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Abstract. Basal hydrological systems play an important role in controlling the dynamic behaviour of 18 

ice streams. Data showing their morphology and relationship to geological substrates beneath 19 

modern ice streams are, however, sparse and difficult to collect. We present new multibeam 20 

bathymetry data that make the Anvers-Hugo Trough west of the Antarctic Peninsula the most 21 

completely surveyed palaeo-ice stream pathways in Antarctica. The data reveal a diverse range of 22 

landforms, including streamlined features where there was fast flow in the palaeo-ice stream, 23 

channels eroded by flow of subglacial water, and compelling evidence of palaeo-ice stream shear 24 

margin locations. We interpret landforms as indicating that subglacial water availability played an 25 

important role in facilitating ice stream flow and controlling shear margin positions. Water was likely 26 

supplied to the ice stream bed episodically as a result of outbursts from a subglacial lake located in 27 

the Palmer Deep basin on the inner continental shelf. These interpretations have implications for 28 

controls on the onset of fast ice flow, the dynamic behaviour of palaeo-ice streams on the Antarctic 29 

continental shelf, and potentially also for behaviour of modern ice streams.  30 

 31 

32 
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1. Introduction 33 

 34 

There is growing evidence that basal hydrology is a critical factor controlling the dynamic behaviour 35 

of ice streams (Bell, 2008; Christianson et al., 2014; Christoffersen et al., 2014), which account for 36 

most of the mass loss from large ice sheets. Understanding ice stream dynamics, including basal 37 

hydrology, is thus essential for quantifying ice sheet contributions to sea level change. Subglacial 38 

lakes and areas of elevated geothermal heat flux have been discovered in the onset regions of 39 

several large ice streams (Fahnestock et al., 2001; Bell et al., 2007; Stearns et al., 2008). Obtaining 40 

high resolution topographic data from modern ice stream beds that can reveal features associated 41 

with subglacial water flow is, however, logistically difficult and time consuming (e.g. Christianson et 42 

al., 2012). In contrast, modern ship-mounted sonar systems can be used to obtain such data 43 

efficiently over extensive areas of former ice stream beds on continental shelves that ice has 44 

retreated from since the Last Glacial Maximum (LGM; 23-19 k cal yr BP). 45 

Knowledge and interpretations of submarine glacial landforms have advanced rapidly over the 46 

past two decades (Dowdeswell et al., 2016). For example, it is now recognised that elongated 47 

drumlins and mega-scale glacial lineations (MSGL) are signatures of past streaming ice flow on wet-48 

based, mainly sedimentary beds, and that elongation generally increases with increasingly fast past 49 

flow rates (Stokes and Clark, 1999; Ó Cofaigh et al., 2002). The degree of preservation of fields of 50 

MSGL and the extent to which they are overprinted by grounding zone wedges and transverse 51 

moraines provides an indication to the rapidity of past grounding line retreat (Ó Cofaigh et al., 2008). 52 

‘Hill-hole pairs’ and sediment rafts are recognised as features formed by glaciotectonic processes 53 

beneath cold, dry based ice (Evans et al., 2006; Klages et al., 2015). Erosion of meandering or 54 

anastomosing seabed channels and tunnel valleys with reversals of gradient along their length 55 

requires a hydrological pressure gradient that indicates they could only have formed beneath 56 

grounded ice (Ó Cofaigh et al., 2002; Nitsche et al., 2013). Simple hydrological pressure calculations 57 

indicate that a gentle ice surface gradient produces a pressure gradient at the bed that will drive 58 

water up an opposing bed slope nearly ten times as steep.  59 

Modern ice sheet observations have revealed increases in ice flow rates over timescales of days 60 

to years in response to Antarctic subglacial drainage events (Stearns et al., 2008; Siegfried et al., 61 

2016). Responses of glaciers in southwest Greenland to seasonal drainage of supraglacial meltwater 62 

to the bed, however, show that the mode of subglacial drainage is important, as a slow-down of 63 

glacier flow above a certain run-off threshold has been interpreted to correspond to a switch to 64 

more efficient, channelized drainage (Sundal et al., 2011).    65 



3 
 

Here we present extensive new multibeam bathymetry data from the Anvers-Hugo Trough (AHT) 66 

west of the Antarctic Peninsula (Fig. 1). We interpret bedforms revealed by these data as evidence of 67 

a basal hydrological system that influenced the flow and lateral extent of the palaeo-ice stream and 68 

was fed by a subglacial lake in a deep basin on the inner continental shelf. We use heritage 69 

multichannel seismic (MCS) and deep tow boomer (DTB) data to constrain the nature of substrates 70 

beneath the LGM deposits and their potential influence on the basal hydrological system and 71 

sediment supply. 72 

 73 

1.1 Glacial history and setting  74 

 75 

Drilling results and seismic reflection profiles indicate that the Antarctic Peninsula Ice Sheet has 76 

advanced to its western continental shelf edge many times since the late Miocene (Larter et al., 77 

1997; Barker and Camerlenghi, 2002). Through repeated glaciations the ice sheet has eroded and 78 

over-deepened the inner shelf, extended the outer shelf through progradation and delivered large 79 

volumes of sediment to the deep ocean (Barker and Camerlenghi, 2002; Bart and Iwai, 2012; 80 

Hernández-Molina et al., 2017). The AHT, a 140 km-long by 50 km-wide cross-shelf trough (Fig. 1), 81 

was a recurring ice stream pathway during glacial maxima (Larter and Cunningham, 1993; Larter and 82 

Vanneste, 1995). The most recent grounding zone advance to the shelf edge along the AHT occurred 83 

during the LGM (Pudsey et al., 1994; Heroy and Anderson, 2005; Ó Cofaigh et al., 2014). To the 84 

southeast of the trough, the inner shelf is incised by an erosional basin, Palmer Deep (PD), that 85 

measures 26 km east-to-west and 10 km north-to-south at the 800 m depth contour (Domack et al., 86 

2006; Fig. 1). PD has a maximum depth >1400 m, yet to both north and south there are small islands 87 

within 12 km of its axis and there is a bank directly to its west that rises to <200 metres below sea 88 

level. Rebesco et al. (1998) and Domack et al. (2006) argued that in colder temperatures than today 89 

and with lower sea level – e.g. at the start of Marine Isotope Stage 2 (29 ka) - ice encroached 90 

towards PD from the nearby land areas and local ice caps formed on emergent platforms around the 91 

present-day islands near the basin. These authors further hypothesized that continued glacial 92 

development led to the PD basin becoming completely encircled by grounded glacial ice and to 93 

formation of an ice shelf over it, trapping a subglacial lake. Based on multibeam bathymetry data 94 

from the inner shelf, Domack et al. (2006) described channels crossing the deepest part of the sill 95 

separating the western end of PD from the AHT that are 200–500 m-wide, 100–300 m deep and 96 

exhibit reversals in their longitudinal profiles. On the basis of these characteristics and similarities to 97 

channels in Pine Island Bay and to the Labyrinth channels in Wright Valley in the Transantarctic 98 

Mountains that had previously been interpreted as having been eroded by subglacial water flow 99 



4 
 

(e.g. Lowe and Anderson, 2003; Nitsche et al., 2013; Lewis et al., 2006), Domack et al. (2006) 100 

interpreted the channels as having been eroded by outflow from a subglacial lake in PD. More 101 

recently, geochemical analysis of pore waters from sediments in one of the basins within the 102 

channel network in Pine Island Bay confirmed that it had been a sub-glacial lake (Kuhn et al., 2017). 103 

 104 

2. Methods 105 

 106 

2.1 Multibeam bathymetry and acoustic sub-bottom profile data  107 

 108 

Extensive new data were collected on RRS James Clark Ross cruise JR284 in January 2014 using a 109 

1°x1° Kongsberg EM122 system with 432 beams and a transmission frequency in the range 11.25–110 

12.75 kHz. Beam raypaths and sea bed depths were calculated in near real time using sound velocity 111 

profiles derived from conductivity temperature-depth and expendable bathythermograph casts 112 

made during the cruise. Processing consisted of rejecting outlying values, replacing the sound 113 

velocity profile applied during acquisition with a more relevant one for some data, and gridding to 114 

isometric 30 m cells using a Gaussian weighted mean filter algorithm in MB-System software (Caress 115 

and Chayes, 1996; Caress et al., 2018). Pre-existing multibeam data, mostly collected on RVIB 116 

Nathaniel B. Palmer and previous cruises of RRS James Clark Ross (Anderson, 2005; Domack, 2005; 117 

Lavoie et al., 2015), and data along a few tracks collected more recently on HMS Protector using a 118 

Kongsberg EM710 system (70–100 kHz), were included in the grid. Acoustic sub-bottom echo 119 

sounding profiles were collected along all JR284 survey lines with a Kongsberg TOPAS PS018 120 

parametric system using a 15 ms chirp transmission pulse with secondary frequencies ranging 1.3–5 121 

kHz. Vessel motion and GPS navigation data on cruise JR284 were collected using a Seatex Seapath 122 

200 system.  123 

 124 

2.2 Heritage seismic reflection data  125 

 126 

MCS data used were collected in the 1980s on RRS Discovery cruises D154 and D172 (Larter and 127 

Cunningham, 1993, Larter et al., 1997). On D154, Line AMG845-03 was collected with a 2400 m-long 128 

hydrophone streamer, whereas on D172 the streamer used to collect data on Line BAS878-11 was 129 

800 m in length. In both cases the streamer was towed at 8–10 m depth and data were recorded 130 

from 50 m-long groups with a sampling interval of 4 ms. The seismic source consisted of four airguns 131 

with total volumes of 8.5 l on D154 and 15.8 l on D172, respectively, and data were processed to 132 

common mid-point stack using standard procedures. Very high resolution seismic data were 133 
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collected using a Huntec DTB, towed within 100 m of the sea bed, on RRS James Clark Ross cruise 134 

JR01 in 1992 (Larter and Vanneste, 1995; Vanneste and Larter, 1995). This system transmitted a 135 

broadband pulse with frequencies 0.8–10 kHz and a cycle time of 0.9 s. Data were recorded with a 136 

100 μs sampling interval from a 1 m-long hydrophone trailed behind the towed vehicle. The DTB 137 

system is capable of resolving sedimentary layers <1 m in thickness and also achieves very high 138 

spatial resolution due to the proximity of the source and receiver to the sea bed.  139 

 140 

3. Results 141 

 142 

3.1 Description and interpretation of landforms and seismic/acoustic profiles.  143 

 144 

Integration of the new multibeam bathymetry data with pre-existing data provides nearly 145 

continuous coverage of the AHT from PD to beyond the continental shelf edge, with the new data 146 

spanning the full width of the trough on the middle shelf (Fig. 1). They also include coverage of the 147 

confluence with a tributary trough that joins the AHT from the east on the middle shelf. We will refer 148 

to this tributary by the informal name ‘Perrier Trough’, as it originates offshore from Perrier Bay, 149 

Anvers Island. The data reveal extensive areas of MSGL and drumlins, which are characteristic of ice 150 

stream beds and show the pattern of palaeo-ice flow (Stokes and Clark, 1999; King et al., 2009; 151 

Graham et al., 2009). Fields of drumlins, with elongation ratios between 2.5 and 6:1, occur over a 152 

broad transition zone between the rugged inner shelf and smoother mid-shelf part of the AHT, and 153 

where the AHT crosses a structural high that separates middle and outer shelf areas (Larter et al., 154 

1997). MSGL in the mid-shelf part of the AHT have elongation ratios between 12 and 17:1, whereas 155 

some on the outer shelf have elongation ratios up to 80:1. The data also confirm the occurrence of 156 

several grounding zone wedges (Fig. 1), some of which had been identified previously, indicating 157 

positions where the grounding zone paused during retreat from its LGM position (Larter and 158 

Vanneste, 1995; Vanneste and Larter, 1995; Batchelor and Dowdeswell, 2015). Here, however, we 159 

focus on two specific areas in which the landforms observed have a bearing on the role of subglacial 160 

hydrology in facilitating and controlling ice stream flow. 161 

 162 

3.2   Southern Anvers-Hugo Trough  163 

 164 

In the southern part of the AHT there is a marked along-trough change in landforms across a line 165 

where a MCS profile (AMG845-03) shows that a mid-shelf sedimentary basin pinches out (Figs 2a 166 

and 3), with acoustic basement cropping out to the southeast (Larter et al., 1997). The acoustic 167 
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basement most likely represents Palaeozoic-Mesozoic igneous and metasedimentary rocks similar to 168 

those that crop out on the nearby islands (Storey and Garrett, 1985; Leat et al., 1995). The 169 

sedimentary strata in the basin are of unknown age, but it has previously been inferred that the 170 

youngest layers could be no younger than middle Miocene and the oldest layers may be early 171 

Tertiary or Late Cretaceous in age (Larter et al., 1997). Crescentic scours around the ‘upstream’ ends 172 

of bathymetric highs and fields of anastomosing channels are observed in the area where acoustic 173 

basement crops out (Fig. 2a). Among the anastomosing channels, the largest are up to 30 m deep 174 

and 250 m wide, although many are smaller (Fig. 2b).  175 

In the axis of the AHT directly north of this zone, incised into the edge of the sedimentary basin, 176 

the new data reveal a set of northward shoaling and narrowing valleys spaced 2–3 km apart (Fig. 2a). 177 

Individual valleys are up to 1100 m wide and 60 m deep at their southern ends (Fig. 2c), but become 178 

narrower and shallower northwards (Fig. 2c,d ), ultimately petering out over a distance of <5 km. 179 

The slope along the steepest part of the channel axes is ~2° (Fig. 2d). In detail, the southern part of 180 

each valley exhibits a v-shaped deeper section incised into a u-shaped upper section, the v-shaped 181 

sections being up to 350 m wide and 45 m deep (Fig. 2c). MSGL start directly north of these valleys 182 

(Figs 2a and 4) and cover most of the sea bed in the trough between this point and the continental 183 

shelf edge. 184 

Two acoustic sub-bottom profiles that run transverse to the trough about 8 and 10 km north of 185 

the northern tips of the valleys show that the MSGL were formed in the surface of an acoustically 186 

transparent layer that is draped by a 4 m-thick layer of younger sediments (Fig. 4). Where such 187 

acoustically transparent layers have been cored elsewhere on the West Antarctic shelf they have 188 

been shown to consist of relatively low shear strength, deformed till, dubbed ‘soft till’, and the high 189 

amplitude reflector below this layer has been shown to correlate with the top of a higher shear 190 

strength ‘stiff till’ (e.g. Ó Cofaigh et al., 2005a; Reinardy et al., 2011). A homogenous, terrigenous 191 

diamicton with moderate shear strength, which was recovered in marine sediment cores from AHT, 192 

documents the presence of the soft till there (Pudsey et al., 1994; Heroy and Anderson, 2005). Each 193 

of the sub-bottom profiles shows three depressions in this high amplitude reflector that are 8–10 m 194 

deep, 400–800 m wide and contain an acoustically transparent fill, above which a reflector is usually 195 

observed separating the fill from the overlying soft till layer (Fig. 4). 196 

We interpret the anastomosing channels and crescentic scours incised into the hard substrate on 197 

the inner shelf as having been eroded by subglacial water flow at times when grounded ice extended 198 

further offshore, as previous authors have interpreted similar features elsewhere (Dreimanis, 1993; 199 

Lowe and Anderson, 2003; Nitsche et al., 2013; Lewis et al., 2006; Graham and Hogan, 2016). This 200 

origin is also consistent with the interpretation that a subglacial lake was present in PD during the 201 
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last glacial period, and channels incising the sill at its western end were eroded by outflow from the 202 

lake (Domack et al., 2006). Considering the scale of such features here, as well as in other areas 203 

around Antarctica, and the nature of the material they are eroded into, they probably developed 204 

progressively through multiple glacial cycles (Smith et al., 2009; Nitsche et al., 2013). The scale of the 205 

features also implies that water flow rates fast enough to drive erosion can only have been achieved 206 

through subglacial storage of water and episodic discharge (rather than continuous flow), even if it is 207 

assumed that the upper parts of scours and channels were filled with ice (Nitsche et al., 2013; 208 

Kirkham et al., 2019). This is, once again, consistent with the interpretation of a subglacial lake in PD, 209 

and also with a semi-quantitative model that implies outbursts from trapped subglacial lakes in such 210 

settings and of these approximate dimensions are likely to occur with repeat periods of the order of 211 

a few centuries (Alley et al., 2006).  212 

A conservative estimate for the volume of the PD subglacial lake stated by Domack et al. (2006) 213 

was 20 km3. However, the full volume of the basin deeper than the sill depth of ~500 m is about 110 214 

km3. If this was filled the lake would have been nearly two orders of magnitude greater in volume 215 

than subglacial Lake Ellsworth (1.37 km3, Woodward et al., 2010), but still nearly two orders of 216 

magnitude smaller than Lake Vostock (5400 ±1600 km3, Studinger et al., 2004). The length and width 217 

of PD are similar to Lake Engelhardt, the largest of a number of connected shallow lakes beneath the 218 

lower Mercer and Whillans ice streams, from which remote sensing data show ~2 km3 of water 219 

drained between October 2003 and June 2006 (Fricker et al., 2007). However, water depth in these 220 

lakes likely rarely exceeds 10 metres (Christianson et al., 2012), so their volumes are small compared 221 

to the potential size of lakes in deep basins such as PD. 222 

Considering that the northward-shoaling valleys are located in the axis of the AHT directly north 223 

of an area containing anastomosing channels and crescentic scours, we interpret them as also having 224 

been eroded by subglacial water flow. We interpret the upper u-shaped sections of the valleys (Fig. 225 

2c) as having been widened by glacial erosion, implying that the valleys have been overridden by ice 226 

since they were first carved. This is consistent with the suggestion that many features eroded into 227 

bedrock on Antarctic continental shelves developed through multiple glaciations (Graham et al., 228 

2009). Even at times when there was active water flow, ice may also have filled a large part of the v-229 

shaped lower sections. Palaeo-ice flow paths indicated by streamlined bedforms show that the area 230 

in the axis of the AHT where the valleys occur lies directly down flow from the sill at the western end 231 

of PD. MSGL directly north of the valleys indicate that there was fast ice flow in this part of the 232 

trough, likely facilitated by the soft till layer that is seen as an acoustically transparent layer in sub-233 

bottom profiles (cf. Alley et al., 1986; Ó Cofaigh et al., 2005a; Reinardy et al., 2011). The coincidence 234 

of the onset of MSGL with northward disappearance of the valleys suggests that water supplied 235 
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through them was important in lubricating and dilating the till, thus reducing its shear strength and 236 

making it more prone to deform under stress. Thus we infer that the northward terminations of the 237 

valleys were associated with a transition from channelized to distributed water flow at the ice bed. 238 

The shallow, filled depressions observed in the sub-bottom profiles (Fig. 4) suggest that the valleys 239 

once continued further to the north, before their distal reaches were filled and the overlying soft till 240 

in which MSGL are formed accumulated beneath fast-flowing ice. The sequence of units observed in 241 

the profiles could have resulted from upstream migration of the onset of sediment-lubricated 242 

streaming flow during the last glaciation.  243 

 244 

3.3  Confluence of Anvers-Hugo and Perrier troughs  245 

 246 

In the area of the confluence between AHT and Perrier Trough, an area of east-west aligned MSGL 247 

terminates abruptly along a line parallel to their trend on the southern flank of the Perrier Trough 248 

(Fig. 5a). The eastern limit of the area covered by MSGL in AHT is more irregular, but lies within a 249 

band no more than 3 km wide on the eastern flank of the trough. Streamlined bedforms are absent 250 

from the area between the two troughs, but several steep-sided bathymetric basins up to 1500 m 251 

wide and 40 m deep are observed (Fig. 5a-c). The central parts of most basins are flat or gently-252 

dipping so that cross-sections exhibit box-shaped profiles (Fig. 5b,c). A 500 m-wide and 8 m-high 253 

mound occurs on the north-western side of one of the largest basins (Fig. 5c). A few of the basins 254 

span the boundary of MSGL on the southern flank of Perrier Trough. Furthermore, about 3 km north 255 

of the boundary of MSGL and to the east of the other basins, linear features connect a small basin 256 

~300 m in diameter with a similarly-sized mound 1.6 km to its WNW (Fig. 5a).  257 

We interpret the well-defined southern lateral boundary of MSGL in Perrier Trough as indicating 258 

the marginal shear zone position when the palaeo-ice stream reached its maximum width during the 259 

LGM. Similarly, the lateral limit of MSGL on the eastern flank of the AHT lies within a band that is no 260 

more than 3 km wide, indicating the approximate position of the shear zone at the margin of the 261 

palaeo-ice stream occupying this trough when it was at its widest. Such clear expressions of ice 262 

stream shear margin positions in bed morphology have proved elusive beneath the modern ice 263 

sheet, partly because the chaotic structure of shear zones causes scattering of ice-penetrating radar 264 

signals that is observed as ‘clutter’ in survey data (Shabtaie and Bentley, 1987). The steep-sided 265 

basins in the area between the two troughs are similar to the holes of hill-hole pairs and scars 266 

resulting from detachment of sediment rafts observed on the northeastern part of the Amundsen 267 

Sea continental shelf (Klages et al., 2013, 2015, 2016). The small mound and basin in the Perrier 268 

Trough 3 km north of the boundary of MSGL appear to be a clear example of a hill-hole pair. Such 269 
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features are generally regarded as characteristic of erosion and deformation beneath dry-based ice 270 

cover (e.g. Ottesen et al., 2005; Evans et al., 2006). The mound to the northwest of one of the largest 271 

basins may represent a corresponding hill (Fig. 5a, c), although as its cross-sectional area is smaller 272 

than that of the adjacent hole it cannot contain all of the excavated sediment. The absence of 273 

mounds near to some of the other basins may be explained by their close proximity to the palaeo-ice 274 

stream confluence, as the excavated material would only need to have been transported a short 275 

distance into the path of one of the ice streams to be entrained by faster flow. Evidence of hill-hole 276 

pairs having been overridden and eroded by ice after their formation has previously been reported 277 

from the Norwegian continental shelf, where some hills are observed to have streamlined tails (Rise 278 

et al., 2016). The pristine form of the hill-hole pair within the Perrier Trough indicates that it must 279 

have formed after ice stream flow had stagnated. 280 

A DTB profile runs across the bathymetric basin that lies closest to the confluence of the two 281 

troughs and, beneath thin, patchily distributed younger sediments, it shows an acoustically 282 

transparent layer up to 25 ms (~20 m) thick (Figs 5a, 6). This layer has a minimum thickness of <3 m 283 

beneath the south-eastern edge of the basin floor, and it thickens progressively to the north-west 284 

across the basin. In places short segments of truncated, dipping reflectors can be seen beneath the 285 

strong reflector at the base of the acoustically transparent layer (Fig. 6). We interpret the 286 

acoustically transparent layer as consisting of Quaternary diamictons overlying an unconformity 287 

above mid-shelf basin sedimentary strata that are represented by the truncated, dipping reflectors.  288 

The reduced thickness of the acoustically transparent layer across the basin suggests that the ‘hole’ 289 

was formed by erosion of Quaternary diamictons and that the older sedimentary strata were 290 

unaffected during its formation. As mentioned above, such holes are generally regarded as 291 

characteristic of erosion beneath dry-based ice cover, and therefore the restriction of erosion to the 292 

Quaternary diamictons is consistent with the shear stress threshold for brittle failure in them likely 293 

being significantly lower than in the underlying consolidated strata (Evans et al., 2006). At the sea 294 

bed near the foot of the steep south-east flank of the basin, a unit that is 180 m across and 7 ms 295 

(~5.5 m) thick containing south-east dipping reflectors is observed. We interpret this unit as a 296 

rotated slide block that has originated from the flank of the ‘hole’ after its excavation. The most 297 

prominent reflector within the block is most likely to be from the boundary between diamicton and 298 

postglacial sediment as observed to the NW of the basin (Fig, 6), in which case the displacement of 299 

the block did not occur until after a layer of postglacial sediments several metres in thickness had 300 

accumulated. 301 

A MCS profile that runs obliquely across Perrier Trough and continues over the inter-trough area 302 

shows mid-shelf basin sedimentary strata underlying the sea bed along the entire line (Figs 5a, 7). As 303 
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noted above, the oldest strata in this basin may be as old as Late Cretaceous, but most of the basin 304 

fill is likely of Tertiary age (Larter et al., 1997). The southern lateral limit of MSGL in Perrier Trough 305 

lies within 1 km of the position where a unit of younger strata with a distinct seismic facies character 306 

(labelled ‘later mid-shelf basin’ in Fig. 7) pinches out, but is not coincident with this boundary. 307 

 308 

4. Discussion and Conclusions 309 

 310 

The features described here suggest that subglacial water, likely supplied episodically from a 311 

subglacial lake in PD, played an important role in facilitating ice stream flow in the AHT during the 312 

last and probably several late Quaternary glacial periods, and likely modulated the flow velocity. 313 

In the palaeo-ice stream confluence area (Fig. 5a) the close juxtaposition of MSGL, which are 314 

characteristic of wet-based, fast ice flow (Stokes and Clark, 1999; King et al., 2009; Graham et al., 315 

2009), with excavated basins (’holes’) that are characteristic of slow, dry-based ice flow (Ottesen et 316 

al., 2005; Evans et al., 2006), suggests that water availability was an important control on the lateral 317 

extent of the palaeo-ice streams. This interpretation is supported by a MCS profile that shows the 318 

palaeo-ice stream shear margin position on the south side of Perrier Trough does not coincide with a 319 

major geological boundary (Fig. 7). The MCS profile shows that the Perrier Trough palaeo-ice stream 320 

and the inter-stream area are both underlain by dipping sedimentary strata of likely Tertiary age. 321 

The position of the shear margin does, however, lie within 1 km of a second-order boundary 322 

between strata of different ages and with different seismic facies that may have had some influence 323 

on its position (Fig. 7). Unfortunately, available seismic profiles are too widely spaced to assess how 324 

closely the palaeo-shear margin follows this boundary.  325 

The observation that a few of the ‘holes’, and one clear hill-hole pair, span the boundary of, and 326 

cross-cut, MSGL on the southern flank of Perrier Trough suggests inward ice stream shear margin 327 

migration during glacial recession. Lateral migration of shear margins was inferred in the area near 328 

the grounding on the modern Thwaites Glacier between 1996–2000 (Rignot et al., 2002), although a 329 

later study concluded that there had been no significant migration of the eastern shear margin of 330 

the glacier during the most recent two decades (MacGregor et al., 2013). On different parts of the 331 

northern shear margin of Whillans Ice Stream, migration rates of up to 280 ma-1 outwards and up to 332 

170 ma-1 inwards were measured over the decade to 1997 (Stearns et al., 2005). Ice-penetrating 333 

radar data across the northern margin of Kamb Ice Steam suggest abrupt inward migration of the 334 

margin ~200 years before complete stagnation flow, attributed to reduced lubrication (Catania et al., 335 

2006). Reduction in basal water supply could occur due to depletion of upstream reservoirs (cf. 336 

Christoffersen et al., 2014), due to surface slope reduction leading to subglacial flow 337 
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change/reversal,  or due to ice thinning or decreasing flow rate and consequent reduction in 338 

pressure melting or strain heating, respectively. Alternatively, in the case of palaeo-ice streams on 339 

continental shelves, reduction in basal water supply could have resulted from total evacuation of 340 

subglacial lakes trapped during ice advance at the LGM. The recovery of tills older than 13 cal. ka BP 341 

at the bases of sediment cores from PD indicates that the lake there was eventually evacuated 342 

(Barker & Camerlenghi 2002; Domack et al. 2001, 2006). However, water discharged from PD would 343 

not have supplied the bed of the palaeo-ice stream in Perrier Trough, so lake evacuation could only 344 

explain decreased water supply there if subglacial lakes were trapped in other deep basins upstream 345 

of the area studied. 346 

The onset of MSGL in AHT coincides with the downstream termination of the northward shoaling 347 

valleys. This spatial coincidence suggests that water delivered through the channels played a role in 348 

promoting streaming ice flow northward of this point. The upstream dip of 2° along the steepest 349 

part of the channels (Fig. 2d) implies the minimum ice surface gradient required to produce a basal 350 

hydrological pressure gradient that would drive water northward along the valleys was only 0.2°, 351 

which is within the range of surface gradients on many modern ice streams (Horgan and 352 

Anandakrishnan, 2006). Water that flowed along the valleys may have been either incorporated into 353 

the till layer that the MSGL formed in, thereby dilating it and facilitating shear deformation, or 354 

dissipated into a thin film that spread along the ice-sediment interface (cf. Ó Cofaigh et al., 2005a). 355 

The sudden appearance of MSGL at this point also requires a source for the till itself, and the most 356 

obvious candidate is the underlying strata at the edge of the sedimentary basin (Fig. 3). Although 357 

these strata have never been sampled they are the most likely source of reworked Cretaceous 358 

radiolarians found in diamictons recovered by drilling on the outer shelf (Shipboard Scientific Party, 359 

1999).Onset of MSGL where ice flowed onto a bed consisting of older sedimentary strata has also 360 

been reported in other locations (e.g. Wellner et al., 2001, 2006, Graham et al., 2009). Erosion of 361 

material from underlying sedimentary strata by, or in the presence of, subglacial water flow presents 362 

a potential mechanism for generating a dilated basal till layer of the kind that has been shown to be 363 

present beneath some modern ice streams (e.g. Alley et al., 1986; Smith, 1997). 364 

Subglacial lakes in deep inshore basins such as PD are likely to form during an ice sheet growth 365 

phase (Domack et al., 2006; Alley et al., 2006). In this case, episodes of water expulsion from PD may 366 

have accelerated ice flow and thus contributed to rapid advance of grounded ice with a low surface 367 

gradient across the shelf. Acceleration of ice flow by about 10% over 14 months was observed on 368 

Byrd Glacier following a drainage event from subglacial lakes 200 km upstream of the grounding line 369 

(Stearns et al., 2008), and subglacial meltwater drainage flux and routing is also known to influence 370 

flow rates of glaciers in Greenland (Sundal et al., 2011). The axis of AHT shallows steadily from >600 371 
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m where MSGL start on the middle shelf to <440 m at the shelf edge (Vanneste and Larter, 1995), 372 

and grounding lines are potentially unstable on such upstream-deepening beds (Weertman, 1974; 373 

Schoof, 2007; Katz and Worster, 2010). Therefore, if episodic subglacial water outbursts caused 374 

‘surging’ ice stream behaviour, as envisaged by Alley et al. (2006), they may also have resulted in 375 

fluctuations in grounding line positions. 376 

Our interpretations are consistent with the hypothesis that subglacial lakes or areas of elevated 377 

geothermal heat flux play a critical role in the onset of many large ice streams (Bell, 2008). There are 378 

other deep, steep-sided inner shelf basins where subglacial lakes could have been trapped during 379 

glacial advance in the catchment areas of several other well-documented Antarctic palaeo-ice 380 

streams. For example, there are several basins >900 m deep in Marguerite Bay, which is part of the 381 

catchment of the Marguerite Trough palaeo-ice stream (Livingstone et al., 2013; Arndt et al., 2013), 382 

and there is a >1100 m-deep basin in Eltanin Bay at the head of the Belgica Trough palaeo-ice stream 383 

(Ó Cofaigh et al., 2005b; Graham et al., 2011; Arndt et al., 2013). In the Amundsen Sea Embayment, 384 

there are >1500 m-deep inner shelf basins in the catchments of both the Pine Island-Thwaites and 385 

Dotson-Getz palaeo-ice streams (Larter et al., 2009; Graham et al., 2009, 2016; Nitsche et al., 2013; 386 

Arndt et al., 2013; Witus et al., 2014), and it has been shown that at least one of those in the former 387 

area did indeed host a sub-glacial lake (Kuhn et al., 2017). Hence subglacial lakes at the onset of 388 

many continental shelf palaeo-ice streams may have facilitated their advance across the shelf during 389 

late Quaternary glacial periods. Furthermore, if the lakes persisted when the ice streams had 390 

advanced to the outer shelf, outbursts from them could have caused surge-like behaviour leading to 391 

fluctuations in grounding line positions on typical inward-deepening Antarctic continental shelf 392 

areas. Such behaviour of marine-based palaeo-ice streams on timescales of the order of centuries, as 393 

suggested by the simple model proposed by Alley et al. (2006), could explain the observation of 394 

cross-cutting MSGL in several outer continental shelf areas (e.g. Ó Cofaigh et al., 2005a, 2005b; 395 

Mosola and Anderson, 2006). The preservation of MSGL from successive flow phases precludes 396 

erosion or deposition of more than a few metres of sediment between them, which is easier to 397 

envisage if the time separation between the flow phases is relatively small. The potential for such 398 

subglacial lake outbursts to recur at decadal to centennial intervals and to cause significant ice 399 

dynamic fluctuations means that there is a need to better understand the processes involved in 400 

order to better forecast the future behaviour of modern ice streams and the contribution they will 401 

make to sea-level change. 402 
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Figures 686 

 687 

Fig. 1. Multibeam bathymetry data over Anvers-Hugo Trough, Perrier Trough and Palmer Deep. Grid-688 

cell size 30 m, displayed with shaded relief illumination from northeast. Regional bathymetry 689 

contours from IBCSO v1.0 (Arndt et al., 2013). Red dashed lines mark interpreted past grounding 690 

zone positions, with earliest ones labelled GZ1–GZ3. Most upstream grounding zone in Perrier 691 

Trough is labelled GZ3P, as it did not necessarily form synchronously with GZ3. Only discontinuous 692 

segments of later grounding zone positions are identified in Anvers-Hugo Trough. Black boxes show 693 

locations of Figs 2a and 5a. Red box on inset shows location of main figure. 694 

 695 

Fig. 2. a Detail of multibeam bathymetry over the boundary of the mid-shelf basin in the southern 696 

part of Anvers-Hugo Trough. Grid-cell size 30 m, displayed with shaded relief illumination from 075°. 697 

Dashed red lines mark interpreted former grounding zone positions. Purple line marks location of 698 

MCS profile in Fig. 3, with small dots at intervals of 10 shots and larger dots and annotations at 100-699 

shot intervals. White lines mark locations of topographic profiles in b-d and solid red lines mark 700 

locations of acoustic sub-bottom profiles in Fig. 4. Semi-transparent pink-filled areas crossing the 701 

sub-bottom profiles mark the positions of the buried channels observed in the profiles and 702 

interpolated between them. Yellow dotted line outlines approximate extent of area of anastomosing 703 

channels. MSGL, mega scale glacial lineations. b Profile across anastomosing channels. c Cross 704 

sections of northward shoaling valleys. d Profile along axis of one northward shoaling valley. 705 

Locations of profiles shown in a. 706 

 707 

Fig. 3. Part of MCS Line AMG845-03 and interpreted line drawing, showing sedimentary basin pinch 708 

out at ~SP530. Dotted grey lines labelled B on the line drawing mark prominent bubble pulse 709 

reverberations following the sea-floor reflection. Location of profile, including shot point positions, 710 

shown in Fig. 2a. 711 

 712 

Fig, 4. Acoustic sub-bottom (TOPAS) profiles from the southern part of Anvers-Hugo Trough showing 713 

buried, filled channels overlain by acoustically-transparent ‘soft till’ layer with MSGL on its surface, 714 

which is in turn overlain by a thin drape of postglacial sediments. Locations of profiles shown in Fig. 715 

2a. 716 

 717 

Fig. 5. a Detail of multibeam bathymetry over the confluence between Anvers-Hugo Trough and 718 

Perrier Trough, which joins it from the east. Grid-cell size 30 m, displayed with shaded relief 719 
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illumination from northeast. Black lines marks locations of topographic profiles in b-c. Red line marks 720 

location of DTB profile in Fig. 6. Purple line marks location of MCS profile in Fig. 7, with small dots at 721 

intervals of 10 shots and larger dots and annotations at 100-shot intervals. Dark blue dashed lines 722 

outline selected box-shaped bathymetric basins. AHT, Anvers-Hugo Trough; MSGL, mega scale glacial 723 

lineations; GZ2, GZ3P, interpreted former grounding zone positions marked by dashed red lines. 724 

Orange dotted line marks lateral limit of MSGL, interpreted as position of palaeo-ice stream shear 725 

margins. b Cross sections of box-shaped basins running approximately SW-NE (i.e. approximately 726 

transverse to the inferred palaeo-ice flow direction). c Cross-section of one of the larger basins in an 727 

approximately NW-SE direction. Locations of profiles shown in a. 728 

 729 

Fig. 6. Part of DTB Line 4 across the step-sided basin that lies closest to the trough confluence. The 730 

profile shows an acoustically-transparent layer of variably thickness, interpreted as Quaternary 731 

diamicton, overlying a strong reflector, interpreted as an unconformity above older sedimentary 732 

strata. Short segments of truncated, dipping reflectors, marked by upward pointing small arrows, 733 

can be seen beneath the strong reflector at the base of the acoustically-transparent layer. Two-way 734 

travel times have been corrected for the tow depth of the boomer so that they represent 735 

approximate times from the sea surface. Location of profile shown in Fig. 5a. 736 

 737 

Fig. 7. Part of MCS Line BAS878-11 and interpreted line drawing, showing the entire area of the 738 

confluence between Anvers-Hugo Trough and a tributary trough is underlain by sedimentary strata, 739 

and that the lateral limit of MSGL in the tributary trough lies within 1 km of the position where a unit 740 

of younger strata with a distinct seismic facies character pinches out. An f-k demultiple process was 741 

used to suppress the sea-floor multiple reflection on this line. Dotted grey lines labelled B on the line 742 

drawing mark prominent bubble pulse reverberations following the sea-floor reflection. Location of 743 

profile shown in Fig. 5a. 744 

 745 
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