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Author Response 
 
We thank Charalampos Charalampidis and two anonymous reviewers for offering constructive 
and thorough comments on our paper.  Each concern is addressed below and in the manuscript, 
and we believe these changes have improved the clarity and quality of the paper.  In particular, 
we have taken care to address common concerns amongst reviewers that involve clarification of 
the composite methodology (please see Section 3 “Methods”).  We note that co-author Carleen 
H. Reijmer was inadvertently omitted from the author listing in the discussion paper and has 
been added accordingly.   
 
Reviewer comments are shown in italics while author responses are subsequently provided in 
red.  
 
1. Anonymous Reviewer #1 
 
General Comments 
 
In this study, Ballinger et al. investigate potential mesoscale and synoptic drivers of late season 
melt events in the K-transect sector of southwest Greenland. They find that synoptic scale 
processes are the primary driver, with late season K-transect melt events characterized by 
southerly flows of warm, moist air from lower latitudes onto the ice sheet. In contrast, local 
ocean-atmosphere interactions over Baffin Bay are not found to have any direct role in driving 
late season melt events.  
 
This study provides novel and valuable insights into the variability of GrIS melt, identifying an 
important link between synoptic scale moisture transport and unseasonal melt events, which has 
not been previously explored. Overall, the analysis is well done and the manuscript is well 
written. My main concerns are: (i) the robustness of the results given the small number of years 
analyzed, (ii) lack of clarity regarding the initial hypothesis of marine layer forcing (what 
exactly would be expected if melt events were driven by marine layer forcing, and how do the 
actual results differ?), and (iii) potential issues with the interpretation of turbulent heat fluxes 
and associated arguments about the origin of warm, moist air that is transported from the south 
onto the GrIS. I discuss each of these below, along with other minor comments and suggestions 
for improvement.  
 
We thank the reviewer for their comments and have addressed their concerns in our revision. 
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Specific Comments: 
 
L32 “For the unseasonal melt period preceding the DOA”: Which unseasonal melt period? This 
seems to imply a sustained period of unseasonal melt before the DOA, whereas the unseasonal 
melt usually occurs in transient events. I suggest rephrasing as simply “For the period preceding 
the DOA”.  
 
Thank you for the clarifying suggestion; we have made this change. 
 
L40 “While thermal conduction and advection off south Baffin Bay open waters impact coastal 
air temperatures, consistent with previous studies”: Where is this shown in the manuscript?  
 
Heat transfer off of ice-free ocean waters onto coastal areas is discussed at length in the second 
paragraph of the Introduction. 
 
L47 “The Greenland Ice Sheet (GrIS) surface mass balance (SMB) decrease has contributed 
roughly 0.5 mm year-1”: It’s the overall mass balance decrease (SMB + ice discharge) that has 
contributed 0.5 mm/year, not the SMB.  
 
We have made this clarification in the manuscript. 
 
L50 “west Greenland waters” -> “ocean waters west of Greenland”?  
 
We have made the suggested change. 
 
L83 “recent, temporally-anomalous GrIS late melt events spanning the end of summer to freeze-
up of adjacent ocean waters”: Which recent events? Please provide a few examples and 
references.  
 
We have slightly edited the text to reflect satellite era studies of late season GrIS melt in late 
boreal summer and autumn.  Two papers referenced include Doyle et al., 2015 and Stroeve et al., 
2017. 
 
L112 and L156: Can you provide some further explanation as to why KAN_B was selected to 
build T+/T- composites, thus limiting the study period to only 5 years? Especially since the 
objective is to study melt events, why choose a station on the tundra instead of a station on the 
glacier? KAN_B has a much shorter data record than all the other K-transect stations, so the 
selected study period 2011-2015 is only a small sub set of the available data. With the short 
study period and with composites sub-divided into D_60 and D_30 bins, the D_30 composites 
comprise only 13 days of data. The next closest station, S5, has data going back to 2003, which 
would allow for a more robust analysis over a 13-year study period. If you repeat the analysis 
using S5 to build composites over 2003-2015, do the results shown in Figs. 3-6 and S4-S5 
change very much? I think it would be preferable to use station S5 and the longer study period 
for these figures, or at least mention whether the KAN_B-based results are robust when S5 and 
the longer period are used. The only place I see a need for a shorter study period is in Table 2 
and Fig. 2, where all the K-transect stations are compared over an overlapping period, but if 
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KAN_B were excluded then I think the overlapping period could still extend back to 2008 instead 
of 2011.  
 
Our study provides a temporally homogenous examination of above-freezing temperatures along 
all current PROMICE and IMAU K-transect stations.  The study spans 2011-2015 so that both 
networks of AWS observations can be included.  We use above and below freezing air 
temperatures from Kan_B, located just off the ice edge, as bins for comparing atmospheric 
conditions about the transect.  The intent is not to build the longest record of unseasonal melt 
conditions, but the most spatially complete. 
 
L163: It would be helpful to summarize from Table 2 the frequency of T+ events at KAN_B (or 
S5, if it were used instead of KAN_B to build composites), and mention what percentage of days 
each represents, i.e., the D_60 bin has 69 events (∼46% of days) and the D_30 bin has 13 events 
(∼9% of days).  
 
We have briefly summarized the frequency of T+ events from table 2 within the first paragraph 
of the methods. 
 
L176 “IVT PR is then classified using the SOM technique to produce a matrix of moisture 
transport patterns, or nodes, that typically occur over the Greenland region”: This is very 
vague. Some additional description should be included for the benefit of readers who are not 
familiar with SOM - for example, mention that it is an unsupervised machine learning algorithm 
and that each daily IVT PR field is classified with its closest matching node from the SOM.  
Are the SOM dimensions and training parameters the same as in Mattingly et al. (2016), or is 
anything different? It’s not clear from this description. It would also be helpful to include in the 
Supplemental Materials a figure showing the SOM nodes and the wet/dry/neutral groups, so that 
readers have a better understanding of the SOM classification used in this study. 
 
We have added some clarifying language in the last paragraph of the methods section on the 
SOM method and application of the Mattingly et al. (2016) SOM classification, from which we 
assess frequencies of wet, dry, and neutral IVT patterns as identified by the authors.  We refer 
readers back to the aforementioned manuscript to view the SOM matrix referenced here. 
 
L178 “As in Mattingly et al. (2016), similar wet (anomalously high), neutral (near 
climatological median values), and dry (anomalously low) IVT patterns are aggregated, then 
their frequencies are composited and tested following methods previously summarized”: What is 
meant by “tested” in this context? In the cited paper, the clustering of nodes into wet/dry/neutral 
groups was subjective, based on visual inspection. I don’t recall any testing of this grouping 
procedure.  
 
The hypothesis tested is that the frequency of IVT patterns belonging to a given SOM node 
cluster (i.e. “wet” nodes) differs for T+ events compared to T- events. As you note, the grouping 
of nodes is based on visual inspection of the IVT patterns for each node, and the grouping 
procedure itself is not tested in this paper. We have edited the text to clarify this point. 
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L208-231 I find it difficult to follow the reasoning in these two paragraphs that leads to the 
conclusion that “late season melt inferred from T+ events may be driven by synoptic patterns as 
opposed to local marine forcing” (L234). Why exactly do we reject the hypothesis that local 
marine forcing drives the T+ events? Is it simply because the K-transect wind directions in T+ 
events are offshore instead of onshore? What about the other aspects discussed here – such as K-
transect wind speeds, sensible and latent heat fluxes over ocean and GrIS, near surface winds in 
eastern Baffin Bay, etc. – how do they contribute to this argument?  These paragraphs should be 
revised to clarify: if local marine forcing were driving the T+ events, then what would we expect 
the results here to look like? How do the actual results differ from that?  
 
We have clarified a hypothesis of what physical dynamic and thermodynamic mechanisms 
would link Baffin Bay open water to GrIS melt in the last paragraph of the Introduction section.   
 
L214-218 and Figures S4-S5: Sensible and latent heat fluxes in Figures S4 and S5 are described 
here as positive in the upward direction. Is this correct? I would have expected sensible heat 
fluxes over GrIS to be directed from the atmosphere to the ice sheet surface (i.e. negative SHF if 
the upward direction is positive). In particular, in the K-transect region during T+ events, if air 
temperature is greater than 0 C but the melting ice surface is at most 0 C, how can SHF be 
directed upward?  
 
We have corrected the wording and the positive sensible and latent flux represents downward 
heat transfer by which the atmosphere heats the ocean and ice sheet.  
 
L240 “In both T+ cases, low-level winds circulate poleward over north Labrador Sea areas of 
upward, turbulent heat flux (Figs. S4 and S5), aiding the heat and moisture transfer (as shown 
by heightened IVT values in T+ relative to T- ) over western Greenland during D60 and D30  
(Fig. 5)”: Following from my previous comment about the direction of SHF and LHF in Figures 
S4 and S5, I am wondering if turbulent fluxes over the north Labrador Sea are actually upward 
and if this region is actually the source of the heat and moisture transported onto western GrIS? 
Or do the heat and moisture originate from further south, around 30-35S? Subtropical origin 
seems more likely and is more consistent with the IVT fields shown in Figure 5.  
 
We have corrected the sign as indicated in the previous comment.  While the objective of this 
work is not to pinpoint origins of subpolar air masses traveling across the ice sheet, we suggest in 
the Discussions these air masses originate in deeper in the Atlantic than the domain resolved by 
our synoptic analyses.  Upward turbulent heat fluxes (negative sign SHF and LHF in this 
analysis) over these remote areas may serve enhance the heat and moisture contributions to those 
air masses.   
 
Of note, we have also changed D30 and D60 to [-30,-1] and [-60,-31], respectively, for 
consistency between text, figure, and table references to the time periods preceding Baffin Bay 
DOA. 
 
L254 “higher 500 GPH values and on-ice lower tropospheric mean winds”: The phrasing here 
seems confusing. “Higher” refers to GPH being higher in T+ relative to T- events, but does 
“lower” refer to wind speeds in T+ relative to T-, or does it mean “lower troposphere”?  
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“Lower” refers to the troposphere and specifically the winds averaged over the 1000-700 hPa 
levels.  We have clarified the corresponding language in the last paragraph of Results section 4.3.  
 
L267 and Figure S6: Since each station-year is a separate data point, why not include all years 
of data for each station in Fig. S6 and related discussion? Only using the 2011-2015 period 
gives a very limited perspective on whether the temperatures are typically correlated or not, 
since we see statistically significant correlations in only three of five years.  
 
We prefer to include a temporally homogenous correlation analysis of the nearby oceanic SSTs 
versus AWS air temperatures for the 2011-2015 period.  Subsequent analyses may look to 
capture longer term local oceanic and coastal/ice sheet temperature linkages as well as the effects 
of the regional ice sheet-ocean pressure gradient in modulating onshore or offshore flows during 
T+ and T- periods.  
 
Typographic Corrections and Figure/Table Formatting 
 
Headers for sub-sections 2.2-2.4 should be in bold for consistency with the other headers.  
 
We have made the suggested change. 
 
Table 2: I find the labels here a bit confusing. Although each row is labelled as a relative 
measure (e.g., “S5 vs. KAN_B”), the columns “T+ n[-60, -31]” and “T+ n[-30, -1]” are not 
relative to KAN_B, they are the actual counts for each individual station.  
 
We have clarified the language of the table to caption to more clearly describe the table contents. 
 
Figures 2 and 6: It’s difficult to distinguish between the dark and light red/blue colors in the bar 
charts.  
 
We have lightened the bars corresponding to the [-30,-1] bin to better distinguish from the [-60,-
31] bin in both Figure 2 and 6. 
 
Figures 3-4: It’s difficult to distinguish cyan arrows over blue background. It’s also difficult to 
see the wind vectors for the K-transect stations - perhaps these arrows could use heavier line 
weights and/or different colors? 
 
We have made the suggested figure changes. 
  
Figure 5: Many of the GPH contour labels are cut off at the edges of the figures.  
 
We have made the suggested figure change. 
 
L518: The last four references are not in alphabetic order with the rest of the bibliography.  
 
We have adjusted the placement of references accordingly. 
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2. Reviewer 2: Charalampos Charalampidis 
 
General comments. The Discussion Paper by Ballinger et al. is an interesting and novel attempt 
based on in situ, Automatic Weather Station (AWS) observations and Regional-Climate Model 
(RCM) output to identify the prevailing atmospheric-circulation pattern that causes unseasonal 
melt events in the southwestern Greenland ice sheet, and whether sea-ice formation and related 
turbulent-heat production over Baffin Bay in early autumn is of importance.  
The study is characterized by an accurate and well-structured methodology, but in my opinion, 
not also interpretations. As an example, the authors conclude that they “find no evidence to 
support the hypothesis that local open water and resultant turbulent heating  
has a demonstrable impact on inland ice melt events”, even though the approach is purely 
statistical; the study does not disprove the hypothesis, but rather proves that it is not the 
dominant mechanism.  
 
Structurally, the study suffers from obvious overlooks and requires attention. As examples, I note 
the allegedly examined AWS pressure and humidity according to the Abstract, even though the 
analysis is based on AWS air temperature and wind proper- ties only, and the mention of a 
Sisimiut AWS in the Results and of an Upernavik AWS in the Discussion, without being 
previously introduced or presenting any related figure in the main body.  
 
I recommend a major-revisions status, primarily to provide the authors with ample time to 
improve the structure and reasoning throughout the text. I also have a comment on the 
methodology concerning the AWS analysis that, in my opinion, needs to be addressed before 
publication.  
 
We appreciate the reviewer’s comments on the paper and have addressed their comments below 
and in the paper accordingly. 
 
Specific comments  
 
The linguistic level is good, however sentences tend to be condensed, and would benefit by a 
more elaborate style. Since the study is not purely meteorological and aims potentially to appeal 
to a wider Earth sciences audience, some effort should be invested into familiarizing readers 
with meteorological norms instead of just mentioning parameters, numbers, and units. 
Additionally, the reader’s knowledge over methodological approaches is taken for granted. As a 
rule of thumb, a second-year Earth- sciences master’s student should be able to follow without 
referring to textbooks for clarifications.  
 
Revisions are aimed at structural improvements to improve readability in line with the journal’s 
cryospheric science audience. 
 
The study has a broadly clear structure, but the argumentation is not straightforward, and 
complicated – sometimes even speculative – discussion points are widespread in Results and 
Conclusions. Also, as a rule of thumb, referencing supplementary material in Results or other 
studies in Conclusions should be avoided, in order for the study to be self-standing.  
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Effort should be invested into describing the theoretical background and the study area, 
particularly its wind regime and mechanisms, as well as recent Surface Mass-Budget changes 
within the Introduction or before Data as a self-standing section, so that readers can easily 
relate afterwards to the Discussion. Recommended literature: Van Angelen et al. (2011), Van As 
et al. (2014), and the classic GIMEX-90/91 work. The inclusion of a description of the different 
areas of a glacier, as well as an Equilibrium- Line Altitude definition and how high it is in the 
study area, is also recommended.  
 
We have touched upon these components through the manuscript where appropriate to 
complement given research objectives and details of the K-transect study area.  
 
The use of KAN_B observations as basis for the analysis needs to be motivated better than just 
saying that it records more above-zero Celsius air temperatures than all the other K-Transect 
AWSs. The way I see it, by the end of August, after the end of the melt season, the increased 
solar-zenith angle and ice-sheet surface albedo limit the influence of solar radiation on potential 
ice-sheet surface melt, which is thereafter driven by climatic drivers influencing downward 
longwave radiation (i.e. cloudiness) and turbulent fluxes (e.g. September 2010; Charalampidis et 
al., 2015). Also, katabatic-wind flow, driven by the balance of downward sensible heat flux and 
radiative cooling at the surface, becomes gradually colder and denser, and therefore more 
intense and laminar, thereby hindering turbulent mixing over large part of the AWS transect that 
is characterized by decreased surface roughness (Smeets and van den Broeke, 2008; see also 
specific comments for L208-209 and L211-218). Hence, melt events might occur in cases of weak 
katabatic-wind flow and concurrent northwesterly atmospheric advection from Baffin Bay, or 
moderate to strong katabatic-wind flow and concurrent southerly barrier winds along the ice-
sheet margin driven by synoptic circulation. 
 
We have clarified our motivation for using KAN_B above (T+) and below (T-) freezing events 
for compositing across the K-transect, and the compositing methodology, in the Methods section.  
Acknowledging the ice-albedo feedback is weak in autumn relative to summer months, we have 
edited the Discussion section to address local, mesoscale, and synoptic winds supporting T+ 
events.  In concluding that synoptic forcing strongly influences our T+ cases, we have also 
briefly discussed the implications of enhanced moisture advection and resulting cloud longwave 
effects on melt.    
 
Located only 1 km away from the ice-sheet margin, KAN_B should be the station most sensitive 
to both these circulation patterns. In both cases, the local boundary layer will become more 
humid (the role of humidity on energy balance and as a cause of surface melt should be explicitly 
described), and KAN_B might record positive air temperatures, in which case it is also worth 
inspecting all on-ice AWSs for positive air temperatures, which would be indicative of surface 
melt. (It should be explicitly mentioned in the text that positive near-surface air temperature is 
used as an indicator of melt at the ice-sheet surface.)  
 
A pan-Greenland evaluation of positive on-ice air temperature anomalies (above-freezing or 
simply above-normal) is beyond the scope of this paper.  Future analyses will look to expand the 
spatial fingerprint of local and remote forcing of marine intrusions on Greenland air temperature 
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events, but here we wish to focus solely on the data-rich K-transect for this proof of concept 
assessment. 
 
The statistical analysis should reveal which of the aforementioned cases is the most frequent 
(and not simply differentiate between regional meteorological processes acting during positive 
and negative KAN_B air-temperature events, as currently stated in L154-155. What goes on 
during negative KAN_B – and hence K-transect – air temperatures is not the focus per se; it is 
just used as means of comparison). The above theoretical introduction material along with 
Figure 2 alone proves, in my opinion, that synoptic circulation in the South of Greenland is the 
driver of unseasonal melt events mostly in the lower ablation area until the elevation of KAN_L. 
The persistent katabatic wind regime acts otherwise as a shield against turbulent forcing from 
Baffin Bay. All the rest should be an elaboration around this key result.  
 
We have adjusted the wording in the methods section to better focus attention on the common 
timing and physical processes bringing above-freezing air to KAN_B and S5 and KAN_L, 
thereby generating “unseasonal” melt at latter those on-ice stations.    
 
It might be insightful to make a similar comparison of KAN_B with observations further away 
from the ice-sheet margin. I do not know what the result might be, but I am guessing weakening 
southerly wind away from the margin in case of synoptic-driven, barrier-wind occurrences, and 
otherwise more intense winds than whatever KAN_B is reporting at that time, directed toward 
the ice sheet.  
 
As previously mentioned, follow-up analyses will take a wider spatial examination of 
thermodynamics and dynamics of unseasonal melt. 
  
Nevertheless – and this is my major methodological concern – it is not clear in the text how the 
KAN_B temperature events are defined. Are these definitions based on hourly or daily 
observations? Is there a time window plus/minus delta_t around a warm/cold KAN_B event t 
within which the conditions at all other stations are evaluated? Is delta_t selected larger or 
smaller depending on the duration of the KAN_B event t? Eventually, how sensitive are the 
statistics, and how conclusive the implications, between hourly and daily analysis? Please, 
elaborate.  
 
Air temperature composites are based on daily mean air temperature values above and below-
freezing at KAN_B.  Therefore, T+ is one bin, and T- represents the other bin.  We have taken 
strides to clarify this partitioning in the manuscript.  Duration of T+ and T- events and sub-daily 
analyses are beyond the scope of the study, but will be examined in follow-up research using 
climatological seasons. 
 
Technical comments 
Please, make use of dashes, or hyphens if appropriate, throughout the text to facilitate 
readability in case of several nouns in a sequence, e.g. in the Abstract alone  
 
We have made recommended changes where appropriate throughout the paper. 
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L27: air-temperature episodes; L29: open-water duration; L30: sea-ice advance; L31: sea-ice 
growth; L38: late-season, ablation-zone melt events, but also L129: “Sur- 
face*hyphen*atmosphere features” Also, differentiate between dashes and minuses.  
 
We have attempted to use hyphens where appropriate and differentiate dashes and minuses in the 
text.  
 
Use the more appropriate “area” instead of “zone” throughout the text.  
 
We have made the suggested substitutions. 
 
I recommend the use of “observations” instead of “data”, while differentiating between in situ 
and remotely sensed, and “simulations” for modeling products.  
 
We prefer to use “data” as a more general reference to avoid confusion as the climate science 
community often tends to characterize reanalysis output, for instance, as observational or 
modeled based on variable studied. 
 
I recommend the use of “average” instead of “mean.” 
 
We prefer to leave the term “mean” as it is used throughout the paper. 
 
Except for “Buffin DOA”, complete “Buffin” as “Buffin Bay” throughout the text.  
 
We have made the suggested addition of “Baffin Bay” for clarity. 
 
Capitalize the first letters of every word when an abbreviation is introduced, so that the reader’s 
eye can make a quick connection, i.e. L30: Date Of sea-ice Advance (DOA).  
 
We prefer to leave the referencing as it is given in the manuscript preceding the acronym.   
 
L27: delete “significant”, and reserve it exclusively for describing correlations.  
 
We indicate “significant” as it relates to correlations and t-test differences between T+ and T- 
events. 
 
L32: “unseasonal melt events. . .”  
 
We are not clear what this comment refers to, but the phrase has been previously defined in the 
abstract. 
 
L34: “Southwest” or “southwestern”  
 
We have made the suggested change to “southwestern.” 
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L34: The influence of synoptic and mesoscale systems on the above- and below- freezing near-
surface air-temperature events. . .  
 
We have altered the referenced sentence as indicated in the following point. 
 
L35: “AWS” -> “the”; “The in situ observations...”; Why are pressure and humidity 
observations mentioned here? I was unable to spot them later in the study. Why is wind speed 
and direction not mentioned?  
 
We have removed the reference to pressure and humidity and inserted some commentary on the 
AWS wind speed and direction.   
 
L36: “against” -> “with”  
 
We have made the suggested change. 
 
L35-38: I suppose “MAR, RACMO2, and ERA-Interim are used to provide context to the in situ 
observations by explaining the air-mass origins and the (thermo) dynamic drivers of melt 
events.” As it is written now, it gives the impression that the in situ observations need to be 
calibrated against RCMs.  
 
We have altered the wording to clarify the role of MAR, RACMO, and ERA-Interim data.  As 
mentioned, these data provide regional and synoptic context to the local AWS winds.  MAR and 
RACMO have both been extensively calibrated against on-ice AWS observations (e.g. from 
PROMICE and IMAU station records) as mentioned in the Delhasse et al. (2018) and Noël et al. 
(2018) references included in the Data section.  
 
L41: Delete “consistent with previous studies”. Try not to refer in the Abstract and Conclusions 
to other studies.  
 
We have removed this phrase. 
 
L42: Consider removing “pressure-gradient driven” from the Abstract, and describe briefly the 
mechanism in the Introduction.  
 
We have removed this phrase and paired pressure-gradient discussion with a new composite 
pressure and 10-m wind figure. 
 
L42: “Katabatic-wind regime”, since the word “katabatic” is an adjective referring to a 
descending object, in this case, wind.  
 
We prefer to leave as “katabatic regime.” 
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L41-42: I think this is an overall complicated explanation. I think the primary obstacle of Baffin-
Bay marine-air intrusions over the ice sheet should be intuitively the persistent katabatic wind 
regime that intensifies in the beginning of autumn. Additionally, barrier winds might be present, 
in which case melt might occur due to air-mass transport from the Atlantic. I propose 
restructuring as: “. . .are obstructed by the persistent katabatic- wind regime flowing downslope 
from the ice sheet, and the occasional occurrence of barrier winds along the ice-sheet margin.”, 
or something along these lines.  
 
We have made a similar change as suggested to clarify the role of katabatic winds in “blocking” 
the marine layer transport onto the K-transect. 
 
L44: “Substantial mass losses. . .”  
 
We have made the change. 
 
L46: “have become sensitive” or “are becoming increasingly sensitive”  
 
We have made the change to the suggested latter phrase. 
 
L48: Since all Van or Van de Author have been categorized under V in References, consider 
capitalizing the first letter of “Van” in the in-text occurrences, as well as that of the first author 
in the References, in order to allow the reader to navigate through easily.  
 
We elect to leave the author’s names as they are given. 
 
L53: Replace “play a key role” by “are of importance”  
 
We have made a similar suggested change. 
 
L54: “surface melt at the southwestern GrIS.”  
 
We elect to more generally include “western” before “GrIS melt.” 
 
L55: “Conflicting evidence have been presented in literature over the past decade regarding. . .”  
 
We have made the suggested change. 
 
L56: “Regional-climate simulations. . .”  
 
We have changed the phrasing to “Regional climate model simulations…” 
 
L60: “noted that. . .” 
 
We have made the suggested change. 
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L61: Replace “which” by “and”; replace “by” by “to”. 
 
We have made the suggested changes. 
 
L63: “in Ilulissat and Nuuk, approximately 200 [Unit] to the north and south of Kangerlussuaq, 
respectively. . .”  
 
We have added the appropriate reference to km and “respectively” as suggested. 
 
L66: Replace “coupled” with “correlated”.  
 
We have made the suggested change. 
L67: Please, delete “robust”. Statistical quantities are a matter of context, and their 
interpretation is dependent on the datasets and the research question itself, which in this 
instance are not present; “(from Markus et al., 2009)”  
 
We have substituted “robust” for “significant” here. 
 
L69: “The authors found that significant, positive correlations between Baffin and Labrador SST 
and coastal SAT often persist. . .”  
 
We have made the suggested change. 
 
L70: “onset of freeze” should suffice; “Applying a similar correlative approach on. . .”  
 
We have adopted the first change, but elect to maintain rather than change the second wording 
recommendation for this line. 
 
L71: “while utilizing melt/freeze product. . .” 
 
We have made a slight change in wording here. 
 
L74: “Both studies indicated. . .”; replace “upper-level” with “high-altitude”. 
 
We have made the first change, but elect to keep the second as “upper-level” is commonly used 
to describe winds in the mid-to-upper troposphere. 
 
L75: Replace “at the limits of” with “toward the end of”.  
 
We have made this change. 
 
L81: Replace “research studies” with “literature”. 
 
We have made this change. 
 
L86: Delete “automatic weather stations”, since AWS has already been introduced.  
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We have made the change since AWS introduced in the Abstract. 
 
L99: “Daily observations are available over the 1979–2015 period at a. . .” 
 
We have made this change. 
 
L101: Delete “day of sea-ice advance”, since DOA has already been introduced.  
 
We have made this change, but have clarified the DOA metric. 
 
L102: Bliss et al. (in review) 
 
This work is “in press” and we have updated the reference and in-text citation. 
 
L112: “in this study (Fig. 1).” 
 
We have added a the reference to Fig. 1. 
 
L113: “KAN_B that is situated approximately 1 km away from the ice-sheet margin. . .”  
 
We have clarified the statement as suggested. 
 
L117: Delete “tundra (KAN_B only) or glacier ice” 
 
We have made the suggested change. 
 
L116-117: The observational distance from the surface decreases during winter sea-  
son due to the accumulating snowcover around the AWSs by as much as two meters depending 
on the location along the transect, while it increases again each melt season until the complete 
ablation of the accumulated snowpack. In the case of KAN_U that is located in the lower 
accumulation area, this distance tends to become shorter over the course of a few positive mass-
budget years due to the incomplete ablation of the snow cover, but also due to the sinking of the 
AWS tripod during ablation in the temperate firn below, as discussed by Charalampidis et al. 
(2015). After the extreme 2012 melt season, snow accumulated around KAN_U during the 2013 
and 2014 positive mass-budget years, while on 3 May 2015 the half-buried tripod was replaced.  
 
We appreciate the author’s insights on the K-transect AWS air temperature measurement 
heights, which are complicated by snow accumulation and ablation through the annual cycle.  
We have added the suggested citation and an acknowledgement that the sensor heights fluctuate 
with these mass balance components. 
 
L121: Consider including also Citterio et al. (2015) describing the PROMICE AWS.  
 
There are many papers describing aspects of the IMAU and PROMICE AWS networks, but we 
elect to mention a concise list here. 
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L125: Delete “have been shown to”  
 
We have made the suggested change. 
 
L127: “from between 1000–200 hPa height, corresponding to the distance between sea level and 
lower stratosphere at 67 N (e.g. Zängl and Hoinka, 2001). . .”  
 
We appreciate the reviewer’s reference, but we elect to keep the original description of 
integrated vapor transport (IVT), which is elaborated on in the Methods section and follows from 
work of Mattingly et al. (20016, 2018). 
 
L129: “Surface*hyphen*atmosphere” since the two are related/interacting.  
 
We have made the suggested change. 
 
L130: Replace “features” with “interactions”. Alternatively, replace “Surface– atmosphere 
interactions” with “Boundary-layer processes”; 500 hPa height (i.e. ∼5000 m above sea level)”  
 
We have replaced “features” with “interactions” as suggested, but elect to maintain variable 
descriptions. 
 
L132: “10-m above surface and 850 hPa height. . .”  
 
We have shortened the sentence, but elect to keep the core “Wind speed and direction at 10-m 
and 850 hPa” intact as these represent standard reference levels for these dynamic variables.  
 
L133: “low-level atmospheric flow. . .” 
 
We have made the suggested change. 
 
L143: “ice caps, and improving. . .” 
 
We have made minor edits to the sentence to make it clearer. 
 
L145: “to characterize near-surface. . .”  
 
We have made the suggested change. 
 
L151: It should be mentioned that above 0 C air temperatures at on-ice AWSs are considered an 
indicator of ice-sheet melt.  
 
We have integrated the suggested addition. 
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L152-165: It is not clear how the KAN_B temperature events are defined. I refer to Specific 
comments 
 
We have made efforts to more clearly explain the compositing approach within the Methods 
section.  
 
L157: “due to the station’s location. . .”  
 
As with the previous comment, we have clarified the compositing approach.  
 
L171: “Based on RCM output, . . .”  
 
We clarify that ERA-Interim data is used for IVT calculation and subsequent classification. 
 
L172: Delete “integrated water-vapor transport”, since IVT has already been introduced.  
 
We have made this suggested change. 
 
L183: Refrain from mentioning supplementary material as part of the text, and only refer to them 
in parentheses at the end of sentences. Nevertheless, supplementary material should be 
referenced outside Results, and if Fig. S1 should be referenced in the first sentence of the 
Results, perhaps it belongs in the main article.  
 
We elect to keep figure references in their current place with the figures included representative 
of the main results of the manuscript. 
 
L189-191: Nice, but perhaps also mention that the difference has narrowed primarily due to the 
prolongation of the melt season over the course of the thirty years.  
 
We have added some remarks with regards to melt season lengthening. 
 
L193-195: It is a bit awkward to see all of a sudden a Sisimiut station being mentioned here in 
the first subsection in Results even though it has not been introduced earlier, and a case being 
made based on supplementary material. Please, restructure.  
 
We have introduced the DMI surface air temperature data for Sisimiut and Kangerlussuaq AWS 
at the conclusion of  the Data section.  We have also clarified their supplemental usage as they 
relate to the study. 
 
L195-199: This belongs in the Discussion.  
 
We prefer to leave this section in its existing place. 
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L201: I am not sure I understand what this first sentence is trying to justify. Also, sounds like it 
belongs in Methods.  
 
This justification refers to K-transect’s observationally-rich environment, and the use of AWS 
networks to resolve the spatial fingerprint of subgrid-scale melt. 
 
L203: Does the term “composite” essentially refer to the average of all instances? Please, 
clarify.  
 
We have clarified the term in the Methods section. 
 
L206: Second half of the sentence refers to T above 0 C events? Please, clarify.  
 
This refers to differences in T+ and T- events as indicated in the previous sentence. 
 
L208-209: South-southeasterly winds should have a 157.5 degrees direction, given the 
orientation of the PROMICE AWSs, so what is now written is incorrect. These winds in autumn 
are katabatic with a downslope direction (90 degrees) deflected 45 degrees to the right by 
Coriolis force (i.e. southeasterly direction; cf. Van den Broeke et al., 2009),  
plus potential southerly synoptic influence. Nevertheless, this quantification seems to be more 
prominent above the long-term ELA and KAN_B. Good thing to also mention.  
 
We have added some text clarifying the wind direction and Coriolis influence citing the van den 
Broeke paper provided.  We have also mentioned statistically significant changes to wind 
direction above the long-term ELA at S9 and KAN_U within the paragraph.  
 
L211-218: This belongs in the Discussion. Nevertheless, I am not sure I agree with this 
interpretation, and I explain: Strengthening wind speeds during positive air- temperature events 
at KAN_B do not reflect strengthening of katabatic flow (i.e. cold, dense wind), but rather that 
additional wind components inducing turbulent mixing might be present. A strengthened 
katabatic flow would remain cold, and would be more laminar, and hence less turbulent, than 
usual. Katabatic wind could enhance turbulent mixing during melt season at the lowermost 
rough-surface parts of the tran- sect, but we are discussing unseasonal melt events, implying that 
sunlight is reduced, hence surface melt is not sustained in the way it does during the melt season, 
while surface roughness below ELA might be substantially decreased due to accumulating snow 
cover, and above ELA slightly increased for the same reason, i.e. sastrugi formation. The 
observations from most AWSs within the same averaging periods suggest southerly deviation 
during positive air-temperature events from the cold-event direction, and the way I perceive it, 
southerly synoptic influence. I note that Figure 2 and Table 2 suggest that melt might occur 
primarily at the two lowermost on-ice AWSs, while wind speed as well as wind-speed differences 
between positive and negative cases within the same averaging periods are more pronounced at 
higher elevations due to comparatively reduced surface roughness (cf. Van den Broeke et al., 
2009).  
 
We have revised our wording here and softened the language.  We appreciate the reviewer’s 
feedback and elect to include the present list of factors.  As we suggest, these may contribute to 
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the wind speed intensification and therefore link with turbulent flux analysis that is subsequently 
presented in the paragraph.  
 
L214-215: Positive energy flux that contributes to ice melt is most definitely downward, i.e. 
directed from the atmosphere toward the ice-sheet surface, and not necessarily the result of 
increased wind, rather the result of increased turbulence; “Sensible heat fluxes” does not sound 
nice. Consider removing the plural.  
 
We have made the suggested changes, acknowledging the heat flux sign was incorrectly 
described. 
 
L219: The first sentence is not a result. Please, delete or relocate to Introduction.  
 
We have added “The K-transect” at the sentence outset to provide context to the result. 
 
L222: “at KAN_M and S9 in the upper ablation area.” 
 
We have made the suggested change. 
 
L223: Replace “modeled” with “simulated”.  
 
We have made the suggested change. 
 
L223-225: Difficult sentence, consider revising. Also, please, relocate in the Discussion.  
 
We have elected to remove part of the sentence that is largely duplicative with text earlier in the 
section. 
 
L228-229: This sentence, as it is, belongs in the Discussion. You can reformulate and keep in the 
Results as: “We note that there is a height difference between the RCM 10-m above-surface 
output and the measuring heights of the AWSs, as mentioned in the Data section.”, or something 
like this.  
 
We have altered the sentence and elect to keep it in its present place. 
 
L233-234: This first sentence is Discussion material. Please, relocate or reformulate, since it 
sounds like a rather abstract introductory sentence referring to the previously outlined results.  
 
We have integrated this sentence into the Discussion content. 
 
L239: Explain the significance of 540 dam (i.e. 5400 geopotential meter), i.e. it often 
distinguishes solid and liquid precipitation.  
 
We have added details as requested on the 540 dam contour and included its label in Fig 5 panel 
plots. 
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L255: The link between moist air masses and how they may facilitate ablation-area melt is not 
clear. Please, elaborate preferably in the Introduction.  
 
We have added “warm” as is evident when they pass over the GrIS by the increasing height 
values, tropospheric moisture content, and K-transect surface air temperatures. 
 
L261: Include a short comment on strong negative NAO phases, as seen in monthly observations.  
 
We have added the suggested change. 
 
L266: “turbulent atmospheric heating” 
 
We have made the suggested change.  
 
L267-269: Please, refrain from referring to supplementary material as main part of the text, i.e. 
delete “As shown in Fig.S6”. Instead, include a citation at the end of the sentence. It should be 
mentioned that it is a moderate to weak link that seems to be year-dependent. The way I perceive 
it, this differentiation amongst years suggests synoptic-circulation control that may or may not 
be present each year, and that is a good comment to include before anything else. (For example, 
Fig. S6 suggests weak correlation in autumn 2013 between local sea-surface temperature and 
AWSs, when limited melt occurred even at KAN_U (September 2013; Charalampidis et al., 
2015).  
 
We adjust the reference to the end of the sentence and restructured the wording.  Last in the 
paragraph we posit that the synoptic control may be stronger in years of higher correlation, and a 
deeper examination is currently being conducted in related work.   
 
L275: “statistically robust co-variability”: Please, remove “robust” and reformulate.  
 
We have changed “robust” to “significant” to be consistent with other correlative findings. 
 
L271-279: This part seems somewhat arbitrary, since no evidence of a different wind regime 
between 2011–2012 and 2013–2015 was presented. Also, I am not sure I agree with the 
categorization. Please, revise/clarify.  
 
We are suggesting some physical linkages, supported by literature, that could explain strong 
versus weak interannual correlations along an “extended transect” at 67ºN between near-shore 
SSTs and coastal and on-ice air temperatures.  In doing, we address some reasons why the 
coastal response to sea-ice heat flux feedbacks might be strong, yet very localized.  We expand 
on these concepts further in the following paragraphs of the discussion. 
 
L287: Mention also the distance from Kangerlussuaq. 
 
We have added this information. 
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L290-294: This is highly unclear and speculative. Please, revise. 
 
We have revised this area by highlighting that increased ice sheet radiational cooling over the ice 
sheet interior versus coast, which helps to propagate katabatic winds that block inland 
penetration of marine air. 
 
L295: “appears to be of minor importance. . .” 
 
We have made a minor wording change. 
 
L304-306: Please, clarify. 
 
We have clarified the language in the sentence. 
 
L306: “Denmark Strait and Irminger Sea at the East coast of Greenland. . .”  
 
We have made a similar change to clarify Denmark Strait and Irminger Sea location with respect 
to Greenland. 
 
L316: Generally, Conclusions outline key findings in the Results and key Discussion points. The 
current state appears more like just another part of the Discussion, while the only Concluding 
bits are between L319-324 and L341-345. Please, consider rewriting the whole section outlining 
important quantifications from Results. Please remove all citations, as the Conclusions should 
refer only to the present study, and should be self-standing.  
 
We have removed some of the redundant citations, but have kept those in reference to future 
research avenues that dovetail from our main results.  To that point, we have made an effort to 
further emphasize the main manuscript results in the Conclusions section. 
 
L317-319: Consider simplifying; rephrase “around the limits”  
 
We have changed wording to clarify the limits previously mentioned. 
 
L377: Delete “2018” 
 
We have updated the reference. 
  
Table 1: Include a minus in front of the 1 km of KAN_B, so the reader can immediately see that it 
is different from the rest of the stations. “50*hyphen*150 m” 
 
We have described KAN_B’s position in the caption.  
 
 
 



 20 

Table 2: Were these daily averages? Please, clarify. Note that dashes have been used instead of 
minuses. Also, make column lines between columns 3-4 and 5-6 thicker to facilitate the eye of the 
reader.  
 
We have clarified that the counts involve daily mean air temperatures.  We have also thickened 
the line between the columns as suggested.   
 
L540: Replace “30 to 60-day window” with “time window defined by the 60th and 30th day 
before day of ice advance (DOA)”  
 
We have clarified the caption. 
 
Figure 2: Include the legend that is shown in panel a also in b and c. In panel c, in-  
clude also N-S-E-W. In panel d, are these points in reference to daily or hourly values? Please, 
specify.  
 
We have included legends for panels b and c, and added North, East, South, and West 
accordingly to panel c.  We have also clarified the “daily mean” values in panel d.   
 
L551: Define “composites” better.  
 
As the composite methodology has been clarified in the Methodology section, we wish to keep 
the captions concise. 
 
L552-553: Difficult to fathom. Please, clarify.  
 
We have clarified the caption. 
 
L553: “selected”  
 
We wish to keep the wording the same. 
 
L569: Spell out IVT and include abbreviation since it is used as such in the figure.  
 
We have made the suggested change. 
 
Figure 6: Include legend in both panels. In the caption, spell out all abbreviations and include 
abbreviation in parentheses.  
 
We have included the legends in both panels and have spelled out abbreviations not previously 
listed in captions. 
 
L754: Define “composites” better. 
 
As the composite methodology has been clarified in the Methodology section, we wish to keep 
the captions concise. 
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L577-578: Difficult to fathom. Please, clarify. 
 
We have clarified the caption in a similar manner to the Figure 2 caption (L552-553).  
 
Table S1: Dashes as minuses. Please, correct. “2011*hyphen*2015” 
 
We have made the suggested change. 
 
Figure S2, S3, S4, S5: Spell out DOA initially, and then use abbreviation.  
 
We have spelled out date of sea ice advance (DOA) in all captions after the terms initially 
appear.  
 
Figure S4, S5: Define composites better. 
 
As the composite methodology has been clarified in the Methodology section, we wish to keep 
the captions concise. 
 
Figure S6: Introduce SST properly in caption. 
 
We have spelled out SST as suggested. 
 
 
References  
Charalampidis, C., van As, D., Box, J. E., van den Broeke, M. R., Colgan, W. T., Doyle, S. H., 
Hubbard, A. L., MacFerrin, M., Machguth, H., and Smeets, C. J. P. P.: Changing surface–
atmosphere energy exchange and refreezing capacity of the lower accumulation area, West 
Greenland, The Cryosphere, 9, 2163-2181, doi:10.5194/tc-9-2163- 2015, 2015.  
 
Citterio, M., van As, D., Ahlstrøm, A. P., Andersen, M. L., Andersen, S. B., Box, J. E.,  
Charalampidis, C., Colgan, W. T., Fausto, R. S., Nielsen, S., and Veicherts, M.: Automatic 
weather stations for basic and applied glaciological research, Geol. Surv. 
Denmark Greenland Bull., 33, 69–72, 2015.  
 
Van Angelen, J. H., van den Broeke, M. R., and van de Berg, W. J.: Momentum budget of the 
atmospheric boundary layer over the Greenland ice sheet and its surrounding seas, J. Geophys. 
Res.- Atmos., 116, D10101, doi:10.1029/2010JD015485, 2011.  
 
Van As, D., Fausto, R. S., Steffen, K., and the PROMICE project team: Katabatic winds and 
piteraq storms: observations from the Greenland ice sheet, Geol. Surv. Denmark Greenland 
Bull., 31, 83–86, 2014.  
 
Zängl, G., and Hoinka, K. P.: The Tropopause in the Polar Regions, J. Climate, 14, 3117–3139, 
doi: 10.1175/1520-0442(2001)014<3117:TTITPR>2.0.CO;2, 2001.  
 
 



 22 

3. Anonymous Reviewer #3 
 
General comments:  
 
Ballinger, et al propose a hypothesis for the onset of late-season melt events on the Western 
Greenland ice sheet. Some prior literature has suggested that open-water ice- free conditions in 
Baffin Bay cause melt incursions onto the ice sheet, but Ballinger, et al use weather stations 
data, regional climate models and reanalysis products to make a case that incursions of North 
Atlantic warm air are responsible for these late-season events, regardless of sea-ice conditions.  
 
Overall, the hypothesis is novel, and I applaud the authors for bringing in multiple datasets to 
support it. As one of the other reviewers also noted, I am, however, very concerned that the short 
time series (2011-2015) limits the conclusions that can be made with any statistical certainty. 
From the evidence given, I would say the study is suggestive, but not conclusive in its arguments. 
In my opinion, the authors have a choice: either use a longer time-series of measurements or 
model data (for instance, keep the 2011-15 analysis of AWS data but make the regional climate 
data analysis span from 1979-2015, which is possible given that the two datasets aren’t even 
used in direct comparison to each other), *or* soften the conclusions to make it clear they are 
suggestive but not entirely conclusive given the short time series. With only 5 years at your 
disposal, random noise can easily be interpreted as interesting new patterns.  
 
As always, I acknowledge that the authors have spent more time considering this paper than 
reviewers spend reading it. If authors believe my judgements are unfounded or based on a 
misunderstanding, or if I just missed something in a comment, they may of course make that case 
upon resubmission to the reviewers or editor. Overall I do think the study, and the hypothesis put 
forward, is quite suggestive and worth publishing for that reason, even with the concerns cited, 
but the concerns should be addressed.  
 
We thank the reviewer for constructive comments and have addressed their concerns in an 
attempt to improve the quality of the manuscript. 
 
Specific comments:  
 
L31-32: “For the unseasonal melt period preceding the DOA” . . . this make it sounds as if it’s 
referring to a *specific* melt event that hasn’t yet been mentioned. Generalizing the sentence 
more to something like “For periods of unseasonal melt preceding the DOA,. . .” may be clearer 
to the reader.  
 
We have clarified the wording as suggested. 
 
L34-35: “the above and below freezing surface air temperature events. . .” same comment as 
above.  
 
We have made a similar suggested change. 
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L83-84: “temporally-anomalous GrIS late melt events” : in much of the text, terms such as 
“unseasonal” and “temporally-anomalous” are used, but never really defined. Does is refer to 
melt events after a certain date/season? Recent late-season melt events that are more frequent 
than previous periods? The descriptor is a bit vague here.  
 
We have clarified the language, relating late-season melt (as in the manuscript title) to 
“unseasonal” so as show the reader the terms are used interchangeably. 
 
L104: (quick format check) Several headings are not “bolded”, while the rest are. Quick fixes.  
 
We have made bolded headings for consistency. 
 
L119: “erroneously low values are filtered out prior to analyses” : Which variables were filtered 
in this way: temperature, wind speed, others? If you can, be more specific.  
 
We have clarified the which variables were filtered. 
 
L152: “A composite approach is applied to characterize atmospheric conditions. . .” : From 
what I saw, I couldn’t find an explanation in the text of how these composites were put together, 
or what exactly the reader is looking at when seeing the composite numbers in the tables and 
figures. I don’t expect the authors to provide a textbook lesson on composite statistics, but a brief 
1-3 sentence explainer for the reader would help reproducibility and clarity of the text. Right 
now, if I took the same data and tried to reproduce the results I would have no guidance of how 
to perform the composite analysis other than the authors’ word that they applied a “composite 
analysis.” More specificity is needed here to make the results reproducible. If the method is 
identical to one used in other papers, a citation may suffice.  
 
We have clarified the composite approach in the Methodology section so that results could be 
reproduced for additional transects about the GrIS, for instance. 
 
L162-165: The description of the timespans used in the composite approach is good, I would put 
this at the top of the paragraph before describing why composite approaches were used and 
what constraints were placed upon them. 
 
We have re-arranged the composite descriptions to introduce the temporal restraints before 
discussing the temperature bins.  Care has also been taken to clarify the methodology as 
mentioned in the previous comment and following the recommendations of the other reviewers.    
 
L183: “Perspectives on... are shown” is a vague term, almost meaningless. If the sentence is 
meant to point out something specific that Figure S1 shows, describe it explicitly.  
 
We have edited the wording to be more direct in what Fig. S1 is presenting. 
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L183-199: The first several paragraphs of the Results refer to figures that are almost exclusively 
in the supplement (Figs S1-S3, with exception of the Fig. 1 map), which makes it awkward for the 
reader to follow along. These figures appear to be central to the results, not just supplementary. 
Unless you are limited by the number of figures, consider putting some of the these in the central 
text rather than forcing the reader to flip back and forth to an entirely separate document just to 
follow along with your argument. 
 
We prefer to include figures corresponding to the main manuscript results (i.e. local and regional 
drivers of K-transect melt events) as they are currently placed, and leave the introductory results 
on GrIS and Baffin Bay end of melt season overviews, for example, as Supplementary Material.     
 
L192-193: “Relative to the climatology. . . date in 2012-2015 (Table S1).” It is unclear why 
2011 is separated from 2012-2015 here, or why this sentence exists at all. Inter-  
annual variability has always been present, and no evidence is provided that this juxta- position 
of years shows any more significant differences than any other random 5-year period in 
Greenland’s climatological history (perhaps it is, but it isn’t demonstrated). If not, just omit it.  
 
As shown in Table S1, the date of Baffin sea ice advance (DOA) in 2011 was the only year of 
the five years studied with anomalously early ice formation.  We wish to briefly note this 
anomaly as we describe the late melt season characteristics setting the stage for the core results 
of the paper. 
 
L195-199: “Interannual differences. . . found in the east and north (Curry et al., 2014).” These 
sentences don’t show new results, but discuss the context of other literature. Consider moving to 
Discussion.  
 
We elect to keep these results in their original place to provide context on the ice melt season 
preceding the primary results of the paper. 
 
L201-202: “The spatial coherence of observations across the K-transect along with 
inhomogeneous GrIS Region 3 spatial melt patterns and satellite pixel contamination issues at 
the tundra-ice interface, lead us to assess the melt events at the station level.” It’s very unclear 
what is meant by “inhomogeneous GrIS Region 3 spatial melt pat- terns”, or why that would 
motivate a K-transect station-level approach. Please clarify. Similarly with “the spatial 
coherence of observations across the K-transect”. 
 
In the vast GrIS region (~539,375 km2) melt is not spatially, nor temporally, consistent.  For 
instance, on the same early autumn day the southern region may experience a strong warming 
signal, but the northern-most bounded area may not.  Due to this inconsistency and issues 
classify melt for pixels intersecting the land surface, we focus on a station-based approach to 
identifying on-ice melt events.  We have further clarified the language in results section 4.2 to 
further reflect our justification as mentioned.      
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L208-209: “. . .and comparatively becomes slightly more southerly” One issue with the way 
these composite records are presented is that there are no uncertainties or spreads presented 
with them at all, other than which ones are/aren’t statistically significant. Thus, comparisons 
between them, such as “slightly more southerly” are impossible to make without knowing 
whether or not the difference are simply within the noise of the two datasets, or are just part of 
statistical noise. This is the case with all the comparisons, actually, and it makes the conclusions 
difficult to defend. 
 
We acknowledge that there are some shortcomings of the composite methodology as mentioned 
in your comment, and our comparisons (by time window and temperature threshold) are the main 
comparisons we explore through the paper.  
 
L223: “Modeled wind speeds are more intense during T+ versus T- events” How much more 
intense? 2 %? 150 %? As noted in the comment above, is the difference greater than statistical 
noise?  
 
We have noted that simulated winds during T+ versus T- events are ~20-50% stronger consistent 
with the differences in the AWS observations.  
 
L227: “with low root mean squared errors (not shown).” Unless I’m misunderstanding this 
statement, RSMEs for two values should just be two numbers. They can be stated explicitly 
instead of just saying (not shown). If they weren’t computed, this statement should be omitted.  
 
We have summarized the RMSE for the model and observational comparisons mentioned. 
 
L227: A slight positive bias in both models is evident. . .” I assume a slight positive bias in wind 
speed? Clarify so that the sentence can stand on its own without ambiguity.  
 
We have clarified the wording here. 
 
L235: The “North Atlantic region” is not explicitly defined here, it is just vaguely referenced 
even though the authors are clearly looking at particular portions of the map. This ambiguity 
makes the rest of the entire paragraph extremely difficult to decipher from a reader’s 
perspective, given that different portions of “the North Atlantic” behave in different manners in 
Figure 5.  
 
We have clarified our reference area by mentioning Greenland as the geographic focus within the 
Northwest Atlantic region. 
 
L235-238: “Whereas T- events “left panels” tend to be characterized by northerly winds over 
the 1000-700 hPa layer, . . .” It is extremely unclear what is being referred to here. Are these 
northerly winds specifically in Baffin Bay, or over the whole figure, or. . . ?? Also, this sentence 
is disjointed and somewhat convoluted, its meaning unclear to the reader.  
 
The ”panels” refer to Figure 5 and to clarify we direct the reader back to these in the text. 
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L238: “found over ice sheet” –> "found over the ice sheet"  
 
We have made the suggested change. 
 
L238-239: “with the 540 dam contour” The 540 dam contour is very unclear in most panels of 
figure 5. Consider making it clear to the reader exactly which contour is 540 without them 
needing to interpolate between other lines, if you’re going to make a point specifically about the 
540 line. Make it easy on your readers to see your point. (Also, as another reviewer noted, make 
contour labels fully visible, not partially cropped by the panel edge.)  
 
We have made all contour lines visible and labeled the 540 line so that it is easier for the reader 
to compare its position between T+ and T- events. 
 
L246-255: I found this paragraph particularly good and compelling.  
 
Thank you for your comment. 
 
L265: “toward earlier (later) melt (freeze)” I understand this sentence construct, and 
occasionally it’s useful, but it’s also extremely awkward to read and should only be used when 
necessary to save space. In this case, “toward earlier melt and later freeze” says the same thing 
with only one more word, and is much clearer English for the reader to understand.  
 
We have made the suggested wording change. 
 
L265: “This hotspot of melt” It’s unclear if you’re referring to a particular hotspot of melt 
referred to earlier (if so, point it out), or making a more general statement here.  
 
We have generalized the wording as suggested. 
 
L267-269: “Sisimiut SSTs fluctuate. . . ablation zone at S9.” It’s unclear why this sentence is 
important. Additionally, it’s unclear that a statistically significant difference can be inferred at 
all if it only happened in 3 of 5 years, but not the other two. Even with just 5 years of data it’s 
hard to make firm conclusions about climate patterns. . . moreso if just picking three years 
selectively out of those five. This needs to be better justified, or omitted completely.  
 
This sentence references correlations between local SSTs and air temperatures extending from 
the coastal to lower accumulation zone at KAN_U.  S9 marks the location from which the 
correlations in most years drop off and are generally weaker toward the interior.  We have 
clarified the wording in the paragraph to reflect this statistical finding.  
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L271-279: The two points made at the end of this paragraph seem difficult to support 
conclusively with only 5 years at your disposal, comparing the first two years to the second 
three. The problem with such a short time series is that signals can be easily interpreted from 
random noise, making such conclusions problematic at best. This is emblematic of the greatest 
weakness of the whole paper, making strong conclusions about climate patterns from only five 
years of data. It is unclear that if you had a 30- year record (long enough to infer at least some 
of the variability of the patterns you describe), that the same inferences could be made in any 
significant way.  
 
We acknowledge that five years of K-transect case studies provide a limited temporal 
perspective and therefore must be considered in light of the evidence presented that Baffin open 
water and onshore winds do not appear to be a primary factor driving late-season melt events.  
However, the study provides a framework to be expanded upon in future, related studies 
presuming the on-ice AWS programs continue for years to come. 
 
L289: “near-surface air penetrates at least to” –> “near-surface air often penetrates at least 
to” (There isn’t any indication that it always does.)  
 
We have made the suggested change. 
 
L300-301: “positive (negative) GBI (NAO) values” –> “positive GBI and negative NAO values” 
(more readable) 
 
We have made the suggested change.  
 
L332-334: It is good that the authors recognize that a longer time series would help with these 
analyses. It is still unclear that all of the conclusions in the paper can be made so confidently 
with the short time series available, and that some of the results are more just “suggestive” than 
“conclusive.”  
 
As mentioned above, we acknowledge that five years of analysis precludes overconfidence in the 
results.  However, the study provides a framework to further explore unseasonal GrIS melt 
characteristics amidst ongoing expansion of the Arctic melt season.  
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Abstract. One consequence of recent Arctic warming is an increased occurrence and longer seasonality of above-

freezing air temperature episodes.  There is significant disagreement in the literature concerning potential physical 

connectivity between high-latitude open water duration proximate to the Greenland Ice Sheet (GrIS) and late-season 

(i.e. end-of-summer and autumn) GrIS melt events.  Here, a new date of sea ice advance (DOA) product is used to 

determine the occurrence of Baffin Bay sea ice growth along Greenland’s west coast for the 2011–2015 period.  Over 

the two month period preceding the DOA, northwest Atlantic Ocean and atmospheric conditions are analyzed and 

linked to late-season melt events observed at a series of on-ice automatic weather stations (AWS) along the K-transect 

in southwestern Greenland.  AWS wind speed and direction characteristics are evaluated for above and below-freezing 

surface-air temperature events before the DOA occurs.  Surrounding ice sheet, tundra, and coastal winds from Modèle 

Atmosphérique Régional (MAR) and Regional Atmospheric Climate Model (RACMO) provide high-resolution 

spatial context to AWS findings, and are analyzed along with ERA-Interim reanalysis fields to understand the meso-

to-synoptic scale (thermo)dynamic drivers of the melt events.  Results suggest that late-season melt events occurring 

in the ablation area of the K-transect are strongly affected by ridging atmospheric circulation patterns that transport 

warm, moist air from the sub-polar North Atlantic toward west Greenland.  While thermal conduction and advection 

off south Baffin Bay open waters impact coastal air temperatures, local marine air incursions are obstructed by barrier 

flows and persistent katabatic winds along the western GrIS margin. 
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1 Introduction 5 

Substantial decline in Arctic sea ice extent and mass loss from the Greenland Ice Sheet (GrIS) have been 

observed for the last four decades (e.g. Serreze and Stroeve, 2015; Bamber et al., 2018). Under sustained climate 

warming, sea and land ice are becoming increasingly sensitive to changes in the frequency and duration of anomalous 

weather patterns (e.g. Overland and Wang, 2016; Hanna et al. 2014, 2018b).  The overall mass balance of the GrIS 

has contributed roughly 0.5 mm year-1 to global mean sea level rise since the early 1990s (van den Broeke et al., 2016), 10 

with about 60% of the mass loss attributed to a decline in surface mass balance (SMB) and 40% associated with 

increased ice discharge (van den Broeke et al., 2017).  Observed warming of near-surface ocean waters west of 

Greenland since at least the early 1990s is linked to accelerated submarine melt and outlet glacier retreat (Holland et 

al., 2008; Straneo and Heimbach, 2013) concurrent with more frequent summertime air temperature extremes along 

the coast (Hanna et al., 2012, Mernild et al., 2014).  These findings raise the question of whether Baffin local ocean 15 

conditions are of importance in governing the spatial extent and temporal variations in western GrIS melt.   

Conflicting evidence has been presented in literature over the past decade regarding the importance of the 

warming of the nearby ocean on GrIS surface melt.  Regional climate model simulations have suggested that local sea 

surface temperature (SST) impacts on GrIS climate and SMB are negligible due to offshore flow arising from a 

prevailing katabatic wind regime (Hanna et al., 2014; Noël et al., 2014).  Using a statistical approach, Rennermalm et 20 

al. (2009) found contemporaneous Baffin open water (<15% sea ice concentration (SIC)) and western GrIS melt to be 

positively correlated in late summer (1979–2007).  The authors noted that the strongest, statistically significant 

correlation (r=0.71) was observed in August near the K-transect (Fig. 1), and was attributed, in part, to wind-driven 

onshore transport of warm marine air.  Hanna et al. (2009) evaluated lagged correlations between July coastal air 

temperatures at Ilulissat and Nuuk (~200 km north and ~300 km south of Kangerlussuaq, respectively) from Danish 25 

Meteorological Institute (DMI) weather stations and adjacent, offshore HadISST1 SST values in the preceding and 

following 2 months.  The authors noted a simultaneous, positive SST relationship with Ilulissat temperatures (r=0.56), 

while Nuuk temperatures were significantly correlated with offshore May–July SSTs (r>0.50) over the 1977–2006 

record.  Ballinger et al. (2018a) found significant interannual correlations (r>0.40, p£0.05) during 1979–2014 between 

Baffin freeze onset dates (from the Markus et al., 2009 product) and September–December surface air temperatures 30 

(SAT) at most DMI stations found along the west Greenland coastline.  The authors found that significant, positive 

correlations between Baffin and Labrador SST and coastal SAT often persist through December after the onset of 

freeze.  Applying a similar approach and melt/freeze dataset, Stroeve et al. (2017) showed Baffin and GrIS melt and 

freeze behaviors to be synchronous.  The authors noted that years with anomalously early sea ice melt tended to have 

strong, upward turbulent heat fluxes and westerly winds atop developing open water that transported surplus heat and 35 

moisture onto the ice sheet.  Both studies indicated that the synoptic, upper-level circulation pattern is critical for 

modulating poleward heat and moisture transport and the surface warming/melt processes toward the end of the melt 

season.  Ballinger et al. (2018a) proposed a sea ice-heat flux feedback whereby upward turbulent heat fluxes from 

Baffin Bay help maintain the high-pressure block aloft, with anticyclonic southerly winds both inhibiting the 

autumn/winter ice pack formation and transporting warm marine air onto the western Greenland coast.  This potential 40 
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mechanism may have contributed to record Greenland Blocking events that occurred in October over successive years 

during the early-to mid-2000s (Hanna et al., 2018a). 

 A paucity of literature focused on the Baffin Bay open water influence on GrIS melt and SMB has left open 

the question of potential physical linkages.  Our primary goal in this paper is to evaluate and determine whether the 70 

local ocean-atmosphere interactions have played a role in late-season GrIS melt events spanning the end of boreal 

summer through autumn (e.g. Doyle et al., 2015; Stroeve et al., 2017).  We posit that if Baffin Bay open water were 

to influence GrIS late-season melt events, the heat accumulated in the marine layer from ocean-to-atmosphere 

turbulent fluxes, would be transferred directly to the ice sheet by onshore westerly winds.  In addressing this 

hypothesis, our analyses are geographically focused on the western slope of the GrIS with emphasis on the K-transect 75 

(Fig. 1) as this area – with its two on-ice AWS networks (described in Section 2.1) – is rich with in situ records relative 

to the remainder of the ice sheet.  We analyze meteorological data from these in situ sources and additionally from 

regional climate models and global meteorological re-analyses to address potential links between GrIS late season 

melt and the local-scale Baffin Bay marine layer for the period of overlapping data, 2011–2015.  For completeness, 

we subsequently expand the scale of meteorological analyses to consider the influence of greater northwest Atlantic 80 

synoptic patterns on the melt episodes.  The paper is organized as follows: Section 2 outlines data sources, Section 3 

describes methods employed, Section 4 covers the local and synoptic scale atmospheric interactions with GrIS melt, 

Section 5 discusses key results, and Section 6 offers concluding remarks and makes suggestions for future research.    

2 Data 

2.1 Passive microwave records 85 

Sea ice data are from the National Oceanic and Atmospheric Administration/National Snow and Ice Data 

Center (NSIDC) Climate Data Record of Passive Microwave SIC v3r1 product distributed by NSIDC (Meier et al., 

2017).  We use the “Goddard Merged” SICs that are produced using a combination of the NASA Team and Bootstrap 

algorithms applied to satellite passive microwave brightness temperatures (Peng et al., 2013).  Daily observations are 

available over the 1979–2015 period at a 25 km by 25 km nominal grid spacing.  The time series of daily SIC at each 90 

grid cell were used to identify the sea ice date of advance (DOA), which is the date when SIC increases to 15% for 

the first time following the sea ice extent (SIE) minima after Steele et al. (2019).  Regional mean DOAs for Baffin 

Bay were obtained from Bliss et al. (2019).  The local DOA was determined from the time series of SICs between 1 

October and 31 March at each grid cell, then the local mean DOA was computed from 13 grid cells within the domain 

66.5 to 67.5°N and 53 to 55°W.  SIE was computed by summing the area of grid cells (in km2) where SIC≥15%.  At 95 

the same spatial resolution as the SIC product, the passive microwave daily GrIS melt time series of Mote (2007, 

2014) is also used to classify the ice surface environment in a binary manner (i.e. melt/no melt).  Following the Ohmura 

and Reeh (1991) topographic regions, we assess GrIS melt conditions on the west-central portion of the ice sheet 

bounding the K-transect.    

2.2 AWS data 100 

Meteorological conditions from two AWS networks, the Programme for Monitoring of the Greenland Ice 

Sheet (PROMICE; stations prefix “KAN”) and Utrecht University Institute for Marine and Atmospheric Research 

(hereafter IMAU; stations prefix “S”), are used in this study (Fig. 1).  In order to include the westernmost PROMICE 
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station KAN_B that is situated approximately 1 km away from the ice-sheet margin, analyses begin in 2011 and 

conclude with the end of the DOA record in 2015.  Data are obtained and analyzed from seven weather stations 125 

distributed across the K-transect at ~67°N during this period.  The transect spans an area from low-elevation tundra, 

approximately 1 km inland from the ice sheet glacier terminus (KAN_B), to the lower accumulation area (~1800 m) 

at >140 km from Russell Glacier terminus (KAN_U; see Fig. 1 & Table 1).  AWS data used here are recorded at a 

height of approximately at 2–3 m above the surface, though observed values fluctuate due to snow accumulation and 

melt season ablation (Charalampidis et al., 2015).  Daily mean air temperature (°C), wind speed (ms-1), and wind 130 

direction (0–360°) are obtained from IMAU and PROMICE station networks. Most data series are complete for the 

study period, but missing or erroneously low values in the temperature and wind variables are filtered out prior to 

analyses.  Additional details on the respective PROMICE and IMAU AWS programs can be found in van As et al. 

(2011) and Smeets et al. (2018).  We supplement K-transect data with daily mean DMI AWS surface air temperatures 

obtained from Sisimiut (WMO code 4234) and Kangerlussuaq (WMO code 4321).  These data are used to further 135 

evaluate spatial links between local Baffin Bay open water and air temperatures from the tundra regions below the K-

transect (Cappelen, 2018, 2019; Fig. 1).  

2.3 Atmospheric reanalysis and regional climate model fields  

A number of ERA-Interim reanalysis (Dee et al., 2011) variables are selected for the analysis of atmospheric 

conditions across Greenland and the northwestern Atlantic Arctic sector.  ERA-Interim surface and upper-air 140 

temperatures, wind speeds, and moisture conditions exhibit relatively small biases compared to Arctic observations 

(Bromwich et al., 2016).  Regional climate models MAR and RACMO2 are also forced with ERA-Interim fields at 

their lateral boundaries.  Tropospheric winds and specific humidity from 1000-200 hPa are used to calculate a moisture 

flux variable referred to as integrated water vapor transport (IVT); IVT is then classified using a self-organizing map 

(SOM) approach (see formal description in the Methods section below).  Surface-atmosphere interactions and regional 145 

circulation are further evaluated with ERA-Interim latent and sensible heat flux data, 500 hPa geopotential heights 

(GPH), and 1000-700 hPa mean winds at the native 80 km resolution.  

Wind speed and direction at 10-m and 850 hPa from MAR and RACMO2 are evaluated to understand low-

level atmospheric flow over ocean-land-ice sheet areas surrounding the K-transect.  Secondarily, we briefly discuss 

inter-model differences within the planetary boundary layer and biases against AWS observations.  Both regional 150 

climate models are specifically developed for simulating polar weather and climate, in particular over the Greenland 

ice sheet (e.g., Fettweis et al., 2011; Noël et al., 2018).  MAR v3.9 fields at 15 km are used here (see Fettweis et al. 

2017 for a detailed model description).  Relative to MAR v3.8 used in Delhasse et al. (2018), the main changes to 

MAR v3.9 consist of enhanced computational efficiency, adjustments to some of the snow model parameters to better 

compare with in situ observations, and improved MAR dynamical stability by increasing the atmospheric filtering.  155 

RACMO2.3p2 fields at a horizontal resolution of 5.5 km are also used (Noël et al., 2018).  Model physics have not 

changed relative to the previous 11 km version described in Noël et al. (2018).  The refined spatial resolution of the 

host model improves the depiction of topographically complex terrain at the GrIS margins, such as small peripheral 

glaciers and ice caps, and the representation of near-surface, local winds.   

2.4 North Atlantic atmospheric indices 160 
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Daily atmospheric indices are examined to characterize near-surface and upper-level conditions within a 

historical context.  The Greenland Blocking Index (GBI) (Hanna et al., 2018) describes daily mean 500 hPa 

geopotential height values from 60-80°N and 20-80°W.  The North Atlantic Oscillation (NAO) index used here is 

adapted from Cropper et al. (2015) and represents station-based daily mean sea-level pressure differences between 

Iceland and the Azores.  Both versions of the respective indices are normalized by their day of year means and standard 175 

deviations for the common 1951–2000 base period. 

3 Methods 

Above-freezing air temperatures at on-ice AWS locations represent an indicator of ice-sheet melt.  A 

composite approach is applied to characterize atmospheric conditions underlying late-season GrIS melt events, defined 

here as occurring at the conclusion of boreal summer (i.e. late August) and during autumn preceding sea ice advance 180 

on Baffin Bay (Table S1).  Two constraints are placed on the composite analyses.  The first constraint involves the 

length of the analysis period prior to DOA.  Through lead/lag correlations of recent data series of ³30 years, Hanna et 

al. (2009) and Ballinger et al. (2018a) noted Baffin Bay ice coverage and sea surface temperatures in the preceding 

two months to be positively and significantly correlated with west Greenland coastal air temperature variations.  

Composites here are constructed over a similar two-month (60-day) period with data additionally sub-divided into 60-185 

31 day (i.e. [-60,-31]) and 30-1 day (i.e. [-30,-1]) bins preceding each Baffin Bay DOA from 2011 to 2015.  A paucity 

of T+ events over the 30 days post-Baffin DOA limits analyses to the aforementioned periods before the development 

of extensive, seasonal sea ice coverage.  Second, the technique is intended to isolate meteorological processes most 

common during KAN_B daily mean air temperature events of ³0°C (T+) versus <0°C (T-).  To resolve the spatial 

cohesiveness of melt events along the K-transect, daily mean air temperatures at each K-transect station are 190 

composited (i.e. averaged) for KAN_B T+ and T- days in the [-60,-31] and [-30,-1] periods.  On average during 2011-

2015, KAN_B T+ events characterize ~46% of days in the [-60,-31] period, while [-30,-1] events are less frequent 

and occur 9% of days preceding Baffin Bay DOA.  T+ comparisons between KAN_B and other K-transect stations 

are provided in Table 2.  Temporal overlap between above-freezing temperatures at KAN_B versus S5 (77%) and 

KAN_L (46%) in columns 2-3 of Table 2 suggest spatial coherence in the physical mechanisms forcing melt at least 195 

across part of the lower ablation area.   

In a similar fashion to Carr et al. (2017), a Wilcoxon test is used to evaluate differences in atmospheric 

variables and indices between T+ versus T- events.  This nonparametric test is intended for continuous data series that 

do not follow underlying assumptions of the normal distribution making it appropriate for comparative analyses 

between extreme and non-extreme conditions.  The null hypothesis of no difference in atmospheric conditions between 200 

cases is rejected at the 95% confidence level when p£0.05.     

Following the methodology used in Mattingly et al. (2016, 2018), daily atmospheric moisture transport about 

Greenland is resolved from ERA-Interim data by calculating IVT as in Eq. (1):  

IVT = &
' ∫ qV	dp-..	/01

&...	/01            (1) 

where g is gravitational acceleration, q is specific humidity, V is the vector wind (ms-1), and dp represents the 205 

difference between atmospheric pressure levels.  The percentile rank of IVT (IVT PR) within a 30-day moving window 

is calculated to account for the seasonal cycle of IVT, and IVT PR is then classified using the SOM technique to 
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produce a matrix of moisture transport patterns, or nodes, that typically occur over the Greenland region.  The SOM 

is based on an unsupervised machine learning algorithm that classifies each daily IVT PR field into the closest 

matching SOM node.  This study uses the same SOM dimensions, training parameters, and IVT composites as 

Mattingly et al. (2016).  We further classify SOM nodes—based on visual inspection of IVT PR patterns over 235 

Greenland—into the same “wet” (anomalously high IVT PR over Greenland), “neutral” (near climatological median 

values), and dry (anomalously low) SOM node groups as these authors, and test whether the frequency of IVT patterns 

falling into each node group differs across T+ and T- events. 

4 Results  

4.1 Characteristics of Baffin Bay and west Greenland late-season melt 240 

 Dates marking the end of the Northwest Atlantic melt season area are shown in Fig. S1.  Slow, upward 

change signifying later sea ice formation is shown in the DOA series, particularly from around 2000.  Meanwhile, the 

start of the last ³3-day sequence of Region 3 (west-central Greenland; see inset in Fig. 1) 2% or 4% melt area also 

suggest progressively later melt (and a later onset of the freeze season).  A significant break in the 2% series is 

highlighted by a drastic increase in variability from 1979–1999 (s=21.17) to 2000–2015 (s=44.25) that is also present 245 

in the annual discharge records from the nearby Watson River and Tasersiaq ice sheet catchments (Ahlstrøm et al., 

2017; van As et al., 2018).  Differences between the beginning of Baffin Bay sea ice advance and the end of the ice 

sheet melt season have clearly narrowed in part due to regional melt season lengthening.  Some GrIS melt events since 

2000 have notably occurred after seasonal sea ice formation (i.e. 2002, 2004–2005, 2010).    

Relative to the climatology defined as 1981–2010, sea ice advanced ~11d earlier in 2011 and ~6d later in 250 

2012–2015 (Table S1).  Inspection of DOA for individual grid cells adjacent to the Sisimiut AWS (WMO code 4234 

in Fig. 1), located ~150 km west of the K-transect ice sheet margin, reveals a northward-extending notch where ice 

forms ~30–60d later than the Baffin-wide DOA (Fig S2a-e; Fig S3).  Interannual differences in ice cover advance 

often depend on factors including regional winds, ocean heat transport, and water-mass changes (Myers et al., 2009; 

Ribergaard, 2014).  For instance, strong offshore winds and poleward circulation of warm water from the West 255 

Greenland Slope Current (WGSC) often contribute to the local open water persistence, while southward Arctic Water 

transports support earlier ice formation patterns found in the east and north (Curry et al., 2014).     

4.2 Local meteorology of melt versus non-melt cases   

The spatial coherence of AWS observations across the K-transect along with inhomogenous GrIS Region 3 

spatial melt patterns (e.g. southern GrIS pixels may pick up melt while those to the north do not experience the same 260 

conditions) and satellite pixel contamination issues at the tundra-ice interface, lead us to assess the melt events at the 

station level.  Composites of air temperature, wind speed and direction by KAN_B T+ and T- events are shown in 

Fig. 2.  Across the transect, composite air temperature differences (T+ versus T- events) are warmer by roughly 7 to 

8°C in the [-60,-31] window and 12 to 13°C in the [-30,-1] period (Fig. 2a).  These differences tend to be least near 

the coast and increase to S6 in the mid-ablation area (~1000 m asl) where contemporaneous melt occurs ~14–16% of 265 

the time (Table 2). 

Wind direction for T+ events are roughly southeasterly (<150°) in [-60,-31] and become more southerly 

(180°) in the [-30,-1] period (Fig. 2c) regardless of the wind speed (Fig. 2b,d).  Above the long-term equilibrium line 
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altitude, S9 [-60,-31]  and KAN_U [-30,-1] winds are significantly more southerly during T+ events.  These katabatic 

winds are deflected to the right (southeasterly) by the Coriolis force as they travel toward Baffin Bay (van den Broeke 290 

et al., 2009) and may be aided additionally by synoptically-driven southerly winds.  There is also evidence of wind 

speed intensification during [-60,-31] T+ events (~1–2 ms-1) and to a lesser magnitude similar relationships hold during 

the [-30, -1] period (Fig. 2b). Increased wind speeds in T+ versus T- events are likely affected by the seaward 

enhancement of the pressure gradient aided by nearshore open water persistence (Fig. S4), while increased synoptic 

cyclone activity and lower MSLP over Baffin Bay during the summer-autumn season transition may also enhance 295 

offshore flows (McLeod and Mote, 2015).  Wind speed increases may also initiate positive (downward) sensible heat 

fluxes associated with low elevation ice melt (Fig. S5).  Just offshore, sensible and latent fluxes are generally negative 

in T- events and near zero to slightly positive in melt occurrences with large, positive differences in T+ vs T- events 

apparent in oceanic areas from the Labrador Sea extending up to the WGSC (Figs. S5 and S6).  

The K-transect offshore flows appear to represent a dynamic barrier to Baffin Bay marine layer intrusions.  300 

To further examine lower tropospheric flow across the ocean-land-ice interface, we similarly composite MAR and 

RACMO2 winds at 10-m and 850 hPa (Figs. 3 and 4).  In general, the MAR and RACMO2 winds show directional 

consistency with overlaid PROMICE and IMAU winds with a slight southerly bias in both products for [-30,-1] at 

KAN_M and S9 in the upper ablation area.  Simulated wind speeds are ~20-50% stronger during T+ versus T- events 

(not shown) as corroborated by most of the AWS observations (Fig. 2b).  T+ events in RACMO2 and MAR generally 305 

capture AWS observed wind speeds in the upper ablation area at KAN_M (r2³0.77) and lower accumulation area at 

KAN_U (r2³0.77) with low root mean squared errors (RMSE<1.50 in all cases).  A slight, positive bias in model-

derived wind speed is evident at the ice sheet edge near KAN_B (MAR r2 = 0.33, RACMO2 r2 = 0.58).  We note that 

height and therefore surface roughness differences between the AWS measurements (2–3 m) and regional model 10-

m winds may explain a portion of the bias at KAN_B.  Except during [-30,-1] T+ events, the 10-m winds extending 310 

about the transect from the west coast tundra just offshore and into eastern Baffin Bay are notably calm and alongshore 

(i.e. northerly in T- and southerly in T+; Figs. 3 and 4).  

4.3 The role of North Atlantic atmospheric patterns 

 Overplots of 500 hPa GPH, 1000-700 hPa mean wind, and IVT for Greenland and the surrounding northwest 

Atlantic region are shown in Fig. 5.  Whereas T- events tend to be characterized by northerly winds over the 1000-315 

700 hPa layer, the T+ events indicate southerly, on-ice transfer of subpolar air aided by the presence of an upper-level 

trough over Baffin Island and downwind ridging over Greenland (see left versus right panel plots in Fig. 5, 

respectively).  Comparatively higher GPH values are found over the ice sheet with the 540 dam (i.e. 5400 m) contour, 

which tends to distinguish solid and liquid precipitation, extending across central Greenland in T+ events, but located 

south of the island in T- events.  In both T+ cases, 1000-700 winds circulate poleward over north Labrador Sea areas 320 

of upward, turbulent heat flux (Figs. S5 and S6), aiding the heat and moisture transfer (as shown by heightened IVT 

values in T+ relative to T-) to the western Greenland ice sheet during [-60,-31]  and [-30,-1] (Fig. 5).  Local IVT 

maxima in both events are concentrated over the southwest tip of the island, but remain ~100 kg m-1 s-1 or higher near 

the K-transect.  Comparatively, depth integrated moisture flux over much of the west coast increases by a factor of 2–
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3 (4–5) during [-60,-31]  ([-30,-1]) T+ versus T- events signaling a concentration of moist, onshore flow and 375 

condensational processes over the ice sheet that drive the above-freezing air temperatures.   

To further characterize and differentiate weather conditions by T± event, we composite SOM-classified daily 

IVT wet, dry, and neutral patterns identified by Mattingly et al. (2016).  Analyses of the aggregated frequencies 

suggest that the wet patterns (with anomalously high IVT versus climatology) occur significantly more often in T+ 

versus T- events, and such nodes are more common by a factor of >4.5 in the [-30,-1] period. (Fig. 6a).  While some 380 

caution should be exercised as the absolute frequency of these patterns decreases from roughly early ([-60,-31]) to late 

([-30,-1]) autumn, humid atmospheric conditions appear to enhance late-season melt.  Increased incidence of wet 

patterns coincides with negative (positive) NAO (GBI) (both >|0.50| in T+ events; Fig. 6b), and a synoptic 

environment characterized by high surface (upper-level) pressure anomalies.  This is confirmed by Fig. 5 whereby the 

higher 500 GPH values and 1000-700 mean winds during T+ events transport warm and moist air masses from 385 

Labrador Sea and southerly maritime latitudes to much of the western slope of the ice sheet to facilitate ablation-area 

melt.   

5 Discussion 

 West Greenland summer and autumn air temperature variability and trends during the last 3–4 decades have 

shown strong response to increased frequency and intensity of Greenland high-pressure blocking, negative NAO 390 

patterns, and positive North Atlantic SST anomalies aided by background anthropogenic forcing (Hanna et al., 2016; 

McLeod and Mote, 2016; Ballinger et al., 2018a; Graeter et al., 2018).  The current North Atlantic “warm period” 

since the mid-1990s is characterized by a positive Atlantic Multidecadal Oscillation phase and rising SSTs around 

southwestern Greenland (Myers et al., 2009; Ribergaard, 2014), including just offshore of Sisimiut (WMO code 4234 

in Fig. 1) (orthogonal trend = +0.03°C year-1, p<0.05, for 1995-2015 period using SST product described in Ballinger 395 

et al., 2018b).  Warming waters around the island are influencing Baffin Bay sea ice and west GrIS melt processes 

(Hanna et al., 2013; McLeod and Mote, 2015; Ballinger et al., 2018a) and seasonality toward earlier melt and later 

freeze (Stroeve et al., 2017).  This melt area about K-transect suggests local low SIC and open water, inferred upward 

turbulent atmospheric heating, and onshore winds could influence nearby terrestrial melt events.  Moreover, Sisimiut 

SSTs fluctuate with air temperatures (over the 60 days preceding DOA) in a statistically significant fashion for 2013-400 

2015 at most K-transect stations with some distance decay noted upslope from the edge of the ablation area at S9 (Fig. 

S6).  Summer and autumn west Greenland near-coastal air temperatures are modulated by the thermal properties of 

bordering SSTs (Hanna et al., 2009; Ballinger et al., 2018a).  Interannual differences in the strength of SST-air 

temperature relationships (i.e. 2013–2015 versus 2011–2012) suggest: 1) processes driving warming ocean waters and 

air temperatures over the GrIS are independent when disparate wind directions occur at or near the ocean-tundra-ice 405 

sheet boundaries in years of weak-to-zero correlation (e.g. katabatic flows contrasting near-coastal barrier flows (van 

den Broeke and Gallée, 1996)), or alternatively 2) large-scale atmospheric circulation forcing (i.e. near-surface and 

upper-level meridional winds), during years of positive, statistically significant correlations, modulates the near-shore 

surface open water and ice sheet air temperatures (Stroeve et al., 2017).  We recognize that synoptic patterns may not 

necessarily be mutually exclusive in these examples, but the manuscript objectives do not include comparison of high 410 

and low pressure features around Greenland for specific melt and non-melt events.  
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A number of studies have suggested that Baffin Bay marine layer interaction with the ice sheet boundary 440 

layer is obstructed by zonal and meridional flows such as the west coast plateau jet feature and katabatic winds (Hanna 

et al., 2009; Moore et al., 2013; Noël et al., 2014).  Moore et al. (2013) noted a directionally consistent southerly 10-

m wind field extending over the western half of Greenland in summer and winter, while observational studies similarly 

indicate a high frequency of southerly-to-southeasterly winds over the K-transect (van den Broeke et al., 2009). 

Southerly (easterly) 10-m winds are strongly linked to melt across two thirds (the southern third) of the ice sheet 445 

(Cullather and Nowicki, 2018).  For an expanded spatial perspective, we briefly examine air temperatures at the next 

PROMICE station installment approximately 700 km north at Upernavik (UPE; 72.89°N).  We find UPE_L (220 m 

asl on the ice sheet) melt occurs the day of KAN_B T+ events on >50% of occasions in both [-60,-31] and [-30,-1]  

windows (not shown).  This suggests that above-freezing near-surface air often penetrates at least to PROMICE station 

UPE_L with a relatively warm air mass engulfing much of the west coast.  Our observational and regional model 450 

analyses further show that homogenous low-level winds extend coastward at least to the tundra-ice sheet interface 

near KAN_B (see Figs. 2c, 3, and 4) and produce a “blocking effect” that inhibits the inland penetration of near-

surface air from Baffin Bay (Noël et al., 2014).  Of note, the katabatic mechanism becomes stronger as Baffin Bay 

DOA approaches in late autumn, with more pronounced radiational cooling over the ice sheet further supporting winds 

that prevent incursions of local marine air (van As et al., 2014).  455 

If late season K-transect melt is minimally influenced by local Baffin Bay open water, then what physical 

mechanisms drive the melt events?  Composites of the AWS K-transect observations and complementary regional 

model output indicate that recent late-season melt events tend to be driven by southerly synoptic patterns as opposed 

to local marine forcing.  We provide evidence of this physical forcing by [-60,-31] and [-30,-1] T+ composites that 

show southerly flows of more warm, moist maritime air of lower latitude origins relative to T- cases.  As shown in 460 

Fig. 5, during the former event period, air is transferred off northern Labrador Sea to the west coast, while a path of 

more southerly flow directs moist North Atlantic air masses onto Baffin Bay and southwestern Greenland in the period 

immediately preceding DOA.  These “wet” synoptic patterns occur frequently under anomalous (>|1s|) positive GBI 

and negative NAO values (Fig. 6a, b).  We surmise from Mattingly et al. (2018) that such patterns are particularly 

moisture-rich (³85th percentile IVT climatological values) and often accompanied by atmospheric rivers impacting 465 

Greenland, and their occurrence causes ablation area melt in non-summer , low insolation months through cloud 

radiative effects (i.e. increased downward longwave radiation transfer into the ice surface), condensational latent heat 

release, and liquid precipitation (Doyle et al., 2015; Binder et al., 2017; Oltmanns et al., 2019).  The southerly winds 

that propagate moisture northward off the northwestern Atlantic Ocean are a product of amplified upper-level 

geopotential height patterns and meridional winds in T+ versus T- events extending from Denmark Strait and Irminger 470 

Sea on the east coast of Greenland onto the ice sheet (Fig. 5).  Mid-tropospheric ridging, which is more pronounced 

in [-30,-1] than [-60,-31] events, supports southerly winds that funnel heat and moisture from likely deeper in the 

Atlantic basin to Baffin Bay and southwest Greenland to stimulate sea ice and GrIS ablation area melt conditions 

(Ahlstrøm et al., 2017; Ballinger et al., 2018a,b; Hanna et al., 2018).  Cullather and Nowicki (2018) similarly find 

collocated, positive surface and 500 hPa GPH anomalies over Denmark Strait and Irminger Sea tend to be associated 475 

with melt events in the basin encompassing the K-transect.  Our analyses support North Atlantic-air-ice sheet coupling, 

Deleted: D60 

Deleted: D30

Deleted: air

Deleted: wind 480 
Deleted: and therefore

Deleted:  more 

Deleted: ative of

Deleted: influence

Deleted: with increased radiative cooling toward the Baffin DOA 485 
and continuous freeze period in climatological winter 

Deleted: does not appear to be driven by a 

Deleted: influence

Deleted: show

Deleted: that T+ events 490 
Deleted: D60

Deleted: D30

Deleted: partitions are

Deleted: characterized by 

Deleted: (negative) 495 
Deleted: (

Deleted: )

Deleted: zone

Deleted: 8

Deleted: s500 

Deleted: D30

Deleted: across



 37 

rather than localized Baffin Bay ocean-atmosphere processes, as a strong driver of transition season melt before sea 

ice advances south of the K-transect.  Synoptic patterns associated with negative summer NAO and positive GBI 

incidence strongly influence these melt events (Fig. 6), prompting decreases in SMB, and increase in the K-transect 505 

equilibrium line altitude over the last 10-15 years (Hanna et al., 2013; Smeets et al., 2018).   

6 Conclusions 

 Temporal co-variability between GrIS and Arctic sea ice mass loss suggests a possible feedback whereby 

adjacent open water conditions, ocean-to-atmosphere heat flux, and on-ice winds affect inland melt during the end of 

the melt season.  In our 2011–2015 analyses bridging the end-of-summer/early autumn melt to the date of first-year 510 

Baffin Bay sea ice advance, we find no evidence to support the hypothesis that local open water, resultant turbulent 

heating, and onshore winds have a pronounced impact on inland ice melt events. These thermodynamic processes, in 

particular, directly influence coastal air temperatures and have a fingerprint on marine outlet glacier behaviors (Carr 

et al., 2017), but are shown here to be inhibited by topographically-influenced flows and synoptic patterns whose 

interactions are not mutually exclusive.  Furthermore, Baffin Bay warming coupled with a longer autumn open water 515 

period has been hypothesized to stimulate and invigorate upper-level, high-pressure blocking that promotes southerly 

air advection over the west Greenland coast (Ballinger et al., 2018a).  This is consistent with the main conclusions of 

Noël et al. (2014), which suggest that while warming waters around Greenland minimally affect SMB beyond 

enhancing tidewater glacier retreat rates SST forcing may indirectly influence GrIS SMB changes through impacts on 

atmospheric circulation.  However, in terms of direct forcing by the local marine layer, beyond a near-coastal 520 

influence, our AWS, regional, and synoptic wind analyses suggest that Baffin Bay does not represent a substantial 

advective heat and moisture source to the ice sheet during our 5-year analyses.   

Future late season analyses, perhaps reconstructing K-transect meteorological conditions back to the origins 

of the modern sea ice record, might be insightful in comparing local ocean-ice sheet interactions spanning the 1990s 

shift from colder to warmer Baffin Bay summer SSTs (Ballinger et al., 2018a).  Assessing the temperature and pressure 525 

gradients and their vertical profiles derived from retrospective analyses would also be useful to categorize the 

structure, magnitude, and direction of regional winds, including the katabatic regime, in attempting to provide a 

longer-term perspective of analyses presented in this paper.  Noël et al. (2014) hypothesized that future sea-surface 

warming may exacerbate the division between local ocean and ice sheet by intensifying the temperature and pressure 

gradient and hence resulting katabatic winds.  Baffin Bay climate and cryospheric changes in the last two decades 530 

suggest such an increased “blocking” mechanism may already be underway.  Moreover, stronger katabatic winds 

might be enhanced further by an increasing intensity of autumn mid-troposphere high-pressure over Greenland (Hanna 

et al., 2018a, see their Fig. 1e).  Synergistic future research should continue to monitor the spatial extent, drivers, and 

physical effects of late-season melt through observational products and regional modeling tools, including 

quantification of late season K-transect mass loss and runoff through the Watson River, contributions to 535 

subsurface/firn processes, and preconditioning effects on the following year’s melt season.   
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Tables 

AWS Station Network Latitude (°N) Longitude (°W) Elevation  
(m asl) 

Distance to/from terminus (km) 

KAN_B PROMICE 67.13 50.18 350 1 
S5 IMAU 67.08 50.10 500 6 
KAN_L PROMICE 67.10 49.95 670 12 
S6 IMAU 67.07 49.38 1000 37 
KAN_M PROMICE 67.07 48.84 1270 61 
S9 IMAU 67.05 48.22 1500 88 
KAN_U PROMICE 67.00 47.03 1840 142 

 

Table 1. Summary details of the PROMICE and IMAU AWS stations utilized in this study, including their 785 

approximate geographic position (in decimal degrees), elevation, and distance from the ice sheet terminus moving 

west to east.  KAN_B is located on the tundra, roughly 1 km east of the terminus.  Distances are rounded to the nearest 

km as AWS sites are known to move ~50 - 150 m year-1 (van de Wal et al., 2015). 
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AWS T Compare T+ n[-60,-31] T+ %[-60,-31] T+ n[-30,-1] T+ %[-30,-1] T+ %[-60,-1] 
S5 vs KAN_B 53 77 9 69 76 

KAN_L vs KAN_B 32 46 8 62 49 
S6 vs KAN_B 10 14 3 23 16 

KAN_M vs KAN_B 2 3 1 8 4 
S9 vs KAN_B 1 1 0 - 1 

KAN_U vs KAN_B 0 - 0 - - 
å KAN_B T+ events 69 - 13 - - 

 

Table 2. Counts of above-freezing daily mean air temperature (T+) events (n), 2011-2015, and the percentage of 

contemporaneous overlap (%) between T+ events at KAN_B and S5, KAN_L, S6, KAN_M, S9, or KAN_U.  The [-

60,-31] and [-30,-1] periods reference time windows before respective annual dates of Baffin Bay sea ice advance 795 

(DOA).  As an example, 77% of the time in the 30 to 60-day (i.e. [-60,-31]) window preceding Baffin DOA the T+ 

air temperature threshold at KAN_B is also observed at S5.   
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Figures 

 

Figure 1.  Study area map with PROMICE and IMAU K-transect sites and adjacent terrestrial DMI stations 810 

(Kangerlussuaq (WMO code 4231) and Sisimiut (WMO code 4234)).  The inset displays the northwest Atlantic Arctic 

region with superimposed GrIS topographically-defined boundaries, adopted from Ohmura and Reeh (1991). 
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Figure 2. Composites of a) near-surface air temperature, b) wind speed, and c) wind direction for the T+ and T- events 815 

at KAN_B preceding Baffin Bay date of sea ice advance (DOA), 2011-2015.  Significant differences (p£0.05) between 

T+ and T- composites over similar time windows are shown by asterisks (*) between the bars.  Panel d) shows daily 

mean wind speed as a function of direction for select, roughly equidistant K-transect PROMICE stations. 
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 825 

Figure 3. Composites of MAR 10-m (black arrows) and 850 hPa (green arrows) vector winds for the T+ and T- events 

at KAN_B preceding Baffin Bay date of sea ice advance (DOA), 2011-2015.  Wind observations from PROMICE 

(red) and IMAU (yellow arrows) are overlaid for reference.  
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Figure 4. Composites of RACMO2 10-m (black arrows) and 850 hPa (green arrows) vector winds for the T+ and T- 835 

events at KAN_B preceding Baffin Bay date of sea ice advance (DOA), 2011-2015 (refer to methods for details).  

Wind observations from PROMICE (red arrows) and IMAU (yellow arrows) are overlaid for reference. 
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Figure 5. Composite plots of integrated vapor transport (IVT), 1000-700 hPa winds, and 500 hPa GPH from ERA-

Interim data for T+ and T- events at KAN_B for the two periods preceding the Baffin Bay date of sea ice advance 845 

(DOA).  
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 850 

Figure 6. Composites of a) self-organizing map (SOM) nodes by wet, neutral and dry types (%) and b) normalized 

Greenland Blocking Index (GBI) and North Atlantic Oscillation (NAO) values (unitless) for T+ and T- events at 

KAN_B for the two periods preceding the Baffin Bay date of sea ice advance (DOA).  SOM aggregates represent the 

ratio of each pattern’s occurrence to the sum of all patterns for each time period and similarly colored bars sum to 

100%.  Significant differences (p£0.05) between T+ and T- composites over similar time windows are shown by 855 

asterisks (*) between the bars. 
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