Dear Editor.

Thank you for your handling of our manuscript (tc-2018-286) by Hill et al. We are appreciative of the three very careful and helpful reviews. In the following pages, you will find our responses to the three reviews. We also have provided a revised manuscript. We look forward to hearing from you in the near future.

Kind Regards, David Hill Oregon State University

Reply to Matthew Sturm, Referee

Review of Converting Snow Depth to Snow Water 1 Equivalent Using Climatological Variables

February 18, 2019

Referee comments are left-justified, in black. Author replies are indented, in blue.

In this paper, the authors address the problem of converting more readily obtained snow depth measurements to snow water equivalent values. The problem is highly topical as airborne lidar and airborne and satellite-based photogrammetric snow depths become more readily available for widespread use. The authors primarily build on the method described by Sturm, Taras, Liston, Derksen, Jonas and Lea (2010), with the main difference in their method being the replacement of *climate classes of snow* by continuous climate variables (*mean annual precipitation and February mean temperature*) obtained from the PRISM data set. Though not explicitly stated, the authors also establish their regressions using a larger data set than the Sturm et al. study and most other studies of which I am aware. They reach the conclusion that their regressions show an improvement over the 2010 work.

As the lead author of that prior depth-to-SWE study, I find this a fine piece of work, clearly and honestly written, and useful to many practitioners. It should be published. That said, I am not sure that I fully agree with the conclusion of the authors as to the extent of the improvement, whether their improved method is more easily applied than the old, and I find the omission of any discussion of the well-known errors in the data set used to develop the regression equations troubling. I would like to see the authors grapple with this last issue explicitly in the paper before a version of the paper is published.

Thank you for this general overall assessment. Below, we provide point-by-point responses to your comments and we indicate where and how we plan to revise the manuscript prior to publication.

Examining the input data for this study (Table 1), 98.5% is essential SNOTEL snow pillow data; 1.5% comes from coring. Both types of data are known to contain biases. My personal experience for the latter (coring) is that it tends to undersample SWE (or produce low-biased density values), and across prior studies, there is agreement the method is no more accurate than about ±10%.

We would like to point out that all of the data used to construct the regression model are snow pillow data. Table 1 summarizes the data used to build the model, and also the other independent data sets used to validate the model. We have clarified in the manuscript (beginning of section 2.2) and table (using bold font in the table) which data are used for what purposes.

It has been some time since I worked through the literature on snow pillow data, but I recall significant biases from these instruments as well. One source of error is due to snow bridging with, particularly, low biases during the melt when percolating meltwater can run off the pillow to the surrounding snowpack due to the shape of the pillows. Sonic sounders also can exhibit some measurement errors (in this case the ones near the SNOTEL site paired to the pillow SWE values, chiefly in not being representative of the snow depth on the pillow.

This is an important point. There are some studies¹ that show that SNOTEL sites can report SWE > accumulated precipitation, attributed to drifting snow. However, this would not bias snow density assuming that the SWE and Hs measurements are colocated. There are other studies² that have looked at the measurement bias in SWE depending on whether or not the snow pillow is steel vs. hypalon. One comprehensive study³ of biases notes a complex situation, where SWE is sometimes under-reported due to 'snow bridging', but over-reported at other times (see Table 1 of that paper). While that paper proposes methods for correcting SWE measurements, it is complex in practice, requiring continuous SWE, Hs, and near-ground temperature measurements. Please continue to our next remark below.

Given these potential sources of error, and the fact that the authors are attempting to develop general depth-SWE regressions, they should examine how these errors might cause their results to deviate from the "true" local conversion functions. For example, hypothetically, in a maritime regime, perhaps the natural snow packs retains frequent rain-on-snow water, but at the actual measurement sites it runs off from the pillows. Then there would be a consistent tendency in this February-warm location with high MAP (mean annual precipitation) to have light (or low) SWE vs. depth values. At least describing in what ways the modeled SWE values might diverge from the on-the-ground values would alert readers to limitations in the methodology.

This is a sensible suggestion. In the first draft of the paper, we did investigate the effect of measurement precision. In our revision, we now provide more discussion about potential errors in snow pillow measurements (to help alert readers, as you suggest). One complicating issue is that many studies that report on 'errors' in SWE from snow pillows define this error as the difference between the snow pillow and a coring measurement. The implicit assumption is that the coring measurement is the 'ground truth' but as you note, coring is good to +/- 10%. Given the lack of any consensus information on the distributions of errors in snow pillow measurements (we provide some citations to show the divergence of studies out there), we are unable to provide any good quantitative information on the effects of the pillow errors on the SWE estimates.

¹ https://journals.ametsoc.org/doi/pdf/10.1175/JHM-D-12-066.1

² https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_032059.pdf

³ https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.5795

As far as whether this study is an improvement over our 2010 study, it really comes down to which ancillary data set one wants to work with: a gridded data set of snow classes or of PRISM climate data. Each has advantages and disadvantages in terms of computational cost and hassle. Looking at Table 4 which compares our prior work to the new work, most of the statistical improvement comes from the taiga snow class, which, as the authors note (Line 415), is because in 2010 we assigned a fixed value to this class (e.g., a fixed value performed better than regressed values). This snow class was only 6% of our training set, and I suspect the sample we chose tended to be quite "stiff" because of the high percentage of depth hoar found in taiga snow, thus it did not tend to densify due to overburden stress (probably something of an Arctic bias we showed). The authors taiga sample set is deeper with greater SWE.

With regards to relative model performance. In our first draft, we tried to be as objective and factual as possible, in the sense of simply providing the comparative results (both figures and RMSE values). We feel that this is fair and appropriate. We also felt it appropriate to break out results by snow class so that readers could see how the comparison varied based on that. We have added information about how many data points in the aggregated CONUS, BC, and AK dataset are in each snow class (in section 3.1).

Regarding computational cost and hassle. The Sturm approach uses a straightforward equation and only requires access to the 1km snow-cover raster. Our approach uses more 'data' in the sense that numerous PRISM grids are required. However, we have packaged all necessary files into a freely available (will be released on GitHub upon acceptance of this paper) function that is very easy to use. By doing so, we alleviate any cost and hassle concerns.

One last substantive comment: The authors have an entire section on outlier detection and removal, but I would argue they have potentially removed real data. I applaud them for recognizing the hysteresis loop that is produced by depth-SWE seasonal evolution (Fig. 1) and their clever way of handling it in their regressions (Equation 5). We had actually during our work looked at using a rotated lemniscate to model this behavior, but dropped it because we could not make it work right. But if one recognizes that physically the bulk density increases during the melt during the Spring, then one also has to recognize that very early in the winter, deep fluffy snow will be found on some snow pillows....snow with bulk density values of that are less than 150 kg/m³. Figure 4 (clean version) has a lower depth-SWE line that at 2000 mm is about 350 mmm SWE, a density of 175 kg/m3, and a density of 180 kg/m3 at 3000 mm depth. I belief actual depth-SWE data on the low end has been removed, not erroneous data. Now one might argue we may in general seem to introduce a low bias when we do these sort of regressions, but that is not reason to label what may be accurate physical data as outliers. As further confirmation, the color of the removed data in Figure 4 is mostly blue (early season) and this removal would impact thin climate classes (e.g. taiga) more than thick classes.

This is a great point, and one which the authors have discussed at some length, following your review. Manual examination of many of the SNOTEL time series revealed

the presence of clearly wrong data (Figure 3 of the paper). We wanted to develop a wholly objective method for removing those data points. There is a lack of clarity and/or consensus in the literature about how to do this. The approach that we used seems like a good one, based upon the characteristics of the bivariate distribution. We recognize that some valid data points (mostly at low SWE-Hs values) are undoubtedly removed as well. Given the very low number (less than 1%; so the valid points removed are some small fraction of this 1%) of points that were removed in our process, we feel that this is acceptable.

This figure of the output of the data removal process illustrates things. SWE on vertical axis, h on horizontal. Removed points are in red

We acknowledge that referring to this process as 'outlier' detection is perhaps too strong and we have modified the language accordingly, notably re-titling Subsection 2.1.1.5. We also note that Anonymous Referee #3 had a similar comment and wanted to see a histogram of the DOY of the removed data points. We have gone back and looked at the distribution of DOY for all removed points. It turns out that the mean value of DOY was 160 and the standard deviation was 65. So, the bulk of the removed points comes from the middle of the snow season, not at the beginning or the end. This seems to alleviate a bit of the concern that you raise above.

One final comment, and this would be not only to the authors of this paper, but virtually every author out there. Please try to cite the seminal or original papers on a topic if possible...not the newest or easiest to cite. The authors here do well in citing Alford and Church, but when it comes to recognizing how snow depth and SWE are related in time and space, the seminal work of G. A. McKay should not be overlooked.

McKay, G. A., and B. F. Findlay, 1971: Variation of snow resources with climate and vegetation in Canada. Proc. 39th Western Snow Conf., Billings, MT, Western Snow Conference, 17–26.

McKay, G. A and D. M. Gray, 1981: The distribution of snowcover. Handbook of Snow, 1st ed. D. M. Gray and E. D. H. Male, Eds., Pergamon Press, 153–190.

We have added the former citation.

Detailed Comments:

Line 36: Surely someone before 2018 recognized that snow was important to hydrology...like Gerdel (see U.S. Army Corps of Engineers [1956] monograph on snow hydrology.

This citation has been added.

Lines 41-50: This paragraph is a little jumbled and doesn't address some of the well-known errors present in snow pillow measurements (see major comments), yet in the next paragraph, errors in SWE core values, which may actually be smaller in some cases, are identified. Perhaps here is where errors in the input data could be discussed in greater detail.

Yes, we have reworked the introduction a fair bit to bring in some information upfront about errors in coring and in snow pillows.

Lines 60-66: This little sections seems uneven, and given the huge literature on trying to extract SWE from remote sensing, particularly radar, very one-dimensional. Why even talk about snow remote sensing in the paper? I would simply say if falls outside of the scope of the work....and if there really is a reliable operational way to get SWE now from space, I don't know it.

We were trying to be comprehensive in laying out all of the options (in-situ vs. remote) for acquiring snow information. Your suggestion (huge literature that we don't do justice to) is on point and we have removed this section from the paper.

Line 74: Again, Goodison did the seminal work on the sonic sounders. Perhaps you could cite him.

This is a sensible suggestion and we will do so.

Line 96: I think this citation should be: Jonas, Tobias, Christoph Marty, and Jan Magnusson. "Estimating the snow water equivalent from snow depth measurements in the Swiss Alps." Journal of Hydrology 378, no. 1-2 (2009): 161-167.

Correct. We had it right in the references, but incorrect in the in-line citation.

Lines 117-118: I do not agree that *a priori* complexity produces more accuracy. What is really going on here is that proximity to high quality input data tends to produce better accuracy. But that may be true whether the model used with the data is complex or simple. Basically, in a very heterogeneous snow world, when we have local driving data, the results regardless of the model, get better. One might even be able to argue, given the difficulties of measuring radiation in snowy locations, that energy balance models can introduce errors. I don't think you need to work so hard on making a case for the type of statistical approach developed in this paper. Ease of use, and generally the lack of driving data most places, make the case for you.

This is a fair point and we revised our wording.

Line 282: I like this section on DOY, even though in the end you fix the value to 180. Just the fact that the regressions are insensitive to the DOY of peak SWE is interesting.

Agreed, thank you for noting this. It was an unexpected result.

Lines 336-337: I wish the authors would expand this section. It is the heart of why the regressions work, and it is how this study and our 2010 study are related. Climate classes tell us which snow is warm and deep and tends to densify rapidly; high MAP and high February temperatures tell us the same thing, perhaps as the authors claim, even better (or maybe it is just that the training set being larger is better?) This said, the authors I think are aware that there are several snow packs in which due to development of depth hoar and wind slab, there is very limited increase in density over time. Icy snow too can resist densificiation.

We have expanded this section somewhat. We fully recognize that all bulk-density methods that rely on simple inputs like DOY or climatological weather characteristics are unable to capture numerous features of snowpacks. That is a limitation of the emphasis on simplicity.

Line 342: Figure 6 is nice and clear.

Thank you. We have slightly modified this to show the data clouds as heat maps (2d histograms, essentially) at the suggestion of another reviewer.

Line 357: The model errors will have NO impact on the local snow regime...I think you mean the impact will be on the predicted results.

Correct, this was poorly stated, and we have reworded this.

Lines 405 – 410: I realize that the authors are fond of their Chugach results, undoubtedly obtained with much effort, but these data constitute 0.004% of the entire ensemble and could readily be omitted, with the space saved a deeper examination of why the systems is working, and where I might fail to work well.

Another referee was also lukewarm on the inclusion of this dataset. We have removed most of it, except for the useful information that it provides on the variability in Hs that is observed over short distances. That is a valuable point to retain.

Lines 431-432: Consider why this is: early in the winter, the addition of new snow to a thin pack makes a dramatic change in the bulk density (e.g., called here noise, but which is real) while later in the winter that noise dissipates because the addition is an increasingly small percentage of what is already on the ground. While a model using historical data cannot adjust for this effect, one could talk about how the uncertainty in the modeled result decreases with time. Does it then increase again after the DOY of peak SWE?

These are good points. Yes, our model is using only climatological weather data, which know nothing about individual snowfall events. We have added remarks on this issue and we have added a new figure that shows the errors as a function of the DOY.

Lines 447-460: This is much too cursory a discussion of precision and accuracy, and it sets up a false strawman: more stations or better precisions? The real question is how do we achieve better accuracy, and by this I suspect we mean better more accurate assessments of snow water resources. Given that 95% of the data being used is SNOTEL measurements, then this question has to start with whether the SNOTEL sites were actually designed to be "representative" or "index" sites....and I believe they were always meant to be the latter. Next it has to proceed to the issue of representativeness, as increasingly as we get depths from lidar or photogrammetry, we will be converting depths to SWE in locations not sampled by the SOTEL network. Are we moving into locations where the bulk density is likely to be higher or lower than at an index station? Why? I would rather see the authors just bypass the issue than trivialize the problem in a statistical experiment that doesn't tell us much about the core issue.

We have removed the commentary on whether or not future investments should be in more stations vs. better stations. We agree that SNOTEL stations are largely index stations in that their measurements are often directly regressed against downstream streamflow. However, for our purposes here (providing an equation to estimate SWE from h 'anywhere anytime') we do feel that it is valuable to discuss the effects of source data accuracy and precision on the estimated SWE. This will help the reader to understand how much uncertainty there will be in SWE derived from the current paper. So, we retain some of the statistical testing.

Reply to Adam Winstral, Referee

Referee comments are left-justified, in black. Author replies are indented, in blue.

The aim of this study is to develop a simple means of estimating snow densities to convert observed snow depths to snow-water-equivalent. The authors seek to use long-term climatological variables rather than station or modeled data so that snow depths garnered in remote locations without direct meteorological observations (e.g. crowd-sourced or Lidar data) can be easily and accurately converted to SWE. There is a growing need for improved means of characterizing snow density as greater amounts of snow depth data are becoming available (e.g. Lidar). Therefore this type of research is certainly warranted. Given that snow depths have always been more readily available than SWE or density data, other researchers have similarly produced methods of estimating densities. While not all of the previously developed approaches tackle the specific case presented here (i.e. meteorological data immediately preceding snow depth observation not required), the Sturm et al. (2010) and Jonas and Magnusson (2009) approaches do. The authors clearly acknowledge this and make a positive comparison of their method measured against the Sturm method. However, I find the presented Sturm comparison to be biased against the Sturm method (see further comments). They also hint at (lines 413, 493), but never provide evidence nor specifically claim to be, better than the Jonas approach. I would like to see the authors present in a more convincing manner how and why their method represents a substantial advancement over the previously published methods before I am ready to consider this manuscript worthy of publication.

This is my major concern:

The authors randomly split the aggregated CONUS, AK, and BC data into training and validation datasets (Section 2.2). They then use the "held-out" validation dataset to make the Sturm comparison (Section 3.1). So, essentially they have trained their model on data from the same locations with the same statistical metrics present in the comparison dataset. On the other hand, the comparison dataset is 100% independent of the Sturm training data. In order to present a fair comparison this needs to be done with a dataset that is totally independent from the derivation of both.

This is an important point. Our current approach aggregated all western North America snow pillow data (some ~2M points) and then randomly split it in two. So, for each station, some data at each station was used for model building, the other data at each station ended up being used for validation. We can see why it would be important to test a validation approach that separated the training and validation data either by location, or by time.

To address your concerns, we took all of the snow pillow data and we split up the stations randomly into two groups. We took all of the data from the first group and we used that to train the regression model. We then validated the regression model against the second group. We did several realizations of this process and found that the results were extremely close to those presented in the original manuscript. Anonymous

Referee #3 also raised a similar concern, and suggested an 80/20 cross validation (80% of the data used to train, 20% of the data used to validate) approach. This method also generated similar results. We believe this to be due to the very large N of our dataset.

Given how similar all of these approaches were, and given the lack of any clear 'preferred method' in the literature, we decided to retain our original approach.

We strongly agree with the referee that it would be ideal to have a perfect test between the two methods (our model and that of Sturm et al.). However, that would require that the two models be developed with the same training datasets and then validated using the same validation datasets. Unfortunately, we don't see a way to create this perfect 'laboratory test' for two models developed with different data.

The northeast dataset would be one ideal dataset for conducting this test and I'm not sure why this wasn't done. That said, it would certainly be more convincing if the inter-model comparisons were conducted over a wider range of conditions.

You are correct in that it would be ideal to have inter-model comparisons over a wide range of conditions. We believe that applying both models to the NE data set would not accomplish that. We prefer to keep our inter-model comparisons to the larger dataset from western North America snow pillow data, and we will retain the NE dataset for our model only.

I would also like to see direct comparisons to the Jonas method. As I stated in the above paragraph, the authors must present a convincing case that the new methodology represents an improvement over existing procedures. I just don't find that in the current manuscript.

With regards to Jonas et al. (J09). We specifically chose not to apply that model for the following reason. The J09 model has coefficients that depend upon month of year and elevation. In addition to this, there is a geographic 'offset' term that depends on boundaries drawn in the Swiss Alps. Therefore, the model cannot be applied in other regions (since we would have no idea what to use for an offset). We do not wish to ignore the offset and apply a 'partial model' since that is not what those authors constructed.

One thing that we have done is to apply the very simple Pistocchi¹ model which depends only on day of year (DOY). In Pistocchi's paper, he claims comparable performance to both Sturm and J09. We now include summary results (RMSE and bias only, no figures) for the Pistocchi model applied to the western North America snow pillow data.

We believe that the results for our model demonstrate an improvement (lower bias and RMSE than existing methods) and also a strength of our approach is that it allows for a

¹ https://www.sciencedirect.com/science/article/pii/S2214581816300131

continuously varying snow density in space rather than discontinuities due to discrete snow classes. Our plots below, provided in response to another comment, help illustrate this point.

Moderate concerns that need addressing:

I don't understand why rmse was normalized with respect to mean annual precipitation (Section 3 and Figure 8). This obviously biases the normalizations low where summer precipitation is more common. Artifacts of this can be seen in Figure 8 (e.g. low ratios in Arizona, New Mexico, Alaska where summer precipitation can be considerable compared to winter; high ratios in eastern Sierras where synoptic summer storms are rare). This type of normalization might be appropriate for annual or longer hydrologic studies, but for this snow-based, winter-focused research the normalization should be based on either mean wintertime precipitation or better yet, mean annual snowfall. Both mean wintertime precipitation and mean annual snowfall should be easily derivable from the PRISM data already used in this study.

This is a reasonable suggestion. Our intent was simply to provide some sort of 'relative' measure of the magnitude of the RMSE. We have actually redone this using the mean annual peak SWE to normalize the RMSE, which makes good sense.

Graphs. There are way too many data points in the scatter plots to understand what is really going on in Figures 6 and 9, and some of the plots in Figure 11. These should be presented as either heat plots or randomly select and plot a subset of these data. Additionally and partly due the aforementioned reason, the overlapping plots in Figure 9 are impossible to fully discern.

With regards to Figure 11 (Fig 12 in the revision), the symbols are colored by DOY in the left column, so we are unable to show that column as a heatmap. We have changed the center column to show the data as a heatmap.

With regards to Figure 6, we have changed the plot to a heatmap (which is just a 2d histogram). The 'footprint' or 'envelope' of the data cloud is unchanged of course.

With regards to Figure 9 (Fig 10 in the revision). The important point is how the 'width' of the data cloud is different between the two methods. The envelope that is closer to the 1:1 line indicates better performance. Our original approach was chosen since, in each case, our envelope was narrower (so we plotted ours on top). We cannot show two overlapping heatmaps. What we have done in the revision is to show Sturm's results as scatter symbols (as before) and to then plot our results as a transparent heat map on top.

I had difficulty accepting the reasoning for the residuals and mean biases apparent in the Figures 6b and d. I think these residuals, which are present in the validation dataset are also related to the choice of fitting a power law relationship rather than a linear least squares one. Given that the training and validation data should maintain the same statistical metrics then these residuals should be present in the training data as well. If, in fact, this is the case then the combination of a power law fit and the predominance of accumulation season samples would be the reason. My suspicion is that if a linear least squares fit was chosen then there should be near zero mean biases in both the training and validation sets given that the two sets maintain the same characteristics. I would expect that in the linear scenario, there should be a wider spread in residuals (i.e. higher rmse) but very little change in mean bias. Of course, this would be entirely different if the validation set was truly independent.

This is a fair comment, and our initial remarks may have been too speculative. We adopted a power law relationship based on the hysteresis loop (Figs 1 and 4) suggesting something other than a linear relationship between h and SWE. We feel that the best course of action is to remove our overly speculative comment.

How the different datasets were used needs better clarification. I didn't understand the purpose of the manually sampled Chugach data. As far as I can tell, these data were not included in the calibration nor the validation analyses. What do these data show? Why were they included? How do these data add anything new to the analysis? This should be clearly stated and incorporated into the story or leave the Chugach data out.

Two reviewers of this paper noted this. We have essentially dropped that dataset from the paper, with one exception. The large ensemble (80 or so) of collections (8 at each site) of probe measurements is valuable since it helps to quantify the variability in snow depth over small distances (in discussion section).

Section 2.1.2. Do these PRISM climatological variables, based on sparse station data and resolved at 800m, really pick up the heterogeneity you're aiming to capture as expressed on lines 132-37. It would be nice if you could show a spatially explicit example showing these capabilities.

We feel that the continuously variable PRISM data does a better job of capturing climate than 5 snow classes. Let us illustrate this with some sample figures. First, consider the map of snow class in the region just northeast of Valdez, Alaska.

Note that there are only a few snow classes and that the landscape is dominated by class 7 in this case. Now, for the exact same lat / lon bounding box, let us look at the MAP and Feb_T_Mean:

In both of these climatological rasters, we see very considerable variation over a region that is monolithic in snow class. These, we do feel that the use of 800m PRISM data will allow for smoother variability in snow density.

Tidbits:

The residuals (e.g. Figure 6) should be presented as modeled minus observed. In this manner the underestimations of SWE appear as negative residuals rather than the positive residuals currently presented. I find this much easier to understand.

Actually, the residuals are done correctly. Please see the new version of Fig 6, which has been much improved by showing it as a heatmap. Look at the top row. The residuals are indeed computed as model-observed. The vertical black line in the right column (panel (b)) is the mean residual. It is negative. And that makes sense since the cloud of data points appears to be, on average, below the 1:1 line. So, thank you for your suggestion, it was good for us to double check, but we do have the residuals defined correctly, we believe.

Lines 44-47 and 72-74. Each of these sentences contain two distinct thoughts that would perhaps be better if split into two sentences.

Thank you for the suggestion. We will improve the clarity of these lines.

Lines 120-22. I didn't think this sentence was necessary . . . unless you turn it into reasoning that this just adds a layer of computational costs / complexity that aren't necessary for your desired application.

We slightly adjusted the sentences there to improve the clarity.

Lines 141-2. Might want to add something about why you would also prefer to not use NWP data that could possibly substitute for the lack of observations (i.e. computational costs, errors in NWP data).

The purpose of this work is to provide a rapid, easy to use tool. Relying on external daily or sub-daily datasets and/or model output moves the work away from that goal and towards more sophisticated snow models. So, yes, it could be done, but at significant expense and effort.

Line 169. You also used snow pillow data from the northeast US. You might want to make that clear here . . . as in "Snow data for this project, aside from the aforementioned SNOTEL data, . . ."

Yes, thank you. We fixed this.

Section 2.1.1.5. Might want to mention that these issues are most common in summer when vegetation grows beneath the sensor.

We are not sure we fully understand this remark. Which particular issues are you referring to? The data that we considered was only winter time data, where snow was present.

Line 440. Roughness of underlying terrain is certainly one factor, but couldn't there be others as well (e.g. wind redistribution).

We have now noted this explicitly.

Reply to Anonymous Referee #3

Received and published: 13 March 2019

Referee comments are left-justified, in black. Author replies are indented, in blue.

The authors address the issue of converting spatiotemporal snow depth measurements to estimates of snow water equivalent (SWE). This topic is relevant to many areas of research because of the relative ease of taking snow depth measurements over SWE. Framed in the context of citizen science or field work, snow depths collected by nonexperts and experts alike can be leveraged as a low-cost input to hydrological or climate analysis. In an era of highavailability altimetry (lidar or radar) and photogrammetry (structure from motion), an ensemble of methods to convert surface heights into SWE will be critical for both targeted basin studies (ASO) as well as future satellite missions. The authors develop three regression models to evaluate a snow depth to SWE conversion. Regression skill is evaluated using depth alone, depth separated by accumulation and ablation phases, and depth in combination with climate normal for precipitation, temperature as well as elevation. Their work differs from previous studies such as Sturm et al. 2010 in that the climate inputs are regressed as continuous variables. As such, any measurement of snow depth with coordinates could potentially be converted, independent of measurement scale. In general the paper to well written and clear in its advancements. The focus on estimates during the ablation phase is a clear contribution, where methods fail. Addressing that 'not all snow is equal' is a strength of the approach.

Prior to publication, I would like to see the outlier detection and validation portions of the paper revisited to reinforce the statistical analysis. While I agree that outlier detection is necessary, an enhanced description of where and when the outliers originate would help to identify potential seasonality or spatial clustering. For example, if many of the outliers are from the early snow season, does this preclude ability of the models to convert measurements that include fresh snow? There are artifacts in Figure 4 where SWE varies drastically but depth does not, are these melt events? A histogram of the outlier DOY or a table of the outlier properties may be all that is needed to address this. These additions could be used to reinforce the statement that the reduced dataset is physically plausible (Lines 229-230).

These are very good points. One other referee had similar remarks. Manual examination of many of the SNOTEL time series revealed the presence of clearly wrong data (Figure 3 of the paper). We wanted to develop a wholly objective method for removing those data points. The approach that we used seems like a good one, based upon the characteristics of the bivariate distribution. We recognize that some valid data points (mostly at low SWE-Hs values) are undoubtedly removed as well. Given the very low number (less than 1%; so the valid points removed are some small fraction of this 1%) of points that were removed in our process, we feel that this is acceptable. Here is a figure of the process at one particular station. SWE on vertical axis, h on horizontal. Red circles are removed points.

We particularly like your suggestion of looking at the characteristics of the removed points, and now include specific information on the DOY values of these points. It turned out that removed points were occurring throughout the snow season, and not just at the beginning and the end.

Your comment about events in Figure 4 where SWE changes a lot while Hs remains fixed is an interesting one. It is hard to understand how SWE could drop from 1 m to near zero while Hs remains fixed at 5 m. The lack of an accepted and easy to implement protocol for addressing snow pillow data quality control is an obstacle to analysis.

For the validation, it may be of benefit to use a cross-validation (CV) to determine if the model skill is overly optimistic. Using an N-folds CV with a 80/20 train/test split would be a simple approach to achieve this. In this regard, I'd also be interested to know if the non-SNOTEL datasets actually influence to the regression coefficients (What happens when the training datasets are SNOTEL only). The remainder of my comments addressed to specific lines or figure.

A few comments. First of all, the regression coefficients were constructed with snow pillow data only from the western United States and Canada. We have now tried to make this more obvious in the section discussing datasets. For example, in Table 1, we now use bold font to highlight which datasets were used to build the model.

Second, with regards to validation. We looked into this at some length before beginning this work, since we wanted to determine if there was some preferred way of doing validation in the snow density literature (or streamflow prediction, or any other discipline for that matter). We found no 'best' or 'preferred' method. We ended up doing a 50/50 split (aggregating all snow pillow data points and randomly dividing them up) in the first draft of the paper. Upon receiving the manuscript reviews, we also tested your suggested 80/20 split, and a 50/50 'station split' (divide up the stations, not the

aggregated data points). We found that all methods provided essentially the same results We feel that this is likely due to the large N (number of observations) of our dataset. Given the lack of consensus in the literature, we feel that our approach is acceptable, and we are clear and upfront about our methods.

Lines 64-65: Are there additional references available to support this statement regarding Lband? The only cited application in the field is a conference proceeding.

Another referee though we should simply remove the remote sensing discussion and that seemed like a sensible change to us, so we did so.

Line 172: Each style of corer has its own associated bias. Could this be considered to bound or constrain errors for each region/dataset?

Corer data were not used to build the regression model. So, those biases would not affect the regression model coefficients. Any depth measurement that has a bias or random error and that is used to estimate a SWE value using the methods in this paper would propagate through into a bias or error in the SWE. We do try to present some discussion on this in the manuscript.

Line 185: I would expect readers to be unfamiliar with some of coring devices. For example, the Mt. Rose snow tube could be supported with Church, J. Improvement in Snow Survey Apparatus, TAGU, 1936.

Thank you for this suggestion, and we can add this citation.

Line 228: See concerns about outlier detection in the main comments. It would be important to describe the temporal aspect of the outlier detection.

Yes, as noted above, we provide information on this now in that section.

Line 228: uncleaned data -> source data

Good catch, we made this change.

Line 229: State how many outliers were removed from the other datasets via this process. Figure 4: An axis label is needed for the DOY color bar.

This has been handled with added parenthetical notes to column 4 of Table 1.

Line 231: How does this work for 'stations' where there are a very low number of observations, ie AK?

The process was objectively applied to all stations. Stations with low numbers of observations could still be processed, in terms of computing the characteristics of the bivariate distributions and then removing points that did not satisfy the criteria.

Table 1: Can this table be augmented with a % of retained points or an omission %? Is the BC survey missing the # of ultrasonic sites?

As per the remark just above re:line 229, yes we have done this. Regarding the BC comment. The first row of that table has two sets of numbers. One for the Western USA SNOTEL. One for the eastern USA SCAN. The BC row only has one set of numbers since we grouped all BC snow pillows together. In revised Table 1, we have split up the USA NRCS data into two rows to eliminate this confusion.

Line 250: Is this 50% of all measurements or 50% of each subset. If it is all of them, it could be such that the only ones removed are CONUS because of the low numbers elsewhere.

All of the aggregated snow pillow data were grouped (data points were grouped in one large bin) and then divided in two. Given the random nature of the division, each station should have ~50% of its data represented.

Line 256: Figure 3 is used as support for the outlier detection due to poor correlation (ie increasing h with no SWE) and but is referenced here as strongly correlated. It might be confusing to do both.

This is a good catch. We meant to refer to just the winter (snow present) portions of Figure 3. The noisy bits in that Figure are at times when there is no SWE. We will clarify our language.

Line 283: If this is an important consideration, why is the SCAN dataset not used to train the models?

There are several reasons. Foremost, we wanted to leave the northeastern USA data alone so that we could use those data as an independent test of the ability of the model to work in completely different regions / snow regimes. Second, the N (5 sites) of the northeastern USA dataset is a tiny fraction of the rest of the available data. Locations with multi-peak SWE curves may do better with a more complex model that is able to capture this behavior.

Line 290: Interesting that a static 180 works best as the DOY separator. Could a sentence on why this might occur be added to the discussion?

To be frank, we do not have a great explanation for this. When we discovered a fairly strong correlation between day of peak SWE and April temperature, we were confident

that the variable DOY approach would produce the best results. In this case, it appears that simpler is better.

Line 332: I see how it would not be possible to use an absolute value here but are snow-covered regions where the February normal is below -30C.

We chose this offset value based upon the lowest February temperature values observed at the snow pillow stations. This may limit our methods to not apply in some extremely cold regions.

Figure 6: Titles for each plot might make this easier to read if someone skips the caption.

We appreciate this stylistic suggestion. Our approach favors using the figure caption to provide details on the content in each figure panel, which is consistent with the approach of other papers in The Cryosphere. We are open to modifying this if the editors request it.

Table 5: Include the normalized errors for completeness of the table.

We are not able to normalize the errors for these datasets in the way that we do for the snow pillow sites (Figs 8-9 of new version of paper). For the snow pillow stations, we normalized the RMSE at each station based on (this is a change for the 2nd draft of this paper) the mean annual maximum SWE at that station. The information in table 5 is different. The RMSE values there are essentially being averaged 'spatially' over a distributed dataset, rather than being averaged temporally at a snow pillow station. Thus, we do not have a mean annual maximum SWE available for normalization in a consistent fashion. Note that in the 2nd paragraph of the discussion section, we do talk a bit about the east coast results and how they differ from western North America (smaller snowpack, etc.).

Line 423-430: Might be helpful to discuss measurement errors as a contributor.

We do discuss this (measurement errors) in lines $447 \rightarrow 472$ (numbering of original draft). In the specific context of the northeastern USA data, those data are generally high-quality coring data. Having not taken those data ourselves, it is hard to quantify the measurement errors. In some cases, the supporting documentation for those datasets is brief to non-existent. Also, note that, in response to another reviewer as well, we have added more general discussion of both coring error and snow pillow errors to the manuscript.

Converting Snow Depth to Snow Water Equivalent Using 1 **Climatological Variables** 2

3

4 David F. Hill¹, Elizabeth A. Burakowski², Ryan L. Crumley³, Julia Keon⁴, J. Michelle Hu⁵, 5 Anthony A. Arendt⁶, Katreen Wikstrom Jones⁷, Gabriel J. Wolken⁸

¹Civil and Construction Engineering, Oregon State University, OR, USA

6 7 8 9 ²Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, NH, USA

- ³Water Resources Graduate Program, Oregon State University, OR, USA
- 10 ⁴Civil and Construction Engineering, Oregon State University, OR, USA
- 11 ⁵Civil and Environmental Engineering, University of Washington
- 12 ⁶Applied Physics Laboratory, University of Washington
- 13 ⁷Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK, USA
- 14 ⁸Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK, USA; International Arctic Research Center,
- 15 University of Alaska Fairbanks, Fairbanks, AK, USA
- 16 Correspondence to: David F. Hill (david.hill@oregonstate.edu)
- 17 18

19 Abstract. We present a simple method that allows snow depth measurements to be converted to snow water

20 equivalent (SWE) estimates. These estimates are useful to individuals interested in water resources, ecological

21 function, and avalanche forecasting. They can also be assimilated into models to help improve predictions of total

22 water volumes over large regions. The conversion of depth to SWE is particularly valuable since snow depth

23 measurements are far more numerous than costlier and more complex SWE measurements. Our model regresses

24 SWE against snow depth and climatological (30-year normal) values for mean annual precipitation (MAP) and mean

25 February temperature ($\bar{T}_{F_{mean}}$), producing a power-law relationship. Relying on climatological normals rather than

26 weather data for a given year allows our model to be applied at measurement sites lacking a weather station.

27 Separate equations are obtained for the accumulation and the ablation phases of the snowpack, which introduces

28 'day of water year' (DOY) as an additional variable. The model is validated against a large database of snow pillow

29 measurements and yields a bias in SWE of less than 0.5 mm and a root-mean-squared-error (RMSE) in SWE of

30 approximately 65 mm. When the errors are investigated on a station-by-station basis, the average RMSE is about 5%

31 of the MAP at each station. The model is additionally validated against a completely independent set of data from

32 the northeast United States. Finally, the results are compared with other models for bulk density that have varying

33 degrees of complexity and that were built in multiple geographic regions. The results show that the model described

34 in this paper has the best performance for the validation data set.

35 1 Introduction

36 In many parts of the world, snow plays a leading-order role in the hydrological cycle (USACE, 1956; Mote et al.,

- 37 2018). Accurate information about the spatial and temporal distribution of snow water equivalent (SWE) is useful to
- 38 many stakeholders (water resource planners, avalanche forecasters, aquatic ecologists, etc.), but can be time
- 39 consuming and expensive to obtain.
- 40

41 Snow pillows (Beaumont, 1965) are a well-established tool for measuring SWE at fixed locations. Figure 1 provides 42 a conceptual sketch of the variation of SWE with time over a typical water year. A comparatively long accumulation 43 phase is followed by a short ablation phase. While simple in operation, snow pillows are relatively large in size and 44 they need to be installed prior to the onset of the season's snowfall. This limits their ability to be rapidly or 45 opportunistically deployed. Additionally, snow pillow installations tend to require vehicular access, limiting their 46 locations to relatively simple topography. Finally, snow pillow sites are not representative of the lowest or highest 47 elevation bands within mountainous regions (Molotch and Bales, 2005). In the western United States (USA), the 48 Natural Resources Conservation Service (NRCS) operates a large network of Snow Telemetry (SNOTEL) sites, 49 featuring snow pillows. The NRCS also operates the smaller Soil Climate Analysis Network (SCAN) which 50 provides the only, and very limited, snow pillow SWE measurements in the eastern USA.

51

52 SWE can also be measured manually, using a snow coring device that measures the weight of a known volume of 53 snow to determine snow density (Church, 1933). These measurements are often one-off measurements, or in the 54 case of 'snow courses' they are repeated weekly or monthly at a given location. The simplicity and portability of 55 coring devices expand the range over which measurements can be collected, but it can be challenging to apply these 56 methods to deep snowpacks due to the length of standard coring devices. Note that there are numerous different 57 styles of coring devices, including the Adirondack sampler and the Mt. Rose / Federal sampler (Church and Marr, 58 1937).

59

60 There are a number of issues that affect the accuracy of both snow pillow and snow coring measurements. With

61 coring measurements, if the coring device is not carefully extracted, a portion of the core may fall out of the device.

62 Or, snow may become compressed in the coring device during insertion. These effects have led to varying

63 conclusions, with some studies (e.g., Sturm et al., 2010) showing a low SWE bias and other studies (e.g., Goodison,

64 1978) showing a high SWE bias. As noted by Johnson et al. (2015) a good rule of thumb is that coring devices are

65 accurate to around \pm 10%. Also, studies comparing different styles of snow samplers report statistically different

- 66 results, suggesting that SWE measurements are sensitive to the design of the specific coring device, such as the
- 67 presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012). With snow
- 68 pillows, some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE,
- 69 with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks,
- 70 2004; Dressler et al., 2006; Johnson et al., 2015) note a more complex situation with SWE under-reported at times,

but over-reported at other times. Note that when snow pillow data are evaluated, they are most commonly compared
 to coring measurements at the same location.

73

74 All methods of measuring SWE are challenged by the fact that SWE is a depth-integrated property of a snowpack. 75 This is why the snowpack must be weighed, in the case of a snow pillow, or a core must be extracted from the 76 surface to the ground. This measurement complexity makes it difficult to obtain SWE information with the spatial 77 and temporal resolution desired for watershed-scale studies. Other snowpack properties, such as the depth h, are 78 much easier to measure. For example, using a graduated device such as a meterstick or an avalanche probe to 79 measure the depth takes only seconds. Automating depth measurements at a fixed location can easily be done using 80 low-cost ultrasonic devices (Goodison et al., 1984; Ryan et al., 2008). High-spatial-resolution measurements of 81 snowpack depth are commonly made with Light Detection and Ranging (LIDAR). One example of this is the 82 Airborne Snow Observatory program (ASO; Painter et al., 2016). The comparatively high expense of airborne 83 LIDAR surveys typical limits measurements geographically (to a few basins) and temporally (weekly to monthly

- 84 interval).
- 85

Given the relative ease in obtaining depth measurements, it is common to use *h* as a proxy for SWE. Figure 1 shows a conceptual sketch of the variation of SWE with *h* over a typical water year. Noting the arrows on the curve, we see that SWE is multi-valued for each *h*. This is due to the fact that the snowpack increases in density throughout the water year, producing a hysteresis loop in the curve. A large body of literature exists on the topic of how to convert *h* to SWE. It is beyond the scope of this paper to provide a full review of these 'bulk density equations,' where the density is given by $\rho_b = SWE/h$. Instead, we refer readers to the useful comparative review by Avanzi et al. (2015).

- 92 Here, we prefer to discuss a limited number of previous studies that illustrate the spectrum of methodologies and
- 72 There, we preter to discuss a minicul number of previous studies that mustrate the spectrum of methodologies and
- $93 \qquad \text{complexities that can be used to determine } \rho_b \text{ or SWE}.$
- 94
- 95 Many studies express ρ_b as an increasing function (often linear) of *h*. In some cases (e.g., Lundberg et al., 2006) a
- 96 second equation is added where ρ_b attains a constant value when a threshold *h* is exceeded. A single linear equation
- 97 captures the process of densification of the snowpack during the accumulation phase, but performs poorly during the
- 98 ablation phase, where depths are decreasing but densities continue to increase or approach a constant value.
- 99 Other approaches choose to parameterize $\rho_{\rm b}$ in terms of time, rather than *h*. Pistocchi (2016) provides a single
- 100 equation while Mizukami and Perica (2008) provide two sets of equations, one set each for early and late season.
- 101 Each set contains four equations, each of which is applicable to a particular 'cluster' of stations. This clustering was
- 102 driven by observed densification characteristics and the resulting clusters are relatively spatially discontinuous.
- 103 Jonas et al. (2009) take the idea of region- (or cluster-) specific equations and extend it further to provide
- 104 coefficients that depend on time and elevation as well. They use a simple linear equation for $\rho_{\rm b}$ in terms of *h* and the
- 105 slope and intercept of the equation are given as monthly values, with three elevation bins for each month (36 pairs of
- 106 coefficients). There is an additional contribution to the intercept (or 'offset') which is region-specific (one of 7
- 107 regions).

108

109 These classifications, whether based on region, elevation, or season, are valuable since they acknowledge that all

110 snow is not equal. McKay and Findlay (1971) discuss the controls that climate and vegetation exert on snow density.

- and Sturm et al. (2010) address this directly by developing a snow density equation where the coefficients depend
- 112 upon the 'snow class' (5 classes). Sturm et al. (1995) explain the decision tree, based on temperature, precipitation,
- 113 and wind speed, that leads to the classification. The temperature metric is the 'cooling degree month' calculated
- 114 during winter months only. Similarly, only precipitation falling during winter months was used in the classification.
- 115 Finally, given the challenges in obtaining high quality, high-spatial-resolution wind information, vegetation
- 116 classification was used as a proxy. Using climatological values (rather than values for a given year), Sturm et al.
- 117 (1995) were able to develop a global map of snow classification.
- 118

119 There are many other formulations for snow density that increase in complexity and data requirements. Meloysund 120 et al. (2007) express $\rho_{\rm b}$ in terms of sub-daily measurements of relative humidity, wind characteristics, air pressure, 121 and rainfall, as well as h and estimates of solar exposure ('sun hours'). McCreight and Small (2014) use daily snow 122 depth measurements to develop their regression equation. They demonstrate improved performance over both Sturm 123 et al. (2010) and Jonas et al. (2009). However, a key difference between the McCreight and Small (2014) model and 124 the others listed above is that the former cannot be applied to a single snow depth measurement. Instead, it requires a 125 continuous time series of depth measurements at a fixed location. Further increases in complexity are found in 126 energy-balance snowpack models (SnowModel, Liston and Elder, 2006; VIC, Liang et al., 1994, DHSVM, 127 Wigmosta et al., 1994, others), many of which use multi-layer models to capture the vertical structure of the 128 snowpack. While the particular details vary, these models generally require high temporal-resolution time series of 129 many meteorological variables as input. 130 131 Despite the development of multi-layer energy-balance snow models, there is still a demonstrated need for bulk 132 density formulations and for vertically integrated data products like SWE. Pagano et al. (2009) review the 133 advantages and disadvantages of energy-balance models and statistical models and describe how the NRCS uses 134 SWE (from SNOTEL stations) and accumulated precipitation in their statistical models to make daily water supply

- 135 forecasts. If SWE information is desired at a location that does not have a SNOTEL station, and is not part of a
- 136 modeling effort, then bulk density equations and depth measurements are an excellent choice.
- 137

138 The present paper seeks to generalize the ideas of Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al.,

139 (2010). Specifically, our goal is to regress physical and environmental variables directly into the equations. In this

140 way, environmental variability is handled in a continuous fashion rather than in a discrete way (model coefficients

based on classes). The main motivation for this comes from evidence (e.g., Fig. 3 of Alford, 1967) that density can

142 vary significantly over short distances on a given day. Bulk density equations that rely solely on time completely

- miss this variability and equations that have coarse (model coefficients varying over either vertical bins or horizontal
- 144 grids) spatial resolution may not fully capture it either.

146	Our approach is most similar to Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., (2010) in that a
147	minimum of information is needed for the calculations; we intentionally avoid approaches like Meloysund et al.
148	(2007) and McCreight and Small (2014). This is because our interests are in converting h measurements to SWE
149	estimates in areas lacking weather instrumentation. The following sections introduce the numerous data sets that
150	were used in this study, outline the regression model adopted, and assess the performance of the model.
151	2 Methods
152	
153	2.1 Data
154	
155	2.1.1 Snow Depth and Snow Water Equivalent
156	In this section, we list sources of 1970-present snow data utilized for this study (Table 1). With regards to snow
157	coring devices, we refer to them using the terminology preferred in the references describing the datasets.
158 159	2.1.1.1 USA NRCS Snow Telemetry and Soil Climate Analysis Networks
160	SNOTEL (Serreze et al. 1999: Dressler et al. 2006) and SCAN (Schaefer et al. 2007) stations in the contiguous
161	United States (CONUS) and Alaska typically record sub-daily observations of h. SWE, and a variety of weather
162	variables (Figure 2a-b). The periods of record are variable, but the vast majority of stations have a period of record
163	in excess of 30 years. For this study, data from all SNOTEL sites in CONUS and Alaska and northeast USA SCAN
164	sites were obtained with the exception of sites whose period of record data were unavailable online. Only stations
165	with both SWE and <i>h</i> data were retained.
166	
167	2.1.1.2 Canada (British Columbia) Snow Survey Data
168	Goodison et al. (1987) note that Canada has no national digital archive of snow observations from the many
169	independent agencies that collect snow data and that snow data are instead managed provincially. The quantity and
170	availability of the data vary considerably among the provinces. The Water Management Branch of the British
171	Columbia (BC) Ministry of the Environment manages a comparatively dense network of Automated Snow Weather
172	Stations (ASWS) that measure SWE, <i>h</i> , accumulated precipitation, and other weather variables (Figure 2a). For this
173	study, data from all British Columbia ASWS sites were initially obtained. As with the NRCS stations, only ASWS
174	stations with both SWE and <i>h</i> data were retained.
175	
176	2.1.1.3 Northeast USA Data
177	In addition to the data from the SCAN sites, snow data for this project from the northeast US come from two
178	networks and three research sites (Figure 2b). The Maine Cooperative Snow Survey (MCSS, 2018) network
179	includes h and SWE data collected by the Maine Geological Survey, the United States Geological Survey, and
180	numerous private contributors and contractors. MCSS snow data are collected using the Standard Federal or

181 Adirondack snow sampling tubes typically on a weekly to bi-weekly schedule throughout the winter and spring,

- 182 1951-present. The New York Snow Survey network data were obtained from the National Oceanic and Atmospheric
- 183 Administration's Northeast Regional Climate Center at Cornell University (NYSS, 2018). Similar to the MCSS,
- 184 NYSS data are collected using Standard Federal or Adirondack snow sampling tubes on weekly to bi-weekly
- 185 schedules, 1938-present.
- 186
- 187 The Sleepers River, Vermont Research Watershed in Danville, Vermont (Shanley and Chalmers, 1999) is a USGS
- 188 site that includes 15 stations with long-term weekly records of *h* and SWE collected using Adirondack snow tubes.
- 189 Most of the periods of record are 1981-present, with a few stations going back to the 1960s. The sites include
- 190 topographically flat openings in conifer stands, old fields with shrub and grass, a hayfield, a pasture, and openings in
- 191 mixed softwood-hardwood forests. The Hubbard Brook Experiment Forest (Campbell et al., 2010) has collected
- 192 weekly snow observations at the Station 2 rain gauge site, 1959-present. Measurement protocol collects ten samples
- 193 2 m apart along a 20 m transect in a hardwood forest opening about ¹/₄ hectare in size. At each sample location along
- 194 the transect, *h* and SWE are measured using a Mt. Rose snow tube and the ten samples are averaged for each
- 195 transect. Finally, the Thompson Farm Research site includes a mixed hardwood forest site and an open pasture site
- 196 (Burakowski et al. 2013; Burakowski et al. 2015). Daily (from 2011-2018), at each site, a snow core is extracted
- 197 with an aluminum tube and weighed (tube + snow) using a digital hanging scale. The net weight of the snow is
- 198 combined with the depth and the tube diameter to determine ρ_b , similar to a Federal or Adirondack sampler.
- 199

200 2.1.1.4 Chugach Mountains (Alaska) Data

In the spring of 2018, we conducted three weeks of fieldwork in the Chugach mountains in coastal Alaska, near the city of Valdez (Figure 2c-d). We measured *h* using an avalanche probe at 71 sites along elevational transects during March, April, and May. The elevational transects ranged between 250 and 1100 m (net change along transect) and were accessible by ski and snowshoe travel. At each site, we measured *h* in 8 locations within the surrounding 10 m^2 , resulting in a total of 550+ snow depth measurements. These 71 sites were scattered across 8 regions in order to

- 206 capture spatial gradients that exist in the Chugach mountains as the wetter, more-dense maritime snow near the coast
- 207 gradually changes to drier, less dense snow on the interior side.
- 208

209 2.1.1.5 Data Pre-Processing

- 210 Figure 3 demonstrates that it is not uncommon for automated snow depth measurements to become noisy or non-
- 211 physical, at times reporting large depths when there is no SWE reported. This is different from instances when
- 212 physically plausible, but very low densities might be reported; say in response to early season dry, light snowfalls. It
- 213 was therefore desirable to apply some objective, uniform procedure to each station's dataset in order to remove clear
- 214 outlier points, while minimizing the removal of valid data points. We recognize that there is no accepted
- 215 standardized method for cleaning bivariate SWE-*h* data sets. While Serreze et al. (1999) offer a procedure for
- 216 SNOTEL data in their appendix, it is relevant only for precipitation and SWE values, not h. Given the strong
- 217 correlation between *h* and SWE, we instead choose to use common outlier detection techniques for bivariate data.

- 218
- The Mahalanobis distance (MD; Maesschalck et al., 2000) quantifies how far a point lies from the mean of a bivariate distribution. The distances are in terms of the number of standard deviations along the respective principal component axes of the distribution. For highly correlated bivariate data, the MD can be qualitatively thought of as a measure of how far a given point deviates from an ellipse enclosing the bulk of the data. One problem is that the MD is based on the statistical properties of the bivariate data (mean, covariance) and these properties can be adversely affected by outlier values. Therefore, it has been suggested (e.g., Leys et al., 2018) that a 'robust' MD (RMD) be calculated. The RMD is essentially the MD calculated based on statistical properties of the distribution unaffected

by the outliers. This can be done using the Minimum Covariance Determinant (MCD) method as first introduced by

- 227 Rousseeuw (1984).
- 228

226

229 Once RMDs have been calculated for a bivariate data set, there is the question of how large an RMD must be in

230 order for the data point to be considered an outlier. For bivariate normal data, the distribution of the square of the

231 RMD is χ^2 (Gnanadesikan and Kettenring, 1972), with p (the dimension of the dataset) degrees of freedom. So, a

rule for identifying outliers could be implemented by selecting as a threshold some arbitrary quantile (say 0.99) of

233 χ_p^2 . For the current study, a threshold quantile of 0.999 was determined to be an appropriate compromise in terms of

- removing obviously outlier points, yet retaining physically plausible results.
- 235

A scatter plot of SWE vs. *h* for the source SNOTEL dataset from CONUS and AK reveals many non-physical

points, mostly when a very large *h* is reported for a very low SWE (Figure 4a). Approximately 0.7% of the original

238 data points were removed in the pre-processing described above, creating a more physically plausible scatter plot

- 239 (Figure 4b). Note that the outlier detection process was applied to each station individually. The distribution of 'day
- of year' (DOY) values of removed data points was broad, with a mean of 160 and a standard deviation of 65. Note
- that the *DOY* origin is 1 October. The same procedure was applied to the BC and northeast USA data sets as well
- 242 (not shown). Table 1 summarizes useful information about the numerous data sets described above and indicates the
- 243 final number of data points retained for each. We acknowledge that our process inevitably removes some valid data
- points, but, as a small percentage of an already 0.7% removal rate, we judged this to be acceptable.
- 245

Table 1: Summary of information about the datasets used in this study. Datasets in bold font were used to construct the regression model. The numbers of stations and data points reflect the post-processed data.

Dataset Name	Dataset Type	Number of retained stations	Number and percentage of retained data points	Precision (<i>h</i> / SWE)
NRCS SNOTEL	Snow pillow (SWE), ultrasonic (<i>h</i>)	791	1,900,000 (99.3%)	(0.5 in / 0.1 in)
NRCS SCAN	Snow pillow (SWE), ultrasonic (<i>h</i>)	5	7094 (97.8%)	(0.5 in / 0.1 in)

British Columbia	Snow pillow (SWE),	31	61,000	(1 cm / 1 mm)
Snow Survey	ultrasonic (<i>h</i>)		(97.5%)	
Maine Geological	Adirondack or Federal	431	28,000	(0.5 in / 0.5 in)
Survey	sampler (SWE and <i>h</i>)		(99.3%)	
Hubbard Brook	Mount Rose sampler (SWE	1	704	(0.1 in / 0.1 in)
(Station 2), NH	and h)		(99.4%)	
Thompson Farm, NH	Snow core (SWE and <i>h</i>)	2	988	0.5 in / 0.5 in)
-			(99.4%)	
Sleepers River, VT	Adirondack sampler	14	7214	(0.5 in / 0.5 in)
-	_		(99.4%)	
New York Snow	Adirondack or Federal	523	44,614	(0.5 in / 0.5 in)
Survey	sampler (SWE and <i>h</i>)		(98.2%)	
Chugach Mountains,	Avalanche probe (<i>h</i>)	71	71	(1 cm)
AK			(100%)	

248

249 2.1.2 Climatological Variables

250 30-year climate normals at 800 m (nominal) resolution for CONUS and for the period 1981-2010 were obtained

from the PRISM website (Daly et al., 1994). PRISM normals for British Columbia (BC), Canada, were obtained

from the ClimateBC project (Wang et al., 2012), also for the 1981-2010 period. Finally, PRISM normals for Alaska

253 (AK) were obtained from the Integrated Resource Management Applications (IRMA) Portal run by the National

Park Service. The AK normals are for the 1971-2000 period and have a slightly coarser resolution (approximately

255 1.5 km). Figure 5 shows gridded maps of mean annual precipitation (*MAP*) and mean February Temperature (\bar{T}_F)

256 for these three climate products, plotted together. Other temperature products (max and min temperatures; other

257 months) were obtained as well, but are not shown.

258

259 2.2 Regression Model

In order to demonstrate the varying degrees of influence of explanatory variables, several regression models were constructed. In each case, the model was built by randomly selecting 50% of the paired SWE-*h* measurements from the aggregated CONUS, AK, and BC snow pillow datasets. The model was then validated by applying it to the remaining 50% of the dataset and comparing the modeled SWE to the observed SWE for those points. Additional validation was done with the northeast USA datasets (SCAN snow pillow and various snow coring datasets) which were completely left out of the model building process.

266

267 2.2.1 One-Equation Model

The simplest equation, and one that is supported by the strong correlation seen in the portions of Figure 3 when SWE is present, is one that expresses SWE as a function of *h*. A linear model is attractive in terms of simplicity, but this limits the snowpack to a constant density. An alternative is to express SWE as a power law, i.e.,

271

272 (1) $SWE = Ah^{a_1}$.

273

274 This equation can be log-transformed into

275

277

276 (2)
$$log_{10}(SWE) = log_{10}(A) + a_1 log_{10}(h)$$

which immediately allows for simple linear regression methods to be applied. With both *h* and SWE expressed in units of mm, the obtained coefficients are $(A, a_1) = (0.146, 1.102)$. Information on the performance of the model will be deferred until the results section.

281

282 2.2.2 Two-Equation Model

Recall from Figures 1 and 4 that there is a hysteresis loop in the SWE-*h* relationship. During the accumulation phase, snow densities are relatively low. During the ablation phase, the densities are relatively high. So, the same snowpack depth is associated with two different SWEs, depending upon the time of year. The regression equation given above does not resolve this difference. This can be addressed by developing two separate regression equations, one for the accumulation (*acc*) and one for the ablation (*abl*) phase. This approach takes the form

$$289 \qquad (3) \qquad SWE_{acc} = Ah^{a_1}; \quad DOY <$$

290

288

291 (4)
$$SWE_{abl} = Bh^{b_1}; DOY \ge DOY^*$$

292

where DOY is the number of days from the start of the water-year (October 1 is the origin), and DOY^* is the critical or dividing day-of-water-year separating the two phases. Put another way, DOY^* is the day of peak SWE.

295 Interannual variability results in a range of *DOY*^{*} for a given site. Additionally, some sites, particularly the SCAN

sites in the northeast USA, demonstrate multi-peak SWE profiles in some years. To reduce model complexity,

however, we investigated the use of a simple climatological (long term average) value of *DOY*^{*}. For each snow

pillow station, the average *DOY*^{*} was computed over the period of record of that station. Analysis of all of the

stations revealed that this average *DOY*^{*} was relatively well correlated with the climatological mean April maximum

300 temperature (the average of the daily maximums recorded in April; $R^2 = 0.7$). However, subsequent regression

analysis demonstrated that the SWE estimates were relatively insensitive to *DOY*^{*} and the best results were actually

302 obtained when DOY^* was uniformly set to 180 for all stations. Again, with both SWE and h in units of mm, the

303 regression coefficients turn out to be
$$(A, a_1) = (0.150, 1.082)$$
 and $(B, b_1) = (0.239, 1.069)$.

 DOY^*

304

305 As these two equations are discontinuous at DOY^* , they are blended smoothly together to produce the final two-306 equation model

307

308 (5)
$$SWE = SWE_{acc} \frac{1}{2} (1 - tanh[0.01\{DOY - DOY^*\}]) +$$

309
$$SWE_{abl} \frac{1}{2} (1 + tanh[0.01\{DOY - DOY^*\}])$$

310

311 The coefficient 0.01 in the tanh function controls the width of the blending window and was selected to minimize

312 313

314 2.2.3 Two-Equation Model with Climate Parameters

the root mean square error of the model estimates.

315 A final model was constructed by incorporating climatological variables. Again, the emphasis is this study is on 316 methods that can be implemented at locations lacking the time series of weather variables that might be available at 317 a weather or SNOTEL station. Climatological normals are unable to account for interannual variability, but they do 318 preserve the high spatial gradients in climate that can lead to spatial gradients in snowpack characteristics. Stepwise 319 linear regression was used to determine which variables to include in the regression. The initial list of potential 320 variables included was

321

322 (6)
$$SWE = f(h, z, MAP, \overline{T}_{J_{min}}, \overline{T}_{J_{mean}}, \overline{T}_{F_{min}}, \overline{T}_{F_{mean}}, \overline{T}_{F_{max}}, \overline{T}_{M_{min}}, \overline{T}_{M_{mean}}, \overline{T}_{M_{max}}, \overline{T}_{A_{min}}, \overline{T}_{A_{mean}}, \overline{T}_{A_{max}})$$
323

324 where z is the elevation (m), MAP is the mean annual precipitation (mm) and the temperatures (°C) represent the 325 mean of minimum, mean, and maximum daily values for the months January through April (J, F, M, A). For 326 example, $\bar{T}_{I_{min}}$ is the climatological normal of the average of the daily minimum temperatures observed in January. 327 In the stepwise regression, explanatory variables were accepted if they improved the adjusted R^2 value by 0.001. 328 The result of the regression yielded

329

330 (7)
$$SWE_{acc} = Ah^{a_1}MAP^{a_2}(\bar{T}_{F_{mean}} + 30)^{a_3}; DOY < DOY$$

331

333

332 (8)
$$SWE_{abl} = Bh^{b_1}MAP^{b_2}(\overline{T}_{F_{mean}} + 30)^{b_3}; DOY \ge DOY$$

334 or, in log-transformed format,

- 335
- 336

338

 $log_{10}(SWE_{abl}) = log_{10}(B) + b_1 log_{10}(h) + b_1 log_{1$ 339 (10)

340
$$b_2 log_{10}(MAP) + b_3 log_{10}(\bar{T}_{F_{mean}} + 30); \quad DOY \ge DOY^*$$

341

342 indicating that only snow depth, mean annual precipitation and mean February temperature were relevant. Manual 343 tests of model construction with other variables included confirmed that Eqns. (7-8) yielded the best results. In the 344 above equations, note that an offset is added to the temperature in order to avoid taking the log of a negative 345 number. These two SWE estimates for the individual (acc and abl) phases of the snowpack are then blended with 346 Eqn. (5) to produce a single equation for SWE spanning the entire water year. The obtained regression coefficients

- 347 were $(A, a_1, a_2, a_3) = (0.0128, 1.070, 0.132, 0.506)$ and $(B, b_1, b_2, b_3) = (0.0271, 1.038, 0.201, 0.310)$. The
- 348 physical interpretation of these coefficients is straightforward. If a_1 and b_1 were equal to unity, then the density,
- 349 given by (SWE/*h*), would be a constant at a given location. Since they are greater than unity, they capture the effect
- 350 that snow density increases as depth increases. Turning to the coefficients on the climate variables, both a_2 and b_2
- 351 are greater than zero. So, for two locations with equal depth, equal temperature characteristics, but different
- 352 precipitation characteristics, the regression model predicts that the wetter location (larger *MAP*) will have a greater
- density. Finally, regarding temperature, both a_3 and b_3 are greater than zero. Therefore, for two locations with equal
- depth, equal precipitation characteristics, but different temperature characteristics, the regression model predicts that
- 355 the warmer location (larger $\overline{T}_{F_{mean}}$) will have a greater density. These trends are similar in concept to Sturm et al.
- 356 (2010), whose snow classes (based on climate classes) indicate which snow will densify more rapidly.

357 3 Results

- 358 A comparison of the three regression models (one-equation model, Eq. (2); two-equation model, Eqs. (3-5); multi-
- variable two-equation model, Eqs. (5, 7-8)) is provided in Figure 6. The left column shows scatter plots of modeled
- 360 SWE to observed SWE for the validation data set with the 1:1 line shown in black. The right column shows
- 361 histograms of the model residuals. The vertical lines in the right column show the mean error, or model bias.
- 362 Visually, it is clear that the one-equation model performs relatively poorly with a large negative bias. This large
- 363 negative bias is partially overcome by the two-equation model (middle row, Figure 6). The cloud of points is closer
- to the 1:1 line and the vertical black line indicating the mean error is closer to zero. In the final row of Figure 6, we
- 365 see that the multi-variable two-equation model yields the best result by far. The residuals are now evenly distributed
- 366 with a negligible bias. Several metrics of performance for the three models, including R^2 (Pearson coefficient), bias,
- 367 and root-mean-square-error (RMSE), are provided in Table 2. Figure 7 shows the distribution of model residuals for
- the multi-variable two-equation model as a function of DOY.
- 369
- Table 2: Summary of performance metrics for the three regression models presented in Section 2.2.

Model	R ²	Bias (mm)	RMSE (mm)
One-equation	0.946	-19.5	102
Two-equation	0.962	-5.1	81
Multi-variable two-equation	0.972	-0.5	67

371

372 It is useful to also consider the model errors in a non-dimensional way. Therefore, an RMSE was computed at each 373 station location and normalized by the mean annual maximum SWE (SWE_{max}) at that location. Figure 8 shows the 374 probability density function of these normalized errors. The average RMSE is approximately 11% of SWE_{max} , with 375 most falling into the range of 5-25%. The spatial distribution of these normalized errors is shown in Figure 9. For 376 the SNOTEL stations, it appears there is a slight regional trend, in terms of stations in continental climates (northern 377 Rockies) having smaller relative errors than stations in maritime climates (Cascades). The British Columbia stations

- also show higher relative errors.
- 379

380 3.1 Results for Snow Classes

381 A key objective of this study is to regress climatological information in a continuous rather than a discrete way. The

382 work by Sturm et al. (2010) therefore provides a valuable point of comparison. In that study, the authors developed

383 the following equation for density ρ_b

384

385 (11)
$$\rho_b = (\rho_{max} - \rho_0) [1 - e^{(-k_1 h - k_2 DOY)}] + \rho_0$$

386

387 where ρ_0 is the initial density, ρ_{max} is the maximum or 'final' density (end of water year), k_1 and k_2 are coefficients,

and DOY in this case begins on January 1. This means that their DOY for October 1 is -92. The coefficients vary
 with snow class and the values determined by Sturm et al. (2010) are shown in Table 3.

390

Snow Class	ρ_{max}	ρ ₀	k ₁	k ₂
Alpine	0.5975	0.2237	0.0012	0.0038
Maritime	0.5979	0.2578	0.0010	0.0038
Prairie	0.5941	0.2332	0.0016	0.0031
Tundra	0.3630	0.2425	0.0029	0.0049
Taiga	0.2170	0.2170	0.0000	0.0000

391 Table 3: Model parameters by snow class for Sturm et al. (2010).

392

393 To make a comparison, the snow class for each SNOTEL and British Columbia snow survey (Rows 1 and 3 of Table

394 1) site was determined using a 1-km snow class grid (Sturm et al., 2010). The aggregated dataset from these stations

395 was made up of 27% Alpine, 14% Maritime, 10% Prairie, 11% Tundra, and 38% Taiga data points. Equation (11)

396 was then used to estimate snow density (and then SWE) for every point in the validation dataset described in Section

397 2.2. Figure 10 compares the SWE estimates from the Sturm model and from the present multi-variable, two-equation

398 model (Equations 5, 7-8). The upper left panel of Figure 10 shows all of the data, and the remaining panels show the

399 results for each snow class. In all cases, the current model provides better estimates. Plots of the residuals by snow

400 class are provided in Figure 11, giving an indication of the bias of each model for each snow class. Summaries of the

401 model performance, broken out by snow class, are given in Table 4.

402

Table 4: Comparison of model performance by Sturm et al. (2010) and the present study.

Model	Sturm et al. (2010)			Multi-variable two-equation model		
Snow Class	R ²	Bias (mm)	RMSE (mm)	R ²	Bias (mm)	RMSE (mm)
All Data	0.928	-29.2	111	0.972	-0.5	67
Alpine	0.973	10.1	55	0.971	-0.3	55
Maritime	0.968	-16.8	109	0.970	-4.5	105
Prairie	0.967	18.7	56	0.965	-0.2	51
Tundra	0.956	-10.5	82	0.969	-6.1	67
Taiga	0.943	-80.0	151	0.971	2.4	62

404

405 **3.2** Comparison to Pistocchi (2016)

406	In order to provide one additional comparison, the simple model of Pistocchi (2016) was also applied to the
407	validation dataset. His model calculates the bulk density as
408	
409	(12) $\rho_b = \rho_0 + K(DOY + 61),$
410	
411	where ρ_0 has a value of 200 kg m ⁻³ and K has a value of 1 kg m ⁻³ . The DOY for this model has its origin at
412	November 1. Application of this model to the validation dataset yields a bias of 55 mm and an RMSE of 94 mm.
413	These results are comparable to the Sturm et al. (2010) model, with a larger bias but smaller RMSE.
414	
415	3.3 Results for Northeast USA
416	The regression equations in this study were developed using a large collection of SNOTEL sites in CONUS, AK,
417	and BC. The snow pillow sites are limited to locations west of approximately W 105° (Figure 2a). By design, the
418	data sets from the northeastern USA (Section 2.1.1.3) were left as an entirely independent validation set. These
419	northeastern sites are geographically distant from the training data sets, are subject to a very different climate, and
420	are generally at much lower elevations than the western sites, providing an interesting opportunity to test how robust
421	the present model is.
422	
423	Figure 12 graphically summarizes the datasets and the performance of the multi-variable two-equation model of the
424	current study. The RMSE values are comparable to those found for the western stations, but, given the
425	comparatively thinner snowpacks in the northeast, represent a larger relative error (Table 5). The bias of the model
426	is consistently positive, in contrast to the western stations where the bias was negligible.
427	
428	Table 5: Performance metrics for the multi-variable two-equation model applied to various northeastern USA

429 datasets.

Dataset Name	R ²	Bias (mm)	RMSE (mm)
Maine Geological Survey, ME	0.91	8.9	33.3
Hubbard Brook (Station 2), NH	0.63	18.9	64.2
Thompson Farm, NH	0.85	7.1	21.6
NRCS SCAN	0.87	-1.8	38.7
Sleepers River, VT	0.93	14.0	29.7
New York Snow Survey	0.93	13.8	31.2

430

431 4 Discussion

432 The results presented in this study show that the regression equation described by equations (5, 7-8) is an

433 improvement (lower bias and RMSE) over other widely used bulk density equations. The key advantage is that the

434 present method regresses in relevant physical parameters directly, rather than using discrete bins (for snow class,

435 elevation, month of year, etc.), each with its own set of model coefficients. The comparison (Figs. 10-11; Table 4) to

436 the model of Sturm et al. (2010) reveals a peculiar behavior of that model for the Taiga snow class, with a large

437 negative bias in the Sturm estimates. Inspection of the coefficients provided for that class (Table 3) shows that the 438 model simply predicts that $\rho_b = \rho_{max} = 0.217$ for all conditions.

439

440 When our multi-variable two-equation model, developed solely from western North American data, is applied to 441 northeast USA locations, it produces SWE estimates with smaller RSME values and larger biases than the western 442 stations. When comparing the SWE-h curves of the SNOTEL data (Figure 4b) to those of the east coast data sets 443 (left column; Figure 12), it is clear that the northeast data generally have more scatter. This is confirmed by 444 computing the correlation coefficients between SWE and h for each dataset. It is unclear if this disparity in 445 correlation is related to measurement methodology or is instead a 'signal to noise' issue. Comparing Figures 4 and 446 12 shows the considerable difference in snowpack depth between the western and northeastern data sets. When the 447 western dataset is filtered to include only measurement pairs where h < 1.5 m, the correlation coefficient is reduced 448 to a value consistent with the northeast datasets. This suggests that the performance of the current (or other) 449 regression model is not as good at shallow snowpack depths. This is also suggested upon examination of the time series of observed $\rho_b = SWE/h$ for a given season at a snow pillow site. Very early in the season, when the depths 450 451 are small, the density curve has a lot of variability. Later in the season, when depths are greater, the density curve 452 becomes much smoother. Very late in the season, when depths are low again, the density curve becomes highly

- 453 variable again.
- 454

455 Measurement precision and accuracy affect the construction and use of a regression model. Upon inspection of the 456 snow pillow data, it was observed that the precision of the depth measurements was approximately 25 mm and that 457 of the SWE measurements was approximately 2.5 mm. To test the sensitivity of the model coefficients to the 458 measurement precision, the depth values in the training dataset were randomly perturbed by +/- 25 mm and the SWE 459 values were randomly perturbed by +/- 2.5 mm and the regression coefficients were recomputed. This process was 460 repeated numerous times and the mean values of the perturbed coefficients were obtained. These adjusted 461 coefficients were then used to recompute the SWE values for the validation data set and the bias and RMSE were 462 found to be -10.5 mm and 72.7 mm. This represents a roughly 10% increase in RMSE, but a considerable increase in 463 bias magnitude (see Table 4 for the original values). This sensitivity of the regression analysis to measurement 464 precision underscores the need to have high-precision measurements for the training data set. Regarding accuracy, 465 random and systematic errors in the paired SWE - h data used to construct the regression model will lead to 466 uncertainties in SWE values predicted by the model. As noted in the introduction, snow pillow errors in SWE 467 estimates do not follow a simple pattern. Additionally, they are complicated by the fact that the errors are often 468 computed by comparing snow pillow data to coring data, which itself is subject to error. Lacking quantitative 469 information on the distribution of snow pillow errors, we are unable to quantify the uncertainty in the SWE 470 estimates.

471

472 Another important consideration has to do with the uncertainty of depth measurements that the model is applied to.

473 For context, one application of this study is to crowd-sourced, opportunistic snow depth measurements from

474 programs like the Community Snow Observations (CSO; Hill et al., 2018) project. In the CSO program,

- 475 backcountry recreational users submit depth measurements, typically taken with an avalanche probe, using a
- smartphone in the field. The measurements are then converted to SWE estimates which are assimilated into
- 477 snowpack models. These depth measurements are 'any time, any place' in contrast to repeated measurements from
- 478 the same location, like snow pillows or snow courses. Most avalanche probes have cm-scale graduated markings, so
- 479 measurement precision is not a major issue. A larger problem is the considerable variability in snowpack depth that
- 480 can exist over short (meter scale) distances. The variability of the Chugach avalanche probe measurements was
- 481 assessed by taking the standard deviation of 8 *h* measurements per site. The average of this standard deviation over
- 482 the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the
- 483 sites was 15%. This variability is a function of the surface roughness of the underlying terrain, and also a function of
- 484 wind redistribution of snow. Propagating this uncertainty through the regression equations yields a slightly higher
- 485 (16%) uncertainty in the SWE estimates. CSO participants can do three things to ensure that their recorded depth
- 486 measurements are as representative as possible. First, avoid measurements in areas of significant wind scour or
- 487 deposition. Second, avoid measurements in terrain likely to have significant surface roughness (rocks, fallen logs,
- 488 etc.). Third, take several measurements and average them.
- 489
- 490 Expansion of CSO measurements in areas lacking SWE measurements can increase our understanding of the
- 491 extreme spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in
- 492 these regions. It could also prove useful for estimating watershed-scale SWE in regions like the northeastern USA,
- 493 which is currently limited to five automated SCAN sites with historical SWE measurements for only the past two
- 494 decades. Additionally, historical snow depth measurements are more widely available in the Global Historical
- 495 Climatology Network (GHCN-Daily; Menne et al. 2012), with several records extending back to the late 1800s.
- 496 While many of the GHCN stations are confined to lower elevations with shallower snow depths, the broader
- 497 network of quality-controlled snow depth data paired with daily GHCN temperature and precipitation measurements
- 498 could potentially be used to reconstruct SWE in the eastern US given additional model development and refinement.

499 5 Conclusions

- 500 We have developed a new, easy to use method for converting snow depth measurements to snow water equivalent
- 501 estimates. The key difference between our approach and previous approaches is that we directly regress in
- 502 climatological variables in a continuous fashion, rather than a discrete one. Given the abundance of freely available
- 503 climatological norms, a depth measurement tagged with coordinates (latitude and longitude) and a time stamp is
- 504 easily and immediately converted into SWE.
- 505
- 506 We developed this model with data from paired SWE-*h* measurements from the western United States and British
- 507 Columbia. The model was tested against entirely independent data (primarily snow course; some snow pillow) from
- 508 the northeastern United States and was found to perform well, albeit with larger biases and root-mean-squared-
- 509 errors. The model was tested against other well-known regression equations and was found to perform better.
- 510

- 511 This model is not a replacement for more sophisticated snow models that evolve the snowpack based on high
- 512 frequency (e.g., daily or sub-daily) weather data inputs. The intended purpose of this model is to constrain SWE
- 513 estimates in circumstances where snow depth is known, but weather variables are not, a common issue in sparsely
- 514 instrumented areas in North America.

515 6 Acknowledgements

- 516 Support for this project was provided by NASA (NNX17AG67A). R. Crumley acknowledges support from the
- 517 CUAHSI Pathfinder Fellowship. E. Burakowski acknowledges support from NSF (MSB-ECA #1802726). We thank
- 518 M. Sturm, A. Winstral and a third anonymous referee for their careful and thoughtful reviews of this manuscript.

519 7 Data Access

- 520 Numerous online datasets were used for this project and were obtained from the following locations:
- 521 1. NRCS Snow Telemetry: <u>https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html</u>
- 522 2. NRCS Soil Climate Analysis Network: <u>https://www.wcc.nrcs.usda.gov/scan/</u>
- 523 3. British Columbia Automated Snow Weather Stations:
- 524 <u>https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-</u>
 525 tools/snow-survey-data/automated-snow-weather-station-data
- 4. Maine Cooperative Snow Survey: <u>https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data</u>
- 5. New York Snow Survey: http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html
- 528 6. Sleepers River Research Watershed. Snow data not available online; request data from contact at:
 529 <u>https://nh.water.usgs.gov/project/sleepers/index.htm</u>
- 530 7. Hubbard Brook Experimental Forest: <u>https://hubbardbrook.org/d/hubbard-brook-data-catalog</u>
- 531 8. CONUS PRISM Data: <u>http://www.prism.oregonstate.edu/</u>
- 9. British Columbia PRISM Data: <u>http://climatebcdata.climatewna.com/</u>
- 533 10. Alaska PRISM Data: <u>https://irma.nps.gov/Portal/</u>

534

- 535 A Matlab function for calculating SWE based on the results is this paper has been made publicly available at Github
- 536 (https://github.com/communitysnowobs/snowdensity).
| 537 | References |
|-----|--|
| 538 | |
| 539 | Alford, D.: Density variations in alpine snow, J. Glaciol., 6(46), 495-503, |
| 540 | https://doi.org/10.3189/S0022143000019717, 1967. |
| 541 | |
| 542 | Avanzi, F., De Michele, C., and Ghezzi, A.: On the performances of empirical regressions for the estimation of bulk |
| 543 | snow density, Geogr. Fis. Dinam. Quat., 38, 105-112, doi:10.4461/GFDQ.2015.38.10, 2015. |
| 544 | |
| 545 | Beaumont, R.: Mt. Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626-631, https://doi.org/10.1175/1520- |
| 546 | 0450(1965)004<0626:MHPPSG>2.0.CO;2 1965. |
| 547 | |
| 548 | Beaumont, R., and Work, R.: Snow sampling results from three samplers, Hydrol. Sci. J., 8(4), 74-78, |
| 549 | https://doi.org/10.1080/02626666309493359, 1963. |
| 550 | |
| 551 | Burakowski, E.A., Ollinger, S., Lepine, L., Schaaf, C.B., Wang, Z., Dibb, J.E., Hollinger, D.Y., Kim, JH., Erb, A., |
| 552 | and Martin, M.E.: Spatial scaling of reflectance and surface albedo over a mixed-use, temperate forest landscape |
| 553 | during snow-covered periods, Remote Sens. Environ., 158, 465-477, https://doi.org/10.1016/j.rse.2014.11.023, |
| 554 | 2015. |
| 555 | |
| 556 | Burakowski, E.A., Wake, C.P., Stampone, M., and Dibb, J.: Putting the Capital 'A' in CoCoRAHS: An |
| 557 | Experimental Program to Measure Albedo using the Community Collaborative Rain Hail and Snow (CoCoRaHS) |
| 558 | Network, Hydrol. Process., 27(21), 3024-3034, https://doi.org/10.1002/hyp.9825, 2013. |
| 559 | |
| 560 | Campbell, J., Ollinger, S., Flerchinger, G., Wicklein, H., Hayhoe, K., and Bailey, A.: Past and projected future |
| 561 | changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA, Hydrol. |
| 562 | Process., 24, 2465-2480, https://doi.org/10.1002/hyp.7666, 2010. |
| 563 | |
| 564 | Church, J.E.: Snow surveying: its principles and possibilities, Geogr. Rev., 23(4), 529-563, DOI: 10.2307/209242, |
| 565 | 1933. |
| 566 | |
| 567 | Church, J.E., and Marr, J.C.: Further improvement of snow-survey apparatus, Transactions of the American |
| 568 | Geophysical Union, 18(2), 607-617, <u>10.1029/TR018i002p00607</u> , 1937. |
| 569 | |
| 570 | Daly, C., Neilson, R., and Phillips, D.: A statistical-topographic model for mapping climatological precipitation over |
| 571 | mountainous terrain, J. Appl. Meteorol., 33, 140-158, https://doi.org/10.1175/1520- |
| 572 | 0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994. |
| 573 | |

574	Deeb, E., Marshall, HP., Forster, R., Jones, C., Hiemstra, C., and Siqueira, P.: Supporting NASA SnowEx remote
575	sensing strategies and requirements for L-band interferometric snow depth and snow water equivalent estimation,
576	Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, 1395-
577	1396, DOI: 10.1109/IGARSS.2017.8127224, 2017.
578	
579	Dixon, D., and Boon, S.: Comparison of the SnowHydro sampler with existing snow tube designs, Hydrol. Process.,
580	26(17), 2555-2562, https://doi.org/10.1002/hyp.9317, 2012.
581	
582	Dressler, K., Fassnacht, S., and Bales, R.: A comparison of snow telemetry and snow course measurements in the
583	Colorado River basin, J. Hydrometeorol., 7, 705-712, https://doi.org/10.1175/JHM506.1, 2006.
584	
585	Fick, S., and Hijmans, R.: WorldClim2: new 1-km spatial resolution climate surfaces for global land areas, Int. J.
586	Climatol., 37, 4302-4315, https://doi.org/10.1002/joc.5086, 2017.
587	
588	Goodison, B.: Accuracy of snow samplers for measuring shallow snowpacks: An update, Proceedings of the 35th
589	Annual Eastern Snow Conference, Hanover, NH, 36-49, 1978.
590	
591	Goodison, B., Ferguson, H., and McKay, G.: Measurement and data analysis. The Handbook of Snow: Principles,
592	Processes, Management, and Use, D. Gray and D. Male, Eds., Pergamon Press, 191-274, 1981.
593	
594	Goodison, B., Wilson, B., Wu., K, and Metcalfe, J.: An inexpensive remote snow-depth gauge: An assessment,
595	Proceedings of the 52 nd Annual Western Snow Conference, Sun Valley, ID, 188-191, 1984.
596	
597	Goodison, B., Glynn, J., Harvey, K., and Slater, J.: Snow Surveying in Canada: A Perspective, Can. Water Resour.
598	J., 12(2), 27-42, https://doi.org/10.4296/cwrJ1202027, 1987.
599 (00	
600	Gnanadesikan, R., and Kettenring, J.: Robust estimates, residuals, and outlier detection with multiresponse data,
601	Biometrics, 28, 81-124, DOI: 10.230//2528963, 1972.
602	Hill D.F. Weller C. I. Wilstern Janes K. Crumley D. and Anundt A. Crewdenursing many doubt date with
604	Hill, D.F., Wolken, G. J., Wikstrom Jones, K., Crumley, R., and Arendt, A.: Crowdsourcing snow depth data with
604 605	citizen scientists, Eos, 99, https://doi.org/10.1029/2018EO108991, 2018.
606	Johnson L and Marks D. The detection and correction of snow water equivalent pressure senser errors. Hydrol
607	billison, J., and Marks, D.: The detection and correction of show water equivalent pressure sensor errors, riveror.
007	Proc., https://doi.org/10.1002/hyp.5/95, 2004.
608	
609	Johnson, J., Gelvin, A., Duvoy, P., Schaefer G., Poole, G., and Horton, G.: Performance characteristics of a new
610	electronic snow water equivalent sensor in different climates, Hydrol. Proc., DOI: 10.1002/hyp.10211, 2015.

611	
612	Jonas, T., Marty, C., and Magnusson, M.: Estimating the snow water equivalent from snow depth measurements, J.
613	Hydrol., 378, 161-167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009.
614	
615	Kang, D.H., and Barros, A.P.: Full-system testing in laboratory conditions of an L-band snow sensor system for in
616	situ monitoring of snow-water content, IEEE Trans. Geosci. Remote Sens., 49(3), 908-919,
617	10.1109/TGRS.2010.2072786, 2011.
618	
619	Leinss, S., Wiesmann, A., Lemmetyinen, J., and Hajnsek, I.: Snow water equivalent measured by differential
620	interferometry, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8(8), 3773-3790, 10.1109/JSTARS.2015.2432031,
621	2015.
622	
623	Leys, C., Klein, O., Dominicy, Y., and Ley, C.: Detecting multivariate outliers: use a robust variant of the
624	Mahalanobis distance, J. Exp. Soc. Psychol., 74, 150-156, https://doi.org/10.1016/j.jesp.2017.09.011, 2018.
625	
626	Liang, X., Lettermaier, D., Wood, E., and Burges, S.: A simple hydrologically based model of land surface water
627	and energy fluxes for general circulation models, J. Geophys. Res. Atmos., 99(D7), 14,415-14,428,
628	https://doi.org/10.1029/94JD00483, 1994.
629	
630	Liston, G., and Elder, K.: A distributed snow evolution modeling system (SnowModel), J. Hydrometerol., 7, 1259-
631	1276, https://doi.org/10.1175/JHM548.1, 2006.
632	
633	Lundberg, A., Richardson-Naslund, C., and Andersson, C.: Snow density variations: consequences for ground
634	penetrating radar, Hydrol. Process., 20, 1483-1495, https://doi.org/10.1002/hyp.5944, 2006.
635	
636	Maine Geological Survey: Maine Cooperative Snow Survey Dataset,
637	https://www.maine.gov/dacf/mgs/hazards/snow_survey/, 2018.
638	
639	McKay, G., and Findlay, B., 1971: Variation of snow resources with climate and vegetation in Canada, Proceedings
640	of the 39th Western Snow Conference, Billings, MT, 17-26, 1971.
641	
642	De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D.: The Mahalanobis distance, Chemometr. Intell. Lab. Syst.,
643	50(1), 1-18, https://doi.org/10.1016/S0169-7439(99)00047-7, 2000.
644	
645	McCreight, J., and Small, E.: Modeling bulk density and snow water equivalent using daily snow depth

- 646 observations, The Cryosphere, 8, 521-536, https://doi.org/10.5194/tc-8-521-2014, 2014.
- 647

- 648 Meloysund, V., Leira, B., Hoiseth, K., and Liso, K.: Predicting snow density using meterological data, Meteorol.
- 649 Appl., 14, 413-423, https://doi.org/10.1002/met.40, 2007.
- 650
- 651 Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and Houston, T.G.: An overview
- of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Technol., 29, 97-910,
- 653 doi:10.1175/JTECH-D-11-00103.1, 2012.
- 654
- Molotch, N.P., and Bales, R.C.: SNOTEL representativeness in the Rio Grande headwaters on the basis of
- by physiographics and remotely sensed snow cover persistence, Hydrol. Process., 20(4), 723-739,
- 657 https://doi.org/10.1002/hyp.6128, 2006.
- 658
- Mote, P., Li, S., Letternaier, D., Xiao, M., and Engel, R.: Dramatic declines in snowpack in the western US," npj
- 660 Clim. Atmos. Sci., 1(2), 1-6, doi:10.1038/s41612-018-0012-1, 2018.
- 661
- Mizukami, N., and Perica, S.: Spatiotemporal characteristics of snowpack density in the mountainous regions of the
 western United States, J. Hydrometeorol., 9, 1416-1426, https://doi.org/10.1175/2008JHM981.1, 2008.
- 664
- New York Snow Survey, NOAA, Northeast Regional Climate Center at Cornell University, 2018.
- 666

Pagano, T., Garen, D., Perkins, T., and Pasteris, P.: Daily updating of operational statistical seasonal water supply

- forecasts for the western U.S., J. Am. Water Resour. Assoc., 45(3), 767-778, https://doi.org/10.1111/j.17521688.2009.00321.x, 2009.
- 670
- 671 Painter, T., Berisford, D., Boardman, J., Bormann, K., Deems, J., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R.,
- 672 Marks, D., Mattmann, C., Mcgurk, B., Ramirez, P., Richardson, M., Skiles, S., Seidel, F., and Winstral, A.: The
- 673 Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for
- 674 mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139-152,
- 675 doi:10.1016/j.rse.2016.06.018, 2016.
- 676
- 677 Pistocchi, A.: Simple estimation of snow density in an Alpine region, J. Hydrol. Reg. Stud., 6, 82-89,
- 678 http://dx.doi.org/10.1016/j.ejrh.2016.03.004, 2016.
- 679
- 680 Rousseeuw, P.: Least Median of Squares Regression, J. Am. Stat. Assoc., 79, 871-880, DOI:
- 681 10.1080/01621459.1984.10477105, 1984.
- 682
- Ryan, W., Doesken, N., and Fassnacht, S.: Evaluation of Ultrasonic Snow Depth Sensors for U.S. Snow
- 684 Measurements, J. Atmos. Ocean. Technol., 25, 667-684, https://doi.org/10.1175/2007JTECHA947.1, 2008.

6	8	5

Schaefer, G., Cosh, M., and Jackson, T.: The USDA Natural Resources Conservation Service Soil Climate Analysis
Network (SCAN), J. Atmos. Ocean. Technol., 24, 2073-2077, https://doi.org/10.1175/2007JTECHA930.1, 2007.
Serreze, M., Clark, M., Armstrong, R., McGinnis, D., and Pulwarty, R.: Characteristics of the western United States
snowpack from snowpack telemetry (SNOTEL) data, Water Resour. Res., 35(7), 2145-2160,
https://doi.org/10.1029/1999WR900090, 1999.
Shanley, J., and Chalmers, A.: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont, Hydrol.
Process., 13(12-13), 1843-1857, https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-
HYP879>3.0.CO;2-G, 1999.
Sokol, J., Pultz, T., and Walker, A.: Passive and active airborne microwave remote sensing of snow cover," Int.
J. Remote. Sens., 24, 5327-5344, https://doi.org/10.1080/0143116031000115076, 2003.
Sturm, M., Holmgren, J., and Liston, G.: A seasonal snow cover classification system for local to global
applications, J. Clim., 8, 1261-1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
Sturm, M., Taras, B., Liston, G.E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow
depth data and climate classes, J. Hydrometeorol., 11, 1380-1394, https://doi.org/10.1175/2010JHM1202.1, 2010.
U.S. Army Corps of Engineers: Snow hydrology: Summary report of the snow investigations of the North Pacific
Division, 437pp., 1956.
Vuyovich, C., Jacobs, J., and Daly, S.: Comparison of passive microwave and modeled estimates of total watershed
SWE in the continental United States, Water Resour. Res., 50(11), 9088-9012,
https://doi.org/10.1002/2013WR014734, 2014.
Wang, T., Hamann, A., Spittlehouse, D.L., and Murdock, T.: ClimateWNA - High-Resolution Spatial Climate Data
for Western North America, J. Appl. Meteorol. Climatol., 51, 16-29, https://doi.org/10.1175/JAMC-D-11-043.1,
2012.
Wigmosta, M.S., Vail, L., and Lettenmaier, D.: A distributed hydrology-vegetation model for complex
terrain, Water Resour. Res., 30, 1665-1679, https://doi.org/10.1029/94WR00436, 1994

- 719 Figure 1: Conceptual sketch of the evolution of snow water equivalent (SWE) over the course of a water year (black
- 720 line). Also shown is the evolution of SWE with snowpack depth over a water year (red line). Note the hysteresis
- 721 loop due to the densification of the snowpack.

- Figure 2: Distribution of measurement locations used in this study. (a) Western USA and Canada station locations,
- with colors indicating station elevation in meters. (b) Northeast USA locations, with stations colored according to
 data source. (c, d) Measurement sites in the Chugach Mountains, southcentral Alaska.
- 726

- 730 Figure 3: Sample time series of SWE and *h* from the Rex River (WA) SNOTEL station. Observations of *h* at times
 - Year
- 731 when SWE is zero are likely spurious.

Figure 4: Scatter plot of SWE vs. *h* for the complete SNOTEL dataset before (a) and after (b) removing data points.

- Figure 5: Gridded maps of mean annual precipitation (*MAP*) and mean February temperature $(\bar{T}_{F_{mean}})$ for the study
- regions. Climate normals are from the PRISM data set (1981-2010 for CONUS and British Columbia; 1971-2000
- for Alaska).

- Figure 6: Two-dimensional histograms (heat maps; left column) of modeled vs. observed SWE and probability
- density functions (right column) of the residuals for three simple models applied to the CONUS, AK, and BC snow
- pillow data. Warmer colors in the heat maps indicate greater density. The vertical lines in the right column indicate
- 746 the location of the mean residual, or bias. Top row (a-b): One-equation model (Section 2.2.1). Middle row (c-d):
- 747 Two-equation model (Section 2.2.2). Bottom row (e-f): Multi-variable two-equation model (Section 2.2.3).
- 748

50 Figure 7: Heat map of SWE residuals as a function of *DOY*.

- 753 Figure 8: Probability density function of snow pillow station root-mean-square error (RMSE) normalized by station
- 754 mean annual maximum SWE.

755

- 756 Figure 9: Spatial distribution of snow pillow station root-mean-square error (RMSE) normalized by station mean
- annual maximum SWE.
- 758

- Figure 10: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al.
- 761 (2010). The subpanels show modeled SWE vs. observed SWE for all of the data binned together, as well as for the
- data broken out by the snow classes identified by Sturm et al. (1995). The gray symbols show the Sturm result and
- the transparent heat maps (warmer colors indicate greater density) show the current result. The models are being
- applied to the validation data set (50% of the aggregated snow pillow data for CONUS, AK, and BC).

- Figure 11: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al.
- 767 (2010). The subpanels show probability density functions of the residuals of the model fits for all of the data binned
- together, as well as for the data broken out by the snow classes identified by Sturm et al. (1995). The gray lines
- show the Sturm result and the colored lines show the current result. The vertical lines show the mean error, or the
- model bias, for both the Sturm and the current result. The models are being applied to the validation data set (50% of
- the aggregated snow pillow data for CONUS, AK, and BC).

- 773 Figure 12: Results from application of the multi-variable, two-equation model to numerous east coast datasets. The
- 774 left column shows the SWE-h data for each dataset. Note that the black symbols are points removed by the outlier
- 775 detection procedure discussed in section 2.1.1.4. The remaining symbols are colored by DOY. The middle panel
- 776 plots heat maps of the model estimates of SWE against the observations of SWE with the 1:1 line included. Warmer
- 777 colors indicate higher densities. The right panel shows probability density functions of the model residuals, with the
- 778

Converting Snow Depth to Snow Water Equivalent Using Climatological Variables 2

David F. Hill¹, Elizabeth A. Burakowski², Ryan L. Crumley³, Julia Keon⁴, J. Michelle Hu⁵, Anthony A. Arendt⁶, Katreen Wikstrom Jones⁷, Gabriel J. Wolken⁸

- ¹Civil and Construction Engineering, Oregon State University, OR, USA
- ²Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, NH, USA
- 8 9 ³Water Resources Graduate Program, Oregon State University, OR, USA
- 10 ⁴Civil and Construction Engineering, Oregon State University, OR, USA 11 ⁵Civil and Environmental Engineering, University of Washington
- 12 ⁶Applied Physics Laboratory, University of Washington
- 13 ⁷Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK, USA
- 14 ⁸Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK, USA; International Arctic Research Center,
- 15 University of Alaska Fairbanks, Fairbanks, AK, USA

1

3

4

5 6 7

18

16 Correspondence to: David F. Hill (david.hill@oregonstate.edu) 17

19 Abstract. We present a simple method that allows snow depth measurements to be converted to snow water 20 equivalent (SWE) estimates. These estimates are useful to individuals interested in water resources, ecological

- 21 function, and avalanche forecasting. They can also be assimilated into models to help improve predictions of total
- 22 water volumes over large regions. The conversion of depth to SWE is particularly valuable since snow depth
- 23 measurements are far more numerous than costlier and more complex SWE measurements. Our model regresses
- 24 SWE against snow depth and climatological (30-year normal) values for mean annual precipitation (MAP) and mean
- 25 February temperature $(\overline{T}_{F_{mean}})$, producing a power-law relationship. Relying on climatological normals rather than
- 26 weather data for a given year allows our model to be applied at measurement sites lacking a weather station.
- 27 Separate equations are obtained for the accumulation and the ablation phases of the snowpack, which introduces
- 28 'day of water year' (DOY) as an additional variable. The model is validated against a large database of snow pillow
- 29 measurements and yields a bias in SWE of less than 0.5 mm and a root-mean-squared-error (RMSE) in SWE of
- 30 approximately 65 mm. When the errors are investigated on a station-by-station basis, the average RMSE is about 5%
- 31 of the MAP at each station. The model is additionally validated against a completely independent set of data from
- 32 the northeast United States. Finally, the results are compared with other models for bulk density that have varying
- 33 degrees of complexity and that were built in multiple geographic regions. The results show that the model described
- 34 in this paper has the best performance for the validation data set.

Formatted: Font:Italic

36 In many parts of the world, snow plays a leading-order role in the hydrological cycle (USACE, 1956; Mote et al.,

37 2018). Accurate information about the spatial and temporal distribution of snow water equivalent (SWE) is useful to

many stakeholders (water resource planners, avalanche forecasters, aquatic ecologists, etc.), but can be time
 consuming and expensive to obtain.

40

41	Snow pillows (Beaumont, 1965) are a well-established tool for measuring SWE at fixed locations. Figure 1 provides
42	a conceptual sketch of the variation of SWE with time over a typical water year. A comparatively long accumulation
43	phase is followed by a short ablation phase. While simple in operation, snow pillows are relatively large in size and
44	they need to be installed prior to the onset of the season's snowfall. This limits their ability to be rapidly or
45	opportunistically deployed. Additionally, snow pillow installations tend to require vehicular access, limiting their
46	locations to relatively simple topography Finally, snow pillow sites are not representative of the lowest or highest
47	elevation bands within mountainous regions (Molotch and Bales, 2005). In the western United States (USA), the
48	Natural Resources Conservation Service (NRCS) operates a large network of Snow Telemetry (SNOTEL) sites,
49	featuring snow pillows. The NRCS also operates the smaller Soil Climate Analysis Network (SCAN) which
50	provides the only, and very limited, snow pillow SWE measurements in the eastern USA.
51	
52	SWE can also be measured manually, using a snow coring device that measures the weight of a known volume of
53	snow to determine snow density (Church, 1933). These measurements are often one-off measurements, or in the
54	case of 'snow courses' they are repeated weekly or monthly at a given location. The simplicity and portability of
55	coring devices expand the range over which measurements can be collected, but it can be challenging to apply these
56	methods to deep snowpacks due to the length of standard coring devices, Note that there are numerous different
57	styles of coring devices, including the Adirondack sampler and the Mt. Rose / Federal sampler (Church and Marr,
58	<u>1937),</u>
59	
60	There are a number of issues that affect the accuracy of both snow pillow and snow coring measurements. With
61	coring measurements, if the coring device is not carefully extracted, a portion of the core may fall out of the device.
62	

- 62 Or, snow may become compressed in the coring device during insertion. These effects have led to varying
- 63 conclusions, with some studies (e.g., Sturm et al., 2010) showing a low SWE bias and other studies (e.g., Goodison,
- 64 <u>1978</u>) showing a high SWE bias. As noted by Johnson et al. (2015) a good rule of thumb is that coring devices are
- $\frac{1000}{1000} \frac{1000}{1000} \frac{1000}{1000}$
- 66 results, suggesting that SWE measurements are sensitive to the design of the specific coring device, such as the
- 67 presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012). With snow
- 68 pillows, some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE,
- 69 with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks,
- 70 <u>2004; Dressler et al., 2006; Johnson et al., 2015) note a more complex situation with SWE under-reported at times,</u>

Deleted:, Deleted: and

Moved (insertion) [1]

Deleted: Some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE, with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks, 2004; Johnson et al., 2015) note a more complex situation with SWE under-reported at times, but over-reported at other times.

Deleted: these

Deleted: and/or the need to dig very deep snowpits

Moved down [2]: Studies comparing different styles of snow samplers report statistically different results, suggesting that SWE measurements are sensitive to the design of the coring device, such as the presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012).

Moved (insertion) [2] Deleted: S

89	but over-reported at other times. Note that when snow pillow data are evaluated, they are most commonly compared			
90	to coring measurements at the same location.			
91	۲		Deleted:	
92	All methods of measuring SWE are challenged by the fact that SWE is a depth-integrated property of a snowpack.			
93	This is why the snowpack must be weighed, in the case of a snow pillow, or a core must be extracted from the			
94	surface to the ground. This measurement complexity makes it difficult to obtain SWE information with the spatial			
95	and temporal resolution desired for watershed-scale studies. Other snowpack properties, such as the depth h , are			
96	much easier to measure. For example, using a graduated device such as a meterstick or an avalanche probe to		Deleted: U	
97	measure the depth takes only seconds. Automating depth measurements at a fixed location can easily be done using		Deleted: , and	
98	low-cost ultrasonic devices (Goodison et al., 1984; Ryan et al., 2008). High-spatial-resolution measurements of		Deleted: are	
99	snowpack depth are commonly made with Light Detection and Ranging (LIDAR). One example of this is the	×.	Deleted: automated	
100	Airborne Snow Observatory program (ASO; Painter et al., 2016). The comparatively high expense of airborne			
101	LIDAR surveys typical limits measurements geographically (to a few basins) and temporally (weekly to monthly			
102	interval).			
103				
104	Given the relative ease in obtaining depth measurements, it is common to use h as a proxy for SWE. Figure 1 shows			
105	a conceptual sketch of the variation of SWE with h over a typical water year. Noting the arrows on the curve, we see			
106	that SWE is multi-valued for each h. This is due to the fact that the snowpack increases in density throughout the			
107	water year, producing a hysteresis loop in the curve. A large body of literature exists on the topic of how to convert			
108	h to SWE. It is beyond the scope of this paper to provide a full review of these 'bulk density equations,' where the			
109	density is given by $\rho_b = SWE/h$. Instead, we refer readers to the useful comparative review by Avanzi et al. (2015).			
110	Here, we prefer to discuss a limited number of previous studies that illustrate the spectrum of methodologies and			
111	complexities that can be used to determine ρ_b or SWE.			
112				
113	Many studies express ρ_b as an increasing function (often linear) of <i>h</i> . In some cases (e.g., Lundberg et al., 2006) a			
114	second equation is added where ρ_b attains a constant value when a threshold <i>h</i> is exceeded. A single linear equation			
115	captures the process of densification of the snowpack during the accumulation phase, but performs poorly during the			
116	ablation phase, where depths are decreasing but densities continue to increase or approach a constant value.			
117	Other approaches choose to parameterize ρ_b in terms of time, rather than <i>h</i> . Pistocchi (2016) provides a single			
118	equation while Mizukami and Perica (2008) provide two sets of equations, one set each for early and late season.			
119	Each set contains four equations, each of which is applicable to a particular 'cluster' of stations. This clustering was			
120	driven by observed densification characteristics and the resulting clusters are relatively spatially discontinuous.			
121	Jonas et al. (2009) take the idea of region- (or cluster-) specific equations and extend it further to provide		Deleted: and Magnusson	
122	coefficients that depend on time and elevation as well. They use a simple linear equation for ρ_b in terms of <i>h</i> and the			
123	slope and intercept of the equation are given as monthly values, with three elevation bins for each month (36 pairs of			
124	coefficients). There is an additional contribution to the intercept (or 'offset') which is region-specific (one of 7			
125	regions).			

...[1]

133		
134	These classifications, whether based on region, elevation, or season, are valuable since they acknowledge that all	
135	snow is not equal. McKay and Findlay (1971) discuss the controls that climate and vegetation exert on snow density,	
136	and Sturm et al. (2010) address this directly by developing a snow density equation where the coefficients depend	
137	upon the 'snow class' (5 classes). Sturm et al. (1995) explain the decision tree, based on temperature, precipitation,	
138	and wind speed, that leads to the classification. The temperature metric is the 'cooling degree month' calculated	
139	during winter months only. Similarly, only precipitation falling during winter months was used in the classification.	
140	Finally, given the challenges in obtaining high quality, high-spatial-resolution wind information, vegetation	
141	classification was used as a proxy. Using climatological values (rather than values for a given year), Sturm et al.	
142	(1995) were able to develop a global map of snow classification.	
143		
144	There are many other formulations for snow density that increase in complexity and data requirements. Meloysund	
145	et al. (2007) express ρ_b in terms of sub-daily measurements of relative humidity, wind characteristics, air pressure,	
146	and rainfall, as well as h and estimates of solar exposure ('sun hours'). McCreight and Small (2014) use daily snow	
147	depth measurements to develop their regression equation. They demonstrate improved performance over both Sturm	
148	et al. (2010) and Jonas et al. (2009). However, a key difference between the McCreight and Small (2014) model and	 Deleted: and Magnusson
149	the others listed above is that the former cannot be applied to a single snow depth measurement. Instead, it requires a	
150	continuous time series of depth measurements at a fixed location. Further increases in complexity are found in	 Deleted: (and correspondingly, accuracy)
151	energy-balance snowpack models (SnowModel, Liston and Elder, 2006; VIC, Liang et al., 1994, DHSVM,	
152	Wigmosta et al., 1994, others), many of which use multi-layer models to capture the vertical structure of the	
153	snowpack.,While the particular details vary, these models generally require high temporal-resolution time series of	 Deleted: .
154	many meteorological variables as input.	 Deleted: Also, many of these models resolve vertical
155		variations in snow density which are wholly absent from the bulk (vertically averaged) density approaches reviewed
156	Despite the development of multi-layer energy-balance snow models, there is still a demonstrated need for bulk	above.
157	density formulations and for vertically integrated data products like SWE. Pagano et al. (2009) review the	
158	advantages and disadvantages of energy-balance models and statistical models and describe how the NRCS uses	
159	SWE (from SNOTEL stations) and accumulated precipitation in their statistical models to make daily water supply	
160	forecasts. If SWE information is desired at a location that does not have a SNOTEL station, and is not part of a	 Deleted: f
161	modeling effort, then bulk density equations and depth measurements are an excellent choice.	
162		
163	The present paper seeks to generalize the ideas of Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al.,	 Deleted: and Magnusson
164	(2010). Specifically, our goal is to regress physical and environmental variables directly into the equations. In this	
165	way, environmental variability is handled in a continuous fashion rather than in a discrete way (model coefficients	
166	based on classes). The main motivation for this comes from evidence (e.g., Fig. 3 of Alford, 1967) that density can	
167	vary significantly over short distances on a given day. Bulk density equations that rely solely on time completely	
168	miss this variability and equations that have coarse (model coefficients varying over either vertical bins or horizontal	

grids) spatial resolution may not fully capture it either.

- 180 Our approach is most similar to Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., (2010) in that a
- 181 minimum of information is needed for the calculations; we intentionally avoid approaches like Meloysund et al.
- 182 (2007) and McCreight and Small (2014). This is because our interests are in converting h measurements to SWE
- 183 estimates in areas lacking weather instrumentation. The following sections introduce the numerous data sets that
- 184 were used in this study, outline the regression model adopted, and assess the performance of the model.
- 185 2 Methods
- 186
- 187 2.1 Data
- 188

189 2.1.1 Snow Depth and Snow Water Equivalent

- In this section, we list sources of 1970-present snow data utilized for this study (Table 1). With regards to snow
 coring devices, we refer to them using the terminology preferred in the references describing the datasets.
- 192

193 2.1.1.1 USA NRCS Snow Telemetry and Soil Climate Analysis Networks

194 SNOTEL (Serreze et al., 1999; Dressler et al., 2006) and SCAN (Schaefer et al. 2007) stations in the contiguous

- 195 United States (CONUS) and Alaska typically record sub-daily observations of *h*, SWE, and a variety of weather
- 196 variables (Figure 2a-b). The periods of record are variable, but the vast majority of stations have a period of record
- in excess of 30 years. For this study, data from all SNOTEL sites in CONUS and Alaska and northeast USA SCANsites were obtained with the exception of sites whose period of record data were unavailable online. Only stations
- 199 with both SWE and *h* data were retained.
- 200

201 2.1.1.2 Canada (British Columbia) Snow Survey Data

202 Goodison et al. (1987) note that Canada has no national digital archive of snow observations from the many

- 203 independent agencies that collect snow data and that snow data are instead managed provincially. The quantity and
- 204 availability of the data vary considerably among the provinces. The Water Management Branch of the British
- 205 Columbia (BC) Ministry of the Environment manages a comparatively dense network of Automated Snow Weather
- 206 Stations (ASWS) that measure SWE, *h*, accumulated precipitation, and other weather variables (Figure 2a). For this
- $207 \qquad \text{study, data from all British Columbia ASWS sites were initially obtained. As with the NRCS stations, only ASWS \\$
- stations with both SWE and *h* data were retained.
- 209

210 2.1.1.3 Northeast USA Data

- In addition to the data from the SCAN sites, spow data for this project from the northeast US come from two

 networks and three research sites (Figure 2b). The Maine Cooperative Snow Survey (MCSS, 2018) network
- 213 includes h and SWE data collected by the Maine Geological Survey, the United States Geological Survey, and
- 214 numerous private contributors and contractors. MCSS snow data are collected using the Standard Federal or

Deleted: S

5

Deleted: and Magnusson

- 217 Adirondack snow sampling tubes typically on a weekly to bi-weekly schedule throughout the winter and spring,
- 218 1951-present. The New York Snow Survey network data were obtained from the National Oceanic and Atmospheric
- 219 Administration's Northeast Regional Climate Center at Cornell University (NYSS, 2018). Similar to the MCSS,
- NYSS data are collected using Standard Federal or Adirondack snow sampling tubes on weekly to bi-weeklyschedules, 1938-present.
- 222

223 The Sleepers River, Vermont Research Watershed in Danville, Vermont (Shanley and Chalmers, 1999) is a USGS 224 site that includes 15 stations with long-term weekly records of h and SWE collected using Adirondack snow tubes. 225 Most of the periods of record are 1981-present, with a few stations going back to the 1960s. The sites include 226 topographically flat openings in conifer stands, old fields with shrub and grass, a hayfield, a pasture, and openings in 227 mixed softwood-hardwood forests. The Hubbard Brook Experiment Forest (Campbell et al., 2010) has collected 228 weekly snow observations at the Station 2 rain gauge site, 1959-present. Measurement protocol collects ten samples 229 2 m apart along a 20 m transect in a hardwood forest opening about 1/4 hectare in size. At each sample location along 230 the transect, h and SWE are measured using a Mt. Rose snow tube and the ten samples are averaged for each 231 transect. Finally, the Thompson Farm Research site includes a mixed hardwood forest site and an open pasture site 232 (Burakowski et al. 2013; Burakowski et al. 2015). Daily (from 2011-2018), at each site, a snow core is extracted 233 with an aluminum tube and weighed (tube + snow) using a digital hanging scale. The net weight of the snow is 234 combined with the depth and the tube diameter to determine ρ_b , similar to a Federal or Adirondack sampler.

235

236 2.1.1.4 Chugach Mountains (Alaska) Data

237 In the spring of 2018, we conducted three weeks of fieldwork in the Chugach mountains in coastal Alaska, near the

- city of Valdez (Figure 2c-d). We measured <u>h using an avalanche probe at 71 sites along elevational transects during</u>
- March, April, and May. The elevational transects ranged between 250 and 1100 m (net change along transect) and
- 240 were accessible by ski and snowshoe travel. At each site, we measured h in 8 locations within the surrounding 10
- 241 m², resulting in a total of 550+ snow depth measurements. These 71 sites were scattered across 8 regions in order to
- capture spatial gradients that exist in the Chugach mountains as the wetter, more-dense maritime snow near the coast
- 243 gradually changes to drier, less dense snow on the interior side.
- 244

245 2.1.1.5 Data Pre-Processing

246 Figure 3 demonstrates that it is not uncommon for automated snow depth measurements to become noisy or non-247 physical, at times reporting large depths when there is no SWE reported. This is different from instances when 248 physically plausible, but very low densities might be reported; say in response to early season dry, light snowfalls. It 249 was therefore desirable to apply some objective, uniform procedure to each station's dataset in order to remove clear 250 outlier points, while minimizing the removal of valid data points. We recognize that there is no accepted 251 standardized method for cleaning bivariate SWE-h data sets. While Serreze et al. (1999) offer a procedure for 252 SNOTEL data in their appendix, it is relevant only for precipitation and SWE values, not h. Given the strong 253 correlation between h and SWE, we instead choose to use common outlier detection techniques for bivariate data.

Deleted: SWE Formatted: Font.Italic Deleted: using a Federal sampler Deleted: of those 71 sites Deleted: took 3 SWE and h measurements within 1 m² and averaged the result. Additionally, we used an avalanche probe to Deleted: in snow densities

Deleted: Outlier Detection and Removal

262		
263	The Mahalanobis distance (MD; Maesschalck et al., 2000) quantifies how far a point lies from the mean of a	
264	bivariate distribution. The distances are in terms of the number of standard deviations along the respective principal	
265	component axes of the distribution. For highly correlated bivariate data, the MD can be qualitatively thought of as a	
266	measure of how far a given point deviates from an ellipse enclosing the bulk of the data. One problem is that the MD	
267	is based on the statistical properties of the bivariate data (mean, covariance) and these properties can be adversely	
268	affected by outlier values. Therefore, it has been suggested (e.g., Leys et al., 2018) that a 'robust' MD (RMD) be	
269	calculated. The RMD is essentially the MD calculated based on statistical properties of the distribution unaffected	
270	by the outliers. This can be done using the Minimum Covariance Determinant (MCD) method as first introduced by	
271	Rousseeuw (1984).	
272		
273	Once RMDs have been calculated for a bivariate data set, there is the question of how large an RMD must be in	
274	order for the data point to be considered an outlier. For bivariate normal data, the distribution of the square of the	
275	RMD is χ^2 (Gnanadesikan and Kettenring, 1972), with p (the dimension of the dataset) degrees of freedom. So, a	
276	rule for identifying outliers could be implemented by selecting as a threshold some arbitrary quantile (say 0.99) of	
277	χ_p^2 . For the current study, a threshold quantile of 0.999 was determined to be an appropriate compromise in terms of	
278	removing obviously outlier points, yet retaining physically plausible results.	
279		
280	A scatter plot of SWE vs. h for the source SNOTEL dataset from CONUS and AK reveals many non-physical	 Deleted: uncleaned
281	points, mostly when a very large h is reported for a very low SWE (Figure 4a). Approximately 0.7% of the original	
282	data points were removed in the pre-processing described above, creating a more physically plausible scatter plot	 Deleted: cleaning process
283	(Figure 4b). Note that the outlier detection process was applied to each station individually. The distribution of 'day	
284	of year' (DOY) values of removed data points was broad, with a mean of 160 and a standard deviation of 65. Note	 Formatted: Font:Italic
285	that the DOY origin is 1 October. The same procedure was applied to the BC and northeast USA data sets as well	 Formatted: Font:Italic
286	(not shown). Table 1 summarizes useful information about the numerous data sets described above and indicates the	
287	final number of data points retained for each. We acknowledge that our process inevitably removes some valid data	
288	points, but, as a small percentage of an already 0.7% removal rate, we judged this to be acceptable.	
289		
290 291	Table 1: Summary of information about the datasets used in this study. <u>Datasets in bold font were used to construct</u> the regression model. The numbers of stations and data points reflect the post-processed data.	

Dataset Name	Dataset Type	Number of retained stations	Number <u>and</u> <u>percentage</u> of retained data points	Precision (h / SWE)	•	{	Formatted Table	
NRCS SNOTEL	Snow pillow (SWE), ultrasonic (<i>h</i>)	791	1,900,000 (99.3%)	(0.5 in / 0.1 in)			Deleted: NRCS SCAN	
			v				Deleted: (0.5 in / 0.1 in)	
NRCS SCAN	Snow pillow (SWE), ultrasonic (h)	5	(97.8%)	(0.5 in / 0.1 in)	and the second se	$\langle \rangle$	Formatted: Font:Bold	
				1		Ň	Deleted: 7094	

	-	-
		,

British Columbia	Snow pillow (SWE),	31	61,000	(1 cm / 1 mm)		Formatted: Font:Bold
Snow Survey	ultrasonic (<i>h</i>)		<u>(97.5%)</u>			Formatted: Font:Bold
Maine Geological	Adirondack or Federal	431	28,000	(0.5 in / 0.5 in)		I of matter. I one bold
Survey	sampler (SWE and h)		(99.3%)			
Hubbard Brook	Mount Rose sampler (SWE	1	704	(0.1 in / 0.1 in)	.	Formatted Table
(Station 2), NH	and <i>h</i>)		<u>(99.4%)</u>			
Thompson Farm, NH	Snow core (SWE and <i>h</i>)	2	988	0.5 in / 0.5 in)		
			(99.4%)	-		
Sleepers River, VT	Adirondack sampler	14	7214	(0.5 in / 0.5 in)		
	_		(99.4%)			
New York Snow	Adirondack or Federal	523	44,614	(0.5 in / 0.5 in)		
Survey	sampler (SWE and h)		<u>(98.2%)</u>			
Chugach Mountains,	Ayalanche probe (h)	71	71	(<u>1 cm</u>),		Deleted: Federal sampler (SWE and <i>h</i>) and
AK			<u>(100%)</u>		and the second	Deleted: a

298 2.1.2 Climatological Variables

299 30-year climate normals at 800 m (nominal) resolution for CONUS and for the period 1981-2010 were obtained 300 from the PRISM website (Daly et al., 1994). PRISM normals for British Columbia (BC), Canada, were obtained 301 from the ClimateBC project (Wang et al., 2012), also for the 1981-2010 period. Finally, PRISM normals for Alaska 302 (AK) were obtained from the Integrated Resource Management Applications (IRMA) Portal run by the National 303 Park Service. The AK normals are for the 1971-2000 period and have a slightly coarser resolution (approximately 304 1.5 km). Figure 5 shows gridded maps of mean annual precipitation (*MAP*) and mean February Temperature (\overline{T}_F) 305 for these three climate products, plotted together. Other temperature products (max and min temperatures; other 306 months) were obtained as well, but are not shown. 307

308 2.2 Regression Model

309 In order to demonstrate the varying degrees of influence of explanatory variables, several regression models were

310 constructed. In each case, the model was built by randomly selecting 50% of the paired SWE-*h* measurements from

311 the aggregated CONUS, AK, and BC snow pillow datasets. The model was then validated by applying it to the

312 remaining 50% of the dataset and comparing the modeled SWE to the observed SWE for those points. Additional

β13 validation was done with the northeast USA datasets (SCAN snow pillow and various snow coring datasets) which

314 were completely left out of the model building process.

315

316 2.2.1 One-Equation Model

B17 The simplest equation, and one that is supported by the strong correlation seen in the portions of Figure 3 when

 $\frac{\text{SWE is present}}{\text{SIP}}$ is one that expresses SWE as a function of *h*. A linear model is attractive in terms of simplicity, but this limits the snowpack to a constant density. An alternative is to express SWE as a power law, i.e.,

321 (1) $SWE = Ah^{a_1}$.

322

320

323 This equation can be log-transformed into

ted: a

8

Deleted: 0.5 in / 0.5 in) for sampler; 1 cm for probe

329

333

328 (2) $log_{10}(SWE) = log_{10}(A) + a_1 log_{10}(h)$

which immediately allows for simple linear regression methods to be applied. With both *h* and SWE expressed in units of mm, the obtained coefficients are $(A, a_1) = (0.146, 1.102)$. Information on the performance of the model will be deferred until the results section.

334 2.2.2 Two-Equation Model

Recall from Figures 1 and 4 that there is a hysteresis loop in the SWE-*h* relationship. During the accumulation phase, snow densities are relatively low. During the ablation phase, the densities are relatively high. So, the same snowpack depth is associated with two different SWEs, depending upon the time of year. The regression equation given above does not resolve this difference. This can be addressed by developing two separate regression equations, one for the accumulation (*acc*) and one for the ablation (*abl*) phase. This approach takes the form 340

341 (3) $SWE_{acc} = Ah^{a_1}; DOY < DOY^*$

343 (4) $SWE_{abl} = Bh^{b_1}; DOY \ge DOY^*$

344

342

345 where DOY is the number of days from the start of the water-year (October 1 is the origin), and DOY^* is the critical 346 or dividing day-of-water-year separating the two phases. Put another way, DOY* is the day of peak SWE. 347 Interannual variability results in a range of DOY^* for a given site. Additionally, some sites, particularly the SCAN 348 sites in the northeast USA, demonstrate multi-peak SWE profiles in some years. To reduce model complexity, 349 however, we investigated the use of a simple climatological (long term average) value of DOY*. For each snow 350 pillow station, the average DOY* was computed over the period of record of that station. Analysis of all of the 351 stations revealed that this average DOY* was relatively well correlated with the climatological mean April maximum 352 temperature (the average of the daily maximums recorded in April; $R^2 = 0.7$). However, subsequent regression 353 analysis demonstrated that the SWE estimates were relatively insensitive to DOY* and the best results were actually 354 obtained when DOY^* was uniformly set to 180 for all stations. Again, with both SWE and h in units of mm, the

355 regression coefficients turn out to be $(A, a_1) = (0.150, 1.082)$ and $(B, b_1) = (0.239, 1.069)$.

356

357 As these two equations are discontinuous at DOY^* , they are blended smoothly together to produce the final two-358 equation model

 $SWE_{abl}\frac{1}{2}(1 + tanh[0.01\{DOY - DOY^*\}])$

9

359

360 (5) $SWE = SWE_{acc} \frac{1}{2} (1 - tanh[0.01\{DOY - DOY^*\}]) +$

361

363	The coe	efficient 0.01 in the tanh function controls the width of the blending window and was selected to minimize					
364	the root mean square error of the model estimates.						
365							
366	2.2.3 T	wo-Equation Model with Climate Parameters					
367	A final model was constructed by incorporating climatological variables. Again, the emphasis is this study is on						
368	methods that can be implemented at locations lacking the time series of weather variables that might be available at						
369	a weath	her or SNOTEL station. Climatological normals are unable to account for interannual variability, but they do					
370	preserv	e the high spatial gradients in climate that can lead to spatial gradients in snowpack characteristics. Stepwise					
371	linear re	egression was used to determine which variables to include in the regression. The initial list of potential					
372	variable	es included was					
373							
374	(6)	$SWE = f(h, z, MAP, \overline{T}_{J_{min}}, \overline{T}_{J_{mean}}, \overline{T}_{J_{max}}, \overline{T}_{F_{min}}, \overline{T}_{F_{mean}}, \overline{T}_{F_{max}}, \overline{T}_{M_{min}}, \overline{T}_{M_{mean}}, \overline{T}_{A_{max}}, \overline{T}_{A_{min}}, \overline{T}_{A_{mean}}, \overline{T}_{A_{max}})$					
375							
376	where z	: is the elevation (m), MAP is the mean annual precipitation (mm) and the temperatures (°C) represent the					
377	mean of	f minimum, mean, and maximum daily values for the months January through April (J, F, M, A). For					
378	exampl	e, $\overline{T}_{J_{min}}$ is the climatological normal of the average of the daily minimum temperatures observed in January.					
379	In the s	tepwise regression, explanatory variables were accepted if they improved the adjusted R ² value by 0.001.					
380	The res	ult of the regression yielded					
381							
382	(7)	$SWE_{acc} = Ah^{a_1}MAP^{a_2} (\overline{T}_{F_{mean}} + 30)^{a_3}; DOY < DOY^*$					
383							
384	(8)	$SWE_{abl} = Bh^{b_1}MAP^{b_2} (\overline{T}_{F_{mean}} + 30)^{b_3}; DOY \ge DOY^*$					
385							
386	or, in lo	pg-transformed format,					
387							
388	(9)	$log_{10}(SWE_{acc}) = log_{10}(A) + a_1 log_{10}(h) + a_1 log_{1$					
389		$a_2 log_{10}(MAP) + a_3 log_{10}(\overline{T}_{F_{mean}} + 30); DOY < DOY^*$					
390							
391	(10)	$log_{10}(SWE_{abl}) = log_{10}(B) + b_1 log_{10}(h) + b_1 log_{1$					
392		$b_2 log_{10}(MAP) + b_3 log_{10}(\overline{T}_{F_{mean}} + 30); DOY \ge DOY^*$					
393							
394	indicati	ng that only snow depth, mean annual precipitation and mean February temperature were relevant. Manual					
395	tests of	model construction with other variables included confirmed that Eqns. (7-8) yielded the best results. In the					
396	above e	equations, note that an offset is added to the temperature in order to avoid taking the log of a negative					
397	number. These two SWE estimates for the individual (acc and abl) phases of the snowpack are then blended with						
398	Eqn. (5) to produce a single equation for SWE spanning the entire water year. The obtained regression coefficients						

399	were $(A, a_1, a_2, a_3) = (0.0128, 1.070, 0.132, 0.506)$ and $(B, b_1, b_2, b_3) = (0.0271, 1.038, 0.201, 0.310)$. The
400	physical interpretation of these coefficients is straightforward. If a_1 and b_1 were equal to unity, then the density,
401	given by (SWE/h), would be a constant at a given location. Since they are greater than unity, they capture the effect
402	that snow density increases as depth increases. Turning to the coefficients on the climate variables, both a_2 and b_2
403	are greater than zero. So, for two locations with equal depth, equal temperature characteristics, but different
404	precipitation characteristics, the regression model predicts that the wetter location (larger MAP) will have a greater
405	density. Finally, regarding temperature, both a_3 and b_3 are greater than zero. Therefore, for two locations with equal
406	depth, equal precipitation characteristics, but different temperature characteristics, the regression model predicts that
407	the warmer location (larger $\overline{T}_{F_{mean}}$) will have a greater density. These trends are similar in concept to Sturm et al.
408	(2010), whose snow classes (based on climate classes) indicate which snow will densify more rapidly.
1	

409 3 Results

A comparison of the three regression models (one-equation model, Eq. (2); two-equation model, Eqs. (3-5); multi-variable two-equation model, Eqs. (5, 7-8)) is provided in Figure 6. The left column shows scatter plots of modeled
SWE to observed SWE for the validation data set with the 1:1 line shown in black. The right column shows
histograms of the model residuals. The vertical lines in the right column show the mean error, or model bias.
Visually, it is clear that the one-equation model performs relatively poorly with a large negative bias. This large
negative bias is partially overcome by the two-equation model (middle row, Figure 6). The cloud of points is closer

and root-mean-square-error (RMSE), are provided in Table 2. Figure 7 shows the distribution of model residuals for

- 420 <u>the multi-variable two-equation model as a function of DOY.</u>
- 421

422 Table 2: Summary of performance metrics for the three regression models presented in Section 2.2.

Model	R^2	Bias (mm)	RMSE (mm)
One-equation	0.946	-19.5	102
Two-equation	0.962	-5.1	81
Multi-variable two-equation	0.972	-0.5	67

423

11 is useful to also consider the model errors in a non-dimensional way Therefore, an RMSE was computed at each station location and normalized by the mean annual maximum SWE (SWE_{max}) at that location. Figure & shows the probability density function of these normalized errors. The average RMSE is approximately 11% of SWE_{max} with most falling into the range of 5-25%. The spatial distribution of these normalized errors is shown in Figure 9. For the SNOTEL stations, it appears there is a slight regional trend, in terms of stations in continental climates (northern Rockies) having smaller relative errors than stations in maritime climates (Cascades). The British Columbia stations also show higher relative errors. Formatted: Font:Italic

Formatted: Font:Italic

Deleted: The fact that the coefficients on depth are greater than unity indicates that the density (SWE/h) increases as the snowpack depth increases. The positive coefficients associated with *MAP* and $\overline{T}_{F_{mean}}$ indicate that snow densities should be higher in warmer, wetter locations than in colder, drier locations.

Formatted: Font:Italic

Deleted: This is easily explained. The SNOTEL measurements are uniformly spaced in time (daily). Given that the accumulation season is much longer than the ablation season (Figure 1), there are many more data points that are representative of the accumulation season. The model fit is weighted towards these points, which leads to large negative residuals in the ablation season.

Deleted: Model errors will have varying impact on the local snow regime depending on the total precipitation in a specific region.
Deleted: PRISM estimate of MAP
Deleted: 7
Deleted: 5
Deleted: MAP
Deleted: 2-8
Deleted: 8
Deleted: there are no clear regional patterns governing the normalized errors, with the possible exception of the Sierra Nevada, where the errors are consistently higher than elsewhere

Deleted: overall

459 3.1 Results for Snow Classes

A key objective of this study is to regress climatological information in a continuous rather than a discrete way. Thework by Sturm et al. (2010) therefore provides a valuable point of comparison. In that study, the authors developed

462 the following equation for density ρ_b

463

464 (11) $\rho_b = (\rho_{max} - \rho_0) [1 - e^{(-k_1 h - k_2 DOY)}] + \rho_0$

465

- 466 where ρ_0 is the initial density, ρ_{max} is the maximum or 'final' density (end of water year), k_1 and k_2 are coefficients,
- 467 and DOY in this case begins on January 1. This means that their DOY for October 1 is -92. The coefficients vary
- 468 with snow class and the values determined by Sturm et al. (2010) are shown in Table 3.
- 469

470 Table 3: Model parameters by snow class for Sturm et al. (2010).

Snow Class	ρ_{max}	ρ ₀	k ₁	k ₂
Alpine	0.5975	0.2237	0.0012	0.0038
Maritime	0.5979	0.2578	0.0010	0.0038
Prairie	0.5941	0.2332	0.0016	0.0031
Tundra	0.3630	0.2425	0.0029	0.0049
Taiga	0.2170	0.2170	0.0000	0.0000

471

472 To make a comparison, the snow class for each SNOTEL and British Columbia snow survey (Rows 1 and 3 of Table

173 <u>1)</u> site was determined using a 1-km snow class grid (Sturm et al., 2010). The aggregated dataset from these stations

474 was made up of 27% Alpine, 14% Maritime, 10% Prairie, 11% Tundra, and 38% Taiga data points. Equation (11)

475 was then used to estimate snow density (and then SWE) for every point in the validation dataset described in Section

2.2. Figure 10 compares the SWE estimates from the Sturm model and from the present multi-variable, two-equation

model (Equations 5, 7-8). The upper left panel of Figure <u>10</u> shows all of the data, and the remaining panels show the

results for each snow class. In all cases, the current model provides better estimates. Plots of the residuals by snow

class are provided in Figure 11, giving an indication of the bias of each model for each snow class. Summaries of the

480 model performance, broken out by snow class, are given in Table 4.

481

482 Table 4: Comparison of model performance by Sturm et al. (2010) and the present study.

Model	Sturm et al.	(2010)		Multi-variable two-equation model		
Snow Class	R^2	Bias (mm)	RMSE (mm)	R^2	Bias (mm)	RMSE (mm)
All Data	0.928	-29.2	111	0.972	-0.5	67
Alpine	0.973	10.1	55	0.971	-0.3	55
Maritime	0.968	-16.8	109	0.970	-4.5	105
Prairie	0.967	18.7	56	0.965	-0.2	51
Tundra	0.956	-10.5	82	0.969	-6.1	67
Taiga	0.943	-80.0	151	0.971	2.4	62

483

484 3.2 Comparison to Pistocchi (2016)

Formatted: Font:Bold

Deleted: SNOTEL

Deleted: and

Deleted: 9

Deleted: 9

Deleted: 0

Deleted: (including CONUS, AK, and BC)

41.4	o provide one additional c	compariso	on, the simple	model of Pistoc	chi (2016) was also applied to the		
validation	n dataset. His model calcu	lates the l	oulk density a	<u>s</u>			
(12)	$\rho_h = \rho_0 + K(DOY + 61).$						
·							
where ρ_0	has a value of 200 kg m-3	and K ha	is a value of 1	kg m ⁻³ . The DC	Y for this model has its origin at		Formatted: Font:Not Bold
Novembe	er 1. Application of this m	odel to th	e validation d	ataset vields a b	ias of 55 mm and an RMSE of 94 mm.		Formatted: Font:Not Bold
These res	ults are comparable to the	Sturm et	al (2010) m	del with a larg	er higs hut smaller RMSE		Formatted: Font:Not Bold, Superscript
111030 103	and are comparable to the	<u>Starin et</u>	<u>ui. (2010) inc</u>	Act, with a large		1 //// /	Formatted: Font:Not Bold
A					•		Formatted: Font:Not Bold, Italic
3.3 Resul	Its for Northeast USA					7 4	Formatted: Font:Not Bold
The regre	ession equations in this stu	dy were a	developed using	ng a large collec	tion of SNOTEL sites in CONUS, AK,	MM	Formatted: Font:Not Bold, Superscript
and BC. T	The snow pillow sites are	limited to	locations we	st of approximat	ely W 105° (Figure 2a). By design, the	111	Formatted: Font:Not Bold
data sets f	from the northeastern USA	A (Section	n 2.1.1.3) wer	e left as an entir	ely independent validation set. These		Formatted: Font:Not Bold
northeaste	ern sites are geographicall	v distant	from the train	ing data sets, ar	e subject to a very different climate, and		Formatted: Font: 12 pt, Not Bold, Font color: Auto
are gener	ally at much lower elevati	one than	the western si	tes providing a	interesting opportunity to test how robust		Formatted: Normal, Line spacing: single
are genera		ons than	the western si	tes, providing a	I interesting opportunity to test now robust		Deleted: 2
the preser	in model is.						
Figure 12	graphically summarizes t	the datase	ts and the per	formance of the	multi-variable two-equation model of the		Deleted: 1
current st	udy. The RMSE values ar	e compar	able to those	found for the we	estern stations, but, given the		
comparati	ively thinner snowpacks in	n the nort	heast, represe	nt a larger relati	ve error (Table 5). The bias of the model		
is consiste	ently positive, in contrast	to the we	stern stations	where the bias v	vas negligible.		
T 11 C T	Performance metrics for the	1e multi-v	variable two-e	quation model a	pplied to various northeastern USA		
datasets.							
datasets.	Name	R ²	Bias (mm)	RMSE (mm)			
Table 5: F datasets. Dataset Maine G	Name Geological Survey, ME	R ² 0.91	Bias (mm) 8.9	RMSE (mm) 33.3			
Dataset Maine C Hubbarc	Name Geological Survey, ME d Brook (Station 2), NH	R ² 0.91 0.63	Bias (mm) 8.9 18.9	RMSE (mm) 33.3 64.2			
Dataset Maine C Hubbarc Thomps	Name Geological Survey, ME d Brook (Station 2), NH ion Farm, NH	$ \begin{array}{r} R^2 \\ \hline 0.91 \\ 0.63 \\ 0.85 \\ 0.87 \\ \end{array} $	Bias (mm) 8.9 18.9 7.1	RMSE (mm) 33.3 64.2 21.6 28.7			
Datasets. Datasets. Dataset Maine C Hubbarc Thomps NRCS S Sleepers	Name Geological Survey, ME d Brook (Station 2), NH son Farm, NH GCAN 8 River VT	$ \begin{array}{c c} R^2 \\ \hline 0.91 \\ 0.63 \\ \hline 0.85 \\ 0.87 \\ 0.93 \\ \end{array} $	Bias (mm) 8.9 18.9 7.1 -1.8 14.0	RMSE (mm) 33.3 64.2 21.6 38.7 29.7			

elevation, month of year, etc.), each with its own set of model coefficients. The comparison (Figs. <u>10-11</u>; Table
the model of Sturm et al. (2010) reveals a peculiar behavior of that model for the Taiga snow class, with a large

527 negative bias in the Sturm estimates. Inspection of the coefficients provided for that class (Table 3) shows that the 528 model simply predicts that $\rho_b = \rho_{max} = 0.217$ for all conditions. 529 530 When our multi-variable two-equation model, developed solely from western North American data, is applied to 531 northeast USA locations, it produces SWE estimates with smaller RSME values and larger biases than the western 532 stations. When comparing the SWE-h curves of the SNOTEL data (Figure 4b) to those of the east coast data sets 533 (left column; Figure 12), it is clear that the northeast data generally have more scatter. This is confirmed by 534 computing the correlation coefficients between SWE and h for each dataset. It is unclear if this disparity in 535 correlation is related to measurement methodology or is instead a 'signal to noise' issue. Comparing Figures 4 and 536 12, shows the considerable difference in snowpack depth between the western and northeastern data sets. When the 537 western dataset is filtered to include only measurement pairs where h < 1.5 m, the correlation coefficient is reduced 538 to a value consistent with the northeast datasets. This suggests that the performance of the current (or other) 539 regression model is not as good at shallow snowpack depths. This is also suggested upon examination of the time 540 series of observed $\rho_b = SWE/h$ for a given season at a snow pillow site. Very early in the season, when the depths 541 are small, the density curve has a lot of variability. Later in the season, when depths are greater, the density curve 542 becomes much smoother. Very late in the season, when depths are low again, the density curve becomes highly 543 variable again. 544 545 Measurement precision and accuracy affect the construction and use of a regression model. Upon inspection of the 546 snow pillow data, it was observed that the precision of the depth measurements was approximately 25 mm and that 547 of the SWE measurements was approximately 2.5 mm. To test the sensitivity of the model coefficients to the 548 measurement precision, the depth values in the training dataset were randomly perturbed by +/- 25 mm and the SWE 549 values were randomly perturbed by +/- 2.5 mm and the regression coefficients were recomputed. This process was 550 repeated numerous times and the mean values of the perturbed coefficients were obtained. These adjusted 551 coefficients were then used to recompute the SWE values for the validation data set and the bias and RMSE were 552 found to be -10.5 mm and 72.7 mm. This represents a roughly 10% increase in RMSE, but a considerable increase in 553 bias magnitude (see Table 4 for the original values). This sensitivity of the regression analysis to measurement 554 precision underscores the need to have high-precision measurements for the training data set. Regarding accuracy, 555 random and systematic errors in the paired SWE - h data used to construct the regression model will lead to 556 uncertainties in SWE values predicted by the model. As noted in the introduction, snow pillow errors in SWE 557 estimates do not follow a simple pattern. Additionally, they are complicated by the fact that the errors are often 558 computed by comparing snow pillow data to coring data, which itself is subject to error. Lacking quantitative 559 information on the distribution of snow pillow errors, we are unable to quantify the uncertainty in the SWE 560 estimates, 561

Another important consideration has to do with the uncertainty of depth measurements that the model is applied to.
 For context, one application of this study is to crowd-sourced, opportunistic snow depth measurements from

Deleted: 1

Deleted: 1

Deleted: is very noisy Deleted:

Deleted: When applied to the Chugach coring measurements, the model appears to perform well. The higher values of bias and RMSE (when compared to Tables 4 and 5) are higher in part since the measurements (and model estimates) of SWE are only at times of larger snow depth. The variability of the Chugach avalanche probe measurements was assessed by taking the standard deviation of 8 h measurements per site. The average of this standard deviation over the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the sites was 15%. Propagating this uncertainty through the regression equations yields a slightly higher (16%) uncertainty in the SWE estimates. Clearly, this is a function of surface roughness of the underlying terrain. Backcountry areas characterized by fields and meadows are likely to have smaller coefficients of variation for ensembles of depth measurements over a small radius. As a result, SWE estimated from a single depth measurement should be comparatively accurate. Areas of high surface roughness, characterized by crags, rocks and fallen logs will have large coefficients of variation and larger numbers of depth

measurements should be collected and averaged to provide the best possible SWE estimate.

Deleted: also affects

Deleted: found to be $(A, a_1, a_2, a_3) =$ (0.0188, 0.9737, 0.2034, 0.4301) and $(B, b_1, b_2, b_3) =$ (0.0386, 0.9535, 0.2745, 0.2184)

Formatted: Font:Not Italic

Moved up [1]: Some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE, with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks, 2004; Johnson et al., 2015) note a more complex situation with SWE under-reported at times, but overreported at other times.

Deleted: , however

14

Deleted: It also raises the interesting question of whether or not future resources should be directed towards expanding networks (greater spatial coverage) of current technologies or towards refining instrumentation (better accuracy) at currently instrumented stations.

608	programs like the Community Snow Observations (CSO; Hill et al., 2018) project. In the CSO program,
609	backcountry recreational users submit depth measurements, typically taken with an avalanche probe, using a
610	smartphone in the field. The measurements are then converted to SWE estimates which are assimilated into
611	snowpack models. These depth measurements are 'any time, any place' in contrast to repeated measurements from
612	the same location, like snow pillows or snow courses. Most avalanche probes have cm-scale graduated markings, so
613	measurement precision is not a major issue. A larger problem is the considerable variability in snowpack depth that
614	can exist over short (meter scale) distances. The variability of the Chugach avalanche probe measurements was
615	assessed by taking the standard deviation of 8 h measurements per site. The average of this standard deviation over
616	the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the
617	sites was 15%. This variability is a function of the surface roughness of the underlying terrain, and also a function of
618	wind redistribution of snow. Propagating this uncertainty through the regression equations yields a slightly higher
619	(16%) uncertainty in the SWE estimates. CSO participants can do three things to ensure that their recorded depth
620	measurements are as representative as possible. First, avoid measurements in areas of significant wind scour or
621	deposition. Second, avoid measurements in terrain likely to have significant surface roughness (rocks, fallen logs,
622	etc.). Third, take several measurements and average them.
623	۲
624	Expansion of CSO measurements in areas lacking SWE measurements can increase our understanding of the
625	extrame spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in

- 625 extreme spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in
- 626 these regions. It could also prove useful for estimating watershed-scale SWE in regions like the northeastern USA,
- 627 which is currently limited to five automated SCAN sites with historical SWE measurements for only the past two
- 628 decades. Additionally, historical snow depth measurements are more widely available in the Global Historical
- 629 Climatology Network (GHCN-Daily; Menne et al. 2012), with several records extending back to the late 1800s.
- 630 While many of the GHCN stations are confined to lower elevations with shallower snow depths, the broader
- 631 network of quality-controlled snow depth data paired with daily GHCN temperature and precipitation measurements
- 632 could potentially be used to reconstruct SWE in the eastern US given additional model development and refinement.

633 5 Conclusions

- We have developed a new, easy to use method for converting snow depth measurements to snow water equivalent
 estimates. The key difference between our approach and previous approaches is that we directly regress in
 climatological variables in a continuous fashion, rather than a discrete one. Given the abundance of freely available
 climatological norms, a depth measurement tagged with coordinates (latitude and longitude) and a time stamp is
 easily and immediately converted into SWE.
- 640 We developed this model with data from paired SWE-*h* measurements from the western United States and British
- 641 Columbia. The model was tested against entirely independent data (primarily snow course; some snow pillow) from
- 642 the northeastern United States and was found to perform well, albeit with larger biases and root-mean-squared-
- 643 errors. The model was tested against other well-known regression equations and was found to perform better.

644

Deleted: Recalling the Chugach discussion above, even in flat areas, with a smooth snow surface (away from major drifting or wind scour), terrain features such as rocks, logs, and vegetation can produce large variations in probe measurements.

- 650 This model is not a replacement for more sophisticated snow models that evolve the snowpack based on high
- 651 frequency (e.g., daily or sub-daily) weather data inputs. The intended purpose of this model is to constrain SWE
- 652 estimates in circumstances where snow depth is known, but weather variables are not, a common issue in sparsely
- 653 instrumented areas in North America.

654 6 Acknowledgements

- 655 Support for this project was provided by NASA (NNX17AG67A). R. Crumley acknowledges support from the
- 656 CUAHSI Pathfinder Fellowship. E. Burakowski acknowledges support from NSF (MSB-ECA #1802726). We thank
- M. Sturm, A. Winstral and a third anonymous referee for their careful and thoughtful reviews of this manuscript.

658 7 Data Access

- 659 Numerous online datasets were used for this project and were obtained from the following locations:
- 660 1. NRCS Snow Telemetry: <u>https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html</u>
- 661 2. NRCS Soil Climate Analysis Network: <u>https://www.wcc.nrcs.usda.gov/scan/</u>
- 662 3. British Columbia Automated Snow Weather Stations:
- 663
 https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data

 664
 tools/snow-survey-data/automated-snow-weather-station-data
- 665 4. Maine Cooperative Snow Survey: https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data
- 5. New York Snow Survey: http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html
- 667
 6. Sleepers River Research Watershed. Snow data not available online; request data from contact at: https://nh.water.usgs.gov/project/sleepers/index.htm
- 669 7. Hubbard Brook Experimental Forest: <u>https://hubbardbrook.org/d/hubbard-brook-data-catalog</u>
- 670 8. CONUS PRISM Data: <u>http://www.prism.oregonstate.edu/</u>
- 671 9. British Columbia PRISM Data: http://climatebcdata.climatewna.com/
- 672 10. Alaska PRISM Data: https://irma.nps.gov/Portal/

673

- 674 A Matlab function for calculating SWE based on the results is this paper has been made publicly available at Github
- 675 (URL provided upon paper acceptance).

676	References
677	
678	Alford, D.: Density variations in alpine snow, J. Glaciol., 6(46), 495-503,
679	https://doi.org/10.3189/S0022143000019717, 1967.
680	
681	Avanzi, F., De Michele, C., and Ghezzi, A.: On the performances of empirical regressions for the estimation of bulk
682	snow density, Geogr. Fis. Dinam. Quat., 38, 105-112, doi:10.4461/GFDQ.2015.38.10, 2015.
683	
684	Beaumont, R.: Mt. Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626-631, https://doi.org/10.1175/1520-
685	0450(1965)004<0626:MHPPSG>2.0.CO;2 1965.
686	
687	Beaumont, R., and Work, R.: Snow sampling results from three samplers, Hydrol. Sci. J., 8(4), 74-78,
088	https://doi.org/10.1080/02626666309493359, 1963.
089 600	Durchauschi E.A. Ollinger, G. Lering, L. Geberf, C.D. Weig, Z. Dikk, I.E. Hellinger, D.V. Kim, J. H. Erk, A.
601	Burakowski, E.A., Olinger, S., Lepine, L., Schaal, C.B., wang, Z., Diob, J.E., Hollinger, D. Y., Kim, JH., Erb, A.,
607	during group coursed particle. Spatial scaling of reflectance and surface anodo over a mixed-use, temperate forest landscape
603	auring show-covered periods, Kemole sens. Environ., 158, 405-477, https://doi.org/10.1010/j.1se.2014.11.025,
694	2015.
695	Burakowski, E.A., Wake, C.P., Stampone, M. and Dibb, J. Putting the Capital 'A' in CoCoRAHS: An
696	Experimental Program to Measure Albedo using the Community Collaborative Rain Hail and Snow (CoCoRaHS)
697	Network. Hydrol. Process. 27(21). 3024-3034. https://doi.org/10.1002/hyp.9825. 2013.
698	
699	Campbell, J., Ollinger, S., Flerchinger, G., Wicklein, H., Hayhoe, K., and Bailey, A.: Past and projected future
700	changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA, Hydrol.
701	Process., 24, 2465-2480, https://doi.org/10.1002/hyp.7666, 2010.
702	
703	Church, J.E.: Snow surveying: its principles and possibilities, Geogr. Rev., 23(4), 529-563, DOI: 10.2307/209242,
704	1933.
705	
706	Church, J.E., and Marr, J.C.: Further improvement of snow-survey apparatus, Transactions of the American
707	Geophysical Union, 18(2), 607-617, 10.1029/TR018i002p00607, 1937.
708	
709	Daly, C., Neilson, R., and Phillips, D.: A statistical-topographic model for mapping climatological precipitation over
710	mountainous terrain, J. Appl. Meteorol., 33, 140-158, https://doi.org/10.1175/1520-
711	0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994.

713	Deeb, E., Marshall, HP., Forster, R., Jones, C., Hiemstra, C., and Siqueira, P.: Supporting NASA SnowEx remote	
714	sensing strategies and requirements for L-band interferometric snow depth and snow water equivalent estimation,	
715	Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, 1395-	
716	1396, DOI: 10.1109/IGARSS.2017.8127224, 2017.	
717		
718	Dixon, D., and Boon, S.: Comparison of the SnowHydro sampler with existing snow tube designs, Hydrol. Process.,	
719	26(17), 2555-2562, https://doi.org/10.1002/hyp.9317, 2012.	
720		
721	Dressler, K., Fassnacht, S., and Bales, R.: A comparison of snow telemetry and snow course measurements in the	
722	Colorado River basin, J. Hydrometeorol., 7, 705-712, https://doi.org/10.1175/JHM506.1, 2006.	
723		
724	Fick, S., and Hijmans, R.: WorldClim2: new 1-km spatial resolution climate surfaces for global land areas, Int. J.	Deleted: "
725	Climatol., 37, 4302-4315, https://doi.org/10.1002/joc.5086, 2017_	
726		
727	Goodison, B.: Accuracy of snow samplers for measuring shallow snowpacks: An update, Proceedings of the 35th	Formatted: Superscript
728	Annual Eastern Snow Conference, Hanover, NH, 36-49, 1978	Deleted:
729		
730	Goodison, B., Ferguson, H., and McKay, G.: Measurement and data analysis. The Handbook of Snow: Principles,	
731	Processes, Management, and Use, D. Gray and D. Male, Eds., Pergamon Press, 191-274, 1981.	
732		
733	Goodison, B., Wilson, B., Wu., K, and Metcalfe, J.: An inexpensive remote snow-depth gauge: An assessment,	
734	Proceedings of the 52 nd Annual Western Snow Conference, Sun Valley, ID, 188-191, 1984.	Formatted: Superscript
735		
736	Goodison, B., Glynn, J., Harvey, K., and Slater, J.: Snow Surveying in Canada: A Perspective, Can. Water Resour.	
737	J., 12(2), 27-42, https://doi.org/10.4296/cwrj1202027, 1987.	
738		
739	Gnanadesikan, R., and Kettenring, J.: Robust estimates, residuals, and outlier detection with multiresponse data,	
740	Biometrics, 28, 81-124, DOI: 10.2307/2528963, 1972.	
741		
742	Hill, D.F., Wolken, G. J., Wikstrom Jones, K., Crumley, R., and Arendt, A.: Crowdsourcing snow depth data with	
743	citizen scientists, Eos, 99, https://doi.org/10.1029/2018EO108991, 2018.	
/44		
/45	Johnson, J., and Marks, D.: The detection and correction of snow water equivalent pressure sensor errors, Hydrol.	
746	Proc., https://doi.org/10.1002/hyp.5795, 2004.	Formatted: Default Paragraph Font, Font:12 pt, Not Bold
747		
748	Johnson, J., Gelvin, A., Duvoy, P., Schaefer G., Poole, G., and Horton, G.: Performance characteristics of a new	
749	electronic snow water equivalent sensor in different climates, Hydrol. Proc., DOI: 10.1002/hyp.10211, 2015.	
752		
-----	---	------------------------
753	Jonas, T., Marty, C., and Magnusson, M.: Estimating the snow water equivalent from snow depth measurements, J.	
754	Hydrol., 378, 161-167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009.	
755		
756	Kang, D.H., and Barros, A.P.: Full-system testing in laboratory conditions of an L-band snow sensor system for in	
757	situ monitoring of snow-water content, IEEE Trans. Geosci. Remote Sens., 49(3), 908-919,	
758	10.1109/TGRS.2010.2072786, 2011.	
759		
760	Leinss, S., Wiesmann, A., Lemmetyinen, J., and Hajnsek, I.: Snow water equivalent measured by differential	
761	interferometry, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8(8), 3773-3790, 10.1109/JSTARS.2015.2432031,	
762	2015.	
763		
764	Leys, C., Klein, O., Dominicy, Y., and Ley, C.: Detecting multivariate outliers: use a robust variant of the	
765	Mahalanobis distance, J. Exp. Soc. Psychol., 74, 150-156, https://doi.org/10.1016/j.jesp.2017.09.011, 2018.	
766		
767	Liang, X., Lettermaier, D., Wood, E., and Burges, S.: A simple hydrologically based model of land surface water	
768	and energy fluxes for general circulation models, J. Geophys. Res. Atmos., 99(D7), 14,415-14,428,	
769	https://doi.org/10.1029/94JD00483, 1994.	
770		
771	Liston, G., and Elder, K.: A distributed snow evolution modeling system (SnowModel), J. Hydrometerol., 7, 1259-	
772	1276, https://doi.org/10.1175/JHM548.1, 2006.	
773		
774	Lundberg, A., Richardson-Naslund, C., and Andersson, C.: Snow density variations: consequences for ground	
775	penetrating radar, Hydrol. Process., 20, 1483-1495, https://doi.org/10.1002/hyp.5944, 2006.	
776		
777	Maine Geological Survey: Maine Cooperative Snow Survey Dataset,	
778	https://www.maine.gov/dacf/mgs/hazards/snow_survey/, 2018.	
779		
780	McKay, G., and Findlay, B., 1971: Variation of snow resources with climate and vegetation in Canada, Proceedings	
781	of the 39 th Western Snow Conference, Billings, MT, 17-26, 1971.	Formatted: Superscript
782		
783	De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D.: The Mahalanobis distance, Chemometr. Intell. Lab. Syst.,	
784	50(1), 1-18, https://doi.org/10.1016/S0169-7439(99)00047-7, 2000.	
785		
786	McCreight, J., and Small, E.: Modeling bulk density and snow water equivalent using daily snow depth	
787	observations, The Cryosphere, 8, 521-536, https://doi.org/10.5194/tc-8-521-2014, 2014.	
788		

789	Meloysund, V., Leira, B., Hoiseth, K., and Liso, K.: Predicting snow density using meterological data, Meteorol.		
790	Appl., 14, 413-423, https://doi.org/10.1002/met.40, 2007.		
791			
792	Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and Houston, T.G.: An overview		
793	of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Technol., 29, 97-910,		
794	doi:10.1175/JTECH-D-11-00103.1, 2012.		
795			
796	Molotch, N.P., and Bales, R.C.: SNOTEL representativeness in the Rio Grande headwaters on the basis of		
797	physiographics and remotely sensed snow cover persistence, Hydrol. Process., 20(4), 723-739,		
798	https://doi.org/10.1002/hyp.6128, 2006.		
799			
800	Mote, P., Li, S., Letternaier, D., Xiao, M., and Engel, R.: Dramatic declines in snowpack in the western US," npj		
801	Clim. Atmos. Sci., 1(2), 1-6, doi:10.1038/s41612-018-0012-1, 2018.		
802			
803	Mizukami, N., and Perica, S.: Spatiotemporal characteristics of snowpack density in the mountainous regions of the		
804	western United States, J. Hydrometeorol., 9, 1416-1426, https://doi.org/10.1175/2008JHM981.1, 2008.		
805			
806	New York Snow Survey, NOAA, Northeast Regional Climate Center at Cornell University, 2018.		
807			
808	Pagano, T., Garen, D., Perkins, T., and Pasteris, P.: Daily updating of operational statistical seasonal water supply		
809	forecasts for the western U.S., J. Am. Water Resour. Assoc., 45(3), 767-778, https://doi.org/10.1111/j.1752-		
810	1688.2009.00321.x, 2009.		
811			
812	Painter, T., Berisford, D., Boardman, J., Bormann, K., Deems, J., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R.,		
813	Marks, D., Mattmann, C., Mcgurk, B., Ramirez, P., Richardson, M., Skiles, S., Seidel, F., and Winstral, A.: The		
814	Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for		
815	mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139-152,		
816	doi:10.1016/j.rse.2016.06.018, 2016.		
817			
818	Pistocchi, A.: Simple estimation of snow density in an Alpine region, J. Hydrol. Reg. Stud., 6, 82-89,		
819	http://dx.doi.org/10.1016/j.ejrh.2016.03.004, 2016.		
820			
821	Rousseeuw, P.: Least Median of Squares Regression, J. Am. Stat. Assoc., 79, 871-880, DOI:		
822	10.1080/01621459.1984.10477105, 1984.		
823			
824	Ryan, W., Doesken, N., and Fassnacht, S.: Evaluation of Ultrasonic Snow Depth Sensors for U.S. Snow		
825	Measurements, J. Atmos. Ocean. Technol., 25, 667-684, https://doi.org/10.1175/2007JTECHA947.1, 2008.		

826	
827	Schaefer, G., Cosh, M., and Jackson, T.: The USDA Natural Resources Conservation Service Soil Climate Analysis
828	Network (SCAN), J. Atmos. Ocean. Technol., 24, 2073-2077, https://doi.org/10.1175/2007JTECHA930.1, 2007.
829	
830	Serreze, M., Clark, M., Armstrong, R., McGinnis, D., and Pulwarty, R.: Characteristics of the western United States
831	snowpack from snowpack telemetry (SNOTEL) data, Water Resour. Res., 35(7), 2145-2160,
832	https://doi.org/10.1029/1999WR900090, 1999.
833	
834	Shanley, J., and Chalmers, A.: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont, Hydrol.
835	Process., 13(12-13), 1843-1857, https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-
836	HYP879>3.0.CO;2-G, 1999.
837	
838	Sokol, J., Pultz, T., and Walker, A.: Passive and active airborne microwave remote sensing of snow cover," Int.
839	J. Remote. Sens., 24, 5327-5344, https://doi.org/10.1080/0143116031000115076, 2003.
840	
841	Sturm, M., Holmgren, J., and Liston, G.: A seasonal snow cover classification system for local to global
842	applications, J. Clim., 8, 1261-1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
843	
844	Sturm, M., Taras, B., Liston, G.E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow
845	depth data and climate classes, J. Hydrometeorol., 11, 1380-1394, https://doi.org/10.1175/2010JHM1202.1, 2010.
846	
847	U.S. Army Corps of Engineers: Snow hydrology: Summary report of the snow investigations of the North Pacific
848	Division, 437pp., 1956.
849	
850	Vuyovich, C., Jacobs, J., and Daly, S.: Comparison of passive microwave and modeled estimates of total watershed
851	SWE in the continental United States, Water Resour. Res., 50(11), 9088-9012,
852	https://doi.org/10.1002/2013WR014734, 2014.
853	
854	Wang, T., Hamann, A., Spittlehouse, D.L., and Murdock, T.: ClimateWNA - High-Resolution Spatial Climate Data
855	for Western North America, J. Appl. Meteorol. Climatol., 51, 16-29, https://doi.org/10.1175/JAMC-D-11-043.1,
856	2012.
857	
858	Wigmosta, M.S., Vail, L., and Lettenmaier, D.: A distributed hydrology-vegetation model for complex

terrain, Water Resour. Res., 30, 1665-1679, https://doi.org/10.1029/94WR00436, 1994

859

- 860 Figure 1: Conceptual sketch of the evolution of snow water equivalent (SWE) over the course of a water year (black
- 861 line). Also shown is the evolution of SWE with snowpack depth over a water year (red line). Note the hysteresis

862 loop due to the densification of the snowpack.

- 864 Figure 2: Distribution of measurement locations used in this study. (a) Western USA and Canada station locations,
- 865 with colors indicating station elevation in meters. (b) Northeast USA locations, with stations colored according to
- 866 data source. (c, d) Measurement sites in the Chugach Mountains, southcentral Alaska.
- 867

- 871 Figure 3: Sample time series of SWE and *h* from the Rex River (WA) SNOTEL station. Observations of *h* at times
- 872 when SWE is zero are likely spurious.

874 Figure 4: Scatter plot of SWE vs. *h* for the complete SNOTEL dataset before (a) and after (b) removing outliers.

875 Symbols are colored by 'day of water year' (*DOY*; October 1 is the origin).

876

878 Figure 5: Gridded maps of mean annual precipitation (MAP) and mean February temperature (\overline{T}_{Fmean}) for the study

879 regions. Climate normals are from the PRISM data set (1981-2010 for CONUS and British Columbia; 1971-2000

880 for Alaska).

^{150°}W

135° W

90° N

105[°] W

120[°] W

881

Formatted: Font:Italic **Deleted:** (\overline{T}_F)

Deleted:

Formatted: Font:Italic

Formatted: Font:10 pt

913 (2010). The subpanels show modeled SWE vs. observed SWE for all of the data binned together, as well as for the

914 data broken out by the snow classes identified by Sturm et al. (1995). The gray symbols show the Sturm result and

the transparent heat maps (colored to show relative density of points) show the current result. The models are being

915

Deleted: colored symbols (draped on top)

916 applied to the validation data set (50% of the aggregated snow pillow data for CONUS, AK, and BC).

- 921 Figure 11: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al.
- 922 (2010). The subpanels show probability density functions of the residuals of the model fits for all of the data binned

923 together, as well as for the data broken out by the snow classes identified by Sturm et al. (1995). The gray lines

924 show the Sturm result and the colored lines show the current result. The vertical lines show the mean error, or the

925 model bias, for both the Sturm and the current result. The models are being applied to the validation data set (50% of

926 the aggregated snow pillow data for CONUS, AK, and BC).

Deleted: 0

930 left column shows the SWE-*h* data for each dataset. Note that the black symbols are points removed by the outlier

931 detection procedure discussed in section 2.1.1.4. The remaining symbols are colored by DOY. The middle panel

plots heat maps of the model estimates of SWE against the observations of SWE with the 1:1 line included. The

right panel shows probability density functions of the model residuals, with the vertical line indicating the mean

934 error, or bias. Individual rows correspond to individual data sets and are labeled.

33

Deleted: 1

Page 3: [1] Deleted	dfhill	4/2/19 4:09:00 PM

Finally, SWE can be estimated with remote sensing methods, including satellite, airborne, and fixed platforms (e.g., Sokol et al., 2003; Vuyovich et al., 2014). Microwave frequencies are commonly used, but these frequencies do not work well in the presence of liquid water in the snowpack (Leinss et al., 2015). Recent attention has focused on the superior ability of L-band frequencies to measure SWE in wet snowpacks. Kang and Barros (2011) developed and tested an L-band snow sensor system in laboratory conditions and Deeb et al. (2017) discuss the application of L-band measurements to field-scale snow depth and SWE estimates for the SnowEx project.

Page 13: [2] Deleted dfhill 4/3/19 9:46:00 AM

3.3 Results for Chugach Mountains

The results for the Federal sampler core measurements in the Chugach Mountains are shown in Figure 12, using a format consistent with Figure 11. The three different measurement campaigns (March, April, and May) can be seen by the different symbol colors in the left panel. One notable difference between Figures 11 and 12 is that the Chugach dataset only spans spring months and not the full water year. So, the cluster of data points does not start at the origin. The R2, bias (mm) and RMSE (mm) are 0.89, -50.0 and 118.0, respectively.

Page 34: [3] Deleted

dfhill

4/3/19 9:45:00 AM

Figure 12: Results from application of the multi-variable, two-equation model to the Chugach Mountains, AK. The left column shows the measured SWE-*h* data. The symbols are colored by DOY. The middle panel plots the model estimates of SWE against the observations of SWE with the 1:1 line included. The right panel shows the model residuals, with the vertical line indicating the mean error, or bias.

