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 18 
Abstract. We present a simple method that allows snow depth measurements to be converted to snow water 19 

equivalent (SWE) estimates. These estimates are useful to individuals interested in water resources, ecological 20 

function, and avalanche forecasting. They can also be assimilated into models to help improve predictions of total 21 

water volumes over large regions. The conversion of depth to SWE is particularly valuable since snow depth 22 

measurements are far more numerous than costlier and more complex SWE measurements. Our model regresses 23 

SWE against snow depth (h), day of water year (DOY) and climatological (30-year normal) values for winter 24 

(December, January, February) precipitation (PPTWT) and the difference (TD) between mean temperature of the 25 

warmest month and mean temperature of the coldest month, producing a power-law relationship. Relying on 26 

climatological normals rather than weather data for a given year allows our model to be applied at measurement 27 

sites lacking a weather station. Separate equations are obtained for the accumulation and the ablation phases of the 28 

snowpack. The model is validated against a large database of snow pillow measurements and yields a bias in SWE 29 

of less than 2 mm and a root-mean-squared-error (RMSE) in SWE of less than 60 mm. The model is additionally 30 

validated against two completely independent sets of data; one from western North America, and one from the 31 

northeast United States. Finally, the results are compared with three other models for bulk density that have varying 32 

degrees of complexity and that were built in multiple geographic regions. The results show that the model described 33 

in this paper has the best performance for the validation data sets.   34 
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1 Introduction 35 

In many parts of the world, snow plays a leading-order role in the hydrological cycle (USACE, 1956; Mote et al., 36 

2018). Accurate information about the spatial and temporal distribution of snow water equivalent (SWE) is useful to 37 

many stakeholders (water resource planners, avalanche forecasters, aquatic ecologists, etc.), but can be time 38 

consuming and expensive to obtain.  39 

 40 

Snow pillows (Beaumont, 1965) are a well-established tool for measuring SWE at fixed locations. Figure 1 provides 41 

a conceptual sketch of the variation of SWE with time over a typical water year. A comparatively long accumulation 42 

phase is followed by a short ablation phase. While simple in operation, snow pillows are relatively large in size and 43 

they need to be installed prior to the onset of the season’s snowfall. This limits their ability to be rapidly or 44 

opportunistically deployed. Additionally, snow pillow installations tend to require vehicular access, limiting their 45 

locations to relatively simple topography. Finally, snow pillow sites are not representative of the lowest or highest 46 

elevation bands within mountainous regions (Molotch and Bales, 2005). In the western United States (USA), the 47 

Natural Resources Conservation Service (NRCS) operates a large network of Snow Telemetry (SNOTEL) sites, 48 

featuring snow pillows. The NRCS also operates the smaller Soil Climate Analysis Network (SCAN) which 49 

provides the only, and very limited, snow pillow SWE measurements in the eastern USA.  50 

 51 

SWE can also be measured manually, using a snow coring device that measures the weight of a known volume of 52 

snow to determine snow density (Church, 1933). These measurements are often one-off measurements, or in the 53 

case of ‘snow courses’ they are repeated weekly or monthly as a transect of measurements at a given location. The 54 

simplicity and portability of coring devices expand the range over which measurements can be collected, but it can 55 

be challenging to apply these methods to deep snowpacks due to the limited length of standard coring devices. Note 56 

that there are numerous different styles of coring devices, including the Adirondack sampler and the Mt. Rose / 57 

Federal sampler (Church and Marr, 1937). The NRCS operates a large network of snow course sites (USDA, 2011) 58 

in the western United States. 59 

 60 

There are a number of issues that affect the accuracy of both snow pillow and snow coring measurements. With 61 

coring measurements, if the coring device is not carefully extracted, a portion of the core may fall out of the device. 62 

Or, snow may become compressed in the coring device during insertion. These effects have led to varying 63 

conclusions, with some studies (e.g., Sturm et al., 2010) showing a low SWE bias and other studies (e.g., Goodison, 64 

1978) showing a high SWE bias. As noted by Johnson et al. (2015) a good rule of thumb is that coring devices are 65 

accurate to around  10%. Also, studies comparing different styles of snow samplers report statistically different 66 

results, suggesting that SWE measurements are sensitive to the design of the specific coring device, such as the 67 

presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012). With snow 68 

pillows, some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE, 69 

with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks, 70 

2004; Dressler et al., 2006; Johnson et al., 2015) note a more complex situation with SWE under-reported at times, 71 
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but over-reported at other times. Note that when snow pillow data are evaluated, they are most commonly compared 72 

to coring measurements at the same location. 73 

 74 

All methods of measuring SWE are challenged by the fact that SWE is a depth-integrated property of a snowpack. 75 

This is why the snowpack must be weighed, in the case of a snow pillow, or a core must be extracted from the 76 

surface to the ground. This measurement complexity makes it difficult to obtain SWE information with the spatial 77 

and temporal resolution desired for watershed-scale studies. Other snowpack properties, such as the depth h, are 78 

much easier to measure. For example, using a graduated device such as a meterstick or an avalanche probe to 79 

measure the depth takes only seconds. Automating depth measurements at a fixed location can easily be done using 80 

low-cost ultrasonic devices (Goodison et al., 1984; Ryan et al., 2008). High-spatial-resolution measurements of 81 

snowpack depth are commonly made with Light Detection and Ranging (LIDAR). One example of this is the 82 

Airborne Snow Observatory program (ASO; Painter et al., 2016). The comparatively high expense of airborne 83 

LIDAR surveys typical limits measurements geographically (to a few basins) and temporally (weekly to monthly 84 

interval). 85 

 86 

Given the relative ease in obtaining depth measurements, it is common to use h as a proxy for SWE. Figure 1 shows 87 

a conceptual sketch of the variation of SWE with h over a typical water year. Noting the arrows on the curve, we see 88 

that SWE is multi-valued for each h. This is due to the fact that the snowpack increases in density throughout the 89 

water year, producing a hysteresis loop in the curve. A large body of literature exists on the topic of how to convert 90 

h to SWE. It is beyond the scope of this paper to provide a full review of these ‘bulk density equations,’ where the 91 

density is given by ρb = SWE/ℎ. Instead, we refer readers to the useful comparative review by Avanzi et al. (2015). 92 

Here, we prefer to discuss a limited number of previous studies that illustrate the spectrum of methodologies and 93 

complexities that can be used to determine ρb or SWE.  94 

 95 

Many studies express ρb as an increasing function (often linear) of h. In some cases (e.g., Lundberg et al., 2006) a 96 

second equation is added where ρb attains a constant value when a threshold h is exceeded. A single linear equation 97 

captures the process of densification of the snowpack during the accumulation phase, but performs poorly during the 98 

ablation phase, where depths are decreasing but densities continue to increase or approach a constant value.  99 

Other approaches choose to parameterize ρb in terms of time, rather than h. Pistocchi (2016) provides a single 100 

equation while Mizukami and Perica (2008) provide two sets of equations, one set each for early and late season. 101 

Each set contains four equations, each of which is applicable to a particular ‘cluster’ of stations. This clustering was 102 

driven by observed densification characteristics and the resulting clusters are relatively spatially discontinuous. 103 

Jonas et al. (2009) take the idea of region- (or cluster-) specific equations and extend it further to provide 104 

coefficients that depend on time and elevation as well. They use a simple linear equation for ρb in terms of h and the 105 

slope and intercept of the equation are given as monthly values, with three elevation bins for each month (36 pairs of 106 

coefficients). There is an additional contribution to the intercept (or ‘offset’) which is region-specific (one of 7 107 

regions).  108 
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 109 

These classifications, whether based on region, elevation, or season, are valuable since they acknowledge that all 110 

snow is not equal. McKay and Findlay (1971) discuss the controls that climate and vegetation exert on snow density, 111 

and Sturm et al. (2010) address this directly by developing a snow density equation where the coefficients depend 112 

upon the ‘snow class’ (5 classes). Sturm et al. (1995) explain the decision tree, based on temperature, precipitation, 113 

and wind speed, that leads to the classification. The temperature metric is the ‘cooling degree month’ calculated 114 

during winter months only. Similarly, only precipitation falling during winter months was used in the classification. 115 

Finally, given the challenges in obtaining high quality, high-spatial-resolution wind information, vegetation 116 

classification was used as a proxy. Using climatological values (rather than values for a given year), Sturm et al. 117 

(1995) were able to develop a global map of snow classification. 118 

 119 

There are many other formulations for snow density that increase in complexity and data requirements. Meloysund 120 

et al. (2007) express ρb in terms of sub-daily measurements of relative humidity, wind characteristics, air pressure, 121 

and rainfall, as well as h and estimates of solar exposure (‘sun hours’). McCreight and Small (2014) use daily snow 122 

depth measurements to develop their regression equation. They demonstrate improved performance over both Sturm 123 

et al. (2010) and Jonas et al. (2009). However, a key difference between the McCreight and Small (2014) model and 124 

the others listed above is that the former cannot be applied to a single snow depth measurement. Instead, it requires a 125 

continuous time series of depth measurements at a fixed location. Further increases in complexity are found in 126 

energy-balance snowpack models (SnowModel, Liston and Elder, 2006; VIC, Liang et al., 1994, DHSVM, 127 

Wigmosta et al., 1994, others), many of which use multi-layer models to capture the vertical structure of the 128 

snowpack. While the particular details vary, these models generally require high temporal-resolution time series of 129 

many meteorological variables as input.  130 

 131 

Despite the development of multi-layer energy-balance snow models, there is still a demonstrated need for bulk 132 

density formulations and for vertically integrated data products like SWE. Pagano et al. (2009) review the 133 

advantages and disadvantages of energy-balance models and statistical models and describe how the NRCS uses 134 

SWE (from SNOTEL stations) and accumulated precipitation in their statistical models to make daily water supply 135 

forecasts. If SWE information is desired at a location that does not have a SNOTEL station, and is not part of a 136 

modeling effort, then bulk density equations and depth measurements are an excellent choice. 137 

 138 

The present paper seeks to generalize the ideas of Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., 139 

(2010). Specifically, our goal is to regress physical and environmental variables directly into the equations. In this 140 

way, environmental variability is handled in a continuous fashion rather than in a discrete way (model coefficients 141 

based on classes). The main motivation for this comes from evidence (e.g., Fig. 3 of Alford, 1967) that density can 142 

vary significantly over short distances on a given day. Bulk density equations that rely solely on time completely 143 

miss this variability and equations that have coarse (model coefficients varying over either vertical bins or horizontal 144 

grids) spatial resolution may not fully capture it either. 145 
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 146 

Our approach is most similar to Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., (2010) in that a 147 

minimum of information is needed for the calculations; we intentionally avoid approaches like Meloysund et al. 148 

(2007) and McCreight and Small (2014). This is because our interests are in converting h measurements to SWE 149 

estimates in areas lacking weather instrumentation. The following sections introduce the numerous data sets that 150 

were used in this study, outline the regression model adopted, and assess the performance of the model. 151 

2 Methods 152 

 153 

2.1 Data 154 

 155 

2.1.1 Snow Depth and Snow Water Equivalent 156 

In this section, we list sources of 1970-present snow data utilized for this study (Table 1). With regards to snow 157 

coring devices, we refer to them using the terminology preferred in the references describing the datasets. 158 

 159 

2.1.1.1 USA NRCS Snow Telemetry and Soil Climate Analysis Networks   160 

SNOTEL (Serreze et al., 1999; Dressler et al., 2006) and SCAN (Schaefer et al. 2007) stations in the contiguous 161 

United States (CONUS) and Alaska typically record sub-daily observations of h, SWE, and a variety of weather 162 

variables (Figure 2a). The periods of record are variable, but the vast majority of stations have a period of record in 163 

excess of 30 years. For this study, data from all SNOTEL sites in CONUS and Alaska and northeast USA SCAN 164 

sites (Figure 2b) were obtained with the exception of sites whose period of record data were unavailable online. 165 

Only stations with both SWE and h data were retained. 166 

 167 

2.1.1.2 Canada (British Columbia) Snow Survey Data 168 

Goodison et al. (1987) note that Canada has no national digital archive of snow observations from the many 169 

independent agencies that collect snow data and that snow data are instead managed provincially. The quantity and 170 

availability of the data vary considerably among the provinces. The Water Management Branch of the British 171 

Columbia (BC) Ministry of the Environment manages a comparatively dense network of Automated Snow Weather 172 

Stations (ASWS) that measure SWE, h, accumulated precipitation, and other weather variables (Figure 2a). For this 173 

study, data from all British Columbia ASWS sites were initially obtained. As with the NRCS stations, only ASWS 174 

stations with both SWE and h data were retained.  175 

 176 

2.1.1.3 USA NRCS Snow Course / Aerial Marker Data 177 

The snow survey program (USDA, 2008) dates to the 1930s and includes a large number of snow course and aerial 178 

marker sites (Figure 2c) in western North America. While the measurement frequency is variable, it is most 179 

commonly monthly. To generate a dataset for this study, data were extracted using the National Water and Climate 180 
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Center Report Generator 2.0. This allows filtering by time period, elevation band, and other elements. All sites with 181 

data between 1980-2018 were included (Figure 2c). 182 

 183 

2.1.1.4 Northeast USA Data 184 

In addition to the data from the SCAN sites, snow data for this project from the northeast US come from two 185 

networks and three research sites (Figure 2b).  The Maine Cooperative Snow Survey (MCSS, 2018) network 186 

includes h and SWE data collected by the Maine Geological Survey, the United States Geological Survey, and 187 

numerous private contributors and contractors. MCSS snow data are collected using the Standard Federal or 188 

Adirondack snow sampling tubes typically on a weekly to bi-weekly schedule throughout the winter and spring, 189 

1951-present. The New York Snow Survey network data were obtained from the National Oceanic and Atmospheric 190 

Administration’s Northeast Regional Climate Center at Cornell University (NYSS, 2018). Similar to the MCSS, 191 

NYSS data are collected using Standard Federal or Adirondack snow sampling tubes on weekly to bi-weekly 192 

schedules, 1938-present. 193 

 194 

The Sleepers River, Vermont Research Watershed in Danville, Vermont (Shanley and Chalmers, 1999) is a USGS 195 

site that includes 15 stations with long-term weekly records of h and SWE collected using Adirondack snow tubes. 196 

Most of the periods of record are 1981-present, with a few stations going back to the 1960s. The sites include 197 

topographically flat openings in conifer stands, old fields with shrub and grass, a hayfield, a pasture, and openings in 198 

mixed softwood-hardwood forests. The Hubbard Brook Experiment Forest (Campbell et al., 2010) has collected 199 

weekly snow observations at the Station 2 rain gauge site, 1959-present. Measurement protocol collects ten samples 200 

2 m apart along a 20 m transect in a hardwood forest opening about ¼ hectare in size. At each sample location along 201 

the transect, h and SWE are measured using a Mt. Rose snow tube and the ten samples are averaged for each 202 

transect. Finally, the Thompson Farm Research site includes a mixed hardwood forest site and an open pasture site 203 

(Burakowski et al. 2013; Burakowski et al. 2015). Daily (from 2011-2018), at each site, a snow core is extracted 204 

with an aluminum tube and weighed (tube + snow) using a digital hanging scale. The net weight of the snow is 205 

combined with the depth and the tube diameter to determine 𝜌𝑏, similar to a Federal or Adirondack sampler. 206 

 207 

2.1.1.5 Chugach Mountains (Alaska) Data 208 

In the spring of 2018, we conducted three weeks of fieldwork in the Chugach mountains in coastal Alaska, near the 209 

city of Valdez (Figure 2d-e). We measured h using an avalanche probe at 71 sites along elevational transects during 210 

March, April, and May. The elevational transects ranged between 250 and 1100 m (net change along transect) and 211 

were accessible by ski and snowshoe travel. At each site, we measured h in 8 locations within the surrounding 10 212 

m2, resulting in a total of 550+ snow depth measurements. These 71 sites were scattered across 8 regions in order to 213 

capture spatial gradients that exist in the Chugach mountains as the wetter, more-dense maritime snow near the coast 214 

gradually changes to drier, less dense snow on the interior side.  215 

 216 



 7 

2.1.1.5 Data Pre-Processing 217 

Figure 3 demonstrates that it is not uncommon for automated snow pillow measurements to become noisy or non-218 

physical, at times reporting large depths when there is no SWE reported. This is different from instances when 219 

physically plausible, but very low densities might be reported; say in response to early season dry, light snowfalls. It 220 

was therefore desirable to apply some objective, uniform procedure to each station’s dataset in order to remove clear 221 

outlier points, while minimizing the removal of valid data points. We recognize that there is no accepted 222 

standardized method for cleaning bivariate SWE-h data sets. While Serreze et al. (1999) offer a procedure for 223 

SNOTEL data in their appendix, it is relevant only for precipitation and SWE values, not h. Given the strong 224 

correlation between h and SWE, we instead choose to use common outlier detection techniques for bivariate data. 225 

 226 

The Mahalanobis distance (MD; Maesschalck et al., 2000) quantifies how far a point lies from the mean of a 227 

bivariate distribution. The distances are in terms of the number of standard deviations along the respective principal 228 

component axes of the distribution. For highly correlated bivariate data, the MD can be qualitatively thought of as a 229 

measure of how far a given point deviates from an ellipse enclosing the bulk of the data. One problem is that the MD 230 

is based on the statistical properties of the bivariate data (mean, covariance) and these properties can be adversely 231 

affected by outlier values. Therefore, it has been suggested (e.g., Leys et al., 2018) that a ‘robust’ MD (RMD) be 232 

calculated. The RMD is essentially the MD calculated based on statistical properties of the distribution unaffected 233 

by the outliers. This can be done using the Minimum Covariance Determinant (MCD) method as first introduced by 234 

Rousseeuw (1984).  235 

 236 

Once RMDs have been calculated for a bivariate data set, there is the question of how large an RMD must be in 237 

order for the data point to be considered an outlier. For bivariate normal data, the distribution of the square of the 238 

RMD is 𝜒2 (Gnanadesikan and Kettenring, 1972), with p (the dimension of the dataset) degrees of freedom. So, a 239 

rule for identifying outliers could be implemented by selecting as a threshold some arbitrary quantile (say 0.99) of 240 

𝜒𝑝
2. For the current study, a threshold quantile of 0.999 was determined to be an appropriate compromise in terms of 241 

removing obviously outlier points, yet retaining physically plausible results. 242 

 243 

A scatter plot of SWE vs. h for the SNOTEL dataset from CONUS and AK reveals many non-physical points, 244 

mostly when a very large h is reported for a very low SWE (Figure 4a). Approximately 0.7% of the original data 245 

points were removed in the pre-processing described above, creating a more physically plausible scatter plot (Figure 246 

4b). Note that the outlier detection process was applied to each station individually. The distribution of ‘day of year’ 247 

(DOY) values of removed data points was broad, with a mean of 160 and a standard deviation of 65. Note that the 248 

DOY origin is 1 October. The same procedure was applied to the BC snow pillow, NRCS snow course, and 249 

northeast USA data sets as well (not shown). Table 1 summarizes useful information about the numerous data sets 250 

described above and indicates the final number of data points retained for each. We acknowledge that our process 251 

inevitably removes some valid data points, but, as a small percentage of an already small 0.7% removal rate, we 252 

judged this to be acceptable. 253 
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 254 

Table 1: Summary of information about the datasets used in this study. Datasets in bold font were used to construct 255 
the regression model. The numbers of stations and data points reflect the post-processed data. 256 

Dataset Name Dataset Type Number 

of retained 

stations 

Number and 

percentage of 

retained data 

points 

Precision (h / SWE)  

NRCS SNOTEL 

 

Snow pillow (SWE), 

ultrasonic (h) 

791 

 

1,900,000 

(99.3%) 

 

(0.5 in / 0.1 in) 

 

NRCS SCAN Snow pillow (SWE), 

ultrasonic (h) 

5 7094 

(97.8%) 

(0.5 in / 0.1 in) 

British Columbia 

Snow Survey 

Snow pillow (SWE), 

ultrasonic (h) 

31 61,000 

(97.5%) 

(1 cm / 1 mm) 

NRCS Snow Survey Federal sampler / Aerial 

marker 

1085 116,000 

(99.6%) 

(0.5 in / 0.1 in) for 

manual sampler 

(2 in / n/a) for aerial 

marker 

Maine Geological 

Survey 

Adirondack or Federal 

sampler (SWE and h) 

431 28,000 

(99.3%) 

(0.5 in / 0.5 in ) 

Hubbard Brook 

(Station 2), NH 

Mount Rose sampler (SWE 

and h) 

1 704 

(99.4%) 

(0.1 in / 0.1 in) 

Thompson Farm, NH Snow core (SWE and h) 2 988 

(99.4%) 

0.5 in / 0.5 in) 

Sleepers River, VT  Adirondack sampler 14 7214 

(99.4%) 

(0.5 in / 0.5 in) 

New York Snow 

Survey 

Adirondack or Federal 

sampler (SWE and h) 

523 44,614 

(98.2%) 

(0.5 in / 0.5 in) 

Chugach Mountains, 

AK 

Avalanche probe (h) 71 71 

(100%) 

(1 cm) 

 257 

2.1.2 Climatological Variables 258 

30-year climate normals at 1 km resolution for North America were obtained from the ClimateNA project (Wang et 259 

al., 2016). This project provides grids for minimum, maximum, and mean temperature, and total precipitation for a 260 

given month. These grids are based on the PRISM normals (Daly et al., 1994) and are available for the periods 261 

1961-1990 and 1981-2010. For this study, the more recent climatology was used. The ClimateNA project also 262 

provides a wide array of derived bioclimatic variables, such as precipitation as snow (PAS), frost-free-period (FFP), 263 

mean annual relative humidity (RH) and others. Wang et al. (2012) summarize these additional variables and how 264 

they are derived. Figure 5 shows gridded maps of winter (sum of December, January, February) precipitation 265 

(PPTWT) and the temperature difference (TD) between the mean temperature of the warmest month and the mean 266 

temperature of the coldest month. The latter variable (TD) is a measure of continentality. 267 

 268 

2.2 Regression Model 269 

In order to demonstrate the varying degrees of influence of explanatory variables, several regression models were 270 

constructed. In each case, the model was built by randomly selecting 50% of the paired SWE-h measurements from 271 

the aggregated CONUS, AK, and BC snow pillow datasets. The model was then validated by applying it to the 272 
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remaining 50% of the dataset and comparing the modeled SWE to the observed SWE for those points. We 273 

constructed a second version of the regression models by randomly selecting 50% of the snow pillow stations and 274 

using all of the data from those stations. The model was then validated by applying it to the data from the remaining 275 

50% of the stations. These two methods provided identical results, likely due to the very large sample size (N) of our 276 

dataset. In all cases, the p values from the linear regression were 0, again due to the large sample size. Additional 277 

validation was done with the northeast USA datasets (SCAN snow pillow and various snow coring datasets) and the 278 

NRCS snow course dataset, which were completely left out of the model building process. 279 

 280 

2.2.1 One-Equation Model 281 

The simplest equation, and one that is supported by the strong correlation seen in the portions of Figure 3 when 282 

SWE is present, is one that expresses SWE as a function of h. A linear model is attractive in terms of simplicity, but 283 

this limits the snowpack to a constant density. An alternative is to express SWE as a power law, i.e., 284 

 285 

(1) 𝑆𝑊𝐸 = 𝐴ℎ𝑎1 .   286 

 287 

This equation can be log-transformed into 288 

 289 

(2) 𝑙𝑜𝑔10(𝑆𝑊𝐸) = 𝑙𝑜𝑔10(𝐴) + 𝑎1𝑙𝑜𝑔10(ℎ) 290 

 291 

which immediately allows for simple linear regression methods to be applied. With both h and SWE expressed in 292 

units of mm, the obtained coefficients are (𝐴, 𝑎1) = (0.146, 1.102). Information on the performance of the model 293 

will be deferred until the results section. 294 

 295 

2.2.2 Two-Equation Model 296 

Recall from Figures 1 and 4 that there is a hysteresis loop in the SWE-h relationship. During the accumulation 297 

phase, snow densities are relatively low. During the ablation phase, the densities are relatively high. So, the same 298 

snowpack depth is associated with two different SWEs, depending upon the time of year. The regression equation 299 

given above does not resolve this difference. This can be addressed by developing two separate regression 300 

equations, one for the accumulation (acc) and one for the ablation (abl) phase. This approach takes the form 301 

 302 

(3) 𝑆𝑊𝐸𝑎𝑐𝑐 = 𝐴ℎ𝑎1 ;      𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 303 

 304 

(4) 𝑆𝑊𝐸𝑎𝑏𝑙 = 𝐵ℎ𝑏1;      𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 305 

 306 

where DOY is the number of days from the start of the water-year, and DOY* is the critical or dividing day-of-water-307 

year separating the two phases. Put another way, DOY* is the day of peak SWE. Interannual variability results in a 308 

range of DOY* for a given site. Additionally, some sites, particularly the SCAN sites in the northeast USA, 309 
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demonstrate multi-peak SWE profiles in some years. To reduce model complexity, however, we investigated the use 310 

of a simple climatological (long term average) value of DOY* at each site. For each snow pillow station, the average 311 

DOY* was computed over the period of record of that station. Analysis of all of the stations revealed that this 312 

average DOY* was relatively well correlated with the climatological mean April maximum temperature (the average 313 

of the daily maximums recorded in April; R2 = 0.7). However, subsequent regression analysis demonstrated that the 314 

SWE estimates were relatively insensitive to DOY* and the best results were actually obtained when DOY* was 315 

uniformly set to 180 for all stations. Again, with both SWE and h in units of mm, the regression coefficients turn out 316 

to be (𝐴, 𝑎1) = (0.150, 1.082) and (𝐵, 𝑏1) = (0.239, 1.069). 317 

 318 

As these two equations are discontinuous at DOY*, they are blended smoothly together to produce the final two-319 

equation model 320 

 321 

(5) 𝑆𝑊𝐸 = 𝑆𝑊𝐸𝑎𝑐𝑐
1

2
(1 − 𝑡𝑎𝑛ℎ[0.01{𝐷𝑂𝑌 − 𝐷𝑂𝑌∗}]) + 322 

𝑆𝑊𝐸𝑎𝑏𝑙

1

2
(1 + 𝑡𝑎𝑛ℎ[0.01{𝐷𝑂𝑌 − 𝐷𝑂𝑌∗}]) 323 

 324 

The coefficient 0.01 in the tanh function controls the width of the blending window and was selected to minimize 325 

the root mean square error of the model estimates. 326 

 327 

2.2.3 Two-Equation Model with Climate Parameters 328 

A final model was constructed by incorporating climatological variables. Again, the emphasis in this study is on 329 

methods that can be implemented at locations lacking the time series of weather variables that might be available at 330 

a weather or SNOTEL station. Climatological normals are unable to account for interannual variability, but they do 331 

preserve the high spatial gradients in climate that can lead to spatial gradients in snowpack characteristics. Stepwise 332 

linear regression was used to determine which variables to include in the regression. The initial list of potential 333 

variables included was 334 

 335 

(6) 𝑆𝑊𝐸 = 𝑓(ℎ, 𝑧, 𝑃𝑃𝑇𝑊𝑇, 𝑃𝐴𝑆, 𝑇𝑊𝑇, 𝑇𝐷, 𝐷𝑂𝑌, 𝑅𝐻) 336 

 337 

where z is the elevation (m), PPTWT is the winter (sum of December, January, February) precipitation (mm), PAS is 338 

mean annual precipitation as snow (mm), TWT is the winter (December, January, February) mean temperature (°𝐶), 339 

TD is the difference between the mean temperature of the warmest month and the mean temperature of the coldest 340 

month (°𝐶), DOY is the day of water year, and RH is the relative humidity (%). In the stepwise regression, 341 

explanatory variables were accepted only if they improved the adjusted R2 value by 0.001. The result of the 342 

regression yielded 343 

 344 

(7) 𝑆𝑊𝐸𝑎𝑐𝑐 = 𝐴ℎ𝑎1 𝑃𝑃𝑇𝑊𝑇𝑎2𝑇𝐷𝑎3𝐷𝑂𝑌𝑎4;      𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 345 
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 346 

(8) 𝑆𝑊𝐸𝑎𝑏𝑙 = 𝐵ℎ𝑏1𝑃𝑃𝑇𝑊𝑇𝑏2 𝑇𝐷𝑏3𝐷𝑂𝑌𝑏4;      𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 347 

 348 

or, in log-transformed format, 349 

 350 

(9) 𝑙𝑜𝑔10(𝑆𝑊𝐸𝑎𝑐𝑐) = 𝑙𝑜𝑔10(𝐴) + 𝑎1𝑙𝑜𝑔10(ℎ) + 𝑎2𝑙𝑜𝑔10(𝑃𝑃𝑇𝑊𝑇) + 351 

𝑎3𝑙𝑜𝑔10(𝑇𝐷) + 𝑎4𝑙𝑜𝑔10(𝐷𝑂𝑌);        𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 352 

 353 

(10) 𝑙𝑜𝑔10(𝑆𝑊𝐸𝑎𝑏𝑙) = 𝑙𝑜𝑔10(𝐵) + 𝑏1𝑙𝑜𝑔10(ℎ) + 𝑏2𝑙𝑜𝑔10(𝑃𝑃𝑇𝑊𝑇) + 354 

𝑏3𝑙𝑜𝑔10(𝑇𝐷) + 𝑏4𝑙𝑜𝑔10(𝐷𝑂𝑌);        𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 355 

 356 

indicating that only snow depth, winter precipitation, temperature difference, and day of water year were relevant. 357 

Manual tests of model construction with other variables included confirmed that Eqns. (7-8) yielded the best results. 358 

These two SWE estimates for the individual (acc and abl) phases of the snowpack were then blended with Eqn. (5) 359 

to produce a single equation for SWE spanning the entire water year. The obtained regression coefficients were 360 

(𝐴, 𝑎1, 𝑎2, 𝑎3, 𝑎4) = (0.0533, 0.9480, 0.1701, −0.1314, 0.2922) and (𝐵, 𝑏1, 𝑏2, 𝑏3, 𝑏4) = (0.0481, 1.0395,361 

0.1699, −0.0461, 0.1804). The physical interpretation of these coefficients is straightforward. For example, both 𝑎2 362 

and 𝑏2 are greater than zero. So, for two locations with equal h, DOY, and TD, the location with greater PPTWT will 363 

have a greater SWE and therefore density. These locations are typically maritime climates with wetter, denser snow. 364 

In contrast, both 𝑎3 and 𝑏3 are less than zero. Therefore, for two locations with equal h, DOY, and PPTWT, the 365 

location with greater TD (a more continental climate) will have a lower density, which is again an expected result. 366 

These trends are similar in concept to Sturm et al. (2010), whose discrete snow classes (based on climate classes) 367 

indicate which snow will densify more rapidly.  368 

3 Results 369 

A comparison of the three regression models (one-equation model, Eq. (2); two-equation model, Eqs. (3-5); multi-370 

variable two-equation model, Eqs. (5, 7-8)) is provided in Figure 6. The left column shows scatter plots of modeled 371 

SWE to observed SWE for the validation data set with the 1:1 line shown in black. The right column shows 372 

distributions of the model residuals. The vertical lines in the right column show the mean error, or model bias. 373 

Visually, it is clear that the one-equation model performs relatively poorly with a large negative bias. This large 374 

negative bias is partially overcome by the two-equation model (middle row, Figure 6). The cloud of points is closer 375 

to the 1:1 line and the vertical black line indicating the mean error is closer to zero. In the final row of Figure 6, we 376 

see that the multi-variable two-equation model yields the best result by far. The residuals are now evenly distributed 377 

with a small bias. Several metrics of performance for the three models, including R2 (Pearson coefficient), bias, and 378 

root-mean-square-error (RMSE), are provided in Table 2. Figure 7 shows the distribution of model residuals for the 379 

multi-variable two-equation model as a function of DOY. 380 

 381 



 12 

Table 2: Summary of performance metrics for the three regression models presented in Section 2.2. 382 
Model R2 Bias (mm) RMSE (mm) 

One-equation 0.946 -19.5 102 

Two-equation 0.962 -5.1 81 

Multi-variable two-equation 0.978 -1.2 59 

 383 

It is useful to also consider the model errors in a non-dimensional way. Therefore, an RMSE was computed at each 384 

station location and normalized by the winter precipitation (PPTWT) at that location. Figure 8 shows the probability 385 

density function of these normalized errors. The average RMSE is approximately 15% of 𝑃𝑃𝑇𝑊𝑇 with most values 386 

falling into the range of 5-30%. The spatial distribution of these normalized errors is shown in Figure 9. For the 387 

SNOTEL stations, it appears there is a slight regional trend, in terms of stations in continental climates (Rockies) 388 

having larger relative errors than stations in maritime climates (Cascades). The British Columbia stations also show 389 

higher relative errors. 390 

 391 

3.1 Results for Snow Classes 392 

A key objective of this study is to regress climatological information in a continuous rather than a discrete way. The 393 

work by Sturm et al. (2010) therefore provides a valuable point of comparison. In that study, the authors developed 394 

the following equation for density 𝜌𝑏 395 

 396 

(11) 𝜌𝑏 = (𝜌𝑚𝑎𝑥 − 𝜌0)[1 − 𝑒(−𝑘1ℎ−𝑘2𝐷𝑂𝑌)] + 𝜌0  397 

 398 

where 0 is the initial density, max is the maximum or ‘final’ density (end of water year), k1 and k2 are coefficients, 399 

and DOY in this case begins on January 1. This means that their DOY for October 1 is -92. The coefficients vary 400 

with snow class and the values determined by Sturm et al. (2010) are shown in Table 3. 401 

 402 

Table 3: Model parameters by snow class for Sturm et al. (2010). 403 
Snow Class max 0 k1 k2 

Alpine 0.5975 0.2237 0.0012 0.0038 

Maritime 0.5979 0.2578 0.0010 0.0038 

Prairie 0.5941 0.2332 0.0016 0.0031 

Tundra 0.3630 0.2425 0.0029 0.0049 

Taiga 0.2170 0.2170 0.0000 0.0000 

 404 

To make a comparison, the snow class for each SNOTEL and British Columbia snow survey (Rows 1 and 3 of Table 405 

1) site was determined using a 1-km snow class grid (Sturm et al., 2010). The aggregated dataset from these stations 406 

was made up of 27% Alpine, 14% Maritime, 10% Prairie, 11% Tundra, and 38% Taiga data points. Equation (11) 407 

was then used to estimate snow density (and then SWE) for every point in the validation dataset described in Section 408 

2.2. Figure 10 compares the SWE estimates from the Sturm model and from the current multi-variable, two-equation 409 

model (Equations 5, 7-8). The upper left panel of Figure 10 shows all of the data, and the remaining panels show the 410 

results for each snow class. In all cases, the current model provides better estimates (narrow cloud of points; closer 411 

to the 1:1 line). Plots of the residuals by snow class are provided in Figure 11, giving an indication of the bias of 412 
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each model for each snow class. Summaries of the model performance, broken out by snow class, are given in Table 413 

4. The current model has smaller biases and RMSEs for each snow class.  414 

 415 

Table 4: Comparison of model performance by Sturm et al. (2010) and the current study. 416 
Model Sturm et al. (2010) Multi-variable two-equation model 

Snow Class R2 Bias (mm) RMSE (mm) R2 Bias (mm) RMSE (mm) 

All Data 0.928 -29.2 111 0.978 -1.2 59 

Alpine 0.973 10.1 55 0.978 -2.7 48 

Maritime 0.968 -16.8 109 0.975 -7.8 95 

Prairie 0.967 18.7 56 0.971 -0.7 45 

Tundra 0.956 -10.5 82 0.974 -2.9 59 

Taiga 0.943 -80.0 151 0.978 2.6 54 

 417 

3.2 Comparison to Pistocchi (2016) 418 

In order to provide an additional comparison, the simple model of Pistocchi (2016) was also applied to the validation 419 

dataset. His model calculates the bulk density as 420 

 421 

(12) 𝜌𝑏 = 𝜌0 + 𝐾(𝐷𝑂𝑌 + 61), 422 

 423 

where 𝜌0 has a value of 200 kg m-3 and K has a value of 1 kg m-3. The DOY for this model has its origin at 424 

November 1. Application of this model to the validation dataset yields a bias of 55 mm and an RMSE of 94 mm. 425 

These results are comparable to the Sturm et al. (2010) model, with a larger bias but smaller RMSE. 426 

 427 

3.3 Comparison to Jonas et al. (2009) 428 

A final point of comparison can be provided by the model of Jonas et al. (2009). The full version of that model 429 

contains region-specific offset parameters that are not relevant to North America, so the following partial version of 430 

the model is used (their Eq. 4): 431 

 432 

(13) 𝜌𝑏 = 𝑎ℎ + 𝑏, 433 

 434 

where the parameters (𝑎, 𝑏) vary with elevation and month, as given by Table 5. Note that coefficients are not given 435 

for every month. Application of the Jonas et al. (2009) model to the snow pillow dataset yields a bias of -5 mm and 436 

an RMSE of 69 mm. These results are not directly comparable to those of the current model (Table 2, row 3) since 437 

the Jonas et al. (2009) model is unable to compute results for several months of the year. To make a direct 438 

comparison to the current model, it is necessary to first remove those data points (about 5%). When this is done, the 439 

current model yields a bias of -0.3 mm and an RMSE of 59 mm. 440 

 441 

Table 5: Model coefficients (𝑎, 𝑏) for the Jonas et al. (2009) model. 442 
Month 𝑧 > 2000 𝑚 2000 𝑚 > 𝑧 > 1400 𝑚 1400 𝑚 > 𝑧 

January (206, 52) (208, 47) (235, 31) 
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February (217, 46) (218, 52) (279, 9) 

March (272, 26) (281, 31) (333, 3) 

April (331, 9) (354, 15) (347, 25) 

May (378, 21) (409, 29) (413, 19) 

June (452, 8) n/a n/a 

July (470, 15) n/a n/a 

August n/a n/a n/a 

September n/a n/a n/a 

October n/a n/a n/a 

November (206, 47) (183, 35) (149, 37) 

December (203, 52) (190, 47) (201, 26) 

 443 

3.4 Results for Northeast USA 444 

The regression equations in this study were developed using a large collection of snow pillow sites in CONUS, AK, 445 

and BC. The snow pillow sites are limited to locations west of approximately W 105° (Figure 2a). By design, the 446 

data sets from the northeastern USA (Section 2.1.1.3) were left as an entirely independent validation set. These 447 

northeastern sites are geographically distant from the training data sets, subject to a very different climate, largely 448 

use different methods (snow coring, with the exception of the SCAN network) and are generally at much lower 449 

elevations than the western sites, providing an interesting opportunity to test how robust the current model is. 450 

 451 

Figure 12 graphically summarizes the datasets and the performance of the multi-variable two-equation model of the 452 

current study. The RMSE values are comparable to those found for the western stations, but, given the 453 

comparatively thinner snowpacks in the northeast, represent a larger relative error (Table 5). The bias of the model 454 

is consistently positive, in contrast to the western stations where the bias was negligible. Note that Table 5 also 455 

includes results from the application of the other three models discussed. Sturm et al. (2010) cannot be applied to 456 

several of the datasets since their available 1 km snowclass dataset cuts off at -71.6 longitude. The current model 457 

and the Jonas et al. (2009) model perform better than the other two models, with the current model generally 458 

outperforming the Jonas et al. (2009) model. The two datasets where the Jonas et al. (2009) model has a slightly 459 

better performance are the two smallest datasets (less than 1000 measurements; see Table 1). 460 

 461 

Table 5: Performance metrics for various models applied to the northeastern USA datasets. Bold font is used to 462 
highlight the model with the best performance for each dataset.  463 

 Multi-variable, 

two-equation 

model 

Sturm et al. 

(2010) 

Jonas et al. 

(2009) 

Pistocchi 

(2015) 

Dataset Name Bias 

(mm) 

RMSE 

(mm) 

Bias 

(mm) 

RMSE 

(mm) 

Bias 

(mm) 

RMSE 

(mm) 

Bias 

(mm) 

RMSE 

(mm) 

Maine Geological Survey, ME 13.1 34.0 n/a n/a 25.1 46.0 59.2 77.1 

Hubbard Brook (Station 2), NH 21.8 66.6 34.2 76.9 19.4 65.4 52.0  90.8 

Thompson Farm, NH 7.1 20.2 n/a n/a 5.6 19.9 20.4 32.3 

NRCS SCAN -1.2 39.2 8.4 45.0 -2.8 40.6 23.4 56.9 

Sleepers River, VT 14.4 28.2 36.5 48.9 20.4 33.5 55.8 67.1 

New York Snow Survey 14.8 31.2 21.0 49.3 16.3 33.0 41.3 56.1 

 464 
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3.5 Results for NRCS Snow Course / Aerial Marker Data 465 

The NRCS snow course and aerial marker data were also left out of the model building process so they provide an 466 

additional and completely independent comparison of the various models considered. Recall that these data come 467 

from snow course (coring measurements) and aerial surveys, which are different measurement methods than the 468 

snow pillows which provided the data for construction of the current regression model. Table 6 shows the results 469 

and demonstrates that the current model has the best performance. 470 

 471 

Table 6: Performance metrics for various models applied to the NRCS snow course and aerial marker dataset. Bold 472 
font is used to highlight the model with the best performance.  473 

 Multi-variable, two-

equation model 

Sturm et al. 

(2010) 

Jonas et al. 

(2009) 

Pistocchi (2015) 

Dataset Name Bias 

(mm) 

RMSE 

(mm) 

Bias 

(mm) 

RMSE 

(mm) 

Bias 

(mm) 

RMSE 

(mm) 

Bias 

(mm) 

RMSE 

(mm) 

NRCS Snow Course / Aerial 

Marker 

0 59 -24 123 24 72 71 99 

4 Discussion 474 

The results presented in this study show that the regression equation described by equations (5, 7-8) is an 475 

improvement (lower bias and RMSE) over other widely used bulk density equations. The key advantage is that the 476 

current method regresses in relevant parameters directly, rather than using discrete bins (for snow class, elevation, 477 

month of year, etc.), each with its own set of model coefficients. The comparison (Figs. 10-11; Table 4) to the model 478 

of Sturm et al. (2010) reveals a peculiar behavior of that model for the Taiga snow class, with a large negative bias 479 

in the Sturm estimates. Inspection of the coefficients provided for that class (Table 3) shows that the model simply 480 

predicts that 𝜌𝑏 = 𝜌𝑚𝑎𝑥 = 0.217 for all conditions. 481 

 482 

When our multi-variable two-equation model, developed solely from western North American data, is applied to 483 

northeast USA locations, it produces SWE estimates with smaller RSME values and larger biases than the western 484 

stations. When comparing the SWE-h scatter plots of the SNOTEL data (Figure 4b) to those of the east coast data 485 

sets (left column; Figure 12), it is clear that the northeast data generally have more scatter. This is confirmed by 486 

computing the correlation coefficients between SWE and h for each dataset. It is unclear if this disparity in 487 

correlation is related to measurement methodology or is instead a ‘signal to noise’ issue. Comparing Figures 4 and 488 

12 shows the considerable difference in snowpack depth between the western and northeastern data sets. When the 489 

western dataset is filtered to include only measurement pairs where ℎ < 1.5 m, the correlation coefficient is reduced 490 

to a value consistent with the northeast datasets. This suggests that the performance of the current (or other) 491 

regression model is not as good at shallow snowpack depths. This is also suggested upon examination of the time 492 

series of observed 𝜌𝑏 = 𝑆𝑊𝐸/ℎ for a given season at a snow pillow site. Very early in the season, when the depths 493 

are small, the density curve has a lot of variability. Later in the season, when depths are greater, the density curve 494 

becomes much smoother. Very late in the season, when depths are low again, the density curve becomes highly 495 

variable again. 496 

 497 
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Measurement precision and accuracy affect the construction and use of a regression model. Upon inspection of the 498 

snow pillow data, it was observed that the precision of the depth measurements was approximately 25 mm and that 499 

of the SWE measurements was approximately 2.5 mm. To test the sensitivity of the model coefficients to the 500 

measurement precision, the depth values in the training dataset were randomly perturbed by +/- 25 mm and the SWE 501 

values were randomly perturbed by +/- 2.5 mm and the regression coefficients were recomputed. This process was 502 

repeated numerous times and the mean values of the perturbed coefficients were obtained. These adjusted 503 

coefficients were then used to recompute the SWE values for the validation data set and the bias and RMSE were 504 

found to be -10.5 mm and 72.7 mm. This represents a roughly 10% increase in RMSE, but a considerable increase in 505 

bias magnitude (see Table 4 for the original values). This sensitivity of the regression analysis to measurement 506 

precision underscores the need to have high-precision measurements for the training data set. Regarding accuracy, 507 

random and systematic errors in the paired SWE - h data used to construct the regression model will lead to 508 

uncertainties in SWE values predicted by the model. As noted in the introduction, snow pillow errors in SWE 509 

estimates do not follow a simple pattern. Additionally, they are complicated by the fact that the errors are often 510 

computed by comparing snow pillow data to coring data, which itself is subject to error. Lacking quantitative 511 

information on the distribution of snow pillow errors, we are unable to quantify the uncertainty in the SWE 512 

estimates. 513 

 514 

Another important consideration has to do with the uncertainty of depth measurements that the model is applied to. 515 

For context, one application of this study is to crowd-sourced, opportunistic snow depth measurements from 516 

programs like the Community Snow Observations (CSO; Hill et al., 2018) project. In the CSO program, 517 

backcountry recreational users submit depth measurements, typically taken with an avalanche probe, using a 518 

smartphone in the field. The measurements are then converted to SWE estimates which are assimilated into 519 

snowpack models. These depth measurements are ‘any time, any place’ in contrast to repeated measurements from 520 

the same location, like snow pillows or snow courses. Most avalanche probes have cm-scale graduated markings, so 521 

measurement precision is not a major issue. A larger problem is the considerable variability in snowpack depth that 522 

can exist over short (meter scale) distances. The variability of the Chugach avalanche probe measurements was 523 

assessed by taking the standard deviation of 8 h measurements per site. The average of this standard deviation over 524 

the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the 525 

sites was 15%. This variability is a function of the surface roughness of the underlying terrain, and also a function of 526 

wind redistribution of snow. Propagating this uncertainty through the regression equations yields a slightly higher 527 

(16%) uncertainty in the SWE estimates. CSO participants can do three things to ensure that their recorded depth 528 

measurements are as representative as possible. First, avoid measurements in areas of significant wind scour or 529 

deposition. Second, avoid measurements in terrain likely to have significant surface roughness (rocks, fallen logs, 530 

etc.). Third, take several measurements and average them. 531 

 532 

Expansion of CSO measurements in areas lacking SWE measurements can increase our understanding of the 533 

extreme spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in 534 
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these regions. It could also prove useful for estimating watershed-scale SWE in regions like the northeastern USA, 535 

which is currently limited to five automated SCAN sites with historical SWE measurements for only the past two 536 

decades. Additionally, historical snow depth measurements are more widely available in the Global Historical 537 

Climatology Network (GHCN-Daily; Menne et al. 2012), with several records extending back to the late 1800s. 538 

While many of the GHCN stations are confined to lower elevations with shallower snow depths, the broader 539 

network of quality-controlled snow depth data paired with daily GHCN temperature and precipitation measurements 540 

could potentially be used to reconstruct SWE in the eastern US given additional model development and refinement. 541 

5 Conclusions 542 

We have developed a new, easy to use method for converting snow depth measurements to snow water equivalent 543 

estimates. The key difference between our approach and previous approaches is that we directly regress in 544 

climatological variables in a continuous fashion, rather than a discrete one. Given the abundance of freely available 545 

climatological norms, a depth measurement tagged with coordinates (latitude and longitude) and a time stamp is 546 

easily and immediately converted into SWE.  547 

 548 

We developed this model with data from paired SWE-h measurements from the western United States and British 549 

Columbia. The model was tested against entirely independent data (primarily snow course; some snow pillow) from 550 

the northeastern United States and was found to perform well, albeit with larger biases and root-mean-squared-551 

errors. The model was tested against other well-known regression equations and was found to perform better. The 552 

model was also tested against a large dataset of independent snow course and aerial marker measurements from 553 

western North America. For this second independent test, the current model outperformed the other models 554 

considered.  555 

 556 

This model is not a replacement for more sophisticated snow models that evolve the snowpack based on high 557 

frequency (e.g., daily or sub-daily) weather data inputs. The intended purpose of this model is to constrain SWE 558 

estimates in circumstances where snow depth is known, but weather variables are not, a common issue in sparsely 559 

instrumented areas in North America. 560 
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7 Data Access 565 

Numerous online datasets were used for this project and were obtained from the following locations: 566 

1. NRCS Snow Telemetry: https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html 567 

2. NRCS Soil Climate Analysis Network: https://www.wcc.nrcs.usda.gov/scan/ 568 

https://www.wcc.nrcs.usda.gov/snow/snotel-wedata.html
https://www.wcc.nrcs.usda.gov/scan/
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3. British Columbia Automated Snow Weather Stations: 569 

https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-570 

tools/snow-survey-data/automated-snow-weather-station-data  571 

4. Maine Cooperative Snow Survey: https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data 572 

5. New York Snow Survey: http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html 573 

6. Sleepers River Research Watershed. Snow data not available online; request data from contact at: 574 

https://nh.water.usgs.gov/project/sleepers/index.htm 575 

7. Hubbard Brook Experimental Forest: https://hubbardbrook.org/d/hubbard-brook-data-catalog 576 

8. Climatological Data: https://adaptwest.databasin.org/pages/adaptwest-climatena 577 

9. NRCS Snow Course / Aerial Marker Data: https://wcc.sc.egov.usda.gov/reportGenerator/ 578 
 579 

 580 
A Matlab function for calculating SWE based on the results is this paper has been made publicly available at Github 581 

(https://github.com/communitysnowobs/snowdensity). 582 

   583 

https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-tools/snow-survey-data/automated-snow-weather-station-data
https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-tools/snow-survey-data/automated-snow-weather-station-data
https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data
http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html
https://nh.water.usgs.gov/project/sleepers/index.htm
https://hubbardbrook.org/d/hubbard-brook-data-catalog
https://adaptwest.databasin.org/pages/adaptwest-climatena
https://wcc.sc.egov.usda.gov/reportGenerator/
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Figure 1: Conceptual sketch of the evolution of snow water equivalent (SWE) over the course of a water year (black 753 
line). Also shown is the evolution of SWE with snowpack depth over a water year (red line). Note the hysteresis 754 
loop due to the densification of the snowpack. 755 

  756 
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Figure 2: Distribution of measurement locations used in this study.  (a) Western USA and Canada snow pillow 757 
locations, with colors indicating station elevation in meters. (b) Northeast USA snow pillow and snow course 758 
locations, with stations colored according to data source. (c) Western North America snow course and aerial marker 759 
locations, with colors indicating station elevation in meters. (d, e) Measurement sites in the Chugach Mountains, 760 
southcentral Alaska. 761 
 762 

 763 

 764 
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Figure 3:  Sample time series of SWE and h from the Rex River (WA) SNOTEL station. Observations of h at times 766 
when SWE is zero are likely spurious. 767 
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Figure 4: Scatter plot of SWE vs. h for the complete SNOTEL dataset before (a) and after (b) removing data points, 769 
following the method described in Section 2.1.1.5. Symbols are colored by ‘day of water year’ (DOY; October 1 is 770 
the origin). 771 
 772 
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Figure 5: Gridded maps of winter (December, January, February) precipitation (PPTWT) and temperature difference 774 
(TD) between mean of warmest month and mean of coldest month) for North America. Maps are for the 1981-2010 775 
climatological period. 776 

 777 

 778 
 779 

 780 
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Figure 6: Two-dimensional histograms (heat maps; left column) of modeled vs. observed SWE and probability 782 
density functions (right column) of the residuals for three simple models applied to the CONUS, AK, and BC snow 783 
pillow data. Warmer colors in the heat maps indicate greater density. The vertical lines in the right column indicate 784 
the location of the mean residual, or bias. Top row (a-b): One-equation model (Section 2.2.1). Middle row (c-d): 785 
Two-equation model (Section 2.2.2). Bottom row (e-f): Multi-variable two-equation model (Section 2.2.3).  786 
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Figure 7: Heat map of SWE residuals as a function of DOY for the application of the multi-variable two-equation 789 
model to the western North America snow pillow validation dataset. 790 
 791 

 792 
 793 
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Figure 8: Probability density function of snow pillow station root-mean-square error (RMSE) normalized by station 795 
winter precipitation (PPTWT) for the application of the multi-variable two-equation model to the western North 796 
America snow pillow validation dataset. 797 
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Figure 9: Spatial distribution of snow pillow station root-mean-square error (RMSE) normalized by station winter 799 
precipitation (PPTWT) for the application of the multi-variable two-equation model to the western North America 800 
snow pillow validation dataset. 801 
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Figure 10: Comparison of the multi-variable, two-equation model of the current study with the model of Sturm et al. 804 
(2010), applied to the western North America snow pillow validation dataset. The subpanels show modeled SWE vs. 805 
observed SWE for all of the data binned together, as well as for the data broken out by the snow classes identified by 806 
Sturm et al. (1995). The gray symbols show the Sturm result and the transparent heat maps (warmer colors indicate 807 
greater density) show the current result. 808 
 809 
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Figure 11: Comparison of the multi-variable, two-equation model of the current study with the model of Sturm et al. 811 
(2010), applied to the western North America snow pillow validation dataset. The subpanels show probability 812 
density functions of the residuals of the model fits for all of the data binned together, as well as for the data broken 813 
out by the snow classes identified by Sturm et al. (1995). The gray lines show the Sturm result and the colored lines 814 
show the current result. The vertical lines show the mean error, or the model bias, for both the Sturm and the current 815 
result. 816 
 817 
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Figure 12: Results from application of the multi-variable, two-equation model to numerous northeast USA datasets. 819 
The left column shows the SWE-h data for each dataset. Note that the black symbols are points removed by the 820 
outlier detection procedure discussed in section 2.1.1.4. The remaining symbols are colored by DOY. The middle 821 
panel plots heat maps of the model estimates of SWE against the observations of SWE with the 1:1 line included. 822 
Warmer colors indicate higher densities. The right panel shows probability density functions of the model residuals, 823 
with the vertical line indicating the mean error, or bias. Individual rows correspond to individual data sets and are 824 
labeled. 825 
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Figure 13: Results from application of the multi-variable, two-equation model to the NRCS snow course / aerial 834 
marker dataset. The left column shows the SWE-h data for each dataset. Note that the black symbols are points 835 
removed by the outlier detection procedure discussed in section 2.1.1.5. The remaining symbols are colored by 836 
DOY. The middle panel plots heat maps of the model estimates of SWE against the observations of SWE with the 837 
1:1 line included. Warmer colors indicate higher densities. The right panel shows probability the density function of 838 
the model residuals, with the vertical line indicating the mean error, or bias. 839 
 840 
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