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 18 
Abstract. We present a simple method that allows snow depth measurements to be converted to snow water 19 
equivalent (SWE) estimates. These estimates are useful to individuals interested in water resources, ecological 20 
function, and avalanche forecasting. They can also be assimilated into models to help improve predictions of total 21 
water volumes over large regions. The conversion of depth to SWE is particularly valuable since snow depth 22 
measurements are far more numerous than costlier and more complex SWE measurements. Our model regresses 23 
SWE against snow depth and climatological (30-year normal) values for mean annual precipitation (MAP) and mean 24 
February temperature (𝑇"#$%&'), producing a power-law relationship. Relying on climatological normals rather than 25 
weather data for a given year allows our model to be applied at measurement sites lacking a weather station. 26 
Separate equations are obtained for the accumulation and the ablation phases of the snowpack, which introduces 27 
‘day of water year’ (DOY) as an additional variable. The model is validated against a large database of snow pillow 28 
measurements and yields a bias in SWE of less than 0.5 mm and a root-mean-squared-error (RMSE) in SWE of 29 
approximately 65 mm. When the errors are investigated on a station-by-station basis, the average RMSE is about 5% 30 
of the MAP at each station. The model is additionally validated against a completely independent set of data from 31 
the northeast United States. Finally, the results are compared with other models for bulk density that have varying 32 
degrees of complexity and that were built in multiple geographic regions. The results show that the model described 33 
in this paper has the best performance for the validation data set.   34 
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1 Introduction 35 
In many parts of the world, snow plays a leading-order role in the hydrological cycle (USACE, 1956; Mote et al., 36 
2018). Accurate information about the spatial and temporal distribution of snow water equivalent (SWE) is useful to 37 
many stakeholders (water resource planners, avalanche forecasters, aquatic ecologists, etc.), but can be time 38 
consuming and expensive to obtain.  39 
 40 
Snow pillows (Beaumont, 1965) are a well-established tool for measuring SWE at fixed locations. Figure 1 provides 41 
a conceptual sketch of the variation of SWE with time over a typical water year. A comparatively long accumulation 42 
phase is followed by a short ablation phase. While simple in operation, snow pillows are relatively large in size and 43 
they need to be installed prior to the onset of the season’s snowfall. This limits their ability to be rapidly or 44 
opportunistically deployed. Additionally, snow pillow installations tend to require vehicular access, limiting their 45 
locations to relatively simple topography. Finally, snow pillow sites are not representative of the lowest or highest 46 
elevation bands within mountainous regions (Molotch and Bales, 2005). In the western United States (USA), the 47 
Natural Resources Conservation Service (NRCS) operates a large network of Snow Telemetry (SNOTEL) sites, 48 
featuring snow pillows. The NRCS also operates the smaller Soil Climate Analysis Network (SCAN) which 49 
provides the only, and very limited, snow pillow SWE measurements in the eastern USA.  50 
 51 
SWE can also be measured manually, using a snow coring device that measures the weight of a known volume of 52 
snow to determine snow density (Church, 1933). These measurements are often one-off measurements, or in the 53 
case of ‘snow courses’ they are repeated weekly or monthly at a given location. The simplicity and portability of 54 
coring devices expand the range over which measurements can be collected, but it can be challenging to apply these 55 
methods to deep snowpacks due to the length of standard coring devices. Note that there are numerous different 56 
styles of coring devices, including the Adirondack sampler and the Mt. Rose / Federal sampler (Church and Marr, 57 
1937). 58 
 59 
There are a number of issues that affect the accuracy of both snow pillow and snow coring measurements. With 60 
coring measurements, if the coring device is not carefully extracted, a portion of the core may fall out of the device. 61 
Or, snow may become compressed in the coring device during insertion. These effects have led to varying 62 
conclusions, with some studies (e.g., Sturm et al., 2010) showing a low SWE bias and other studies (e.g., Goodison, 63 
1978) showing a high SWE bias. As noted by Johnson et al. (2015) a good rule of thumb is that coring devices are 64 
accurate to around ± 10%. Also, studies comparing different styles of snow samplers report statistically different 65 
results, suggesting that SWE measurements are sensitive to the design of the specific coring device, such as the 66 
presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012). With snow 67 
pillows, some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE, 68 
with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks, 69 
2004; Dressler et al., 2006; Johnson et al., 2015) note a more complex situation with SWE under-reported at times, 70 
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but over-reported at other times. Note that when snow pillow data are evaluated, they are most commonly compared 71 
to coring measurements at the same location. 72 
 73 
All methods of measuring SWE are challenged by the fact that SWE is a depth-integrated property of a snowpack. 74 
This is why the snowpack must be weighed, in the case of a snow pillow, or a core must be extracted from the 75 
surface to the ground. This measurement complexity makes it difficult to obtain SWE information with the spatial 76 
and temporal resolution desired for watershed-scale studies. Other snowpack properties, such as the depth h, are 77 
much easier to measure. For example, using a graduated device such as a meterstick or an avalanche probe to 78 
measure the depth takes only seconds. Automating depth measurements at a fixed location can easily be done using 79 
low-cost ultrasonic devices (Goodison et al., 1984; Ryan et al., 2008). High-spatial-resolution measurements of 80 
snowpack depth are commonly made with Light Detection and Ranging (LIDAR). One example of this is the 81 
Airborne Snow Observatory program (ASO; Painter et al., 2016). The comparatively high expense of airborne 82 
LIDAR surveys typical limits measurements geographically (to a few basins) and temporally (weekly to monthly 83 
interval). 84 
 85 
Given the relative ease in obtaining depth measurements, it is common to use h as a proxy for SWE. Figure 1 shows 86 
a conceptual sketch of the variation of SWE with h over a typical water year. Noting the arrows on the curve, we see 87 
that SWE is multi-valued for each h. This is due to the fact that the snowpack increases in density throughout the 88 
water year, producing a hysteresis loop in the curve. A large body of literature exists on the topic of how to convert 89 
h to SWE. It is beyond the scope of this paper to provide a full review of these ‘bulk density equations,’ where the 90 
density is given by ρ* = SWE/ℎ. Instead, we refer readers to the useful comparative review by Avanzi et al. (2015). 91 
Here, we prefer to discuss a limited number of previous studies that illustrate the spectrum of methodologies and 92 
complexities that can be used to determine ρ* or SWE.  93 
 94 
Many studies express ρ* as an increasing function (often linear) of h. In some cases (e.g., Lundberg et al., 2006) a 95 
second equation is added where ρ* attains a constant value when a threshold h is exceeded. A single linear equation 96 
captures the process of densification of the snowpack during the accumulation phase, but performs poorly during the 97 
ablation phase, where depths are decreasing but densities continue to increase or approach a constant value.  98 
Other approaches choose to parameterize ρ* in terms of time, rather than h. Pistocchi (2016) provides a single 99 
equation while Mizukami and Perica (2008) provide two sets of equations, one set each for early and late season. 100 
Each set contains four equations, each of which is applicable to a particular ‘cluster’ of stations. This clustering was 101 
driven by observed densification characteristics and the resulting clusters are relatively spatially discontinuous. 102 
Jonas et al. (2009) take the idea of region- (or cluster-) specific equations and extend it further to provide 103 
coefficients that depend on time and elevation as well. They use a simple linear equation for ρ* in terms of h and the 104 
slope and intercept of the equation are given as monthly values, with three elevation bins for each month (36 pairs of 105 
coefficients). There is an additional contribution to the intercept (or ‘offset’) which is region-specific (one of 7 106 
regions).  107 
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 108 
These classifications, whether based on region, elevation, or season, are valuable since they acknowledge that all 109 
snow is not equal. McKay and Findlay (1971) discuss the controls that climate and vegetation exert on snow density, 110 
and Sturm et al. (2010) address this directly by developing a snow density equation where the coefficients depend 111 
upon the ‘snow class’ (5 classes). Sturm et al. (1995) explain the decision tree, based on temperature, precipitation, 112 
and wind speed, that leads to the classification. The temperature metric is the ‘cooling degree month’ calculated 113 
during winter months only. Similarly, only precipitation falling during winter months was used in the classification. 114 
Finally, given the challenges in obtaining high quality, high-spatial-resolution wind information, vegetation 115 
classification was used as a proxy. Using climatological values (rather than values for a given year), Sturm et al. 116 
(1995) were able to develop a global map of snow classification. 117 
 118 
There are many other formulations for snow density that increase in complexity and data requirements. Meloysund 119 
et al. (2007) express ρ* in terms of sub-daily measurements of relative humidity, wind characteristics, air pressure, 120 
and rainfall, as well as h and estimates of solar exposure (‘sun hours’). McCreight and Small (2014) use daily snow 121 
depth measurements to develop their regression equation. They demonstrate improved performance over both Sturm 122 
et al. (2010) and Jonas et al. (2009). However, a key difference between the McCreight and Small (2014) model and 123 
the others listed above is that the former cannot be applied to a single snow depth measurement. Instead, it requires a 124 
continuous time series of depth measurements at a fixed location. Further increases in complexity are found in 125 
energy-balance snowpack models (SnowModel, Liston and Elder, 2006; VIC, Liang et al., 1994, DHSVM, 126 
Wigmosta et al., 1994, others), many of which use multi-layer models to capture the vertical structure of the 127 
snowpack. While the particular details vary, these models generally require high temporal-resolution time series of 128 
many meteorological variables as input.  129 
 130 
Despite the development of multi-layer energy-balance snow models, there is still a demonstrated need for bulk 131 
density formulations and for vertically integrated data products like SWE. Pagano et al. (2009) review the 132 
advantages and disadvantages of energy-balance models and statistical models and describe how the NRCS uses 133 
SWE (from SNOTEL stations) and accumulated precipitation in their statistical models to make daily water supply 134 
forecasts. If SWE information is desired at a location that does not have a SNOTEL station, and is not part of a 135 
modeling effort, then bulk density equations and depth measurements are an excellent choice. 136 
 137 
The present paper seeks to generalize the ideas of Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., 138 
(2010). Specifically, our goal is to regress physical and environmental variables directly into the equations. In this 139 
way, environmental variability is handled in a continuous fashion rather than in a discrete way (model coefficients 140 
based on classes). The main motivation for this comes from evidence (e.g., Fig. 3 of Alford, 1967) that density can 141 
vary significantly over short distances on a given day. Bulk density equations that rely solely on time completely 142 
miss this variability and equations that have coarse (model coefficients varying over either vertical bins or horizontal 143 
grids) spatial resolution may not fully capture it either. 144 
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 145 
Our approach is most similar to Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., (2010) in that a 146 
minimum of information is needed for the calculations; we intentionally avoid approaches like Meloysund et al. 147 
(2007) and McCreight and Small (2014). This is because our interests are in converting h measurements to SWE 148 
estimates in areas lacking weather instrumentation. The following sections introduce the numerous data sets that 149 
were used in this study, outline the regression model adopted, and assess the performance of the model. 150 

2 Methods 151 
 152 
2.1 Data 153 
 154 
2.1.1 Snow Depth and Snow Water Equivalent 155 
In this section, we list sources of 1970-present snow data utilized for this study (Table 1). With regards to snow 156 
coring devices, we refer to them using the terminology preferred in the references describing the datasets. 157 
 158 
2.1.1.1 USA NRCS Snow Telemetry and Soil Climate Analysis Networks   159 
SNOTEL (Serreze et al., 1999; Dressler et al., 2006) and SCAN (Schaefer et al. 2007) stations in the contiguous 160 
United States (CONUS) and Alaska typically record sub-daily observations of h, SWE, and a variety of weather 161 
variables (Figure 2a-b). The periods of record are variable, but the vast majority of stations have a period of record 162 
in excess of 30 years. For this study, data from all SNOTEL sites in CONUS and Alaska and northeast USA SCAN 163 
sites were obtained with the exception of sites whose period of record data were unavailable online. Only stations 164 
with both SWE and h data were retained. 165 
 166 
2.1.1.2 Canada (British Columbia) Snow Survey Data 167 
Goodison et al. (1987) note that Canada has no national digital archive of snow observations from the many 168 
independent agencies that collect snow data and that snow data are instead managed provincially. The quantity and 169 
availability of the data vary considerably among the provinces. The Water Management Branch of the British 170 
Columbia (BC) Ministry of the Environment manages a comparatively dense network of Automated Snow Weather 171 
Stations (ASWS) that measure SWE, h, accumulated precipitation, and other weather variables (Figure 2a). For this 172 
study, data from all British Columbia ASWS sites were initially obtained. As with the NRCS stations, only ASWS 173 
stations with both SWE and h data were retained.  174 
 175 
2.1.1.3 Northeast USA Data 176 
In addition to the data from the SCAN sites, snow data for this project from the northeast US come from two 177 
networks and three research sites (Figure 2b).  The Maine Cooperative Snow Survey (MCSS, 2018) network 178 
includes h and SWE data collected by the Maine Geological Survey, the United States Geological Survey, and 179 
numerous private contributors and contractors. MCSS snow data are collected using the Standard Federal or 180 
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Adirondack snow sampling tubes typically on a weekly to bi-weekly schedule throughout the winter and spring, 181 
1951-present. The New York Snow Survey network data were obtained from the National Oceanic and Atmospheric 182 
Administration’s Northeast Regional Climate Center at Cornell University (NYSS, 2018). Similar to the MCSS, 183 
NYSS data are collected using Standard Federal or Adirondack snow sampling tubes on weekly to bi-weekly 184 
schedules, 1938-present. 185 
 186 
The Sleepers River, Vermont Research Watershed in Danville, Vermont (Shanley and Chalmers, 1999) is a USGS 187 
site that includes 15 stations with long-term weekly records of h and SWE collected using Adirondack snow tubes. 188 
Most of the periods of record are 1981-present, with a few stations going back to the 1960s. The sites include 189 
topographically flat openings in conifer stands, old fields with shrub and grass, a hayfield, a pasture, and openings in 190 
mixed softwood-hardwood forests. The Hubbard Brook Experiment Forest (Campbell et al., 2010) has collected 191 
weekly snow observations at the Station 2 rain gauge site, 1959-present. Measurement protocol collects ten samples 192 
2 m apart along a 20 m transect in a hardwood forest opening about ¼ hectare in size. At each sample location along 193 
the transect, h and SWE are measured using a Mt. Rose snow tube and the ten samples are averaged for each 194 
transect. Finally, the Thompson Farm Research site includes a mixed hardwood forest site and an open pasture site 195 
(Burakowski et al. 2013; Burakowski et al. 2015). Daily (from 2011-2018), at each site, a snow core is extracted 196 
with an aluminum tube and weighed (tube + snow) using a digital hanging scale. The net weight of the snow is 197 
combined with the depth and the tube diameter to determine 𝜌2, similar to a Federal or Adirondack sampler. 198 
 199 
2.1.1.4 Chugach Mountains (Alaska) Data 200 
In the spring of 2018, we conducted three weeks of fieldwork in the Chugach mountains in coastal Alaska, near the 201 
city of Valdez (Figure 2c-d). We measured h using an avalanche probe at 71 sites along elevational transects during 202 
March, April, and May. The elevational transects ranged between 250 and 1100 m (net change along transect) and 203 
were accessible by ski and snowshoe travel. At each site, we measured h in 8 locations within the surrounding 10 204 
m2, resulting in a total of 550+ snow depth measurements. These 71 sites were scattered across 8 regions in order to 205 
capture spatial gradients that exist in the Chugach mountains as the wetter, more-dense maritime snow near the coast 206 
gradually changes to drier, less dense snow on the interior side.  207 
 208 
2.1.1.5 Data Pre-Processing 209 
Figure 3 demonstrates that it is not uncommon for automated snow depth measurements to become noisy or non-210 
physical, at times reporting large depths when there is no SWE reported. This is different from instances when 211 
physically plausible, but very low densities might be reported; say in response to early season dry, light snowfalls. It 212 
was therefore desirable to apply some objective, uniform procedure to each station’s dataset in order to remove clear 213 
outlier points, while minimizing the removal of valid data points. We recognize that there is no accepted 214 
standardized method for cleaning bivariate SWE-h data sets. While Serreze et al. (1999) offer a procedure for 215 
SNOTEL data in their appendix, it is relevant only for precipitation and SWE values, not h. Given the strong 216 
correlation between h and SWE, we instead choose to use common outlier detection techniques for bivariate data. 217 
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 218 
The Mahalanobis distance (MD; Maesschalck et al., 2000) quantifies how far a point lies from the mean of a 219 
bivariate distribution. The distances are in terms of the number of standard deviations along the respective principal 220 
component axes of the distribution. For highly correlated bivariate data, the MD can be qualitatively thought of as a 221 
measure of how far a given point deviates from an ellipse enclosing the bulk of the data. One problem is that the MD 222 
is based on the statistical properties of the bivariate data (mean, covariance) and these properties can be adversely 223 
affected by outlier values. Therefore, it has been suggested (e.g., Leys et al., 2018) that a ‘robust’ MD (RMD) be 224 
calculated. The RMD is essentially the MD calculated based on statistical properties of the distribution unaffected 225 
by the outliers. This can be done using the Minimum Covariance Determinant (MCD) method as first introduced by 226 
Rousseeuw (1984).  227 
 228 
Once RMDs have been calculated for a bivariate data set, there is the question of how large an RMD must be in 229 
order for the data point to be considered an outlier. For bivariate normal data, the distribution of the square of the 230 
RMD is 𝜒4  (Gnanadesikan and Kettenring, 1972), with p (the dimension of the dataset) degrees of freedom. So, a 231 
rule for identifying outliers could be implemented by selecting as a threshold some arbitrary quantile (say 0.99) of 232 
𝜒54 . For the current study, a threshold quantile of 0.999 was determined to be an appropriate compromise in terms of 233 
removing obviously outlier points, yet retaining physically plausible results. 234 
 235 
A scatter plot of SWE vs. h for the source SNOTEL dataset from CONUS and AK reveals many non-physical 236 
points, mostly when a very large h is reported for a very low SWE (Figure 4a). Approximately 0.7% of the original 237 
data points were removed in the pre-processing described above, creating a more physically plausible scatter plot 238 
(Figure 4b). Note that the outlier detection process was applied to each station individually. The distribution of ‘day 239 
of year’ (DOY) values of removed data points was broad, with a mean of 160 and a standard deviation of 65. Note 240 
that the DOY origin is 1 October. The same procedure was applied to the BC and northeast USA data sets as well 241 
(not shown). Table 1 summarizes useful information about the numerous data sets described above and indicates the 242 
final number of data points retained for each. We acknowledge that our process inevitably removes some valid data 243 
points, but, as a small percentage of an already 0.7% removal rate, we judged this to be acceptable. 244 
 245 
Table 1: Summary of information about the datasets used in this study. Datasets in bold font were used to construct 246 
the regression model. The numbers of stations and data points reflect the post-processed data. 247 

Dataset Name Dataset Type Number 
of retained 
stations 

Number and 
percentage of 
retained data 
points 

Precision (h / SWE)  

NRCS SNOTEL 
 

Snow pillow (SWE), 
ultrasonic (h) 

791 
 

1,900,000 
(99.3%) 
 

(0.5 in / 0.1 in) 
 

NRCS SCAN Snow pillow (SWE), 
ultrasonic (h) 

5 7094 
(97.8%) 

(0.5 in / 0.1 in) 
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British Columbia 
Snow Survey 

Snow pillow (SWE), 
ultrasonic (h) 

31 61,000 
(97.5%) 

(1 cm / 1 mm) 

Maine Geological 
Survey 

Adirondack or Federal 
sampler (SWE and h) 

431 28,000 
(99.3%) 

(0.5 in / 0.5 in ) 

Hubbard Brook 
(Station 2), NH 

Mount Rose sampler (SWE 
and h) 

1 704 
(99.4%) 

(0.1 in / 0.1 in) 

Thompson Farm, NH Snow core (SWE and h) 2 988 
(99.4%) 

0.5 in / 0.5 in) 

Sleepers River, VT  Adirondack sampler 14 7214 
(99.4%) 

(0.5 in / 0.5 in) 

New York Snow 
Survey 

Adirondack or Federal 
sampler (SWE and h) 

523 44,614 
(98.2%) 

(0.5 in / 0.5 in) 

Chugach Mountains, 
AK 

Avalanche probe (h) 71 71 
(100%) 

(1 cm) 

 248 
2.1.2 Climatological Variables 249 
30-year climate normals at 800 m (nominal) resolution for CONUS and for the period 1981-2010 were obtained 250 
from the PRISM website (Daly et al., 1994). PRISM normals for British Columbia (BC), Canada, were obtained 251 
from the ClimateBC project (Wang et al., 2012), also for the 1981-2010 period. Finally, PRISM normals for Alaska 252 
(AK) were obtained from the Integrated Resource Management Applications (IRMA) Portal run by the National 253 
Park Service. The AK normals are for the 1971-2000 period and have a slightly coarser resolution (approximately 254 
1.5 km). Figure 5 shows gridded maps of mean annual precipitation (MAP) and mean February Temperature (𝑇"#) 255 
for these three climate products, plotted together. Other temperature products (max and min temperatures; other 256 
months) were obtained as well, but are not shown. 257 
 258 
2.2 Regression Model 259 
In order to demonstrate the varying degrees of influence of explanatory variables, several regression models were 260 
constructed. In each case, the model was built by randomly selecting 50% of the paired SWE-h measurements from 261 
the aggregated CONUS, AK, and BC snow pillow datasets. The model was then validated by applying it to the 262 
remaining 50% of the dataset and comparing the modeled SWE to the observed SWE for those points. Additional 263 
validation was done with the northeast USA datasets (SCAN snow pillow and various snow coring datasets) which 264 
were completely left out of the model building process. 265 
 266 
2.2.1 One-Equation Model 267 
The simplest equation, and one that is supported by the strong correlation seen in the portions of Figure 3 when 268 
SWE is present, is one that expresses SWE as a function of h. A linear model is attractive in terms of simplicity, but 269 
this limits the snowpack to a constant density. An alternative is to express SWE as a power law, i.e., 270 
 271 
(1) 𝑆𝑊𝐸 = 𝐴ℎ;<.   272 
 273 
This equation can be log-transformed into 274 
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 275 
(2) 𝑙𝑜𝑔AB(𝑆𝑊𝐸) = 𝑙𝑜𝑔AB(𝐴) + 𝑎A𝑙𝑜𝑔AB(ℎ) 276 
 277 
which immediately allows for simple linear regression methods to be applied. With both h and SWE expressed in 278 
units of mm, the obtained coefficients are (𝐴, 𝑎A) = (0.146, 1.102). Information on the performance of the model 279 
will be deferred until the results section. 280 
 281 
2.2.2 Two-Equation Model 282 
Recall from Figures 1 and 4 that there is a hysteresis loop in the SWE-h relationship. During the accumulation 283 
phase, snow densities are relatively low. During the ablation phase, the densities are relatively high. So, the same 284 
snowpack depth is associated with two different SWEs, depending upon the time of year. The regression equation 285 
given above does not resolve this difference. This can be addressed by developing two separate regression 286 
equations, one for the accumulation (acc) and one for the ablation (abl) phase. This approach takes the form 287 
 288 
(3) 𝑆𝑊𝐸;KK = 𝐴ℎ;<; 					𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 289 
 290 
(4) 𝑆𝑊𝐸;2S = 𝐵ℎ2<; 					𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 291 
 292 
where DOY is the number of days from the start of the water-year (October 1 is the origin), and DOY* is the critical 293 
or dividing day-of-water-year separating the two phases. Put another way, DOY* is the day of peak SWE. 294 
Interannual variability results in a range of DOY* for a given site. Additionally, some sites, particularly the SCAN 295 
sites in the northeast USA, demonstrate multi-peak SWE profiles in some years. To reduce model complexity, 296 
however, we investigated the use of a simple climatological (long term average) value of DOY*. For each snow 297 
pillow station, the average DOY* was computed over the period of record of that station. Analysis of all of the 298 
stations revealed that this average DOY* was relatively well correlated with the climatological mean April maximum 299 
temperature (the average of the daily maximums recorded in April; R2 = 0.7). However, subsequent regression 300 
analysis demonstrated that the SWE estimates were relatively insensitive to DOY* and the best results were actually 301 
obtained when DOY* was uniformly set to 180 for all stations. Again, with both SWE and h in units of mm, the 302 
regression coefficients turn out to be (𝐴, 𝑎A) = (0.150, 1.082) and (𝐵, 𝑏A) = (0.239, 1.069). 303 
 304 
As these two equations are discontinuous at DOY*, they are blended smoothly together to produce the final two-305 
equation model 306 
 307 
(5) 𝑆𝑊𝐸 = 𝑆𝑊𝐸;KK

A
4
(1 − 𝑡𝑎𝑛ℎ[0.01{𝐷𝑂𝑌 − 𝐷𝑂𝑌∗}]) + 308 

𝑆𝑊𝐸;2S
1
2
(1 + 𝑡𝑎𝑛ℎ[0.01{𝐷𝑂𝑌 −𝐷𝑂𝑌∗}]) 309 

 310 
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The coefficient 0.01 in the tanh function controls the width of the blending window and was selected to minimize 311 
the root mean square error of the model estimates. 312 
 313 
2.2.3 Two-Equation Model with Climate Parameters 314 
A final model was constructed by incorporating climatological variables. Again, the emphasis is this study is on 315 
methods that can be implemented at locations lacking the time series of weather variables that might be available at 316 
a weather or SNOTEL station. Climatological normals are unable to account for interannual variability, but they do 317 
preserve the high spatial gradients in climate that can lead to spatial gradients in snowpack characteristics. Stepwise 318 
linear regression was used to determine which variables to include in the regression. The initial list of potential 319 
variables included was 320 
 321 
(6) 𝑆𝑊𝐸 = 𝑓cℎ, 𝑧,𝑀𝐴𝑃, 𝑇"g$h', 𝑇"g$%&', 𝑇"g$&i , 𝑇"#$h' , 𝑇"#$%&' , 𝑇"#$&i , 𝑇"j$h', 𝑇"j$%&', 𝑇"j$&i, 𝑇"k$h', 𝑇"k$%&', 𝑇"k$&i	l 322 
 323 
where z is the elevation (m), MAP is the mean annual precipitation (mm) and the temperatures (°𝐶) represent the 324 
mean of minimum, mean, and maximum daily values for the months January through April (J, F, M, A). For 325 
example, 𝑇"g$h' is the climatological normal of the average of the daily minimum temperatures observed in January. 326 
In the stepwise regression, explanatory variables were accepted if they improved the adjusted R2 value by 0.001. 327 
The result of the regression yielded 328 
 329 
(7) 𝑆𝑊𝐸;KK = 𝐴ℎ;<𝑀𝐴𝑃;oc𝑇"#$%&' + 30l

;p; 					𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 330 
 331 

(8) 𝑆𝑊𝐸;2S = 𝐵ℎ2<𝑀𝐴𝑃2oc𝑇"#$%&' + 30l
2p; 					𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 332 

 333 
or, in log-transformed format, 334 
 335 
(9) 𝑙𝑜𝑔AB(𝑆𝑊𝐸;KK) = 𝑙𝑜𝑔AB(𝐴) + 𝑎A𝑙𝑜𝑔AB(ℎ) + 336 

𝑎4𝑙𝑜𝑔AB(𝑀𝐴𝑃) + 𝑎q𝑙𝑜𝑔ABc𝑇"#$%&' + 30l; 							𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 337 
 338 
(10) 𝑙𝑜𝑔AB(𝑆𝑊𝐸;2S) = 𝑙𝑜𝑔AB(𝐵)+ 𝑏A𝑙𝑜𝑔AB(ℎ) + 339 

𝑏4𝑙𝑜𝑔AB(𝑀𝐴𝑃) + 𝑏q𝑙𝑜𝑔ABc𝑇"#$%&' + 30l; 							𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 340 
 341 
indicating that only snow depth, mean annual precipitation and mean February temperature were relevant. Manual 342 
tests of model construction with other variables included confirmed that Eqns. (7-8) yielded the best results. In the 343 
above equations, note that an offset is added to the temperature in order to avoid taking the log of a negative 344 
number. These two SWE estimates for the individual (acc and abl) phases of the snowpack are then blended with 345 
Eqn. (5) to produce a single equation for SWE spanning the entire water year. The obtained regression coefficients 346 
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were (𝐴, 𝑎A, 𝑎4, 𝑎q) = (0.0128, 1.070, 0.132, 0.506) and (𝐵, 𝑏A, 𝑏4, 𝑏q) = (0.0271, 1.038, 0.201, 0.310). The 347 
physical interpretation of these coefficients is straightforward. If 𝑎A and 𝑏A were equal to unity, then the density, 348 
given by (SWE/h), would be a constant at a given location. Since they are greater than unity, they capture the effect 349 
that snow density increases as depth increases. Turning to the coefficients on the climate variables, both 𝑎4 and 𝑏4 350 
are greater than zero. So, for two locations with equal depth, equal temperature characteristics, but different 351 
precipitation characteristics, the regression model predicts that the wetter location (larger MAP) will have a greater 352 
density. Finally, regarding temperature, both 𝑎q and 𝑏q are greater than zero. Therefore, for two locations with equal 353 
depth, equal precipitation characteristics, but different temperature characteristics, the regression model predicts that 354 
the warmer location (larger  𝑇"#$%&') will have a greater density. These trends are similar in concept to Sturm et al. 355 
(2010), whose snow classes (based on climate classes) indicate which snow will densify more rapidly.  356 

3 Results 357 
A comparison of the three regression models (one-equation model, Eq. (2); two-equation model, Eqs. (3-5); multi-358 
variable two-equation model, Eqs. (5, 7-8)) is provided in Figure 6. The left column shows scatter plots of modeled 359 
SWE to observed SWE for the validation data set with the 1:1 line shown in black. The right column shows 360 
histograms of the model residuals. The vertical lines in the right column show the mean error, or model bias. 361 
Visually, it is clear that the one-equation model performs relatively poorly with a large negative bias. This large 362 
negative bias is partially overcome by the two-equation model (middle row, Figure 6). The cloud of points is closer 363 
to the 1:1 line and the vertical black line indicating the mean error is closer to zero. In the final row of Figure 6, we 364 
see that the multi-variable two-equation model yields the best result by far. The residuals are now evenly distributed 365 
with a negligible bias. Several metrics of performance for the three models, including R2 (Pearson coefficient), bias, 366 
and root-mean-square-error (RMSE), are provided in Table 2. Figure 7 shows the distribution of model residuals for 367 
the multi-variable two-equation model as a function of DOY. 368 
 369 
Table 2: Summary of performance metrics for the three regression models presented in Section 2.2. 370 

Model R2 Bias (mm) RMSE (mm) 
One-equation 0.946 -19.5 102 
Two-equation 0.962 -5.1 81 
Multi-variable two-equation 0.972 -0.5 67 

 371 
It is useful to also consider the model errors in a non-dimensional way. Therefore, an RMSE was computed at each 372 
station location and normalized by the mean annual maximum SWE (𝑆𝑊𝐸s;t) at that location. Figure 8 shows the 373 
probability density function of these normalized errors. The average RMSE is approximately 11% of 𝑆𝑊𝐸s;t, with 374 
most falling into the range of 5-25%. The spatial distribution of these normalized errors is shown in Figure 9. For 375 
the SNOTEL stations, it appears there is a slight regional trend, in terms of stations in continental climates (northern 376 
Rockies) having smaller relative errors than stations in maritime climates (Cascades). The British Columbia stations 377 
also show higher relative errors. 378 
 379 
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3.1 Results for Snow Classes 380 
A key objective of this study is to regress climatological information in a continuous rather than a discrete way. The 381 
work by Sturm et al. (2010) therefore provides a valuable point of comparison. In that study, the authors developed 382 
the following equation for density 𝜌2 383 
 384 
(11) 𝜌2 = (𝜌s;t − 𝜌B)u1 − 𝑒(wx<ywxoz{|)} + 𝜌B  385 
 386 
where r0 is the initial density, rmax is the maximum or ‘final’ density (end of water year), k1 and k2 are coefficients, 387 
and DOY in this case begins on January 1. This means that their DOY for October 1 is -92. The coefficients vary 388 
with snow class and the values determined by Sturm et al. (2010) are shown in Table 3. 389 
 390 
Table 3: Model parameters by snow class for Sturm et al. (2010). 391 

Snow Class rmax r0 k1 k2 

Alpine 0.5975 0.2237 0.0012 0.0038 
Maritime 0.5979 0.2578 0.0010 0.0038 
Prairie 0.5941 0.2332 0.0016 0.0031 
Tundra 0.3630 0.2425 0.0029 0.0049 
Taiga 0.2170 0.2170 0.0000 0.0000 

 392 
To make a comparison, the snow class for each SNOTEL and British Columbia snow survey (Rows 1 and 3 of Table 393 
1) site was determined using a 1-km snow class grid (Sturm et al., 2010). The aggregated dataset from these stations 394 
was made up of 27% Alpine, 14% Maritime, 10% Prairie, 11% Tundra, and 38% Taiga data points. Equation (11) 395 
was then used to estimate snow density (and then SWE) for every point in the validation dataset described in Section 396 
2.2. Figure 10 compares the SWE estimates from the Sturm model and from the present multi-variable, two-equation 397 
model (Equations 5, 7-8). The upper left panel of Figure 10 shows all of the data, and the remaining panels show the 398 
results for each snow class. In all cases, the current model provides better estimates. Plots of the residuals by snow 399 
class are provided in Figure 11, giving an indication of the bias of each model for each snow class. Summaries of the 400 
model performance, broken out by snow class, are given in Table 4.  401 
 402 
Table 4: Comparison of model performance by Sturm et al. (2010) and the present study. 403 

Model Sturm et al. (2010) Multi-variable two-equation model 
Snow Class R2 Bias (mm) RMSE (mm) R2 Bias (mm) RMSE (mm) 
All Data 0.928 -29.2 111 0.972 -0.5 67 
Alpine 0.973 10.1 55 0.971 -0.3 55 
Maritime 0.968 -16.8 109 0.970 -4.5 105 
Prairie 0.967 18.7 56 0.965 -0.2 51 
Tundra 0.956 -10.5 82 0.969 -6.1 67 
Taiga 0.943 -80.0 151 0.971 2.4 62 

 404 
3.2 Comparison to Pistocchi (2016) 405 
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In order to provide one additional comparison, the simple model of Pistocchi (2016) was also applied to the 406 
validation dataset. His model calculates the bulk density as 407 
 408 
(12) 𝜌2 = 𝜌B + 𝐾(𝐷𝑂𝑌 + 61), 409 
 410 
where 𝜌B has a value of 200 kg m-3 and K has a value of 1 kg m-3. The DOY for this model has its origin at 411 
November 1. Application of this model to the validation dataset yields a bias of 55 mm and an RMSE of 94 mm. 412 
These results are comparable to the Sturm et al. (2010) model, with a larger bias but smaller RMSE. 413 
 414 
3.3 Results for Northeast USA 415 
The regression equations in this study were developed using a large collection of SNOTEL sites in CONUS, AK, 416 
and BC. The snow pillow sites are limited to locations west of approximately W 105° (Figure 2a). By design, the 417 
data sets from the northeastern USA (Section 2.1.1.3) were left as an entirely independent validation set. These 418 
northeastern sites are geographically distant from the training data sets, are subject to a very different climate, and 419 
are generally at much lower elevations than the western sites, providing an interesting opportunity to test how robust 420 
the present model is. 421 
 422 
Figure 12 graphically summarizes the datasets and the performance of the multi-variable two-equation model of the 423 
current study. The RMSE values are comparable to those found for the western stations, but, given the 424 
comparatively thinner snowpacks in the northeast, represent a larger relative error (Table 5). The bias of the model 425 
is consistently positive, in contrast to the western stations where the bias was negligible.  426 
 427 
Table 5: Performance metrics for the multi-variable two-equation model applied to various northeastern USA 428 
datasets. 429 

Dataset Name R2 Bias (mm) RMSE (mm) 
Maine Geological Survey, ME 0.91 8.9 33.3 
Hubbard Brook (Station 2), NH 0.63 18.9 64.2 
Thompson Farm, NH 0.85 7.1 21.6 
NRCS SCAN 0.87 -1.8 38.7 
Sleepers River, VT 0.93 14.0 29.7 
New York Snow Survey 0.93 13.8 31.2 

 430 

4 Discussion 431 
The results presented in this study show that the regression equation described by equations (5, 7-8) is an 432 
improvement (lower bias and RMSE) over other widely used bulk density equations. The key advantage is that the 433 
present method regresses in relevant physical parameters directly, rather than using discrete bins (for snow class, 434 
elevation, month of year, etc.), each with its own set of model coefficients. The comparison (Figs. 10-11; Table 4) to 435 
the model of Sturm et al. (2010) reveals a peculiar behavior of that model for the Taiga snow class, with a large 436 
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negative bias in the Sturm estimates. Inspection of the coefficients provided for that class (Table 3) shows that the 437 
model simply predicts that 𝜌2 = 𝜌s;t = 0.217 for all conditions. 438 
 439 
When our multi-variable two-equation model, developed solely from western North American data, is applied to 440 
northeast USA locations, it produces SWE estimates with smaller RSME values and larger biases than the western 441 
stations. When comparing the SWE-h curves of the SNOTEL data (Figure 4b) to those of the east coast data sets 442 
(left column; Figure 12), it is clear that the northeast data generally have more scatter. This is confirmed by 443 
computing the correlation coefficients between SWE and h for each dataset. It is unclear if this disparity in 444 
correlation is related to measurement methodology or is instead a ‘signal to noise’ issue. Comparing Figures 4 and 445 
12 shows the considerable difference in snowpack depth between the western and northeastern data sets. When the 446 
western dataset is filtered to include only measurement pairs where ℎ < 1.5 m, the correlation coefficient is reduced 447 
to a value consistent with the northeast datasets. This suggests that the performance of the current (or other) 448 
regression model is not as good at shallow snowpack depths. This is also suggested upon examination of the time 449 
series of observed 𝜌2 = 𝑆𝑊𝐸/ℎ for a given season at a snow pillow site. Very early in the season, when the depths 450 
are small, the density curve has a lot of variability. Later in the season, when depths are greater, the density curve 451 
becomes much smoother. Very late in the season, when depths are low again, the density curve becomes highly 452 
variable again. 453 
 454 
Measurement precision and accuracy affect the construction and use of a regression model. Upon inspection of the 455 
snow pillow data, it was observed that the precision of the depth measurements was approximately 25 mm and that 456 
of the SWE measurements was approximately 2.5 mm. To test the sensitivity of the model coefficients to the 457 
measurement precision, the depth values in the training dataset were randomly perturbed by +/- 25 mm and the SWE 458 
values were randomly perturbed by +/- 2.5 mm and the regression coefficients were recomputed. This process was 459 
repeated numerous times and the mean values of the perturbed coefficients were obtained. These adjusted 460 
coefficients were then used to recompute the SWE values for the validation data set and the bias and RMSE were 461 
found to be -10.5 mm and 72.7 mm. This represents a roughly 10% increase in RMSE, but a considerable increase in 462 
bias magnitude (see Table 4 for the original values). This sensitivity of the regression analysis to measurement 463 
precision underscores the need to have high-precision measurements for the training data set. Regarding accuracy, 464 
random and systematic errors in the paired SWE - h data used to construct the regression model will lead to 465 
uncertainties in SWE values predicted by the model. As noted in the introduction, snow pillow errors in SWE 466 
estimates do not follow a simple pattern. Additionally, they are complicated by the fact that the errors are often 467 
computed by comparing snow pillow data to coring data, which itself is subject to error. Lacking quantitative 468 
information on the distribution of snow pillow errors, we are unable to quantify the uncertainty in the SWE 469 
estimates. 470 
 471 
Another important consideration has to do with the uncertainty of depth measurements that the model is applied to. 472 
For context, one application of this study is to crowd-sourced, opportunistic snow depth measurements from 473 
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programs like the Community Snow Observations (CSO; Hill et al., 2018) project. In the CSO program, 474 
backcountry recreational users submit depth measurements, typically taken with an avalanche probe, using a 475 
smartphone in the field. The measurements are then converted to SWE estimates which are assimilated into 476 
snowpack models. These depth measurements are ‘any time, any place’ in contrast to repeated measurements from 477 
the same location, like snow pillows or snow courses. Most avalanche probes have cm-scale graduated markings, so 478 
measurement precision is not a major issue. A larger problem is the considerable variability in snowpack depth that 479 
can exist over short (meter scale) distances. The variability of the Chugach avalanche probe measurements was 480 
assessed by taking the standard deviation of 8 h measurements per site. The average of this standard deviation over 481 
the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the 482 
sites was 15%. This variability is a function of the surface roughness of the underlying terrain, and also a function of 483 
wind redistribution of snow. Propagating this uncertainty through the regression equations yields a slightly higher 484 
(16%) uncertainty in the SWE estimates. CSO participants can do three things to ensure that their recorded depth 485 
measurements are as representative as possible. First, avoid measurements in areas of significant wind scour or 486 
deposition. Second, avoid measurements in terrain likely to have significant surface roughness (rocks, fallen logs, 487 
etc.). Third, take several measurements and average them. 488 
 489 
Expansion of CSO measurements in areas lacking SWE measurements can increase our understanding of the 490 
extreme spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in 491 
these regions. It could also prove useful for estimating watershed-scale SWE in regions like the northeastern USA, 492 
which is currently limited to five automated SCAN sites with historical SWE measurements for only the past two 493 
decades. Additionally, historical snow depth measurements are more widely available in the Global Historical 494 
Climatology Network (GHCN-Daily; Menne et al. 2012), with several records extending back to the late 1800s. 495 
While many of the GHCN stations are confined to lower elevations with shallower snow depths, the broader 496 
network of quality-controlled snow depth data paired with daily GHCN temperature and precipitation measurements 497 
could potentially be used to reconstruct SWE in the eastern US given additional model development and refinement. 498 

5 Conclusions 499 
We have developed a new, easy to use method for converting snow depth measurements to snow water equivalent 500 
estimates. The key difference between our approach and previous approaches is that we directly regress in 501 
climatological variables in a continuous fashion, rather than a discrete one. Given the abundance of freely available 502 
climatological norms, a depth measurement tagged with coordinates (latitude and longitude) and a time stamp is 503 
easily and immediately converted into SWE.  504 
 505 
We developed this model with data from paired SWE-h measurements from the western United States and British 506 
Columbia. The model was tested against entirely independent data (primarily snow course; some snow pillow) from 507 
the northeastern United States and was found to perform well, albeit with larger biases and root-mean-squared-508 
errors. The model was tested against other well-known regression equations and was found to perform better. 509 
 510 
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This model is not a replacement for more sophisticated snow models that evolve the snowpack based on high 511 
frequency (e.g., daily or sub-daily) weather data inputs. The intended purpose of this model is to constrain SWE 512 
estimates in circumstances where snow depth is known, but weather variables are not, a common issue in sparsely 513 
instrumented areas in North America. 514 
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7 Data Access 519 
Numerous online datasets were used for this project and were obtained from the following locations: 520 

1. NRCS Snow Telemetry: https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html 521 
2. NRCS Soil Climate Analysis Network: https://www.wcc.nrcs.usda.gov/scan/ 522 
3. British Columbia Automated Snow Weather Stations: 523 

https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-524 
tools/snow-survey-data/automated-snow-weather-station-data  525 

4. Maine Cooperative Snow Survey: https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data 526 
5. New York Snow Survey: http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html 527 
6. Sleepers River Research Watershed. Snow data not available online; request data from contact at: 528 

https://nh.water.usgs.gov/project/sleepers/index.htm 529 
7. Hubbard Brook Experimental Forest: https://hubbardbrook.org/d/hubbard-brook-data-catalog 530 
8. CONUS PRISM Data: http://www.prism.oregonstate.edu/ 531 
9. British Columbia PRISM Data: http://climatebcdata.climatewna.com/ 532 
10. Alaska PRISM Data: https://irma.nps.gov/Portal/ 533 

 534 
A Matlab function for calculating SWE based on the results is this paper has been made publicly available at Github 535 
(https://github.com/communitysnowobs/snowdensity).  536 
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Figure 1: Conceptual sketch of the evolution of snow water equivalent (SWE) over the course of a water year (black 719 
line). Also shown is the evolution of SWE with snowpack depth over a water year (red line). Note the hysteresis 720 
loop due to the densification of the snowpack. 721 
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Figure 2: Distribution of measurement locations used in this study.  (a) Western USA and Canada station locations, 723 
with colors indicating station elevation in meters. (b) Northeast USA locations, with stations colored according to 724 
data source. (c, d) Measurement sites in the Chugach Mountains, southcentral Alaska. 725 
 726 

 727 

728 
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Figure 3:  Sample time series of SWE and h from the Rex River (WA) SNOTEL station. Observations of h at times 730 
when SWE is zero are likely spurious. 731 
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Figure 4: Scatter plot of SWE vs. h for the complete SNOTEL dataset before (a) and after (b) removing data points. 733 
Symbols are colored by ‘day of water year’ (DOY; October 1 is the origin). 734 
 735 
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Figure 5: Gridded maps of mean annual precipitation (MAP) and mean February temperature c𝑇"#$%&'l for the study 737 
regions. Climate normals are from the PRISM data set (1981-2010 for CONUS and British Columbia; 1971-2000 738 
for Alaska). 739 
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Figure 6: Two-dimensional histograms (heat maps; left column) of modeled vs. observed SWE and probability 743 
density functions (right column) of the residuals for three simple models applied to the CONUS, AK, and BC snow 744 
pillow data. Warmer colors in the heat maps indicate greater density. The vertical lines in the right column indicate 745 
the location of the mean residual, or bias. Top row (a-b): One-equation model (Section 2.2.1). Middle row (c-d): 746 
Two-equation model (Section 2.2.2). Bottom row (e-f): Multi-variable two-equation model (Section 2.2.3).  747 
 748 
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Figure 7: Heat map of SWE residuals as a function of DOY. 750 
 751 
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Figure 8: Probability density function of snow pillow station root-mean-square error (RMSE) normalized by station 753 
mean annual maximum SWE. 754 
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Figure 9: Spatial distribution of snow pillow station root-mean-square error (RMSE) normalized by station mean 756 
annual maximum SWE. 757 
 758 
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Figure 10: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al. 760 
(2010). The subpanels show modeled SWE vs. observed SWE for all of the data binned together, as well as for the 761 
data broken out by the snow classes identified by Sturm et al. (1995). The gray symbols show the Sturm result and 762 
the transparent heat maps (warmer colors indicate greater density) show the current result. The models are being 763 
applied to the validation data set (50% of the aggregated snow pillow data for CONUS, AK, and BC). 764 
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Figure 11: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al. 766 
(2010). The subpanels show probability density functions of the residuals of the model fits for all of the data binned 767 
together, as well as for the data broken out by the snow classes identified by Sturm et al. (1995). The gray lines 768 
show the Sturm result and the colored lines show the current result. The vertical lines show the mean error, or the 769 
model bias, for both the Sturm and the current result. The models are being applied to the validation data set (50% of 770 
the aggregated snow pillow data for CONUS, AK, and BC). 771 

 772 



 33 

Figure 12: Results from application of the multi-variable, two-equation model to numerous east coast datasets. The 773 
left column shows the SWE-h data for each dataset. Note that the black symbols are points removed by the outlier 774 
detection procedure discussed in section 2.1.1.4. The remaining symbols are colored by DOY. The middle panel 775 
plots heat maps of the model estimates of SWE against the observations of SWE with the 1:1 line included. Warmer 776 
colors indicate higher densities. The right panel shows probability density functions of the model residuals, with the 777 
vertical line indicating the mean error, or bias. Individual rows correspond to individual data sets and are labeled. 778 
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