
Dear Editor. 
 
Thank you for your handling of our manuscript (tc-2018-286) by Hill et al. We are appreciative 
of the three very careful and helpful reviews. In the following pages, you will find our responses 
to the three reviews. We also have provided a revised manuscript. We look forward to hearing 
from you in the near future. 
 
Kind Regards, 
David Hill 
Oregon State University 
 



Reply to Matthew Sturm, Referee 
 
Review of Converting Snow Depth to Snow Water 1 Equivalent Using Climatological Variables 
 
February 18, 2019 
 

Referee comments are left-justified, in black. Author replies are indented, in blue. 
 
In this paper, the authors address the problem of converting more readily obtained snow depth 
measurements to snow water equivalent values. The problem is highly topical as airborne lidar 
and airborne and satellite-based photogrammetric snow depths become more readily available 
for widespread use.  The authors primarily build on the method described by Sturm, Taras, 
Liston, Derksen, Jonas and Lea (2010), with the main difference in their method being the 
replacement of climate classes of snow by continuous climate variables (mean annual 
precipitation and February mean temperature) obtained from the PRISM data set. Though not 
explicitly stated, the authors also establish their regressions using a larger data set than the 
Sturm et al. study and most other studies of which I am aware. They reach the conclusion that 
their regressions show an improvement over the 2010 work. 
 
As the lead author of that prior depth-to-SWE study, I find this a fine piece of work, clearly and 
honestly written, and useful to many practitioners. It should be published. That said, I am not 
sure that I fully agree with the conclusion of the authors as to the extent of the improvement, 
whether their improved method is more easily applied than the old, and I find the omission of 
any discussion of the well-known errors in the data set used to develop the regression 
equations troubling. I would like to see the authors grapple with this last issue explicitly in the 
paper before a version of the paper is published.   
 

Thank you for this general overall assessment. Below, we provide point-by-point 
responses to your comments and we indicate where and how we plan to revise the 
manuscript prior to publication. 

 
Examining the input data for this study (Table 1), 98.5% is essential SNOTEL snow pillow data; 
1.5% comes from coring. Both types of data are known to contain biases. My personal 
experience for the latter (coring) is that it tends to undersample SWE (or produce low-biased 
density values), and across prior studies, there is agreement the method is no more accurate 
than about ±10%.  
 

We would like to point out that all of the data used to construct the regression model 
are snow pillow data. Table 1 summarizes the data used to build the model, and also the 
other independent data sets used to validate the model. We have clarified in the 
manuscript (beginning of section 2.2) and table (using bold font in the table) which data 
are used for what purposes. 

 



It has been some time since I worked through the literature on snow pillow data, but I recall 
significant biases from these instruments as well. One source of error is due to snow bridging 
with, particularly, low biases during the melt when percolating meltwater can run off the pillow 
to the surrounding snowpack due to the shape of the pillows. Sonic sounders also can exhibit 
some measurement errors (in this case the ones near the SNOTEL site paired to the pillow SWE 
values, chiefly in not being representative of the snow depth on the pillow. 
 

This is an important point. There are some studies1 that show that SNOTEL sites can 
report SWE > accumulated precipitation, attributed to drifting snow. However, this 
would not bias snow density assuming that the SWE and Hs measurements are co-
located. There are other studies2 that have looked at the measurement bias in SWE 
depending on whether or not the snow pillow is steel vs. hypalon. One comprehensive 
study3 of biases notes a complex situation, where SWE is sometimes under-reported 
due to ‘snow bridging’, but over-reported at other times (see Table 1 of that paper). 
While that paper proposes methods for correcting SWE measurements, it is complex in 
practice, requiring continuous SWE, Hs, and near-ground temperature measurements. 
Please continue to our next remark below. 

 
Given these potential sources of error, and the fact that the authors are attempting to develop 
general depth-SWE regressions, they should examine how these errors might cause their results 
to deviate from the “true” local conversion functions. For example, hypothetically, in a 
maritime regime, perhaps the natural snow packs retains frequent rain-on-snow water, but at 
the actual measurement sites it runs off from the pillows. Then there would be a consistent 
tendency in this February-warm location with high MAP (mean annual precipitation) to have 
light (or low) SWE vs. depth values. At least describing in what ways the modeled SWE values 
might diverge from the on-the-ground values would alert readers to limitations in the 
methodology. 
 

This is a sensible suggestion. In the first draft of the paper, we did investigate the effect 
of measurement precision. In our revision, we now provide more discussion about 
potential errors in snow pillow measurements (to help alert readers, as you suggest). 
One complicating issue is that many studies that report on ‘errors’ in SWE from snow 
pillows define this error as the difference between the snow pillow and a coring 
measurement. The implicit assumption is that the coring measurement is the ‘ground 
truth’ but as you note, coring is good to +/- 10%. Given the lack of any consensus 
information on the distributions of errors in snow pillow measurements (we provide 
some citations to show the divergence of studies out there), we are unable to provide 
any good quantitative information on the effects of the pillow errors on the SWE 
estimates. 

 

                                                      
1 https://journals.ametsoc.org/doi/pdf/10.1175/JHM-D-12-066.1 
2 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_032059.pdf 
3 https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.5795 



As far as whether this study is an improvement over our 2010 study, it really comes down to 
which ancillary data set one wants to work with: a gridded data set of snow classes or of PRISM 
climate data. Each has advantages and disadvantages in terms of computational cost and 
hassle. Looking at Table 4 which compares our prior work to the new work, most of the 
statistical improvement comes from the taiga snow class, which, as the authors note (Line 415), 
is because in 2010 we assigned a fixed value to this class (e.g., a fixed value performed better 
than regressed values). This snow class was only 6% of our training set, and I suspect the 
sample we chose tended to be quite “stiff” because of the high percentage of depth hoar found 
in taiga snow, thus it did not tend to densify due to overburden stress (probably something of 
an Arctic bias we showed). The authors taiga sample set is deeper with greater SWE. 
 

With regards to relative model performance. In our first draft, we tried to be as 
objective and factual as possible, in the sense of simply providing the comparative 
results (both figures and RMSE values). We feel that this is fair and appropriate. We also 
felt it appropriate to break out results by snow class so that readers could see how the 
comparison varied based on that. We have added information about how many data 
points in the aggregated CONUS, BC, and AK dataset are in each snow class (in section 
3.1).  

 
Regarding computational cost and hassle. The Sturm approach uses a straightforward 
equation and only requires access to the 1km snow-cover raster. Our approach uses 
more ‘data’ in the sense that numerous PRISM grids are required. However, we have 
packaged all necessary files into a freely available (will be released on GitHub upon 
acceptance of this paper) function that is very easy to use. By doing so, we alleviate any 
cost and hassle concerns. 

 
One last substantive comment: The authors have an entire section on outlier detection and 
removal, but I would argue they have potentially removed real data.  I applaud them for 
recognizing the hysteresis loop that is produced by depth-SWE seasonal evolution (Fig. 1) and 
their clever way of handling it in their regressions (Equation 5). We had actually during our 
work looked at using a rotated lemniscate to model this behavior, but dropped it because we 
could not make it work right.  But if one recognizes that physically the bulk density increases 
during the melt during the Spring, then one also has to recognize that very early in the winter, 
deep fluffy snow will be found on some snow pillows….snow with bulk density values of that 
are less than 150 kg/m3.  Figure 4 (clean version) has a lower depth-SWE line that at 2000 mm is 
about 350 mmm SWE, a density of  175 kg/m3, and a density of 180 kg/m3 at 3000 mm depth. I 
belief actual depth-SWE data on the low end has been removed, not erroneous data. Now one 
might argue we may in general seem to introduce a low bias when we do these sort of 
regressions, but that is not reason to label what may be accurate physical data as outliers. As 
further confirmation, the color of the removed data in Figure 4 is mostly blue (early season) and 
this removal would impact thin climate classes (e.g. taiga) more than thick classes.  
 

This is a great point, and one which the authors have discussed at some length, 
following your review. Manual examination of many of the SNOTEL time series revealed 



the presence of clearly wrong data (Figure 3 of the paper). We wanted to develop a 
wholly objective method for removing those data points. There is a lack of clarity and/or 
consensus in the literature about how to do this. The approach that we used seems like 
a good one, based upon the characteristics of the bivariate distribution. We recognize 
that some valid data points (mostly at low SWE-Hs values) are undoubtedly removed as 
well. Given the very low number (less than 1%; so the valid points removed are some 
small fraction of this 1%) of points that were removed in our process, we feel that this is 
acceptable. 
 
This figure of the output of the data removal process illustrates things. SWE on vertical 
axis, h on horizontal. Removed points are in red 
 

 
 
We acknowledge that referring to this process as ‘outlier’ detection is perhaps too 
strong and we have modified the language accordingly, notably re-titling Subsection 
2.1.1.5. We also note that Anonymous Referee #3 had a similar comment and wanted to 
see a histogram of the DOY of the removed data points. We have gone back and looked 
at the distribution of DOY for all removed points. It turns out that the mean value of 
DOY was 160 and the standard deviation was 65. So, the bulk of the removed points 
comes from the middle of the snow season, not at the beginning or the end. This seems 
to alleviate a bit of the concern that you raise above. 

 
One final comment, and this would be not only to the authors of this paper, but virtually every 
author out there. Please try to cite the seminal or original papers on a topic if possible…not the 
newest or easiest to cite.  The authors here do well in citing Alford and Church, but when it 
comes to recognizing how snow depth and SWE are related in time and space, the seminal work 
of G. A. McKay should not be overlooked.  
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McKay, G. A., and B. F. Findlay, 1971: Variation of snow resources with climate and 
vegetation in Canada. Proc. 39th 
Western Snow Conf., Billings, MT, Western Snow Conference, 17–26. 
 
McKay, G. A and D. M. Gray, 1981: The distribution of snowcover. Handbook of Snow, 
1st ed. D. M. Gray and E. D. H. Male, Eds., Pergamon Press, 153–190.    
 
We have added the former citation. 
 

Detailed Comments:  
 
Line 36: Surely someone before 2018 recognized that snow was important to hydrology…like 
Gerdel  (see U.S. Army Corps of Engineers [1956] monograph on snow hydrology. 
 

This citation has been added.  
 
Lines 41-50: This paragraph is a little jumbled and doesn't address some of the well-known 
errors present in snow pillow measurements (see major comments), yet in the next paragraph, 
errors in SWE core values, which may actually be smaller in some cases, are identified. Perhaps 
here is where errors in the input data could be discussed in greater detail.  
 

Yes, we have reworked the introduction a fair bit to bring in some information upfront 
about errors in coring and in snow pillows. 

 
Lines 60-66: This little sections seems uneven, and given the huge literature on trying to extract 
SWE from remote sensing, particularly radar, very one-dimensional. Why even talk about snow 
remote sensing in the paper?  I would simply say if falls outside of the scope of the work….and 
if there really is a reliable operational way to get SWE now from space, I don’t know it.  
 

We were trying to be comprehensive in laying out all of the options (in-situ vs. remote) 
for acquiring snow information. Your suggestion (huge literature that we don’t do 
justice to) is on point and we have removed this section from the paper.  

 
Line 74: Again, Goodison did the seminal work on the sonic sounders. Perhaps you could cite 
him. 
 

This is a sensible suggestion and we will do so. 
 
Line 96:  I think this citation should be: Jonas, Tobias, Christoph Marty, and Jan Magnusson. 
"Estimating the snow water equivalent from snow depth measurements in the Swiss Alps." 
Journal of Hydrology 378, no. 1-2 (2009): 161-167. 
 

Correct. We had it right in the references, but incorrect in the in-line citation. 
 



Lines 117-118: I do not agree that a priori complexity produces more accuracy. What is really 
going on here is that proximity to high quality input data tends to produce better accuracy. But 
that may be true whether the model used with the data is complex or simple. Basically, in a 
very heterogeneous snow world, when we have local driving data, the results regardless of the 
model, get better. One might even be able to argue, given the difficulties of measuring 
radiation in snowy locations, that energy balance models can introduce errors.   I don’t think 
you need to work so hard on making a case for the type of statistical approach developed in this 
paper. Ease of use, and generally the lack of driving data most places, make the case for you.  
 

This is a fair point and we revised our wording. 
 
Line 282:  I like this section on DOY, even though in the end you fix the value to 180.  Just the 
fact that the regressions are insensitive to the DOY of peak SWE is interesting.  
 

Agreed, thank you for noting this. It was an unexpected result. 
 
Lines 336-337: I wish the authors would expand this section. It is the heart of why the 
regressions work, and it is how this study and our 2010 study are related. Climate classes tell us 
which snow is warm and deep and tends to densify rapidly; high MAP and high February 
temperatures tell us the same thing, perhaps as the authors claim, even better (or maybe it is 
just that the training set being larger is better?)  This said, the authors I think are aware that 
there are several snow packs in which due to development of depth hoar and wind slab, there 
is very limited increase in density over time. Icy snow too can resist densificiation.  
 

We have expanded this section somewhat. We fully recognize that all bulk-density 
methods that rely on simple inputs like DOY or climatological weather characteristics 
are unable to capture numerous features of snowpacks. That is a limitation of the 
emphasis on simplicity. 

 
Line 342: Figure 6 is nice and clear. 
 

Thank you. We have slightly modified this to show the data clouds as heat maps (2d 
histograms, essentially) at the suggestion of another reviewer. 

 
Line 357:  The model errors will have NO impact on the local snow regime…I think you mean 
the impact will be on the predicted results.  
 

Correct, this was poorly stated, and we have reworded this. 
 
Lines 405 – 410:  I realize that the authors are fond of their Chugach results, undoubtedly 
obtained with much effort, but these data constitute 0.004% of the entire ensemble and could 
readily be omitted, with the space saved a deeper examination of why the systems is working, 
and where I might fail to work well.  
 



Another referee was also lukewarm on the inclusion of this dataset. We have removed 
most of it, except for the useful information that it provides on the variability in Hs that 
is observed over short distances. That is a valuable point to retain. 

 
 Lines 431-432:  Consider why this is:  early in the winter, the addition of new snow to a thin 
pack makes a dramatic change in the bulk density (e.g., called here noise, but which is real) 
while later in the winter that noise dissipates because the addition is an increasingly small 
percentage of what is already on the ground. While a model using historical data cannot adjust 
for this effect, one could talk about how the uncertainty in the modeled result decreases with 
time. Does it then increase again after the DOY of peak SWE? 
 

These are good points. Yes, our model is using only climatological weather data, which 
know nothing about individual snowfall events. We have added remarks on this issue 
and we have added a new figure that shows the errors as a function of the DOY. 

 
Lines 447-460: This is much too cursory a discussion of precision and accuracy, and it sets up a 
false strawman: more stations or better precisions?  The real question is how do we achieve 
better accuracy, and by this I suspect we mean better more accurate assessments of snow 
water resources. Given that 95% of the data being used is SNOTEL measurements, then this 
question has to start with whether the SNOTEL sites were actually designed to be 
“representative” or “index” sites….and I believe they were always meant to be the latter.  Next 
it has to proceed to the issue of representativeness, as increasingly as we get depths from lidar 
or photogrammetry, we will be converting depths to SWE in locations not sampled by the 
SOTEL network. Are we moving into locations where the bulk density is likely to be higher or 
lower than at an index station? Why? I would rather see the authors just bypass the issue than 
trivialize the problem in a statistical experiment that doesn’t tell us much about the core issue.   
 

We have removed the commentary on whether or not future investments should be in 
more stations vs. better stations. We agree that SNOTEL stations are largely index 
stations in that their measurements are often directly regressed against downstream 
streamflow. However, for our purposes here (providing an equation to estimate SWE 
from h ‘anywhere anytime’) we do feel that it is valuable to discuss the effects of source 
data accuracy and precision on the estimated SWE. This will help the reader to 
understand how much uncertainty there will be in SWE derived from the current paper. 
So, we retain some of the statistical testing.  



Reply to Adam Winstral, Referee 
 

Referee comments are left-justified, in black. Author replies are indented, in blue. 
 
The aim of this study is to develop a simple means of estimating snow densities to convert 
observed snow depths to snow-water-equivalent. The authors seek to use long-term 
climatological variables rather than station or modeled data so that snow depths garnered in 
remote locations without direct meteorological observations (e.g. crowd-sourced or Lidar data) 
can be easily and accurately converted to SWE. There is a growing need for improved means of 
characterizing snow density as greater amounts of snow depth data are becoming available 
(e.g. Lidar). Therefore this type of research is certainly warranted. Given that snow depths have 
always been more readily available than SWE or density data, other researchers have similarly 
produced methods of estimating densities. While not all of the previously developed 
approaches tackle the specific case presented here (i.e. meteorological data immediately 
preceding snow depth observation not required), the Sturm et al. (2010) and Jonas and 
Magnusson (2009) approaches do. The authors clearly acknowledge this and make a positive 
comparison of their method measured against the Sturm method. However, I find the 
presented Sturm comparison to be biased against the Sturm method (see further comments). 
They also hint at (lines 413, 493), but never provide evidence nor specifically claim to be, better 
than the Jonas approach. I would like to see the authors present in a more convincing manner 
how and why their method represents a substantial advancement over the previously 
published methods before I am ready to consider this manuscript worthy of publication.  
 
This is my major concern: 
The authors randomly split the aggregated CONUS, AK, and BC data into training 
and validation datasets (Section 2.2). They then use the “held-out” validation dataset 
to make the Sturm comparison (Section 3.1). So, essentially they have trained their 
model on data from the same locations with the same statistical metrics present in the 
comparison dataset. On the other hand, the comparison dataset is 100% independent 
of the Sturm training data. In order to present a fair comparison this needs to be done 
with a dataset that is totally independent from the derivation of both.  
 

This is an important point. Our current approach aggregated all western North America 
snow pillow data (some ~2M points) and then randomly split it in two. So, for each 
station, some data at each station was used for model building, the other data at each 
station ended up being used for validation. We can see why it would be important to 
test a validation approach that separated the training and validation data either by 
location, or by time. 
 
To address your concerns, we took all of the snow pillow data and we split up the 
stations randomly into two groups. We took all of the data from the first group and we 
used that to train the regression model. We then validated the regression model against 
the second group. We did several realizations of this process and found that the results 
were extremely close to those presented in the original manuscript. Anonymous 



Referee #3 also raised a similar concern, and suggested an 80/20 cross validation (80% 
of the data used to train, 20% of the data used to validate) approach. This method also 
generated similar results. We believe this to be due to the very large N of our dataset. 
 
Given how similar all of these approaches were, and given the lack of any clear 
‘preferred method’ in the literature, we decided to retain our original approach.  
 
We strongly agree with the referee that it would be ideal to have a perfect test between 
the two methods (our model and that of Sturm et al.). However, that would require that 
the two models be developed with the same training datasets and then validated using 
the same validation datasets. Unfortunately, we don’t see a way to create this perfect 
‘laboratory test’ for two models developed with different data. 

 
The northeast dataset would be one ideal dataset for conducting this test and I’m not sure why 
this wasn’t done. That said, it would certainly be more convincing if the inter-model 
comparisons were conducted over a wider range of conditions.  
 

You are correct in that it would be ideal to have inter-model comparisons over a wide 
range of conditions. We believe that applying both models to the NE data set would not 
accomplish that. We prefer to keep our inter-model comparisons to the larger dataset 
from western North America snow pillow data, and we will retain the NE dataset for our 
model only. 

 
I would also like to see direct comparisons to the Jonas method. As I stated in the above 
paragraph, the authors must present a convincing case that the new methodology represents 
an improvement over existing procedures. I just don’t find that in the current manuscript. 
 

With regards to Jonas et al. (J09). We specifically chose not to apply that model for the 
following reason. The J09 model has coefficients that depend upon month of year and  
elevation. In addition to this, there is a geographic ‘offset’ term that depends on 
boundaries drawn in the Swiss Alps. Therefore, the model cannot be applied in other 
regions (since we would have no idea what to use for an offset). We do not wish to 
ignore the offset and apply a ‘partial model’ since that is not what those authors 
constructed. 
 
One thing that we have done is to apply the very simple Pistocchi1 model which depends 
only on day of year (DOY). In Pistocchi’s paper, he claims comparable performance to 
both Sturm and J09. We now include summary results (RMSE and bias only, no figures) 
for the Pistocchi model applied to the western North America snow pillow data. 
 
We believe that the results for our model demonstrate an improvement (lower bias and 
RMSE than existing methods) and also a strength of our approach is that it allows for a 

                                                      
1 https://www.sciencedirect.com/science/article/pii/S2214581816300131 



continuously varying snow density in space rather than discontinuities due to discrete 
snow classes. Our plots below, provided in response to another comment, help illustrate 
this point. 

 
Moderate concerns that need addressing: 
I don’t understand why rmse was normalized with respect to mean annual precipitation 
(Section 3 and Figure 8). This obviously biases the normalizations low where summer 
precipitation is more common. Artifacts of this can be seen in Figure 8 (e.g. low 
ratios in Arizona, New Mexico, Alaska where summer precipitation can be considerable 
compared to winter; high ratios in eastern Sierras where synoptic summer storms are 
rare). This type of normalization might be appropriate for annual or longer hydrologic 
studies, but for this snow-based, winter-focused research the normalization should be 
based on either mean wintertime precipitation or better yet, mean annual snowfall. Both 
mean wintertime precipitation and mean annual snowfall should be easily derivable 
from the PRISM data already used in this study. 
 

This is a reasonable suggestion. Our intent was simply to provide some sort of ‘relative’ 
measure of the magnitude of the RMSE. We have actually redone this using the mean 
annual peak SWE to normalize the RMSE, which makes good sense.  

 
Graphs. There are way too many data points in the scatter plots to understand what is 
really going on in Figures 6 and 9, and some of the plots in Figure 11. These should 
be presented as either heat plots or randomly select and plot a subset of these data. 
Additionally and partly due the aforementioned reason, the overlapping plots in Figure 
9 are impossible to fully discern. 
 

With regards to Figure 11 (Fig 12 in the revision), the symbols are colored by DOY in the 
left column, so we are unable to show that column as a heatmap. We have changed the 
center column to show the data as a heatmap. 
 
With regards to Figure 6, we have changed the plot to a heatmap (which is just a 2d 
histogram). The ‘footprint’ or ‘envelope’ of the data cloud is unchanged of course. 
 
With regards to Figure 9 (Fig 10 in the revision). The important point is how the ‘width’ 
of the data cloud is different between the two methods. The envelope that is closer to 
the 1:1 line indicates better performance. Our original approach was chosen since, in 
each case, our envelope was narrower (so we plotted ours on top). We cannot show 
two overlapping heatmaps. What we have done in the revision is to show Sturm’s 
results as scatter symbols (as before) and to then plot our results as a transparent heat 
map on top. 

 
I had difficulty accepting the reasoning for the residuals and mean biases apparent in 
the Figures 6b and d. I think these residuals, which are present in the validation dataset 
are also related to the choice of fitting a power law relationship rather than a linear least 



squares one. Given that the training and validation data should maintain the same 
statistical metrics then these residuals should be present in the training data as well. If, 
in fact, this is the case then the combination of a power law fit and the predominance 
of accumulation season samples would be the reason. My suspicion is that if a linear 
least squares fit was chosen then there should be near zero mean biases in both the 
training and validation sets given that the two sets maintain the same characteristics. 
I would expect that in the linear scenario, there should be a wider spread in residuals 
(i.e. higher rmse) but very little change in mean bias. Of course, this would be entirely 
different if the validation set was truly independent. 
 

This is a fair comment, and our initial remarks may have been too speculative. We 
adopted a power law relationship based on the hysteresis loop (Figs 1 and 4) suggesting 
something other than a linear relationship between h and SWE. We feel that the best 
course of action is to remove our overly speculative comment. 

 
How the different datasets were used needs better clarification. I didn’t understand the 
purpose of the manually sampled Chugach data. As far as I can tell, these data were 
not included in the calibration nor the validation analyses. What do these data show? 
Why were they included? How do these data add anything new to the analysis? This 
should be clearly stated and incorporated into the story or leave the Chugach data out. 
 

Two reviewers of this paper noted this. We have essentially dropped that dataset from 
the paper, with one exception. The large ensemble (80 or so) of collections (8 at each 
site) of probe measurements is valuable since it helps to quantify the variability in snow 
depth over small distances (in discussion section). 

 
Section 2.1.2. Do these PRISM climatological variables, based on sparse station data 
and resolved at 800m, really pick up the heterogeneity you’re aiming to capture as expressed 
on lines 132-37. It would be nice if you could show a spatially explicit example 
showing these capabilities. 
 

We feel that the continuously variable PRISM data does a better job of capturing climate 
than 5 snow classes. Let us illustrate this with some sample figures. First, consider the 
map of snow class in the region just northeast of Valdez, Alaska. 



 
Note that there are only a few snow classes and that the landscape is dominated by 
class 7 in this case. Now, for the exact same lat / lon bounding box, let us look at the 
MAP and Feb_T_Mean: 
 

 



 
In both of these climatological rasters, we see very considerable variation over a region 
that is monolithic in snow class. These, we do feel that the use of 800m PRISM data will 
allow for smoother variability in snow density. 

 
Tidbits: 
The residuals (e.g. Figure 6) should be presented as modeled minus observed. In 
this manner the underestimations of SWE appear as negative residuals rather than the 
positive residuals currently presented. I find this much easier to understand. 
 

Actually, the residuals are done correctly. Please see the new version of Fig 6, which has 
been much improved by showing it as a heatmap. Look at the top row. The residuals are 
indeed computed as model-observed. The vertical black line in the right column (panel 
(b)) is the mean residual. It is negative. And that makes sense since the cloud of data 
points appears to be, on average, below the 1:1 line. So, thank you for your suggestion, 
it was good for us to double check, but we do have the residuals defined correctly, we 
believe. 

 
Lines 44-47 and 72-74. Each of these sentences contain two distinct thoughts that 
would perhaps be better if split into two sentences. 
 

Thank you for the suggestion. We will improve the clarity of these lines. 
 
Lines 120-22. I didn’t think this sentence was necessary . . . unless you turn it into 
reasoning that this just adds a layer of computational costs / complexity that aren’t 
necessary for your desired application. 
 

We slightly adjusted the sentences there to improve the clarity. 
 



Lines 141-2. Might want to add something about why you would also prefer to not use 
NWP data that could possibly substitute for the lack of observations (i.e. computational 
costs, errors in NWP data). 
 

The purpose of this work is to provide a rapid, easy to use tool. Relying on external daily 
or sub-daily datasets and/or model output moves the work away from that goal and 
towards more sophisticated snow models. So, yes, it could be done, but at significant 
expense and effort. 

 
Line 169. You also used snow pillow data from the northeast US. You might want to 
make that clear here . . . as in “Snow data for this project, aside from the aforementioned 
SNOTEL data, . . .” 
 

Yes, thank you. We fixed this. 
 
Section 2.1.1.5. Might want to mention that these issues are most common in summer 
when vegetation grows beneath the sensor. 
 

We are not sure we fully understand this remark. Which particular issues are you 
referring to? The data that we considered was only winter time data, where snow was 
present. 

 
Line 440. Roughness of underlying terrain is certainly one factor, but couldn’t there be 
others as well (e.g. wind redistribution). 
 

We have now noted this explicitly. 
 



Reply to Anonymous Referee #3 
 
Received and published: 13 March 2019 
 

Referee comments are left-justified, in black. Author replies are indented, in blue. 
 
The authors address the issue of converting spatiotemporal snow depth measurements 
to estimates of snow water equivalent (SWE). This topic is relevant to many areas of research 
because of the relative ease of taking snow depth measurements over SWE. Framed in the 
context of citizen science or field work, snow depths collected by nonexperts and experts alike 
can be leveraged as a low-cost input to hydrological or climate analysis. In an era of high-
availability altimetry (lidar or radar) and photogrammetry (structure from motion), an ensemble 
of methods to convert surface heights into SWE will be critical for both targeted basin studies 
(ASO) as well as future satellite missions. The authors develop three regression models to 
evaluate a snow depth to SWE conversion. Regression skill is evaluated using depth alone, 
depth separated by accumulation and ablation phases, and depth in combination with climate 
normal for precipitation, temperature as well as elevation. Their work differs from previous 
studies such as Sturm et al. 2010 in that the climate inputs are regressed as continuous 
variables. As such, any measurement of snow depth with coordinates could potentially be 
converted, independent of measurement scale. In general the paper to well written and clear in 
its advancements. The focus on estimates during the ablation phase is a clear contribution, 
where methods fail. Addressing that ‘not all snow is equal’ is a strength of the approach. 
 
Prior to publication, I would like to see the outlier detection and validation portions of the 
paper revisited to reinforce the statistical analysis. While I agree that outlier detection is 
necessary, an enhanced description of where and when the outliers originate would help to 
identify potential seasonality or spatial clustering. For example, if many of the outliers are from 
the early snow season, does this preclude ability of the models to convert measurements that 
include fresh snow? There are artifacts in Figure 4 where SWE varies drastically but depth does 
not, are these melt events? A histogram of the outlier DOY or a table of the outlier properties 
may be all that is needed to address this. These additions could be used to reinforce the 
statement that the reduced dataset is physically plausible (Lines 229-230).  
 

These are very good points. One other referee had similar remarks. Manual examination 
of many of the SNOTEL time series revealed the presence of clearly wrong data (Figure 3 
of the paper). We wanted to develop a wholly objective method for removing those 
data points. The approach that we used seems like a good one, based upon the 
characteristics of the bivariate distribution. We recognize that some valid data points 
(mostly at low SWE-Hs values) are undoubtedly removed as well. Given the very low 
number (less than 1%; so the valid points removed are some small fraction of this 1%) of 
points that were removed in our process, we feel that this is acceptable. Here is a figure 
of the process at one particular station. SWE on vertical axis, h on horizontal. Red circles 
are removed points. 
 



 
 
We particularly like your suggestion of looking at the characteristics of the removed 
points, and now include specific information on the DOY values of these points. It 
turned out that removed points were occurring throughout the snow season, and not 
just at the beginning and the end. 
 
Your comment about events in Figure 4 where SWE changes a lot while Hs remains fixed 
is an interesting one. It is hard to understand how SWE could drop from 1 m to near 
zero while Hs remains fixed at 5 m. The lack of an accepted and easy to implement 
protocol for addressing snow pillow data quality control is an obstacle to analysis. 

 
For the validation, it may be of benefit to use a cross-validation (CV) to determine if the model 
skill is overly optimistic. Using an N-folds CV with a 80/20 train/test split would be a simple 
approach to achieve this. In this regard, I’d also be interested to know if the non-SNOTEL 
datasets actually influence to the regression coefficients (What happens when the training 
datasets are SNOTEL only). The remainder of my comments addressed to specific lines or figure.  
 

A few comments. First of all, the regression coefficients were constructed with snow 
pillow data only from the western United States and Canada. We have now tried to 
make this more obvious in the section discussing datasets. For example, in Table 1, we 
now use bold font to highlight which datasets were used to build the model.  
 
Second, with regards to validation. We looked into this at some length before beginning 
this work, since we wanted to determine if there was some preferred way of doing 
validation in the snow density literature (or streamflow prediction, or any other 
discipline for that matter). We found no ‘best’ or ‘preferred’ method. We ended up 
doing a 50/50 split (aggregating all snow pillow data points and randomly dividing them 
up) in the first draft of the paper. Upon receiving the manuscript reviews, we also tested 
your suggested 80/20 split, and a 50/50 ‘station split’ (divide up the stations, not the 
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aggregated data points). We found that all methods provided essentially the same 
results We feel that this is likely due to the large N (number of observations) of our 
dataset. Given the lack of consensus in the literature, we feel that our approach is 
acceptable, and we are clear and upfront about our methods. 

 
Lines 64-65: Are there additional references available to support this statement regarding L-
band? The only cited application in the field is a conference proceeding. 
 

Another referee though we should simply remove the remote sensing discussion and 
that seemed like a sensible change to us, so we did so. 

 
Line 172: Each style of corer has its own associated bias. Could this be considered to 
bound or constrain errors for each region/dataset? 
 

Corer data were not used to build the regression model. So, those biases would not 
affect the regression model coefficients. Any depth measurement that has a bias or 
random error and that is used to estimate a SWE value using the methods in this paper 
would propagate through into a bias or error in the SWE. We do try to present some 
discussion on this in the manuscript. 

 
Line 185: I would expect readers to be unfamiliar with some of coring devices. For example, the 
Mt. Rose snow tube could be supported with Church, J. Improvement in Snow Survey 
Apparatus, TAGU, 1936. 
 

Thank you for this suggestion, and we can add this citation. 
 
Line 228: See concerns about outlier detection in the main comments. It would be 
important to describe the temporal aspect of the outlier detection. 
 

Yes, as noted above, we provide information on this now in that section. 
 
Line 228: uncleaned data -> source data 
 

Good catch, we made this change. 
 
Line 229: State how many outliers were removed from the other datasets via this 
process. Figure 4: An axis label is needed for the DOY color bar. 
 

This has been handled with added parenthetical notes to column 4 of Table 1. 
 
Line 231: How does this work for ‘stations’ where there are a very low number of 
observations, ie AK? 
 



The process was objectively applied to all stations. Stations with low numbers of 
observations could still be processed, in terms of computing the characteristics of the 
bivariate distributions and then removing points that did not satisfy the criteria. 

 
Table 1: Can this table be augmented with a % of retained points or an omission %? Is 
the BC survey missing the # of ultrasonic sites? 
 

As per the remark just above re:line 229, yes we have done this. Regarding the BC 
comment. The first row of that table has two sets of numbers. One for the Western USA 
SNOTEL. One for the eastern USA SCAN. The BC row only has one set of numbers since 
we grouped all BC snow pillows together. In revised Table 1, we have split up the USA 
NRCS data into two rows to eliminate this confusion. 

 
Line 250: Is this 50% of all measurements or 50% of each subset. If it is all of them, 
it could be such that the only ones removed are CONUS because of the low numbers 
elsewhere. 
 

All of the aggregated snow pillow data were grouped (data points were grouped in one 
large bin) and then divided in two. Given the random nature of the division, each station 
should have ~50% of its data represented. 

 
Line 256: Figure 3 is used as support for the outlier detection due to poor correlation (ie 
increasing h with no SWE) and but is referenced here as strongly correlated. It might 
be confusing to do both. 
 

This is a good catch. We meant to refer to just the winter (snow present) portions of 
Figure 3. The noisy bits in that Figure are at times when there is no SWE. We will clarify 
our language. 

 
Line 283: If this is an important consideration, why is the SCAN dataset not used to 
train the models? 
 

There are several reasons. Foremost, we wanted to leave the northeastern USA data 
alone so that we could use those data as an independent test of the ability of the model 
to work in completely different regions / snow regimes. Second, the N (5 sites) of the 
northeastern USA dataset is a tiny fraction of the rest of the available data. Locations 
with multi-peak SWE curves may do better with a more complex model that is able to 
capture this behavior. 

 
Line 290: Interesting that a static 180 works best as the DOY separator. Could a 
sentence on why this might occur be added to the discussion? 
 

To be frank, we do not have a great explanation for this. When we discovered a fairly 
strong correlation between day of peak SWE and April temperature, we were confident 



that the variable DOY approach would produce the best results. In this case, it appears 
that simpler is better. 

 
Line 332: I see how it would not be possible to use an absolute value here but are 
snow-covered regions where the February normal is below -30C. 
 

We chose this offset value based upon the lowest February temperature values 
observed at the snow pillow stations. This may limit our methods to not apply in some 
extremely cold regions.  

 
Figure 6: Titles for each plot might make this easier to read if someone skips the caption. 
 

We appreciate this stylistic suggestion. Our approach favors using the figure caption to 
provide details on the content in each figure panel, which is consistent with the 
approach of other papers in The Cryosphere. We are open to modifying this if the 
editors request it. 

 
Table 5: Include the normalized errors for completeness of the table. 
 

We are not able to normalize the errors for these datasets in the way that we do for the 
snow pillow sites (Figs 8-9 of new version of paper). For the snow pillow stations, we 
normalized the RMSE at each station based on (this is a change for the 2nd draft of this 
paper) the mean annual maximum SWE at that station. The information in table 5 is 
different. The RMSE values there are essentially being averaged ‘spatially’ over a 
distributed dataset, rather than being averaged temporally at a snow pillow station. 
Thus, we do not have a mean annual maximum SWE available for normalization in a 
consistent fashion. Note that in the 2nd paragraph of the discussion section, we do talk a 
bit about the east coast results and how they differ from western North America 
(smaller snowpack, etc.). 

 
Line 423-430: Might be helpful to discuss measurement errors as a contributor. 
 

We do discuss this (measurement errors) in lines 447 → 472 (numbering of original 
draft). In the specific context of the northeastern USA data, those data are generally 
high-quality coring data. Having not taken those data ourselves, it is hard to quantify the 
measurement errors. In some cases, the supporting documentation for those datasets is 
brief to non-existent. Also, note that, in response to another reviewer as well, we have 
added more general discussion of both coring error and snow pillow errors to the 
manuscript. 
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 18 
Abstract. We present a simple method that allows snow depth measurements to be converted to snow water 19 
equivalent (SWE) estimates. These estimates are useful to individuals interested in water resources, ecological 20 
function, and avalanche forecasting. They can also be assimilated into models to help improve predictions of total 21 
water volumes over large regions. The conversion of depth to SWE is particularly valuable since snow depth 22 
measurements are far more numerous than costlier and more complex SWE measurements. Our model regresses 23 
SWE against snow depth and climatological (30-year normal) values for mean annual precipitation (MAP) and mean 24 
February temperature (𝑇"#$%&'), producing a power-law relationship. Relying on climatological normals rather than 25 
weather data for a given year allows our model to be applied at measurement sites lacking a weather station. 26 
Separate equations are obtained for the accumulation and the ablation phases of the snowpack, which introduces 27 
‘day of water year’ (DOY) as an additional variable. The model is validated against a large database of snow pillow 28 
measurements and yields a bias in SWE of less than 0.5 mm and a root-mean-squared-error (RMSE) in SWE of 29 
approximately 65 mm. When the errors are investigated on a station-by-station basis, the average RMSE is about 5% 30 
of the MAP at each station. The model is additionally validated against a completely independent set of data from 31 
the northeast United States. Finally, the results are compared with other models for bulk density that have varying 32 
degrees of complexity and that were built in multiple geographic regions. The results show that the model described 33 
in this paper has the best performance for the validation data set.   34 
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1 Introduction 35 
In many parts of the world, snow plays a leading-order role in the hydrological cycle (USACE, 1956; Mote et al., 36 
2018). Accurate information about the spatial and temporal distribution of snow water equivalent (SWE) is useful to 37 
many stakeholders (water resource planners, avalanche forecasters, aquatic ecologists, etc.), but can be time 38 
consuming and expensive to obtain.  39 
 40 
Snow pillows (Beaumont, 1965) are a well-established tool for measuring SWE at fixed locations. Figure 1 provides 41 
a conceptual sketch of the variation of SWE with time over a typical water year. A comparatively long accumulation 42 
phase is followed by a short ablation phase. While simple in operation, snow pillows are relatively large in size and 43 
they need to be installed prior to the onset of the season’s snowfall. This limits their ability to be rapidly or 44 
opportunistically deployed. Additionally, snow pillow installations tend to require vehicular access, limiting their 45 
locations to relatively simple topography. Finally, snow pillow sites are not representative of the lowest or highest 46 
elevation bands within mountainous regions (Molotch and Bales, 2005). In the western United States (USA), the 47 
Natural Resources Conservation Service (NRCS) operates a large network of Snow Telemetry (SNOTEL) sites, 48 
featuring snow pillows. The NRCS also operates the smaller Soil Climate Analysis Network (SCAN) which 49 
provides the only, and very limited, snow pillow SWE measurements in the eastern USA.  50 
 51 
SWE can also be measured manually, using a snow coring device that measures the weight of a known volume of 52 
snow to determine snow density (Church, 1933). These measurements are often one-off measurements, or in the 53 
case of ‘snow courses’ they are repeated weekly or monthly at a given location. The simplicity and portability of 54 
coring devices expand the range over which measurements can be collected, but it can be challenging to apply these 55 
methods to deep snowpacks due to the length of standard coring devices. Note that there are numerous different 56 
styles of coring devices, including the Adirondack sampler and the Mt. Rose / Federal sampler (Church and Marr, 57 
1937). 58 
 59 
There are a number of issues that affect the accuracy of both snow pillow and snow coring measurements. With 60 
coring measurements, if the coring device is not carefully extracted, a portion of the core may fall out of the device. 61 
Or, snow may become compressed in the coring device during insertion. These effects have led to varying 62 
conclusions, with some studies (e.g., Sturm et al., 2010) showing a low SWE bias and other studies (e.g., Goodison, 63 
1978) showing a high SWE bias. As noted by Johnson et al. (2015) a good rule of thumb is that coring devices are 64 
accurate to around ± 10%. Also, studies comparing different styles of snow samplers report statistically different 65 
results, suggesting that SWE measurements are sensitive to the design of the specific coring device, such as the 66 
presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012). With snow 67 
pillows, some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE, 68 
with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks, 69 
2004; Dressler et al., 2006; Johnson et al., 2015) note a more complex situation with SWE under-reported at times, 70 
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but over-reported at other times. Note that when snow pillow data are evaluated, they are most commonly compared 71 
to coring measurements at the same location. 72 
 73 
All methods of measuring SWE are challenged by the fact that SWE is a depth-integrated property of a snowpack. 74 
This is why the snowpack must be weighed, in the case of a snow pillow, or a core must be extracted from the 75 
surface to the ground. This measurement complexity makes it difficult to obtain SWE information with the spatial 76 
and temporal resolution desired for watershed-scale studies. Other snowpack properties, such as the depth h, are 77 
much easier to measure. For example, using a graduated device such as a meterstick or an avalanche probe to 78 
measure the depth takes only seconds. Automating depth measurements at a fixed location can easily be done using 79 
low-cost ultrasonic devices (Goodison et al., 1984; Ryan et al., 2008). High-spatial-resolution measurements of 80 
snowpack depth are commonly made with Light Detection and Ranging (LIDAR). One example of this is the 81 
Airborne Snow Observatory program (ASO; Painter et al., 2016). The comparatively high expense of airborne 82 
LIDAR surveys typical limits measurements geographically (to a few basins) and temporally (weekly to monthly 83 
interval). 84 
 85 
Given the relative ease in obtaining depth measurements, it is common to use h as a proxy for SWE. Figure 1 shows 86 
a conceptual sketch of the variation of SWE with h over a typical water year. Noting the arrows on the curve, we see 87 
that SWE is multi-valued for each h. This is due to the fact that the snowpack increases in density throughout the 88 
water year, producing a hysteresis loop in the curve. A large body of literature exists on the topic of how to convert 89 
h to SWE. It is beyond the scope of this paper to provide a full review of these ‘bulk density equations,’ where the 90 
density is given by ρ* = SWE/ℎ. Instead, we refer readers to the useful comparative review by Avanzi et al. (2015). 91 
Here, we prefer to discuss a limited number of previous studies that illustrate the spectrum of methodologies and 92 
complexities that can be used to determine ρ* or SWE.  93 
 94 
Many studies express ρ* as an increasing function (often linear) of h. In some cases (e.g., Lundberg et al., 2006) a 95 
second equation is added where ρ* attains a constant value when a threshold h is exceeded. A single linear equation 96 
captures the process of densification of the snowpack during the accumulation phase, but performs poorly during the 97 
ablation phase, where depths are decreasing but densities continue to increase or approach a constant value.  98 
Other approaches choose to parameterize ρ* in terms of time, rather than h. Pistocchi (2016) provides a single 99 
equation while Mizukami and Perica (2008) provide two sets of equations, one set each for early and late season. 100 
Each set contains four equations, each of which is applicable to a particular ‘cluster’ of stations. This clustering was 101 
driven by observed densification characteristics and the resulting clusters are relatively spatially discontinuous. 102 
Jonas et al. (2009) take the idea of region- (or cluster-) specific equations and extend it further to provide 103 
coefficients that depend on time and elevation as well. They use a simple linear equation for ρ* in terms of h and the 104 
slope and intercept of the equation are given as monthly values, with three elevation bins for each month (36 pairs of 105 
coefficients). There is an additional contribution to the intercept (or ‘offset’) which is region-specific (one of 7 106 
regions).  107 
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 108 
These classifications, whether based on region, elevation, or season, are valuable since they acknowledge that all 109 
snow is not equal. McKay and Findlay (1971) discuss the controls that climate and vegetation exert on snow density, 110 
and Sturm et al. (2010) address this directly by developing a snow density equation where the coefficients depend 111 
upon the ‘snow class’ (5 classes). Sturm et al. (1995) explain the decision tree, based on temperature, precipitation, 112 
and wind speed, that leads to the classification. The temperature metric is the ‘cooling degree month’ calculated 113 
during winter months only. Similarly, only precipitation falling during winter months was used in the classification. 114 
Finally, given the challenges in obtaining high quality, high-spatial-resolution wind information, vegetation 115 
classification was used as a proxy. Using climatological values (rather than values for a given year), Sturm et al. 116 
(1995) were able to develop a global map of snow classification. 117 
 118 
There are many other formulations for snow density that increase in complexity and data requirements. Meloysund 119 
et al. (2007) express ρ* in terms of sub-daily measurements of relative humidity, wind characteristics, air pressure, 120 
and rainfall, as well as h and estimates of solar exposure (‘sun hours’). McCreight and Small (2014) use daily snow 121 
depth measurements to develop their regression equation. They demonstrate improved performance over both Sturm 122 
et al. (2010) and Jonas et al. (2009). However, a key difference between the McCreight and Small (2014) model and 123 
the others listed above is that the former cannot be applied to a single snow depth measurement. Instead, it requires a 124 
continuous time series of depth measurements at a fixed location. Further increases in complexity are found in 125 
energy-balance snowpack models (SnowModel, Liston and Elder, 2006; VIC, Liang et al., 1994, DHSVM, 126 
Wigmosta et al., 1994, others), many of which use multi-layer models to capture the vertical structure of the 127 
snowpack. While the particular details vary, these models generally require high temporal-resolution time series of 128 
many meteorological variables as input.  129 
 130 
Despite the development of multi-layer energy-balance snow models, there is still a demonstrated need for bulk 131 
density formulations and for vertically integrated data products like SWE. Pagano et al. (2009) review the 132 
advantages and disadvantages of energy-balance models and statistical models and describe how the NRCS uses 133 
SWE (from SNOTEL stations) and accumulated precipitation in their statistical models to make daily water supply 134 
forecasts. If SWE information is desired at a location that does not have a SNOTEL station, and is not part of a 135 
modeling effort, then bulk density equations and depth measurements are an excellent choice. 136 
 137 
The present paper seeks to generalize the ideas of Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., 138 
(2010). Specifically, our goal is to regress physical and environmental variables directly into the equations. In this 139 
way, environmental variability is handled in a continuous fashion rather than in a discrete way (model coefficients 140 
based on classes). The main motivation for this comes from evidence (e.g., Fig. 3 of Alford, 1967) that density can 141 
vary significantly over short distances on a given day. Bulk density equations that rely solely on time completely 142 
miss this variability and equations that have coarse (model coefficients varying over either vertical bins or horizontal 143 
grids) spatial resolution may not fully capture it either. 144 
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 145 
Our approach is most similar to Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., (2010) in that a 146 
minimum of information is needed for the calculations; we intentionally avoid approaches like Meloysund et al. 147 
(2007) and McCreight and Small (2014). This is because our interests are in converting h measurements to SWE 148 
estimates in areas lacking weather instrumentation. The following sections introduce the numerous data sets that 149 
were used in this study, outline the regression model adopted, and assess the performance of the model. 150 

2 Methods 151 
 152 
2.1 Data 153 
 154 
2.1.1 Snow Depth and Snow Water Equivalent 155 
In this section, we list sources of 1970-present snow data utilized for this study (Table 1). With regards to snow 156 
coring devices, we refer to them using the terminology preferred in the references describing the datasets. 157 
 158 
2.1.1.1 USA NRCS Snow Telemetry and Soil Climate Analysis Networks   159 
SNOTEL (Serreze et al., 1999; Dressler et al., 2006) and SCAN (Schaefer et al. 2007) stations in the contiguous 160 
United States (CONUS) and Alaska typically record sub-daily observations of h, SWE, and a variety of weather 161 
variables (Figure 2a-b). The periods of record are variable, but the vast majority of stations have a period of record 162 
in excess of 30 years. For this study, data from all SNOTEL sites in CONUS and Alaska and northeast USA SCAN 163 
sites were obtained with the exception of sites whose period of record data were unavailable online. Only stations 164 
with both SWE and h data were retained. 165 
 166 
2.1.1.2 Canada (British Columbia) Snow Survey Data 167 
Goodison et al. (1987) note that Canada has no national digital archive of snow observations from the many 168 
independent agencies that collect snow data and that snow data are instead managed provincially. The quantity and 169 
availability of the data vary considerably among the provinces. The Water Management Branch of the British 170 
Columbia (BC) Ministry of the Environment manages a comparatively dense network of Automated Snow Weather 171 
Stations (ASWS) that measure SWE, h, accumulated precipitation, and other weather variables (Figure 2a). For this 172 
study, data from all British Columbia ASWS sites were initially obtained. As with the NRCS stations, only ASWS 173 
stations with both SWE and h data were retained.  174 
 175 
2.1.1.3 Northeast USA Data 176 
In addition to the data from the SCAN sites, snow data for this project from the northeast US come from two 177 
networks and three research sites (Figure 2b).  The Maine Cooperative Snow Survey (MCSS, 2018) network 178 
includes h and SWE data collected by the Maine Geological Survey, the United States Geological Survey, and 179 
numerous private contributors and contractors. MCSS snow data are collected using the Standard Federal or 180 
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Adirondack snow sampling tubes typically on a weekly to bi-weekly schedule throughout the winter and spring, 181 
1951-present. The New York Snow Survey network data were obtained from the National Oceanic and Atmospheric 182 
Administration’s Northeast Regional Climate Center at Cornell University (NYSS, 2018). Similar to the MCSS, 183 
NYSS data are collected using Standard Federal or Adirondack snow sampling tubes on weekly to bi-weekly 184 
schedules, 1938-present. 185 
 186 
The Sleepers River, Vermont Research Watershed in Danville, Vermont (Shanley and Chalmers, 1999) is a USGS 187 
site that includes 15 stations with long-term weekly records of h and SWE collected using Adirondack snow tubes. 188 
Most of the periods of record are 1981-present, with a few stations going back to the 1960s. The sites include 189 
topographically flat openings in conifer stands, old fields with shrub and grass, a hayfield, a pasture, and openings in 190 
mixed softwood-hardwood forests. The Hubbard Brook Experiment Forest (Campbell et al., 2010) has collected 191 
weekly snow observations at the Station 2 rain gauge site, 1959-present. Measurement protocol collects ten samples 192 
2 m apart along a 20 m transect in a hardwood forest opening about ¼ hectare in size. At each sample location along 193 
the transect, h and SWE are measured using a Mt. Rose snow tube and the ten samples are averaged for each 194 
transect. Finally, the Thompson Farm Research site includes a mixed hardwood forest site and an open pasture site 195 
(Burakowski et al. 2013; Burakowski et al. 2015). Daily (from 2011-2018), at each site, a snow core is extracted 196 
with an aluminum tube and weighed (tube + snow) using a digital hanging scale. The net weight of the snow is 197 
combined with the depth and the tube diameter to determine 𝜌2, similar to a Federal or Adirondack sampler. 198 
 199 
2.1.1.4 Chugach Mountains (Alaska) Data 200 
In the spring of 2018, we conducted three weeks of fieldwork in the Chugach mountains in coastal Alaska, near the 201 
city of Valdez (Figure 2c-d). We measured h using an avalanche probe at 71 sites along elevational transects during 202 
March, April, and May. The elevational transects ranged between 250 and 1100 m (net change along transect) and 203 
were accessible by ski and snowshoe travel. At each site, we measured h in 8 locations within the surrounding 10 204 
m2, resulting in a total of 550+ snow depth measurements. These 71 sites were scattered across 8 regions in order to 205 
capture spatial gradients that exist in the Chugach mountains as the wetter, more-dense maritime snow near the coast 206 
gradually changes to drier, less dense snow on the interior side.  207 
 208 
2.1.1.5 Data Pre-Processing 209 
Figure 3 demonstrates that it is not uncommon for automated snow depth measurements to become noisy or non-210 
physical, at times reporting large depths when there is no SWE reported. This is different from instances when 211 
physically plausible, but very low densities might be reported; say in response to early season dry, light snowfalls. It 212 
was therefore desirable to apply some objective, uniform procedure to each station’s dataset in order to remove clear 213 
outlier points, while minimizing the removal of valid data points. We recognize that there is no accepted 214 
standardized method for cleaning bivariate SWE-h data sets. While Serreze et al. (1999) offer a procedure for 215 
SNOTEL data in their appendix, it is relevant only for precipitation and SWE values, not h. Given the strong 216 
correlation between h and SWE, we instead choose to use common outlier detection techniques for bivariate data. 217 
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 218 
The Mahalanobis distance (MD; Maesschalck et al., 2000) quantifies how far a point lies from the mean of a 219 
bivariate distribution. The distances are in terms of the number of standard deviations along the respective principal 220 
component axes of the distribution. For highly correlated bivariate data, the MD can be qualitatively thought of as a 221 
measure of how far a given point deviates from an ellipse enclosing the bulk of the data. One problem is that the MD 222 
is based on the statistical properties of the bivariate data (mean, covariance) and these properties can be adversely 223 
affected by outlier values. Therefore, it has been suggested (e.g., Leys et al., 2018) that a ‘robust’ MD (RMD) be 224 
calculated. The RMD is essentially the MD calculated based on statistical properties of the distribution unaffected 225 
by the outliers. This can be done using the Minimum Covariance Determinant (MCD) method as first introduced by 226 
Rousseeuw (1984).  227 
 228 
Once RMDs have been calculated for a bivariate data set, there is the question of how large an RMD must be in 229 
order for the data point to be considered an outlier. For bivariate normal data, the distribution of the square of the 230 
RMD is 𝜒4  (Gnanadesikan and Kettenring, 1972), with p (the dimension of the dataset) degrees of freedom. So, a 231 
rule for identifying outliers could be implemented by selecting as a threshold some arbitrary quantile (say 0.99) of 232 
𝜒54 . For the current study, a threshold quantile of 0.999 was determined to be an appropriate compromise in terms of 233 
removing obviously outlier points, yet retaining physically plausible results. 234 
 235 
A scatter plot of SWE vs. h for the source SNOTEL dataset from CONUS and AK reveals many non-physical 236 
points, mostly when a very large h is reported for a very low SWE (Figure 4a). Approximately 0.7% of the original 237 
data points were removed in the pre-processing described above, creating a more physically plausible scatter plot 238 
(Figure 4b). Note that the outlier detection process was applied to each station individually. The distribution of ‘day 239 
of year’ (DOY) values of removed data points was broad, with a mean of 160 and a standard deviation of 65. Note 240 
that the DOY origin is 1 October. The same procedure was applied to the BC and northeast USA data sets as well 241 
(not shown). Table 1 summarizes useful information about the numerous data sets described above and indicates the 242 
final number of data points retained for each. We acknowledge that our process inevitably removes some valid data 243 
points, but, as a small percentage of an already 0.7% removal rate, we judged this to be acceptable. 244 
 245 
Table 1: Summary of information about the datasets used in this study. Datasets in bold font were used to construct 246 
the regression model. The numbers of stations and data points reflect the post-processed data. 247 

Dataset Name Dataset Type Number 
of retained 
stations 

Number and 
percentage of 
retained data 
points 

Precision (h / SWE)  

NRCS SNOTEL 
 

Snow pillow (SWE), 
ultrasonic (h) 

791 
 

1,900,000 
(99.3%) 
 

(0.5 in / 0.1 in) 
 

NRCS SCAN Snow pillow (SWE), 
ultrasonic (h) 

5 7094 
(97.8%) 

(0.5 in / 0.1 in) 
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British Columbia 
Snow Survey 

Snow pillow (SWE), 
ultrasonic (h) 

31 61,000 
(97.5%) 

(1 cm / 1 mm) 

Maine Geological 
Survey 

Adirondack or Federal 
sampler (SWE and h) 

431 28,000 
(99.3%) 

(0.5 in / 0.5 in ) 

Hubbard Brook 
(Station 2), NH 

Mount Rose sampler (SWE 
and h) 

1 704 
(99.4%) 

(0.1 in / 0.1 in) 

Thompson Farm, NH Snow core (SWE and h) 2 988 
(99.4%) 

0.5 in / 0.5 in) 

Sleepers River, VT  Adirondack sampler 14 7214 
(99.4%) 

(0.5 in / 0.5 in) 

New York Snow 
Survey 

Adirondack or Federal 
sampler (SWE and h) 

523 44,614 
(98.2%) 

(0.5 in / 0.5 in) 

Chugach Mountains, 
AK 

Avalanche probe (h) 71 71 
(100%) 

(1 cm) 

 248 
2.1.2 Climatological Variables 249 
30-year climate normals at 800 m (nominal) resolution for CONUS and for the period 1981-2010 were obtained 250 
from the PRISM website (Daly et al., 1994). PRISM normals for British Columbia (BC), Canada, were obtained 251 
from the ClimateBC project (Wang et al., 2012), also for the 1981-2010 period. Finally, PRISM normals for Alaska 252 
(AK) were obtained from the Integrated Resource Management Applications (IRMA) Portal run by the National 253 
Park Service. The AK normals are for the 1971-2000 period and have a slightly coarser resolution (approximately 254 
1.5 km). Figure 5 shows gridded maps of mean annual precipitation (MAP) and mean February Temperature (𝑇"#) 255 
for these three climate products, plotted together. Other temperature products (max and min temperatures; other 256 
months) were obtained as well, but are not shown. 257 
 258 
2.2 Regression Model 259 
In order to demonstrate the varying degrees of influence of explanatory variables, several regression models were 260 
constructed. In each case, the model was built by randomly selecting 50% of the paired SWE-h measurements from 261 
the aggregated CONUS, AK, and BC snow pillow datasets. The model was then validated by applying it to the 262 
remaining 50% of the dataset and comparing the modeled SWE to the observed SWE for those points. Additional 263 
validation was done with the northeast USA datasets (SCAN snow pillow and various snow coring datasets) which 264 
were completely left out of the model building process. 265 
 266 
2.2.1 One-Equation Model 267 
The simplest equation, and one that is supported by the strong correlation seen in the portions of Figure 3 when 268 
SWE is present, is one that expresses SWE as a function of h. A linear model is attractive in terms of simplicity, but 269 
this limits the snowpack to a constant density. An alternative is to express SWE as a power law, i.e., 270 
 271 
(1) 𝑆𝑊𝐸 = 𝐴ℎ;<.   272 
 273 
This equation can be log-transformed into 274 
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 275 
(2) 𝑙𝑜𝑔AB(𝑆𝑊𝐸) = 𝑙𝑜𝑔AB(𝐴) + 𝑎A𝑙𝑜𝑔AB(ℎ) 276 
 277 
which immediately allows for simple linear regression methods to be applied. With both h and SWE expressed in 278 
units of mm, the obtained coefficients are (𝐴, 𝑎A) = (0.146, 1.102). Information on the performance of the model 279 
will be deferred until the results section. 280 
 281 
2.2.2 Two-Equation Model 282 
Recall from Figures 1 and 4 that there is a hysteresis loop in the SWE-h relationship. During the accumulation 283 
phase, snow densities are relatively low. During the ablation phase, the densities are relatively high. So, the same 284 
snowpack depth is associated with two different SWEs, depending upon the time of year. The regression equation 285 
given above does not resolve this difference. This can be addressed by developing two separate regression 286 
equations, one for the accumulation (acc) and one for the ablation (abl) phase. This approach takes the form 287 
 288 
(3) 𝑆𝑊𝐸;KK = 𝐴ℎ;<; 					𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 289 
 290 
(4) 𝑆𝑊𝐸;2S = 𝐵ℎ2<; 					𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 291 
 292 
where DOY is the number of days from the start of the water-year (October 1 is the origin), and DOY* is the critical 293 
or dividing day-of-water-year separating the two phases. Put another way, DOY* is the day of peak SWE. 294 
Interannual variability results in a range of DOY* for a given site. Additionally, some sites, particularly the SCAN 295 
sites in the northeast USA, demonstrate multi-peak SWE profiles in some years. To reduce model complexity, 296 
however, we investigated the use of a simple climatological (long term average) value of DOY*. For each snow 297 
pillow station, the average DOY* was computed over the period of record of that station. Analysis of all of the 298 
stations revealed that this average DOY* was relatively well correlated with the climatological mean April maximum 299 
temperature (the average of the daily maximums recorded in April; R2 = 0.7). However, subsequent regression 300 
analysis demonstrated that the SWE estimates were relatively insensitive to DOY* and the best results were actually 301 
obtained when DOY* was uniformly set to 180 for all stations. Again, with both SWE and h in units of mm, the 302 
regression coefficients turn out to be (𝐴, 𝑎A) = (0.150, 1.082) and (𝐵, 𝑏A) = (0.239, 1.069). 303 
 304 
As these two equations are discontinuous at DOY*, they are blended smoothly together to produce the final two-305 
equation model 306 
 307 
(5) 𝑆𝑊𝐸 = 𝑆𝑊𝐸;KK

A
4
(1 − 𝑡𝑎𝑛ℎ[0.01{𝐷𝑂𝑌 − 𝐷𝑂𝑌∗}]) + 308 

𝑆𝑊𝐸;2S
1
2
(1 + 𝑡𝑎𝑛ℎ[0.01{𝐷𝑂𝑌 −𝐷𝑂𝑌∗}]) 309 

 310 
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The coefficient 0.01 in the tanh function controls the width of the blending window and was selected to minimize 311 
the root mean square error of the model estimates. 312 
 313 
2.2.3 Two-Equation Model with Climate Parameters 314 
A final model was constructed by incorporating climatological variables. Again, the emphasis is this study is on 315 
methods that can be implemented at locations lacking the time series of weather variables that might be available at 316 
a weather or SNOTEL station. Climatological normals are unable to account for interannual variability, but they do 317 
preserve the high spatial gradients in climate that can lead to spatial gradients in snowpack characteristics. Stepwise 318 
linear regression was used to determine which variables to include in the regression. The initial list of potential 319 
variables included was 320 
 321 
(6) 𝑆𝑊𝐸 = 𝑓cℎ, 𝑧,𝑀𝐴𝑃, 𝑇"g$h', 𝑇"g$%&', 𝑇"g$&i , 𝑇"#$h' , 𝑇"#$%&' , 𝑇"#$&i , 𝑇"j$h', 𝑇"j$%&', 𝑇"j$&i, 𝑇"k$h', 𝑇"k$%&', 𝑇"k$&i	l 322 
 323 
where z is the elevation (m), MAP is the mean annual precipitation (mm) and the temperatures (°𝐶) represent the 324 
mean of minimum, mean, and maximum daily values for the months January through April (J, F, M, A). For 325 
example, 𝑇"g$h' is the climatological normal of the average of the daily minimum temperatures observed in January. 326 
In the stepwise regression, explanatory variables were accepted if they improved the adjusted R2 value by 0.001. 327 
The result of the regression yielded 328 
 329 
(7) 𝑆𝑊𝐸;KK = 𝐴ℎ;<𝑀𝐴𝑃;oc𝑇"#$%&' + 30l

;p; 					𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 330 
 331 

(8) 𝑆𝑊𝐸;2S = 𝐵ℎ2<𝑀𝐴𝑃2oc𝑇"#$%&' + 30l
2p; 					𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 332 

 333 
or, in log-transformed format, 334 
 335 
(9) 𝑙𝑜𝑔AB(𝑆𝑊𝐸;KK) = 𝑙𝑜𝑔AB(𝐴) + 𝑎A𝑙𝑜𝑔AB(ℎ) + 336 

𝑎4𝑙𝑜𝑔AB(𝑀𝐴𝑃) + 𝑎q𝑙𝑜𝑔ABc𝑇"#$%&' + 30l; 							𝐷𝑂𝑌 < 𝐷𝑂𝑌∗ 337 
 338 
(10) 𝑙𝑜𝑔AB(𝑆𝑊𝐸;2S) = 𝑙𝑜𝑔AB(𝐵)+ 𝑏A𝑙𝑜𝑔AB(ℎ) + 339 

𝑏4𝑙𝑜𝑔AB(𝑀𝐴𝑃) + 𝑏q𝑙𝑜𝑔ABc𝑇"#$%&' + 30l; 							𝐷𝑂𝑌 ≥ 𝐷𝑂𝑌∗ 340 
 341 
indicating that only snow depth, mean annual precipitation and mean February temperature were relevant. Manual 342 
tests of model construction with other variables included confirmed that Eqns. (7-8) yielded the best results. In the 343 
above equations, note that an offset is added to the temperature in order to avoid taking the log of a negative 344 
number. These two SWE estimates for the individual (acc and abl) phases of the snowpack are then blended with 345 
Eqn. (5) to produce a single equation for SWE spanning the entire water year. The obtained regression coefficients 346 
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were (𝐴, 𝑎A, 𝑎4, 𝑎q) = (0.0128, 1.070, 0.132, 0.506) and (𝐵, 𝑏A, 𝑏4, 𝑏q) = (0.0271, 1.038, 0.201, 0.310). The 347 
physical interpretation of these coefficients is straightforward. If 𝑎A and 𝑏A were equal to unity, then the density, 348 
given by (SWE/h), would be a constant at a given location. Since they are greater than unity, they capture the effect 349 
that snow density increases as depth increases. Turning to the coefficients on the climate variables, both 𝑎4 and 𝑏4 350 
are greater than zero. So, for two locations with equal depth, equal temperature characteristics, but different 351 
precipitation characteristics, the regression model predicts that the wetter location (larger MAP) will have a greater 352 
density. Finally, regarding temperature, both 𝑎q and 𝑏q are greater than zero. Therefore, for two locations with equal 353 
depth, equal precipitation characteristics, but different temperature characteristics, the regression model predicts that 354 
the warmer location (larger  𝑇"#$%&') will have a greater density. These trends are similar in concept to Sturm et al. 355 
(2010), whose snow classes (based on climate classes) indicate which snow will densify more rapidly.  356 

3 Results 357 
A comparison of the three regression models (one-equation model, Eq. (2); two-equation model, Eqs. (3-5); multi-358 
variable two-equation model, Eqs. (5, 7-8)) is provided in Figure 6. The left column shows scatter plots of modeled 359 
SWE to observed SWE for the validation data set with the 1:1 line shown in black. The right column shows 360 
histograms of the model residuals. The vertical lines in the right column show the mean error, or model bias. 361 
Visually, it is clear that the one-equation model performs relatively poorly with a large negative bias. This large 362 
negative bias is partially overcome by the two-equation model (middle row, Figure 6). The cloud of points is closer 363 
to the 1:1 line and the vertical black line indicating the mean error is closer to zero. In the final row of Figure 6, we 364 
see that the multi-variable two-equation model yields the best result by far. The residuals are now evenly distributed 365 
with a negligible bias. Several metrics of performance for the three models, including R2 (Pearson coefficient), bias, 366 
and root-mean-square-error (RMSE), are provided in Table 2. Figure 7 shows the distribution of model residuals for 367 
the multi-variable two-equation model as a function of DOY. 368 
 369 
Table 2: Summary of performance metrics for the three regression models presented in Section 2.2. 370 

Model R2 Bias (mm) RMSE (mm) 
One-equation 0.946 -19.5 102 
Two-equation 0.962 -5.1 81 
Multi-variable two-equation 0.972 -0.5 67 

 371 
It is useful to also consider the model errors in a non-dimensional way. Therefore, an RMSE was computed at each 372 
station location and normalized by the mean annual maximum SWE (𝑆𝑊𝐸s;t) at that location. Figure 8 shows the 373 
probability density function of these normalized errors. The average RMSE is approximately 11% of 𝑆𝑊𝐸s;t, with 374 
most falling into the range of 5-25%. The spatial distribution of these normalized errors is shown in Figure 9. For 375 
the SNOTEL stations, it appears there is a slight regional trend, in terms of stations in continental climates (northern 376 
Rockies) having smaller relative errors than stations in maritime climates (Cascades). The British Columbia stations 377 
also show higher relative errors. 378 
 379 
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3.1 Results for Snow Classes 380 
A key objective of this study is to regress climatological information in a continuous rather than a discrete way. The 381 
work by Sturm et al. (2010) therefore provides a valuable point of comparison. In that study, the authors developed 382 
the following equation for density 𝜌2 383 
 384 
(11) 𝜌2 = (𝜌s;t − 𝜌B)u1 − 𝑒(wx<ywxoz{|)} + 𝜌B  385 
 386 
where r0 is the initial density, rmax is the maximum or ‘final’ density (end of water year), k1 and k2 are coefficients, 387 
and DOY in this case begins on January 1. This means that their DOY for October 1 is -92. The coefficients vary 388 
with snow class and the values determined by Sturm et al. (2010) are shown in Table 3. 389 
 390 
Table 3: Model parameters by snow class for Sturm et al. (2010). 391 

Snow Class rmax r0 k1 k2 

Alpine 0.5975 0.2237 0.0012 0.0038 
Maritime 0.5979 0.2578 0.0010 0.0038 
Prairie 0.5941 0.2332 0.0016 0.0031 
Tundra 0.3630 0.2425 0.0029 0.0049 
Taiga 0.2170 0.2170 0.0000 0.0000 

 392 
To make a comparison, the snow class for each SNOTEL and British Columbia snow survey (Rows 1 and 3 of Table 393 
1) site was determined using a 1-km snow class grid (Sturm et al., 2010). The aggregated dataset from these stations 394 
was made up of 27% Alpine, 14% Maritime, 10% Prairie, 11% Tundra, and 38% Taiga data points. Equation (11) 395 
was then used to estimate snow density (and then SWE) for every point in the validation dataset described in Section 396 
2.2. Figure 10 compares the SWE estimates from the Sturm model and from the present multi-variable, two-equation 397 
model (Equations 5, 7-8). The upper left panel of Figure 10 shows all of the data, and the remaining panels show the 398 
results for each snow class. In all cases, the current model provides better estimates. Plots of the residuals by snow 399 
class are provided in Figure 11, giving an indication of the bias of each model for each snow class. Summaries of the 400 
model performance, broken out by snow class, are given in Table 4.  401 
 402 
Table 4: Comparison of model performance by Sturm et al. (2010) and the present study. 403 

Model Sturm et al. (2010) Multi-variable two-equation model 
Snow Class R2 Bias (mm) RMSE (mm) R2 Bias (mm) RMSE (mm) 
All Data 0.928 -29.2 111 0.972 -0.5 67 
Alpine 0.973 10.1 55 0.971 -0.3 55 
Maritime 0.968 -16.8 109 0.970 -4.5 105 
Prairie 0.967 18.7 56 0.965 -0.2 51 
Tundra 0.956 -10.5 82 0.969 -6.1 67 
Taiga 0.943 -80.0 151 0.971 2.4 62 

 404 
3.2 Comparison to Pistocchi (2016) 405 
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In order to provide one additional comparison, the simple model of Pistocchi (2016) was also applied to the 406 
validation dataset. His model calculates the bulk density as 407 
 408 
(12) 𝜌2 = 𝜌B + 𝐾(𝐷𝑂𝑌 + 61), 409 
 410 
where 𝜌B has a value of 200 kg m-3 and K has a value of 1 kg m-3. The DOY for this model has its origin at 411 
November 1. Application of this model to the validation dataset yields a bias of 55 mm and an RMSE of 94 mm. 412 
These results are comparable to the Sturm et al. (2010) model, with a larger bias but smaller RMSE. 413 
 414 
3.3 Results for Northeast USA 415 
The regression equations in this study were developed using a large collection of SNOTEL sites in CONUS, AK, 416 
and BC. The snow pillow sites are limited to locations west of approximately W 105° (Figure 2a). By design, the 417 
data sets from the northeastern USA (Section 2.1.1.3) were left as an entirely independent validation set. These 418 
northeastern sites are geographically distant from the training data sets, are subject to a very different climate, and 419 
are generally at much lower elevations than the western sites, providing an interesting opportunity to test how robust 420 
the present model is. 421 
 422 
Figure 12 graphically summarizes the datasets and the performance of the multi-variable two-equation model of the 423 
current study. The RMSE values are comparable to those found for the western stations, but, given the 424 
comparatively thinner snowpacks in the northeast, represent a larger relative error (Table 5). The bias of the model 425 
is consistently positive, in contrast to the western stations where the bias was negligible.  426 
 427 
Table 5: Performance metrics for the multi-variable two-equation model applied to various northeastern USA 428 
datasets. 429 

Dataset Name R2 Bias (mm) RMSE (mm) 
Maine Geological Survey, ME 0.91 8.9 33.3 
Hubbard Brook (Station 2), NH 0.63 18.9 64.2 
Thompson Farm, NH 0.85 7.1 21.6 
NRCS SCAN 0.87 -1.8 38.7 
Sleepers River, VT 0.93 14.0 29.7 
New York Snow Survey 0.93 13.8 31.2 

 430 

4 Discussion 431 
The results presented in this study show that the regression equation described by equations (5, 7-8) is an 432 
improvement (lower bias and RMSE) over other widely used bulk density equations. The key advantage is that the 433 
present method regresses in relevant physical parameters directly, rather than using discrete bins (for snow class, 434 
elevation, month of year, etc.), each with its own set of model coefficients. The comparison (Figs. 10-11; Table 4) to 435 
the model of Sturm et al. (2010) reveals a peculiar behavior of that model for the Taiga snow class, with a large 436 
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negative bias in the Sturm estimates. Inspection of the coefficients provided for that class (Table 3) shows that the 437 
model simply predicts that 𝜌2 = 𝜌s;t = 0.217 for all conditions. 438 
 439 
When our multi-variable two-equation model, developed solely from western North American data, is applied to 440 
northeast USA locations, it produces SWE estimates with smaller RSME values and larger biases than the western 441 
stations. When comparing the SWE-h curves of the SNOTEL data (Figure 4b) to those of the east coast data sets 442 
(left column; Figure 12), it is clear that the northeast data generally have more scatter. This is confirmed by 443 
computing the correlation coefficients between SWE and h for each dataset. It is unclear if this disparity in 444 
correlation is related to measurement methodology or is instead a ‘signal to noise’ issue. Comparing Figures 4 and 445 
12 shows the considerable difference in snowpack depth between the western and northeastern data sets. When the 446 
western dataset is filtered to include only measurement pairs where ℎ < 1.5 m, the correlation coefficient is reduced 447 
to a value consistent with the northeast datasets. This suggests that the performance of the current (or other) 448 
regression model is not as good at shallow snowpack depths. This is also suggested upon examination of the time 449 
series of observed 𝜌2 = 𝑆𝑊𝐸/ℎ for a given season at a snow pillow site. Very early in the season, when the depths 450 
are small, the density curve has a lot of variability. Later in the season, when depths are greater, the density curve 451 
becomes much smoother. Very late in the season, when depths are low again, the density curve becomes highly 452 
variable again. 453 
 454 
Measurement precision and accuracy affect the construction and use of a regression model. Upon inspection of the 455 
snow pillow data, it was observed that the precision of the depth measurements was approximately 25 mm and that 456 
of the SWE measurements was approximately 2.5 mm. To test the sensitivity of the model coefficients to the 457 
measurement precision, the depth values in the training dataset were randomly perturbed by +/- 25 mm and the SWE 458 
values were randomly perturbed by +/- 2.5 mm and the regression coefficients were recomputed. This process was 459 
repeated numerous times and the mean values of the perturbed coefficients were obtained. These adjusted 460 
coefficients were then used to recompute the SWE values for the validation data set and the bias and RMSE were 461 
found to be -10.5 mm and 72.7 mm. This represents a roughly 10% increase in RMSE, but a considerable increase in 462 
bias magnitude (see Table 4 for the original values). This sensitivity of the regression analysis to measurement 463 
precision underscores the need to have high-precision measurements for the training data set. Regarding accuracy, 464 
random and systematic errors in the paired SWE - h data used to construct the regression model will lead to 465 
uncertainties in SWE values predicted by the model. As noted in the introduction, snow pillow errors in SWE 466 
estimates do not follow a simple pattern. Additionally, they are complicated by the fact that the errors are often 467 
computed by comparing snow pillow data to coring data, which itself is subject to error. Lacking quantitative 468 
information on the distribution of snow pillow errors, we are unable to quantify the uncertainty in the SWE 469 
estimates. 470 
 471 
Another important consideration has to do with the uncertainty of depth measurements that the model is applied to. 472 
For context, one application of this study is to crowd-sourced, opportunistic snow depth measurements from 473 
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programs like the Community Snow Observations (CSO; Hill et al., 2018) project. In the CSO program, 474 
backcountry recreational users submit depth measurements, typically taken with an avalanche probe, using a 475 
smartphone in the field. The measurements are then converted to SWE estimates which are assimilated into 476 
snowpack models. These depth measurements are ‘any time, any place’ in contrast to repeated measurements from 477 
the same location, like snow pillows or snow courses. Most avalanche probes have cm-scale graduated markings, so 478 
measurement precision is not a major issue. A larger problem is the considerable variability in snowpack depth that 479 
can exist over short (meter scale) distances. The variability of the Chugach avalanche probe measurements was 480 
assessed by taking the standard deviation of 8 h measurements per site. The average of this standard deviation over 481 
the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the 482 
sites was 15%. This variability is a function of the surface roughness of the underlying terrain, and also a function of 483 
wind redistribution of snow. Propagating this uncertainty through the regression equations yields a slightly higher 484 
(16%) uncertainty in the SWE estimates. CSO participants can do three things to ensure that their recorded depth 485 
measurements are as representative as possible. First, avoid measurements in areas of significant wind scour or 486 
deposition. Second, avoid measurements in terrain likely to have significant surface roughness (rocks, fallen logs, 487 
etc.). Third, take several measurements and average them. 488 
 489 
Expansion of CSO measurements in areas lacking SWE measurements can increase our understanding of the 490 
extreme spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in 491 
these regions. It could also prove useful for estimating watershed-scale SWE in regions like the northeastern USA, 492 
which is currently limited to five automated SCAN sites with historical SWE measurements for only the past two 493 
decades. Additionally, historical snow depth measurements are more widely available in the Global Historical 494 
Climatology Network (GHCN-Daily; Menne et al. 2012), with several records extending back to the late 1800s. 495 
While many of the GHCN stations are confined to lower elevations with shallower snow depths, the broader 496 
network of quality-controlled snow depth data paired with daily GHCN temperature and precipitation measurements 497 
could potentially be used to reconstruct SWE in the eastern US given additional model development and refinement. 498 

5 Conclusions 499 
We have developed a new, easy to use method for converting snow depth measurements to snow water equivalent 500 
estimates. The key difference between our approach and previous approaches is that we directly regress in 501 
climatological variables in a continuous fashion, rather than a discrete one. Given the abundance of freely available 502 
climatological norms, a depth measurement tagged with coordinates (latitude and longitude) and a time stamp is 503 
easily and immediately converted into SWE.  504 
 505 
We developed this model with data from paired SWE-h measurements from the western United States and British 506 
Columbia. The model was tested against entirely independent data (primarily snow course; some snow pillow) from 507 
the northeastern United States and was found to perform well, albeit with larger biases and root-mean-squared-508 
errors. The model was tested against other well-known regression equations and was found to perform better. 509 
 510 
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This model is not a replacement for more sophisticated snow models that evolve the snowpack based on high 511 
frequency (e.g., daily or sub-daily) weather data inputs. The intended purpose of this model is to constrain SWE 512 
estimates in circumstances where snow depth is known, but weather variables are not, a common issue in sparsely 513 
instrumented areas in North America. 514 
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7 Data Access 519 
Numerous online datasets were used for this project and were obtained from the following locations: 520 

1. NRCS Snow Telemetry: https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html 521 
2. NRCS Soil Climate Analysis Network: https://www.wcc.nrcs.usda.gov/scan/ 522 
3. British Columbia Automated Snow Weather Stations: 523 

https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-524 
tools/snow-survey-data/automated-snow-weather-station-data  525 

4. Maine Cooperative Snow Survey: https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data 526 
5. New York Snow Survey: http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html 527 
6. Sleepers River Research Watershed. Snow data not available online; request data from contact at: 528 

https://nh.water.usgs.gov/project/sleepers/index.htm 529 
7. Hubbard Brook Experimental Forest: https://hubbardbrook.org/d/hubbard-brook-data-catalog 530 
8. CONUS PRISM Data: http://www.prism.oregonstate.edu/ 531 
9. British Columbia PRISM Data: http://climatebcdata.climatewna.com/ 532 
10. Alaska PRISM Data: https://irma.nps.gov/Portal/ 533 

 534 
A Matlab function for calculating SWE based on the results is this paper has been made publicly available at Github 535 
(https://github.com/communitysnowobs/snowdensity).  536 
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Figure 1: Conceptual sketch of the evolution of snow water equivalent (SWE) over the course of a water year (black 719 
line). Also shown is the evolution of SWE with snowpack depth over a water year (red line). Note the hysteresis 720 
loop due to the densification of the snowpack. 721 

  722 
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Figure 2: Distribution of measurement locations used in this study.  (a) Western USA and Canada station locations, 723 
with colors indicating station elevation in meters. (b) Northeast USA locations, with stations colored according to 724 
data source. (c, d) Measurement sites in the Chugach Mountains, southcentral Alaska. 725 
 726 

 727 

728 
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Figure 3:  Sample time series of SWE and h from the Rex River (WA) SNOTEL station. Observations of h at times 730 
when SWE is zero are likely spurious. 731 

  732 



 25 

Figure 4: Scatter plot of SWE vs. h for the complete SNOTEL dataset before (a) and after (b) removing data points. 733 
Symbols are colored by ‘day of water year’ (DOY; October 1 is the origin). 734 
 735 
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 26 

Figure 5: Gridded maps of mean annual precipitation (MAP) and mean February temperature c𝑇"#$%&'l for the study 737 
regions. Climate normals are from the PRISM data set (1981-2010 for CONUS and British Columbia; 1971-2000 738 
for Alaska). 739 
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 741 
 742 



 27 

Figure 6: Two-dimensional histograms (heat maps; left column) of modeled vs. observed SWE and probability 743 
density functions (right column) of the residuals for three simple models applied to the CONUS, AK, and BC snow 744 
pillow data. Warmer colors in the heat maps indicate greater density. The vertical lines in the right column indicate 745 
the location of the mean residual, or bias. Top row (a-b): One-equation model (Section 2.2.1). Middle row (c-d): 746 
Two-equation model (Section 2.2.2). Bottom row (e-f): Multi-variable two-equation model (Section 2.2.3).  747 
 748 
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Figure 7: Heat map of SWE residuals as a function of DOY. 750 
 751 
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Figure 8: Probability density function of snow pillow station root-mean-square error (RMSE) normalized by station 753 
mean annual maximum SWE. 754 
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 30 

Figure 9: Spatial distribution of snow pillow station root-mean-square error (RMSE) normalized by station mean 756 
annual maximum SWE. 757 
 758 

  759 



 31 

Figure 10: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al. 760 
(2010). The subpanels show modeled SWE vs. observed SWE for all of the data binned together, as well as for the 761 
data broken out by the snow classes identified by Sturm et al. (1995). The gray symbols show the Sturm result and 762 
the transparent heat maps (warmer colors indicate greater density) show the current result. The models are being 763 
applied to the validation data set (50% of the aggregated snow pillow data for CONUS, AK, and BC). 764 

 765 
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Figure 11: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al. 766 
(2010). The subpanels show probability density functions of the residuals of the model fits for all of the data binned 767 
together, as well as for the data broken out by the snow classes identified by Sturm et al. (1995). The gray lines 768 
show the Sturm result and the colored lines show the current result. The vertical lines show the mean error, or the 769 
model bias, for both the Sturm and the current result. The models are being applied to the validation data set (50% of 770 
the aggregated snow pillow data for CONUS, AK, and BC). 771 

 772 



 33 

Figure 12: Results from application of the multi-variable, two-equation model to numerous east coast datasets. The 773 
left column shows the SWE-h data for each dataset. Note that the black symbols are points removed by the outlier 774 
detection procedure discussed in section 2.1.1.4. The remaining symbols are colored by DOY. The middle panel 775 
plots heat maps of the model estimates of SWE against the observations of SWE with the 1:1 line included. Warmer 776 
colors indicate higher densities. The right panel shows probability density functions of the model residuals, with the 777 
vertical line indicating the mean error, or bias. Individual rows correspond to individual data sets and are labeled. 778 
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 18 
Abstract. We present a simple method that allows snow depth measurements to be converted to snow water 19 
equivalent (SWE) estimates. These estimates are useful to individuals interested in water resources, ecological 20 
function, and avalanche forecasting. They can also be assimilated into models to help improve predictions of total 21 
water volumes over large regions. The conversion of depth to SWE is particularly valuable since snow depth 22 
measurements are far more numerous than costlier and more complex SWE measurements. Our model regresses 23 
SWE against snow depth and climatological (30-year normal) values for mean annual precipitation (MAP) and mean 24 
February temperature (!"#$%&), producing a power-law relationship. Relying on climatological normals rather than 25 
weather data for a given year allows our model to be applied at measurement sites lacking a weather station. 26 
Separate equations are obtained for the accumulation and the ablation phases of the snowpack, which introduces 27 
‘day of water year’ (DOY) as an additional variable. The model is validated against a large database of snow pillow 28 
measurements and yields a bias in SWE of less than 0.5 mm and a root-mean-squared-error (RMSE) in SWE of 29 
approximately 65 mm. When the errors are investigated on a station-by-station basis, the average RMSE is about 5% 30 
of the MAP at each station. The model is additionally validated against a completely independent set of data from 31 
the northeast United States. Finally, the results are compared with other models for bulk density that have varying 32 
degrees of complexity and that were built in multiple geographic regions. The results show that the model described 33 
in this paper has the best performance for the validation data set.   34 
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1 Introduction 35 
In many parts of the world, snow plays a leading-order role in the hydrological cycle (USACE, 1956; Mote et al., 36 
2018). Accurate information about the spatial and temporal distribution of snow water equivalent (SWE) is useful to 37 
many stakeholders (water resource planners, avalanche forecasters, aquatic ecologists, etc.), but can be time 38 
consuming and expensive to obtain.  39 
 40 
Snow pillows (Beaumont, 1965) are a well-established tool for measuring SWE at fixed locations. Figure 1 provides 41 
a conceptual sketch of the variation of SWE with time over a typical water year. A comparatively long accumulation 42 
phase is followed by a short ablation phase. While simple in operation, snow pillows are relatively large in size and 43 
they need to be installed prior to the onset of the season’s snowfall. This limits their ability to be rapidly or 44 
opportunistically deployed. Additionally, snow pillow installations tend to require vehicular access, limiting their 45 
locations to relatively simple topography. Finally, snow pillow sites are not representative of the lowest or highest 46 
elevation bands within mountainous regions (Molotch and Bales, 2005). In the western United States (USA), the 47 
Natural Resources Conservation Service (NRCS) operates a large network of Snow Telemetry (SNOTEL) sites, 48 
featuring snow pillows. The NRCS also operates the smaller Soil Climate Analysis Network (SCAN) which 49 
provides the only, and very limited, snow pillow SWE measurements in the eastern USA.  50 
 51 
SWE can also be measured manually, using a snow coring device that measures the weight of a known volume of 52 
snow to determine snow density (Church, 1933). These measurements are often one-off measurements, or in the 53 
case of ‘snow courses’ they are repeated weekly or monthly at a given location. The simplicity and portability of 54 
coring devices expand the range over which measurements can be collected, but it can be challenging to apply these 55 
methods to deep snowpacks due to the length of standard coring devices. Note that there are numerous different 56 
styles of coring devices, including the Adirondack sampler and the Mt. Rose / Federal sampler (Church and Marr, 57 
1937). 58 
 59 
There are a number of issues that affect the accuracy of both snow pillow and snow coring measurements. With 60 
coring measurements, if the coring device is not carefully extracted, a portion of the core may fall out of the device. 61 
Or, snow may become compressed in the coring device during insertion. These effects have led to varying 62 
conclusions, with some studies (e.g., Sturm et al., 2010) showing a low SWE bias and other studies (e.g., Goodison, 63 
1978) showing a high SWE bias. As noted by Johnson et al. (2015) a good rule of thumb is that coring devices are 64 
accurate to around ± 10%. Also, studies comparing different styles of snow samplers report statistically different 65 
results, suggesting that SWE measurements are sensitive to the design of the specific coring device, such as the 66 
presence of holes or slots, the device material, etc. (Beaumont and Work, 1963; Dixon and Boon, 2012). With snow 67 
pillows, some studies (e.g., Goodison et al., 1981) note that ice bridging can lead to low biases in measured SWE, 68 
with the snow surrounding the pillow partly supporting the snow over the pillow. Other studies (Johnson and Marks, 69 
2004; Dressler et al., 2006; Johnson et al., 2015) note a more complex situation with SWE under-reported at times, 70 
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but over-reported at other times. Note that when snow pillow data are evaluated, they are most commonly compared 89 
to coring measurements at the same location. 90 
 91 
All methods of measuring SWE are challenged by the fact that SWE is a depth-integrated property of a snowpack. 92 
This is why the snowpack must be weighed, in the case of a snow pillow, or a core must be extracted from the 93 
surface to the ground. This measurement complexity makes it difficult to obtain SWE information with the spatial 94 
and temporal resolution desired for watershed-scale studies. Other snowpack properties, such as the depth h, are 95 
much easier to measure. For example, using a graduated device such as a meterstick or an avalanche probe to 96 
measure the depth takes only seconds. Automating depth measurements at a fixed location can easily be done using 97 
low-cost ultrasonic devices (Goodison et al., 1984; Ryan et al., 2008). High-spatial-resolution measurements of 98 
snowpack depth are commonly made with Light Detection and Ranging (LIDAR). One example of this is the 99 
Airborne Snow Observatory program (ASO; Painter et al., 2016). The comparatively high expense of airborne 100 
LIDAR surveys typical limits measurements geographically (to a few basins) and temporally (weekly to monthly 101 
interval). 102 
 103 
Given the relative ease in obtaining depth measurements, it is common to use h as a proxy for SWE. Figure 1 shows 104 
a conceptual sketch of the variation of SWE with h over a typical water year. Noting the arrows on the curve, we see 105 
that SWE is multi-valued for each h. This is due to the fact that the snowpack increases in density throughout the 106 
water year, producing a hysteresis loop in the curve. A large body of literature exists on the topic of how to convert 107 
h to SWE. It is beyond the scope of this paper to provide a full review of these ‘bulk density equations,’ where the 108 
density is given by ρ) = SWE/ℎ. Instead, we refer readers to the useful comparative review by Avanzi et al. (2015). 109 
Here, we prefer to discuss a limited number of previous studies that illustrate the spectrum of methodologies and 110 
complexities that can be used to determine ρ) or SWE.  111 
 112 
Many studies express ρ) as an increasing function (often linear) of h. In some cases (e.g., Lundberg et al., 2006) a 113 
second equation is added where ρ) attains a constant value when a threshold h is exceeded. A single linear equation 114 
captures the process of densification of the snowpack during the accumulation phase, but performs poorly during the 115 
ablation phase, where depths are decreasing but densities continue to increase or approach a constant value.  116 
Other approaches choose to parameterize ρ) in terms of time, rather than h. Pistocchi (2016) provides a single 117 
equation while Mizukami and Perica (2008) provide two sets of equations, one set each for early and late season. 118 
Each set contains four equations, each of which is applicable to a particular ‘cluster’ of stations. This clustering was 119 
driven by observed densification characteristics and the resulting clusters are relatively spatially discontinuous. 120 
Jonas et al. (2009) take the idea of region- (or cluster-) specific equations and extend it further to provide 121 
coefficients that depend on time and elevation as well. They use a simple linear equation for ρ) in terms of h and the 122 
slope and intercept of the equation are given as monthly values, with three elevation bins for each month (36 pairs of 123 
coefficients). There is an additional contribution to the intercept (or ‘offset’) which is region-specific (one of 7 124 
regions).  125 
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 133 
These classifications, whether based on region, elevation, or season, are valuable since they acknowledge that all 134 
snow is not equal. McKay and Findlay (1971) discuss the controls that climate and vegetation exert on snow density, 135 
and Sturm et al. (2010) address this directly by developing a snow density equation where the coefficients depend 136 
upon the ‘snow class’ (5 classes). Sturm et al. (1995) explain the decision tree, based on temperature, precipitation, 137 
and wind speed, that leads to the classification. The temperature metric is the ‘cooling degree month’ calculated 138 
during winter months only. Similarly, only precipitation falling during winter months was used in the classification. 139 
Finally, given the challenges in obtaining high quality, high-spatial-resolution wind information, vegetation 140 
classification was used as a proxy. Using climatological values (rather than values for a given year), Sturm et al. 141 
(1995) were able to develop a global map of snow classification. 142 
 143 
There are many other formulations for snow density that increase in complexity and data requirements. Meloysund 144 
et al. (2007) express ρ) in terms of sub-daily measurements of relative humidity, wind characteristics, air pressure, 145 
and rainfall, as well as h and estimates of solar exposure (‘sun hours’). McCreight and Small (2014) use daily snow 146 
depth measurements to develop their regression equation. They demonstrate improved performance over both Sturm 147 
et al. (2010) and Jonas et al. (2009). However, a key difference between the McCreight and Small (2014) model and 148 
the others listed above is that the former cannot be applied to a single snow depth measurement. Instead, it requires a 149 
continuous time series of depth measurements at a fixed location. Further increases in complexity are found in 150 
energy-balance snowpack models (SnowModel, Liston and Elder, 2006; VIC, Liang et al., 1994, DHSVM, 151 
Wigmosta et al., 1994, others), many of which use multi-layer models to capture the vertical structure of the 152 
snowpack. While the particular details vary, these models generally require high temporal-resolution time series of 153 
many meteorological variables as input.  154 
 155 
Despite the development of multi-layer energy-balance snow models, there is still a demonstrated need for bulk 156 
density formulations and for vertically integrated data products like SWE. Pagano et al. (2009) review the 157 
advantages and disadvantages of energy-balance models and statistical models and describe how the NRCS uses 158 
SWE (from SNOTEL stations) and accumulated precipitation in their statistical models to make daily water supply 159 
forecasts. If SWE information is desired at a location that does not have a SNOTEL station, and is not part of a 160 
modeling effort, then bulk density equations and depth measurements are an excellent choice. 161 
 162 
The present paper seeks to generalize the ideas of Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., 163 
(2010). Specifically, our goal is to regress physical and environmental variables directly into the equations. In this 164 
way, environmental variability is handled in a continuous fashion rather than in a discrete way (model coefficients 165 
based on classes). The main motivation for this comes from evidence (e.g., Fig. 3 of Alford, 1967) that density can 166 
vary significantly over short distances on a given day. Bulk density equations that rely solely on time completely 167 
miss this variability and equations that have coarse (model coefficients varying over either vertical bins or horizontal 168 
grids) spatial resolution may not fully capture it either. 169 
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 179 
Our approach is most similar to Mizukami and Perica (2008), Jonas et al. (2009), and Sturm et al., (2010) in that a 180 
minimum of information is needed for the calculations; we intentionally avoid approaches like Meloysund et al. 181 
(2007) and McCreight and Small (2014). This is because our interests are in converting h measurements to SWE 182 
estimates in areas lacking weather instrumentation. The following sections introduce the numerous data sets that 183 
were used in this study, outline the regression model adopted, and assess the performance of the model. 184 

2 Methods 185 
 186 
2.1 Data 187 
 188 
2.1.1 Snow Depth and Snow Water Equivalent 189 
In this section, we list sources of 1970-present snow data utilized for this study (Table 1). With regards to snow 190 
coring devices, we refer to them using the terminology preferred in the references describing the datasets. 191 
 192 
2.1.1.1 USA NRCS Snow Telemetry and Soil Climate Analysis Networks   193 
SNOTEL (Serreze et al., 1999; Dressler et al., 2006) and SCAN (Schaefer et al. 2007) stations in the contiguous 194 
United States (CONUS) and Alaska typically record sub-daily observations of h, SWE, and a variety of weather 195 
variables (Figure 2a-b). The periods of record are variable, but the vast majority of stations have a period of record 196 
in excess of 30 years. For this study, data from all SNOTEL sites in CONUS and Alaska and northeast USA SCAN 197 
sites were obtained with the exception of sites whose period of record data were unavailable online. Only stations 198 
with both SWE and h data were retained. 199 
 200 
2.1.1.2 Canada (British Columbia) Snow Survey Data 201 
Goodison et al. (1987) note that Canada has no national digital archive of snow observations from the many 202 
independent agencies that collect snow data and that snow data are instead managed provincially. The quantity and 203 
availability of the data vary considerably among the provinces. The Water Management Branch of the British 204 
Columbia (BC) Ministry of the Environment manages a comparatively dense network of Automated Snow Weather 205 
Stations (ASWS) that measure SWE, h, accumulated precipitation, and other weather variables (Figure 2a). For this 206 
study, data from all British Columbia ASWS sites were initially obtained. As with the NRCS stations, only ASWS 207 
stations with both SWE and h data were retained.  208 
 209 
2.1.1.3 Northeast USA Data 210 
In addition to the data from the SCAN sites, snow data for this project from the northeast US come from two 211 
networks and three research sites (Figure 2b).  The Maine Cooperative Snow Survey (MCSS, 2018) network 212 
includes h and SWE data collected by the Maine Geological Survey, the United States Geological Survey, and 213 
numerous private contributors and contractors. MCSS snow data are collected using the Standard Federal or 214 
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Adirondack snow sampling tubes typically on a weekly to bi-weekly schedule throughout the winter and spring, 217 
1951-present. The New York Snow Survey network data were obtained from the National Oceanic and Atmospheric 218 
Administration’s Northeast Regional Climate Center at Cornell University (NYSS, 2018). Similar to the MCSS, 219 
NYSS data are collected using Standard Federal or Adirondack snow sampling tubes on weekly to bi-weekly 220 
schedules, 1938-present. 221 
 222 
The Sleepers River, Vermont Research Watershed in Danville, Vermont (Shanley and Chalmers, 1999) is a USGS 223 
site that includes 15 stations with long-term weekly records of h and SWE collected using Adirondack snow tubes. 224 
Most of the periods of record are 1981-present, with a few stations going back to the 1960s. The sites include 225 
topographically flat openings in conifer stands, old fields with shrub and grass, a hayfield, a pasture, and openings in 226 
mixed softwood-hardwood forests. The Hubbard Brook Experiment Forest (Campbell et al., 2010) has collected 227 
weekly snow observations at the Station 2 rain gauge site, 1959-present. Measurement protocol collects ten samples 228 
2 m apart along a 20 m transect in a hardwood forest opening about ¼ hectare in size. At each sample location along 229 
the transect, h and SWE are measured using a Mt. Rose snow tube and the ten samples are averaged for each 230 
transect. Finally, the Thompson Farm Research site includes a mixed hardwood forest site and an open pasture site 231 
(Burakowski et al. 2013; Burakowski et al. 2015). Daily (from 2011-2018), at each site, a snow core is extracted 232 
with an aluminum tube and weighed (tube + snow) using a digital hanging scale. The net weight of the snow is 233 
combined with the depth and the tube diameter to determine 01, similar to a Federal or Adirondack sampler. 234 
 235 
2.1.1.4 Chugach Mountains (Alaska) Data 236 
In the spring of 2018, we conducted three weeks of fieldwork in the Chugach mountains in coastal Alaska, near the 237 
city of Valdez (Figure 2c-d). We measured h using an avalanche probe at 71 sites along elevational transects during 238 
March, April, and May. The elevational transects ranged between 250 and 1100 m (net change along transect) and 239 
were accessible by ski and snowshoe travel. At each site, we measured h in 8 locations within the surrounding 10 240 
m2, resulting in a total of 550+ snow depth measurements. These 71 sites were scattered across 8 regions in order to 241 
capture spatial gradients that exist in the Chugach mountains as the wetter, more-dense maritime snow near the coast 242 
gradually changes to drier, less dense snow on the interior side.  243 
 244 
2.1.1.5 Data Pre-Processing 245 
Figure 3 demonstrates that it is not uncommon for automated snow depth measurements to become noisy or non-246 
physical, at times reporting large depths when there is no SWE reported. This is different from instances when 247 
physically plausible, but very low densities might be reported; say in response to early season dry, light snowfalls. It 248 
was therefore desirable to apply some objective, uniform procedure to each station’s dataset in order to remove clear 249 
outlier points, while minimizing the removal of valid data points. We recognize that there is no accepted 250 
standardized method for cleaning bivariate SWE-h data sets. While Serreze et al. (1999) offer a procedure for 251 
SNOTEL data in their appendix, it is relevant only for precipitation and SWE values, not h. Given the strong 252 
correlation between h and SWE, we instead choose to use common outlier detection techniques for bivariate data. 253 
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 262 
The Mahalanobis distance (MD; Maesschalck et al., 2000) quantifies how far a point lies from the mean of a 263 
bivariate distribution. The distances are in terms of the number of standard deviations along the respective principal 264 
component axes of the distribution. For highly correlated bivariate data, the MD can be qualitatively thought of as a 265 
measure of how far a given point deviates from an ellipse enclosing the bulk of the data. One problem is that the MD 266 
is based on the statistical properties of the bivariate data (mean, covariance) and these properties can be adversely 267 
affected by outlier values. Therefore, it has been suggested (e.g., Leys et al., 2018) that a ‘robust’ MD (RMD) be 268 
calculated. The RMD is essentially the MD calculated based on statistical properties of the distribution unaffected 269 
by the outliers. This can be done using the Minimum Covariance Determinant (MCD) method as first introduced by 270 
Rousseeuw (1984).  271 
 272 
Once RMDs have been calculated for a bivariate data set, there is the question of how large an RMD must be in 273 
order for the data point to be considered an outlier. For bivariate normal data, the distribution of the square of the 274 
RMD is 23 (Gnanadesikan and Kettenring, 1972), with p (the dimension of the dataset) degrees of freedom. So, a 275 
rule for identifying outliers could be implemented by selecting as a threshold some arbitrary quantile (say 0.99) of 276 
243. For the current study, a threshold quantile of 0.999 was determined to be an appropriate compromise in terms of 277 
removing obviously outlier points, yet retaining physically plausible results. 278 
 279 
A scatter plot of SWE vs. h for the source SNOTEL dataset from CONUS and AK reveals many non-physical 280 
points, mostly when a very large h is reported for a very low SWE (Figure 4a). Approximately 0.7% of the original 281 
data points were removed in the pre-processing described above, creating a more physically plausible scatter plot 282 
(Figure 4b). Note that the outlier detection process was applied to each station individually. The distribution of ‘day 283 
of year’ (DOY) values of removed data points was broad, with a mean of 160 and a standard deviation of 65. Note 284 
that the DOY origin is 1 October. The same procedure was applied to the BC and northeast USA data sets as well 285 
(not shown). Table 1 summarizes useful information about the numerous data sets described above and indicates the 286 
final number of data points retained for each. We acknowledge that our process inevitably removes some valid data 287 
points, but, as a small percentage of an already 0.7% removal rate, we judged this to be acceptable. 288 
 289 
Table 1: Summary of information about the datasets used in this study. Datasets in bold font were used to construct 290 
the regression model. The numbers of stations and data points reflect the post-processed data. 291 

Dataset Name Dataset Type Number 
of retained 
stations 

Number and 
percentage of 
retained data 
points 

Precision (h / SWE)  

NRCS SNOTEL 
 

Snow pillow (SWE), 
ultrasonic (h) 

791 
 

1,900,000 
(99.3%) 
 

(0.5 in / 0.1 in) 
 

NRCS SCAN Snow pillow (SWE), 
ultrasonic (h) 

5 7094 
(97.8%) 

(0.5 in / 0.1 in) 
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British Columbia 
Snow Survey 

Snow pillow (SWE), 
ultrasonic (h) 

31 61,000 
(97.5%) 

(1 cm / 1 mm) 

Maine Geological 
Survey 

Adirondack or Federal 
sampler (SWE and h) 

431 28,000 
(99.3%) 

(0.5 in / 0.5 in ) 

Hubbard Brook 
(Station 2), NH 

Mount Rose sampler (SWE 
and h) 

1 704 
(99.4%) 

(0.1 in / 0.1 in) 

Thompson Farm, NH Snow core (SWE and h) 2 988 
(99.4%) 

0.5 in / 0.5 in) 

Sleepers River, VT  Adirondack sampler 14 7214 
(99.4%) 

(0.5 in / 0.5 in) 

New York Snow 
Survey 

Adirondack or Federal 
sampler (SWE and h) 

523 44,614 
(98.2%) 

(0.5 in / 0.5 in) 

Chugach Mountains, 
AK 

Avalanche probe (h) 71 71 
(100%) 

(1 cm) 

 297 
2.1.2 Climatological Variables 298 
30-year climate normals at 800 m (nominal) resolution for CONUS and for the period 1981-2010 were obtained 299 
from the PRISM website (Daly et al., 1994). PRISM normals for British Columbia (BC), Canada, were obtained 300 
from the ClimateBC project (Wang et al., 2012), also for the 1981-2010 period. Finally, PRISM normals for Alaska 301 
(AK) were obtained from the Integrated Resource Management Applications (IRMA) Portal run by the National 302 
Park Service. The AK normals are for the 1971-2000 period and have a slightly coarser resolution (approximately 303 
1.5 km). Figure 5 shows gridded maps of mean annual precipitation (MAP) and mean February Temperature !"  304 
for these three climate products, plotted together. Other temperature products (max and min temperatures; other 305 
months) were obtained as well, but are not shown. 306 
 307 
2.2 Regression Model 308 
In order to demonstrate the varying degrees of influence of explanatory variables, several regression models were 309 
constructed. In each case, the model was built by randomly selecting 50% of the paired SWE-h measurements from 310 
the aggregated CONUS, AK, and BC snow pillow datasets. The model was then validated by applying it to the 311 
remaining 50% of the dataset and comparing the modeled SWE to the observed SWE for those points. Additional 312 
validation was done with the northeast USA datasets (SCAN snow pillow and various snow coring datasets) which 313 
were completely left out of the model building process. 314 
 315 
2.2.1 One-Equation Model 316 
The simplest equation, and one that is supported by the strong correlation seen in the portions of Figure 3 when 317 
SWE is present, is one that expresses SWE as a function of h. A linear model is attractive in terms of simplicity, but 318 
this limits the snowpack to a constant density. An alternative is to express SWE as a power law, i.e., 319 
 320 
(1) 567 = 8ℎ9:.   321 
 322 
This equation can be log-transformed into 323 
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 327 
(2) <=>?@ 567 = <=>?@ 8 + B?<=>?@ ℎ  328 
 329 
which immediately allows for simple linear regression methods to be applied. With both h and SWE expressed in 330 
units of mm, the obtained coefficients are 8, B? = 0.146, 1.102 . Information on the performance of the model 331 
will be deferred until the results section. 332 
 333 
2.2.2 Two-Equation Model 334 
Recall from Figures 1 and 4 that there is a hysteresis loop in the SWE-h relationship. During the accumulation 335 
phase, snow densities are relatively low. During the ablation phase, the densities are relatively high. So, the same 336 
snowpack depth is associated with two different SWEs, depending upon the time of year. The regression equation 337 
given above does not resolve this difference. This can be addressed by developing two separate regression 338 
equations, one for the accumulation (acc) and one for the ablation (abl) phase. This approach takes the form 339 
 340 
(3) 5679II = 8ℎ9:; 					LMN < LMN∗ 341 
 342 
(4) 56791Q = Rℎ1:; 					LMN ≥ LMN∗ 343 
 344 
where DOY is the number of days from the start of the water-year (October 1 is the origin), and DOY* is the critical 345 
or dividing day-of-water-year separating the two phases. Put another way, DOY* is the day of peak SWE. 346 
Interannual variability results in a range of DOY* for a given site. Additionally, some sites, particularly the SCAN 347 
sites in the northeast USA, demonstrate multi-peak SWE profiles in some years. To reduce model complexity, 348 
however, we investigated the use of a simple climatological (long term average) value of DOY*. For each snow 349 
pillow station, the average DOY* was computed over the period of record of that station. Analysis of all of the 350 
stations revealed that this average DOY* was relatively well correlated with the climatological mean April maximum 351 
temperature (the average of the daily maximums recorded in April; R2 = 0.7). However, subsequent regression 352 
analysis demonstrated that the SWE estimates were relatively insensitive to DOY* and the best results were actually 353 
obtained when DOY* was uniformly set to 180 for all stations. Again, with both SWE and h in units of mm, the 354 
regression coefficients turn out to be 8, B? = 0.150, 1.082  and R, V? = 0.239, 1.069 . 355 
 356 
As these two equations are discontinuous at DOY*, they are blended smoothly together to produce the final two-357 
equation model 358 
 359 

(5) 567 = 5679II
?
3
1 − ZB[ℎ 0.01 LMN − LMN∗ + 360 

56791Q
1
2
1 + ZB[ℎ 0.01 LMN − LMN∗  361 

 362 
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The coefficient 0.01 in the tanh function controls the width of the blending window and was selected to minimize 363 
the root mean square error of the model estimates. 364 
 365 
2.2.3 Two-Equation Model with Climate Parameters 366 
A final model was constructed by incorporating climatological variables. Again, the emphasis is this study is on 367 
methods that can be implemented at locations lacking the time series of weather variables that might be available at 368 
a weather or SNOTEL station. Climatological normals are unable to account for interannual variability, but they do 369 
preserve the high spatial gradients in climate that can lead to spatial gradients in snowpack characteristics. Stepwise 370 
linear regression was used to determine which variables to include in the regression. The initial list of potential 371 
variables included was 372 
 373 
(6) 567 = \ ℎ, ],^8_, !̀ #a&, !̀ #$%&, !̀ #%b, !"#a&, !"#$%&, !"#%b, !c#a&, !c#$%&, !c#%b, !d#a&, !d#$%&, !d#%b	  374 
 375 
where z is the elevation (m), MAP is the mean annual precipitation (mm) and the temperatures (°f) represent the 376 
mean of minimum, mean, and maximum daily values for the months January through April (J, F, M, A). For 377 
example, !̀ #a&is the climatological normal of the average of the daily minimum temperatures observed in January. 378 
In the stepwise regression, explanatory variables were accepted if they improved the adjusted R2 value by 0.001. 379 
The result of the regression yielded 380 
 381 
(7) 5679II = 8ℎ9:^8_9g !"#$%& + 30

9h; 					LMN < LMN∗ 382 
 383 

(8) 56791Q = Rℎ1:^8_1g !"#$%& + 30
1h; 					LMN ≥ LMN∗ 384 

 385 
or, in log-transformed format, 386 
 387 
(9) <=>?@ 5679II = <=>?@ 8 + B?<=>?@ ℎ + 388 

B3<=>?@ ^8_ + Bi<=>?@ !"#$%& + 30 ; 							LMN < LMN∗ 389 
 390 
(10) <=>?@ 56791Q = <=>?@ R + V?<=>?@ ℎ + 391 

V3<=>?@ ^8_ + Vi<=>?@ !"#$%& + 30 ; 							LMN ≥ LMN∗ 392 
 393 
indicating that only snow depth, mean annual precipitation and mean February temperature were relevant. Manual 394 
tests of model construction with other variables included confirmed that Eqns. (7-8) yielded the best results. In the 395 
above equations, note that an offset is added to the temperature in order to avoid taking the log of a negative 396 
number. These two SWE estimates for the individual (acc and abl) phases of the snowpack are then blended with 397 
Eqn. (5) to produce a single equation for SWE spanning the entire water year. The obtained regression coefficients 398 
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were 8, B?, B3, Bi = 0.0128, 1.070, 0.132, 0.506  and R, V?, V3, Vi = 0.0271, 1.038, 0.201, 0.310 . The 399 
physical interpretation of these coefficients is straightforward. If B? and V? were equal to unity, then the density, 400 
given by (SWE/h), would be a constant at a given location. Since they are greater than unity, they capture the effect 401 
that snow density increases as depth increases. Turning to the coefficients on the climate variables, both B3 and V3 402 
are greater than zero. So, for two locations with equal depth, equal temperature characteristics, but different 403 
precipitation characteristics, the regression model predicts that the wetter location (larger MAP) will have a greater 404 
density. Finally, regarding temperature, both Bi and Vi are greater than zero. Therefore, for two locations with equal 405 
depth, equal precipitation characteristics, but different temperature characteristics, the regression model predicts that 406 
the warmer location (larger  !"#$%&) will have a greater density. These trends are similar in concept to Sturm et al. 407 
(2010), whose snow classes (based on climate classes) indicate which snow will densify more rapidly.  408 

3 Results 409 
A comparison of the three regression models (one-equation model, Eq. (2); two-equation model, Eqs. (3-5); multi-410 
variable two-equation model, Eqs. (5, 7-8)) is provided in Figure 6. The left column shows scatter plots of modeled 411 
SWE to observed SWE for the validation data set with the 1:1 line shown in black. The right column shows 412 
histograms of the model residuals. The vertical lines in the right column show the mean error, or model bias. 413 
Visually, it is clear that the one-equation model performs relatively poorly with a large negative bias. This large 414 
negative bias is partially overcome by the two-equation model (middle row, Figure 6). The cloud of points is closer 415 
to the 1:1 line and the vertical black line indicating the mean error is closer to zero. In the final row of Figure 6, we 416 
see that the multi-variable two-equation model yields the best result by far. The residuals are now evenly distributed 417 
with a negligible bias. Several metrics of performance for the three models, including R2 (Pearson coefficient), bias, 418 
and root-mean-square-error (RMSE), are provided in Table 2. Figure 7 shows the distribution of model residuals for 419 
the multi-variable two-equation model as a function of DOY. 420 
 421 
Table 2: Summary of performance metrics for the three regression models presented in Section 2.2. 422 

Model R2 Bias (mm) RMSE (mm) 
One-equation 0.946 -19.5 102 
Two-equation 0.962 -5.1 81 
Multi-variable two-equation 0.972 -0.5 67 

 423 
It is useful to also consider the model errors in a non-dimensional way. Therefore, an RMSE was computed at each 424 
station location and normalized by the mean annual maximum SWE 567k9l  at that location. Figure 8 shows the 425 
probability density function of these normalized errors. The average RMSE is approximately 11% of 567k9l, with 426 
most falling into the range of 5-25%. The spatial distribution of these normalized errors is shown in Figure 9. For 427 
the SNOTEL stations, it appears there is a slight regional trend, in terms of stations in continental climates (northern 428 
Rockies) having smaller relative errors than stations in maritime climates (Cascades). The British Columbia stations 429 
also show higher relative errors. 430 
 431 
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3.1 Results for Snow Classes 459 
A key objective of this study is to regress climatological information in a continuous rather than a discrete way. The 460 
work by Sturm et al. (2010) therefore provides a valuable point of comparison. In that study, the authors developed 461 
the following equation for density 01 462 
 463 
(11) 01 = 0k9l − 0@ 1 − m no:pnogqrs + 0@  464 
 465 
where r0 is the initial density, rmax is the maximum or ‘final’ density (end of water year), k1 and k2 are coefficients, 466 
and DOY in this case begins on January 1. This means that their DOY for October 1 is -92. The coefficients vary 467 
with snow class and the values determined by Sturm et al. (2010) are shown in Table 3. 468 
 469 
Table 3: Model parameters by snow class for Sturm et al. (2010). 470 

Snow Class rmax r0 k1 k2 

Alpine 0.5975 0.2237 0.0012 0.0038 
Maritime 0.5979 0.2578 0.0010 0.0038 
Prairie 0.5941 0.2332 0.0016 0.0031 
Tundra 0.3630 0.2425 0.0029 0.0049 
Taiga 0.2170 0.2170 0.0000 0.0000 

 471 
To make a comparison, the snow class for each SNOTEL and British Columbia snow survey (Rows 1 and 3 of Table 472 
1) site was determined using a 1-km snow class grid (Sturm et al., 2010). The aggregated dataset from these stations 473 
was made up of 27% Alpine, 14% Maritime, 10% Prairie, 11% Tundra, and 38% Taiga data points. Equation (11) 474 
was then used to estimate snow density (and then SWE) for every point in the validation dataset described in Section 475 
2.2. Figure 10 compares the SWE estimates from the Sturm model and from the present multi-variable, two-equation 476 
model (Equations 5, 7-8). The upper left panel of Figure 10 shows all of the data, and the remaining panels show the 477 
results for each snow class. In all cases, the current model provides better estimates. Plots of the residuals by snow 478 
class are provided in Figure 11, giving an indication of the bias of each model for each snow class. Summaries of the 479 
model performance, broken out by snow class, are given in Table 4.  480 
 481 
Table 4: Comparison of model performance by Sturm et al. (2010) and the present study. 482 

Model Sturm et al. (2010) Multi-variable two-equation model 
Snow Class R2 Bias (mm) RMSE (mm) R2 Bias (mm) RMSE (mm) 
All Data 0.928 -29.2 111 0.972 -0.5 67 
Alpine 0.973 10.1 55 0.971 -0.3 55 
Maritime 0.968 -16.8 109 0.970 -4.5 105 
Prairie 0.967 18.7 56 0.965 -0.2 51 
Tundra 0.956 -10.5 82 0.969 -6.1 67 
Taiga 0.943 -80.0 151 0.971 2.4 62 

 483 
3.2 Comparison to Pistocchi (2016) 484 
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In order to provide one additional comparison, the simple model of Pistocchi (2016) was also applied to the 491 
validation dataset. His model calculates the bulk density as 492 
 493 
(12) 01 = 0@ + t LMN + 61 , 494 
 495 
where 0@ has a value of 200 kg m-3 and K has a value of 1 kg m-3. The DOY for this model has its origin at 496 
November 1. Application of this model to the validation dataset yields a bias of 55 mm and an RMSE of 94 mm. 497 
These results are comparable to the Sturm et al. (2010) model, with a larger bias but smaller RMSE. 498 
 499 
3.3 Results for Northeast USA 500 
The regression equations in this study were developed using a large collection of SNOTEL sites in CONUS, AK, 501 
and BC. The snow pillow sites are limited to locations west of approximately W 105° (Figure 2a). By design, the 502 
data sets from the northeastern USA (Section 2.1.1.3) were left as an entirely independent validation set. These 503 
northeastern sites are geographically distant from the training data sets, are subject to a very different climate, and 504 
are generally at much lower elevations than the western sites, providing an interesting opportunity to test how robust 505 
the present model is. 506 
 507 
Figure 12 graphically summarizes the datasets and the performance of the multi-variable two-equation model of the 508 
current study. The RMSE values are comparable to those found for the western stations, but, given the 509 
comparatively thinner snowpacks in the northeast, represent a larger relative error (Table 5). The bias of the model 510 
is consistently positive, in contrast to the western stations where the bias was negligible.  511 
 512 
Table 5: Performance metrics for the multi-variable two-equation model applied to various northeastern USA 513 
datasets. 514 

Dataset Name R2 Bias (mm) RMSE (mm) 
Maine Geological Survey, ME 0.91 8.9 33.3 
Hubbard Brook (Station 2), NH 0.63 18.9 64.2 
Thompson Farm, NH 0.85 7.1 21.6 
NRCS SCAN 0.87 -1.8 38.7 
Sleepers River, VT 0.93 14.0 29.7 
New York Snow Survey 0.93 13.8 31.2 

 515 

4 Discussion 516 
The results presented in this study show that the regression equation described by equations (5, 7-8) is an 517 
improvement (lower bias and RMSE) over other widely used bulk density equations. The key advantage is that the 518 
present method regresses in relevant physical parameters directly, rather than using discrete bins (for snow class, 519 
elevation, month of year, etc.), each with its own set of model coefficients. The comparison (Figs. 10-11; Table 4) to 520 
the model of Sturm et al. (2010) reveals a peculiar behavior of that model for the Taiga snow class, with a large 521 
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negative bias in the Sturm estimates. Inspection of the coefficients provided for that class (Table 3) shows that the 527 
model simply predicts that 01 = 0k9l = 0.217 for all conditions. 528 
 529 
When our multi-variable two-equation model, developed solely from western North American data, is applied to 530 
northeast USA locations, it produces SWE estimates with smaller RSME values and larger biases than the western 531 
stations. When comparing the SWE-h curves of the SNOTEL data (Figure 4b) to those of the east coast data sets 532 
(left column; Figure 12), it is clear that the northeast data generally have more scatter. This is confirmed by 533 
computing the correlation coefficients between SWE and h for each dataset. It is unclear if this disparity in 534 
correlation is related to measurement methodology or is instead a ‘signal to noise’ issue. Comparing Figures 4 and 535 
12 shows the considerable difference in snowpack depth between the western and northeastern data sets. When the 536 
western dataset is filtered to include only measurement pairs where ℎ < 1.5 m, the correlation coefficient is reduced 537 
to a value consistent with the northeast datasets. This suggests that the performance of the current (or other) 538 
regression model is not as good at shallow snowpack depths. This is also suggested upon examination of the time 539 
series of observed 01 = 567/ℎ for a given season at a snow pillow site. Very early in the season, when the depths 540 
are small, the density curve has a lot of variability. Later in the season, when depths are greater, the density curve 541 
becomes much smoother. Very late in the season, when depths are low again, the density curve becomes highly 542 
variable again. 543 
 544 
Measurement precision and accuracy affect the construction and use of a regression model. Upon inspection of the 545 
snow pillow data, it was observed that the precision of the depth measurements was approximately 25 mm and that 546 
of the SWE measurements was approximately 2.5 mm. To test the sensitivity of the model coefficients to the 547 
measurement precision, the depth values in the training dataset were randomly perturbed by +/- 25 mm and the SWE 548 
values were randomly perturbed by +/- 2.5 mm and the regression coefficients were recomputed. This process was 549 
repeated numerous times and the mean values of the perturbed coefficients were obtained. These adjusted 550 
coefficients were then used to recompute the SWE values for the validation data set and the bias and RMSE were 551 
found to be -10.5 mm and 72.7 mm. This represents a roughly 10% increase in RMSE, but a considerable increase in 552 
bias magnitude (see Table 4 for the original values). This sensitivity of the regression analysis to measurement 553 
precision underscores the need to have high-precision measurements for the training data set. Regarding accuracy, 554 
random and systematic errors in the paired SWE - h data used to construct the regression model will lead to 555 
uncertainties in SWE values predicted by the model. As noted in the introduction, snow pillow errors in SWE 556 
estimates do not follow a simple pattern. Additionally, they are complicated by the fact that the errors are often 557 
computed by comparing snow pillow data to coring data, which itself is subject to error. Lacking quantitative 558 
information on the distribution of snow pillow errors, we are unable to quantify the uncertainty in the SWE 559 
estimates. 560 
 561 
Another important consideration has to do with the uncertainty of depth measurements that the model is applied to. 562 
For context, one application of this study is to crowd-sourced, opportunistic snow depth measurements from 563 
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programs like the Community Snow Observations (CSO; Hill et al., 2018) project. In the CSO program, 608 
backcountry recreational users submit depth measurements, typically taken with an avalanche probe, using a 609 
smartphone in the field. The measurements are then converted to SWE estimates which are assimilated into 610 
snowpack models. These depth measurements are ‘any time, any place’ in contrast to repeated measurements from 611 
the same location, like snow pillows or snow courses. Most avalanche probes have cm-scale graduated markings, so 612 
measurement precision is not a major issue. A larger problem is the considerable variability in snowpack depth that 613 
can exist over short (meter scale) distances. The variability of the Chugach avalanche probe measurements was 614 
assessed by taking the standard deviation of 8 h measurements per site. The average of this standard deviation over 615 
the sites was 22 cm and the average coefficient of variation (standard deviation normalized by the mean) over the 616 
sites was 15%. This variability is a function of the surface roughness of the underlying terrain, and also a function of 617 
wind redistribution of snow. Propagating this uncertainty through the regression equations yields a slightly higher 618 
(16%) uncertainty in the SWE estimates. CSO participants can do three things to ensure that their recorded depth 619 
measurements are as representative as possible. First, avoid measurements in areas of significant wind scour or 620 
deposition. Second, avoid measurements in terrain likely to have significant surface roughness (rocks, fallen logs, 621 
etc.). Third, take several measurements and average them. 622 
 623 
Expansion of CSO measurements in areas lacking SWE measurements can increase our understanding of the 624 
extreme spatial variability in snow distribution and the inherent uncertainties associated with modeling SWE in 625 
these regions. It could also prove useful for estimating watershed-scale SWE in regions like the northeastern USA, 626 
which is currently limited to five automated SCAN sites with historical SWE measurements for only the past two 627 
decades. Additionally, historical snow depth measurements are more widely available in the Global Historical 628 
Climatology Network (GHCN-Daily; Menne et al. 2012), with several records extending back to the late 1800s. 629 
While many of the GHCN stations are confined to lower elevations with shallower snow depths, the broader 630 
network of quality-controlled snow depth data paired with daily GHCN temperature and precipitation measurements 631 
could potentially be used to reconstruct SWE in the eastern US given additional model development and refinement. 632 

5 Conclusions 633 
We have developed a new, easy to use method for converting snow depth measurements to snow water equivalent 634 
estimates. The key difference between our approach and previous approaches is that we directly regress in 635 
climatological variables in a continuous fashion, rather than a discrete one. Given the abundance of freely available 636 
climatological norms, a depth measurement tagged with coordinates (latitude and longitude) and a time stamp is 637 
easily and immediately converted into SWE.  638 
 639 
We developed this model with data from paired SWE-h measurements from the western United States and British 640 
Columbia. The model was tested against entirely independent data (primarily snow course; some snow pillow) from 641 
the northeastern United States and was found to perform well, albeit with larger biases and root-mean-squared-642 
errors. The model was tested against other well-known regression equations and was found to perform better. 643 
 644 
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This model is not a replacement for more sophisticated snow models that evolve the snowpack based on high 650 
frequency (e.g., daily or sub-daily) weather data inputs. The intended purpose of this model is to constrain SWE 651 
estimates in circumstances where snow depth is known, but weather variables are not, a common issue in sparsely 652 
instrumented areas in North America. 653 
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7 Data Access 658 
Numerous online datasets were used for this project and were obtained from the following locations: 659 

1. NRCS Snow Telemetry: https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html 660 
2. NRCS Soil Climate Analysis Network: https://www.wcc.nrcs.usda.gov/scan/ 661 
3. British Columbia Automated Snow Weather Stations: 662 

https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-663 
tools/snow-survey-data/automated-snow-weather-station-data  664 

4. Maine Cooperative Snow Survey: https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data 665 
5. New York Snow Survey: http://www.nrcc.cornell.edu/regional/snowsurvey/snowsurvey.html 666 
6. Sleepers River Research Watershed. Snow data not available online; request data from contact at: 667 

https://nh.water.usgs.gov/project/sleepers/index.htm 668 
7. Hubbard Brook Experimental Forest: https://hubbardbrook.org/d/hubbard-brook-data-catalog 669 
8. CONUS PRISM Data: http://www.prism.oregonstate.edu/ 670 
9. British Columbia PRISM Data: http://climatebcdata.climatewna.com/ 671 
10. Alaska PRISM Data: https://irma.nps.gov/Portal/ 672 

 673 
A Matlab function for calculating SWE based on the results is this paper has been made publicly available at Github 674 
(URL provided upon paper acceptance).  675 
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Figure 1: Conceptual sketch of the evolution of snow water equivalent (SWE) over the course of a water year (black 860 
line). Also shown is the evolution of SWE with snowpack depth over a water year (red line). Note the hysteresis 861 
loop due to the densification of the snowpack. 862 

  863 



	 23	

Figure 2: Distribution of measurement locations used in this study.  (a) Western USA and Canada station locations, 864 
with colors indicating station elevation in meters. (b) Northeast USA locations, with stations colored according to 865 
data source. (c, d) Measurement sites in the Chugach Mountains, southcentral Alaska. 866 
 867 

 868 

869 
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Figure 3:  Sample time series of SWE and h from the Rex River (WA) SNOTEL station. Observations of h at times 871 
when SWE is zero are likely spurious. 872 
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Figure 4: Scatter plot of SWE vs. h for the complete SNOTEL dataset before (a) and after (b) removing outliers. 874 
Symbols are colored by ‘day of water year’ (DOY; October 1 is the origin). 875 
 876 
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Figure 5: Gridded maps of mean annual precipitation (MAP) and mean February temperature !"#$%&  for the study 878 
regions. Climate normals are from the PRISM data set (1981-2010 for CONUS and British Columbia; 1971-2000 879 
for Alaska). 880 
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Figure 6: Two-dimensional histograms (left column) of modeled vs. observed SWE and probability density 885 
functions (right column) of the residuals for three simple models applied to the CONUS, AK, and BC snow pillow 886 
data. The coloring of the histograms indicates the relative density of points. The vertical lines in the right column 887 
indicate the location of the mean residual, or bias. Top row (a-b): One-equation model (Section 2.2.1). Middle row 888 
(c-d): Two-equation model (Section 2.2.2). Bottom row (e-f): Multi-variable two-equation model (Section 2.2.3).  889 
 890 
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Figure 7: Distribution of SWE residuals as a function of DOY. 895 
 896 
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Figure 8: Probability density function of snow pillow station root-mean-square error (RMSE) normalized by station 898 
mean annual maximum SWE. 899 
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Figure 9: Spatial distribution of snow pillow station root-mean-square error (RMSE) normalized by station mean 905 
annual maximum SWE. 906 
 907 
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Figure 10: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al. 912 
(2010). The subpanels show modeled SWE vs. observed SWE for all of the data binned together, as well as for the 913 
data broken out by the snow classes identified by Sturm et al. (1995). The gray symbols show the Sturm result and 914 
the transparent heat maps (colored to show relative density of points) show the current result. The models are being 915 
applied to the validation data set (50% of the aggregated snow pillow data for CONUS, AK, and BC). 916 
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Figure 11: Comparison of the multi-variable, two-equation model of the present study with the model of Sturm et al. 921 
(2010). The subpanels show probability density functions of the residuals of the model fits for all of the data binned 922 
together, as well as for the data broken out by the snow classes identified by Sturm et al. (1995). The gray lines 923 
show the Sturm result and the colored lines show the current result. The vertical lines show the mean error, or the 924 
model bias, for both the Sturm and the current result. The models are being applied to the validation data set (50% of 925 
the aggregated snow pillow data for CONUS, AK, and BC). 926 
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Figure 12: Results from application of the multi-variable, two-equation model to numerous east coast datasets. The 929 
left column shows the SWE-h data for each dataset. Note that the black symbols are points removed by the outlier 930 
detection procedure discussed in section 2.1.1.4. The remaining symbols are colored by DOY. The middle panel 931 
plots heat maps of the model estimates of SWE against the observations of SWE with the 1:1 line included. The 932 
right panel shows probability density functions of the model residuals, with the vertical line indicating the mean 933 
error, or bias. Individual rows correspond to individual data sets and are labeled. 934 
 935 
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Finally, SWE can be estimated with remote sensing methods, including satellite, airborne, and fixed platforms (e.g., 

Sokol et al., 2003; Vuyovich et al., 2014). Microwave frequencies are commonly used, but these frequencies do not 

work well in the presence of liquid water in the snowpack (Leinss et al., 2015). Recent attention has focused on the 

superior ability of L-band frequencies to measure SWE in wet snowpacks. Kang and Barros (2011) developed and 

tested an L-band snow sensor system in laboratory conditions and Deeb et al. (2017) discuss the application of L-

band measurements to field-scale snow depth and SWE estimates for the SnowEx project. 
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3.3 Results for Chugach Mountains 

The results for the Federal sampler core measurements in the Chugach Mountains are shown in Figure 12, using a 

format consistent with Figure 11. The three different measurement campaigns (March, April, and May) can be seen 

by the different symbol colors in the left panel. One notable difference between Figures 11 and 12 is that the 

Chugach dataset only spans spring months and not the full water year. So, the cluster of data points does not start at 

the origin. The R2, bias (mm) and RMSE (mm) are 0.89, -50.0 and 118.0, respectively. 
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Figure 12: Results from application of the multi-variable, two-equation model to the Chugach Mountains, AK. The 

left column shows the measured SWE-h data. The symbols are colored by DOY. The middle panel plots the model 

estimates of SWE against the observations of SWE with the 1:1 line included. The right panel shows the model 

residuals, with the vertical line indicating the mean error, or bias.  

 
 

 


