 kPa
σNmax compressive strength 75 kPa
c∗ compactness parameter 20 -
α damage exponent 5 -
λ0 undamaged relaxation time 107 s
Td characteristic time for damaging 20 s
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