
Reply to Reviewer #1:  
 
We thank the reviewer for the time and efforts she/he spent reading our manuscript and providing 
valuable suggestions and advices. Please find below a discussion of the reviewer’s comments (italic). 
Changes/additions made to the text are underlined and given in quotes. 
 
Major concerns: 
 
Cloud focus: There needs to be more discussion of why cloud cover should impact albedo. Is it due to 
more scattered light?  
We added some more explanation: 
“Clouds affect the spectral behavior of the incident solar radiation and the directional dependence. In 
cloudy conditions the incoming radiation field is dominated by the diffuse component, whereas the 
transmission of radiation through the clouds is wavelength-dependent. Since the solar radiation is mainly 
absorbed by cloud particles in the near-infrared spectral range, a larger fraction of visible to global 
radiation is incident on the surface compared to clear sky conditions. Furthermore, the enhanced 
multiple-scattering between clouds and snow surface additionally contributes to the spectral shift of the 
incident radiation. Consequently, the broadband albedo increases under cloudy conditions. 
Effects of the solar zenith angle (SZA) on the observed differences in Figure 7a,b can be excluded here, 
since for both days the SZA was in the range between 65° and 68°.” 
 
Additionally, there should be more discussion of how the modifications to albedo for cloud cover would 
work in a coupled model. Typically, just surface fluxes (SW, LW) are passed to an ice model from the 
atmosphere model. Could SW or LW be used instead of cloud cover because modeled cloud fraction is 
notoriously poor.  
We derived adjusted albedo parameters, which clearly reflect the impact of the cloud situation with 
higher minimum and maximum values (0.80, 0.88) for overcast conditions and lower values (0.66, 0.79) 
for clear sky and broken cloud situations (Page 16, second paragraph; Page 17, last paragraph). We do 
argue that it is a solid approach to implement those changes into the coupled model HIRHAM-NAOSIM in 
a next step. With this we will follow the common approach where albedo modifications are implemented 
in coupled model (e.g., Rae et al., 2015, doi:10.5194/gmd-8-2221-2015; Koenigk et al., 2011, 
10.1007/s00382-011-1132-z). It is the aim to improve the physical description of the albedo, and it is 
known that the cloud effect needs to be taken into account (see response above). Thus, the next step of 
implementing this effect is logically. However, we do agree that clouds are generally poorly simulated in 
the Arctic, but the radiative fluxes are poor too (e.g., English, 2015, doi:10.1175/JCLI-D-14-00801.1). Of 
course, both are related to each other, and the surface albedo plays an important role (e.g., Karlsson and 
Svensson, 2013, doi:10.1002/grl.50768). The step afterwards is therefore to further improve the cloud 
cover simulation. We have already shown that we could improve this by a more efficient Bergeron‐
Findeisen process and a more generalized subgrid‐scale variability of total water content (Klaus et al., 
2016, doi:10.1002/2015GL067530). Still, the simulations are far from being perfect and therefore, this is 
still an ongoing topic for us. 
According to your comment, we added a short paragraph in section 4 (Summary and conclusion). It reads 
(page 18, line 3):  
“Although we could improve the cloud cover simulations in HIRHAM5 (Klaus et al., 2016), the 
simultaneous evaluation of SIS albedo and cloud-radiation (e.g. following Karlsson and Svensson, 2013) 
in the coupled model HIRHAM-NAOSIM is on our agenda.” 
 
 



Snow on the surface: Nearly all the observations compared are over snow covered ice, but there is little 
discussion of snow heterogeneity and how this might impact the results. At Pg.8/Ln.2 you mention “snow 
type” and also later and at Pg.12/Ln.6 you mention “more structured snow” and “increased roughness”, 
all of which allude to the heterogeneity in the snow cover. In fact, Fig.4 (and Pg.8/Ln.15-17) shows that 
there doesn’t seem to be good correlation between changes in temperature, which is relatively constant 
between early and late June, and albedo, which drops off during this period. Since during this time the ice  
remains snow covered, this suggests to me that perhaps changes in the snow rather than temperature 
should be the impetus for the albedo change. Finally, on Pg.14/Ln.2 you mention grain size or snow 
thickness as being important for temporal evolution on albedo. Why don’t you focus on better 
understanding these snow effects on albedo rather than clouds? Could these snow differences be 
important for the larger variability in observations than the parameterization? It’s known that the snow 
type is important, it seems worth more mention in this manuscript. 
We totally agree that the relation of snow property changes controlling the snow albedo is very 
important. In fact, those snow processes (changes in grain size and density, metamorphism, compacting 
and ageing, multiple layering, etc.) are commonly covered (by different complexity) in land surface 
models (e.g., Wang et al., 2016, doi:10.5194/tc-10-1721-2016 and references therein) and ice-ocean 
models (e.g., Lecomte et al., 2015, doi:10.1016/j.ocemod.2014.11.005; Liston  et  al.,  2018, 
doi:10.1002/2017JC013706). But, these complex snow processes are still generally only basically covered 
in sea ice models as part of global coupled climate models (e.g., Hunke et al., 2010, 
doi:10.3189/002214311796406095), and are currently incorporated only in few global coupled climate 
models (e.g., Blazey et al., 2013, doi:10.5194/tc-7-1887-2013). New models are currently configured 
(e.g., Petty et al., 2018, 10.5194/gmd-11-4577-2018). However, also, site-level snow measurements are 
quite limited over Arctic sea ice and the derivation of reliable snow and ice thickness products from 
satellite data is still a research in progress. 
Actually, we follow both these model and observational developments of these aspects. Accordingly, we 
will analyse the measured data set which will be gained during the one-year Arctic MOSAiC campaign in 
2020.  
The albedo variation shown Fig.4 and discussed on Pg.8/Ln.15-17 includes all data along the flight track 
and consequently comprises also other surface types than snow covered ice (e.g., dark open water). 
Figure 8 illustrated the temperature and cloud dependence for snow covered ice only. It shows clearly 
that the snow type variation (change of roughness, grain size, …) is in the same order than the  
illumination effects. Thus, there is definitely a need to improve the parameterization in this regard too.  
According to your comment, we added a short paragraph in section 4 (Summary and conclusion). It reads 
(page 18, line 13):  
“Furthermore, our results indicate that the snow type variation (e.g., change of roughness, grain size, 
density) is of the same order of importance for albedo variations than the illumination (cloud cover) 
effect. This supports the need to put efforts to improve the snow process parameterizations in coupled 
models as discussed by Hunke et al. (2010).” 
 
Other surface types: I am concerned that all the comparisons are done over ice with nearly 100% snow 
cover. You are clear that the results of the work are valid for covered ice, but later in the season does that 
mean these results are unimportant? Do clouds have any impact when there are more melt ponds, and is  
it worth the effort to include cloud cover? 
The reviewer raises an important question here. The adjustments proposed in this work provide 
improvements for the observed period. It has to be tested how the new parameterization performs for 
other periods. Also this will be answered based on the MOSAiC observations. We are aware that the 
importance of melt ponds will increase in the summer season and the adjustments made for the 
parameters controlling the snow covered ice albedo are of minor importance then, but we expect similar 
cloud effects on the variation of the melt pond albedo than observed during ACLOUD/PASCAL for snow, 



because the physical reason (spectral shift of incident radiation) is also valid for melt ponds which are 
characterized by a pronounced spectral signature of the albedo between the visible and near-infrared  
spectral range. 
According to your comment, we added a short paragraph in section 4 (Summary and conclusion). It reads 
(page 18, line 14):  
“The presented results are valid for nearly 100% snow covered sea ice. In the later summer season, melt 
ponds become an important feature. Still, it is expected that the effect of cloud cover on the variation of 
the melt pond albedo plays a role due to the spectral shift of incident radiation.” 
 
Minor concerns.  
 
There are just a number of small clarifications or suggestions for figures. 
 
Fig.1a – Add a colorbar. 
Added as suggested: 

 
 
Fig.4 – is there a better way to show this? I can hardly see the whiskers or differentiate between polar 5 
and 6 flights. The other thing to point out is that in panel b there is a large range of observed albedos on 
each day. This is worth pointing out. Even in early May there are albedos of 0.7 within one standard 
deviation. 
We adjusted the figure (decrease symbol size, colors instead of black/white) for a better separation 
between individual data points: 

  
Furthermore we comment the broad standard deviation as follows: 
“As indicated by the range of the standard deviation, the spatial variability of the SIS albedo may have 
the same order of magnitude than the temporal variation.” 



Fig.6 – can you clarify on the figure which part is a and b of the components for assessment? 
We adapted the figure by using background colors for separation of the two components: 

  
Fig.7 – the dashed lines are very hard to see. 
We changed the line style representing all data to thin solid lines and adjusted the annotations 
accordingly: 

 
 
Fig. 9 – Do red or black correspond to measurements? The caption and legend conflict.  
Thanks for this advice. We fixed the issue by adjusting the figure caption: 
“Box-and-whisker plot of measured (red solid lines) and parameterized (black dotted lines) surface 
albedo for selected flight paths in the surrounding of the ice floe where snow depth data were sampled.” 
 
Table 2 – it looks like for a number of days the parameterized and observed albedos are similar. Is it 
worth mentioning this? 
We added a short statement: 
“In contrast, at the end of June this relation is reversed, while in the transition period the mean 
parameterized SIS albedo agrees well with the measurements, particularly for overcast cloud 
conditions.” 



 
Throughout – Does SIS just mean “sea ice surface” or it is the name of the model albedo 
parameterization.  
The abbreviation SIS was introduced in Section 1 as follows:  
“The CMIP5 model spread in the representation of the sea ice surface (SIS) albedo directly affects the 
estimates of the cloud radiative forcing (CRF) as shown by Karlsson and Svensson (2013).” 
 
Equation 6 – Why is the maximum fraction for melt ponds (22%) so low? Is there justification? 
According to Køltzow (2007) the threshold temperature for the onset of melt pond development 
(derived from SHEBA measurements) was set to -2°C. The limitation of the amount of melt pond fraction 
to 0.22 prevents a complete conversion from snow to melt ponds when temperature is reaching 0°C like 
observed during ACLOUD. However, the given number of 0.22 refers to SHEBA measurements but is not 
further discussed in the publication by Køltzow (2007). We are aware that the melt pond fraction may 
span a larger range than assumed in the parameterization, in particular for July and August (e.g., 
Istomina et al., 2015). 
 
Pg. 5 Line 17-18: It looks like for hs > 0.1 then the fraction is solely snow-covered ice while for smaller 
snow depth melt ponds or bare ice become more relevant. I didn’t follow the text here. 
The reviewer is right. For h_s > 0.1 m no other ice types are modelled when temperature is lower than 
0°C. Fig. 1b illustrates exemplarily the subtype fraction for T=-0.1°C. The fraction of bare ice is only 
dominating (50% of total ice fraction) when snow depth is lower than 0.01 m for this specific 
temperature. We changed the number in the text: 
“The bare ice fraction (c_bi=1-c_s-c_m) is only dominating when snow depth values are lower than 0.01 
m for this specific case.” 
 
Pg.6 Line 20: The winds cause the southwesterly ice drift but your wording is confusing: “due to northerly 
winds coupled with a southerly to southwesterly sea ice drift.”  
We changed the wording: 
“In May, the sea ice edge was far south in this region, due to northerly winds a southerly to 
southwesterly sea ice drift was observed. With the beginning of the warm period at the end of May, the 
southerly winds led to a north-eastward ice drift (Wendisch et al., 2018).” 
 
Pg.6 Line 30-31: What are the increase of 9% and 32% compared against. 
We changed the wording:  
“Considering only the percentage of measurements with hs < 10 cm, revealed an increase of this fraction 
on the overall snow depth observations from 9 % on 5 June to 32 % on 14 June.” 
Furthermore, we added the units in Fig. 3 (insert table): 



 
 
Pg.9 Line 14: No bars in Fig.5 have 70% open water.  
Figure 5 only shows the fractions of Polar 6 measurements. The 70 % of open water fraction refers to 
Polar 5 observations. To make it clearer, we adjusted the figure caption and modified the sentence 
slightly: 

 
“The same area was probed on 18 June by the Polar 5 giving a mean open water fraction of 70 % (not 
shown).” 
 
Pg.10 Line 15: do you mean “coming from directly below the aircraft for (i) only.” … “Therefore approach 
(ii) might lead…”.  
The parameterized albedo in one model grid is the mean of the albedo of all subtypes weighted by their 
fraction of subtype occurrence (Eq. 2). In contrast, the measured albedo along the flight track is 
additionally depending on the cosine weighting because of the definition of the quantity irradiance. 
Therefore, we compared the non-weighting (i) and the cosine weighting approach (ii). We revised the 
sentences: 
“This implies that the reflected radiation from side directions has a minor contribution relative to the 
radiation coming from nadir direction. […]Therefore, approach (i) might lead to uncertainties due to the 
neglect of cosine weighting.” 
 
Pg.11 Line 19: Why did you use 50 as a threshold? 
The minimum sample (n) size can be approximated by: 

𝑛 ≥
𝑧2𝜎2

𝑒2
 

with z: confidence (95%  z ≅ 2), 𝜎2: variance, and e: assumed precision of the mean albedo. Taking the 
measured variance (0.072) and the desired albedo uncertainty (0.02) into account, n needs to be larger 
than 49. 
 
Pg.12 Line 14: what is snow grain size differences less important relative to? 
The comparison is related to the roughness and illumination effect, mentioned the sentence before. We 
connected both sentences now: 
“Thus, the likely dominating effect of the clear sky conditions together with the increased roughness lead 
to a decrease of the measured SIS albedo, whereas the snow metamorphism causing larger grain sizes is 



probably of minor importance, since the surface temperature is below melting temperature (Tsurf =  
-4°C).” 
 
Pg.16 Line 1: the values of albedo given for min and max don’t match those in Table 4. I’m confused. Also 
the precision for RMSE values is probably too great.   
The lines the reviewer is referring states the old and the new threshold values. The new numbers agree 
with the numbers in table 4. The two albedo values (α_min = 0.77 and α_max = 0.84) from Dorn et al. 
(2009) are not listed in table 4. We added the reference to table 2 to omit misunderstanding.  
“The adjusted albedo parameters clearly describe the two cloud conditions with higher minimum and 
maximum values (0.80, 0.88) for overcast conditions and lower values (0.66, 0.79) for clear sky and 
broken cloud situations compared to the suggested numbers given in the original sea ice albedo scheme 
from Dorn et al. (2009) with α_min = 0.77 and α_max = 0.84 (Table 1).”  
However, we reduced the number of digits for the RMSE in the text and in table 4: 
“The greatest improvement was found for the parameterization of clear sky surface albedo, where the 
RMSE values for all cases with c_s> 99% reduced from 0.13 to 0.04, and for all data matching c_i> 90% 
from 0.14 to 0.04. For overcast situations, the RMSE reduces only slightly from 0.06 to 0.05 for c_s> 99% 
and for cases with c_i> 90%.”  

 



Reply to Reviewer #2:  
 
We thank the reviewer for the time and efforts she/he spent reading our manuscript and providing 
valuable suggestions and advices. Please find below a discussion of the reviewer’s comments (italic). 
Changes/additions made to the text are underlined and given in quotes. 
 
Major concerns:  
 
The overwhelmingly dominant surface type for this study is snow-covered ice. Should that be reflected in 
the title?  
We agree with the reviewer, that the validation is mainly attributed to the parameterization 
performance of snow covered ice. For the season May/June bare ice and melt ponds surface types are 
still in minority. However, the range of surface albedo values of snow covered ice underlies strong 
variations due to changing snow reflection properties and a decreasing snow depth which has to be well 
characterized for a sufficient parameterization. This magnitude of variation is in the same order than for 
melt ponds. With the planned observations during the MOSAiC campaign in 2020 we will also cover the 
melt pond season for an extended validation.  
Instead of changing the title (which would make it even longer), we pointed out in the abstract that the 
validation has some restrictions concerning the observed surface types: 
“The selected low-altitude (less than 100 m) flight sections of overall 12 flights were performed over 
surfaces dominated by snow covered ice. It was found that the range of parameterized SIS albedo for 
individual days is smaller than that of the measurements.” 
In addition, we added in the Summary and conclusion:  
“The presented results are valid for nearly 100% snow covered sea ice.” 
 
The conclusions of this manuscript, as stated p. 18, line 3 provide only limited scientific insight. The details 
of the model parameterization and the data set being used to validate it are nicely described, but there is 
not a lot of fresh scientific insight that results.  
The presented “offline” method to evaluate the SIS albedo parameterization in terms of temperature, 
snow and cloud cover based on airborne measurements is a reasonable and well suited method. It 
bridges the local observations of ground-based validation data (which only partly represents the 
variability of surface characteristics) and satellite comparisons (albedo product derived from multi-day 
observation and only under cloudless conditions).  
By using concurrent measurements as input parameters, the “offline” method allows a validation which 
is not affected by the uncertainty of modeled parameters (e.g., surface temperature) caused by the 
complexity in a coupled climate model. From previous studies (e.g. Dorn et al., 2009) it is known that an 
improved simulation of feedback processes can finally only be obtained by a harmonized combination of 
improved parameterizations. In a later study we will implement the adapted parameterization into the 
model, will perform ensemble runs and evaluate statistically the model skills. Also here, the one-year 
observations during MOSAiC will serve as perfect test bed.  
This validation clearly reveals limitations of the current version of the SIS albedo parameterization in 
HIRHAM-NAOSIM, which as mentioned are the choice of temperature thresholds when reflection 
properties change significantly, and the illumination dependence. Since a number of other climate 
models include similar parameterizations, this study may encourage also other modelers to revise their 
approaches. From the measurement point, it was already well known that clouds have an impact of the 
magnitude of the surface albedo, but our study reveals directly the effect of including this information on 
the performance of the SIS albedo parameterization, which is worthwhile to point it out in a publication. 
We tried to improve the Summary and conclusion section. 
  



Minor points: 
 
Abstract line 5: “The SIS albedo parameterization was tested using measured quantities of the prognostic 
variables surface temperature and snow depth to calculate the surface albedo and the individual 
fractions of the ice surface subtypes (snow covered ice, bare ice, and melt ponds) derived from digital 
camera images taken onboard of the Polar 5/6 aircraft.” It would be helpful to include the albedo 
measurement in this list (broadband? Spectral?).  
We included the observations a little bit earlier here: 
“Therefore, the sea ice surface (SIS) albedo parameterization of the coupled regional climate model 
HIRHAM--NAOSIM was examined against broadband surface albedo measurements performed during 
the joint ACLOUD (Arctic CLoud Observations Using airborne measurements during polar Day) and 
PASCAL (Physical feedbacks of Arctic boundary layer, Sea ice, Cloud and AerosoL) campaigns which were 
performed in May/June 2017 north of Svalbard.” 
 
abstract line 10: “...a temporal bias was observed...” Is this necessarily a temporal bias? It’s probably 
more likely a surface type bias. I doubt the bias depends explicitly on time, but it more likely depends on 
surface type. 
We exchanged the phrase “temporal” by “time-variable” to emphasize that the bias was variable during 
the course of the campaign. Nevertheless, the change of surface properties (and consequently the 
surface albedo) is not instantaneously changing with the increase of temperature. Therefore, one could 
call it a time-dependent bias.   
“Furthermore, a time-variable bias was observed with higher values compared to the modeled SIS 
albedo (0.88 compared to 0.84 for 29 May 2017) in the beginning of the campaign, and an opposite 
trend towards the end of the campaign (0.67 versus 0.83 for 25 June 2017).” 
 
p. 2, line 2: “...the second main contributor.” compared to what process?  
We added the lapse rate feedback: 
“Pithan and Mauritsen (2014) quantified the strength of various feedback mechanisms contribution to 
Arctic amplification using climate simulations from the Coupled Model Intercomparison Project Phase 5 
(CMIP5; Taylor et al., 2012) and found that the snow/ice albedo feedback is the second main contributor 
besides the lapse rate feedback.” 
 
p. 2, line 6: “the spread of climate model results with respect to the snow/ice albedo feedback has been 
discussed” can this be made more specific? I think I understand this sentence is trying to convey that the 
sensitivity of climate model results to parameters directly related to snow/ice albedo feedback are 
discussed, but this is not clear. 
The sentence introduces the more specific subsequent paragraph. However, we changed the wording: 
“In particular, the spread of climate model results quantifying the snow/ice albedo feedback has been 
discussed (Qu and Hall, 2014; Thackeray and Fletcher, 2016; Thackeray et al.,2018).” 
 
Table 1: Where do the min and max values come from? 0.51 - 0.57 seems like a range that I would expect 
to be biased low. 
The numbers given in Table 1 are suggested by Køltzow (2007) who introduced the sea ice albedo 
scheme of HIRHAM. The range of the bare ice albedo (0.51 – 0.57) is taken from Table 7: 



 
(from  Køltzow, 2007) 
 
p. 10, line 14: “This implies that the reflected radiation from side directions has a minor contribution than 
radiation coming from directly below the aircraft.” Please rewrite for clarity– “...has a minor contribution 
relative to radiation...”? 
We changed the wording: 
“This implies that the reflected radiation from side directions has a minor contribution relative to the 
radiation coming from nadir direction.” 
 
p.12 line 6: delete “it”, also please explain what is meant by “structured snow covered ice”. 
We adjusted the sentence and used now the term “surface roughness” instead of the phrase “structured 
snow covered ice”. “Surface roughness” is probably more appropriate in this scientific field:  
“This results in an increase of surface roughness on 31 May which is also apparent from the digital 
camera images.” 
 
p. 14, line 2 -3: If I understand correctly, this albedo parameterization does not account for varying grain 
size and snow depth? That seems like it is important to mention. 
As suggested, we explicitly mentioned it now in a separate sentence:  
“In fact, the decrease in SIS albedo is mainly caused by a temporal change (Figure 8b) of the surface 
properties, as grain size and snow thickness. As obvious from Eq. (3), both parameters are not 
considered in the SIS albedo parameterization of HIRHAM-NAOSIM.” 
 
p. 14, line 7: “...also the illumination conditions might have an impact on the variation of the surface 
albedo. Lower SIS albedo values were measured for all cases under cloudless and broken cloud conditions 
compared to overcast situations with similar surface temperatures ranges.” That is expected and it would 
be helpful to acknowledge that here. 
We gave some references of publication where the illumination dependence was discussed: 
“Besides snow property changes, also the illumination conditions might have an impact on the variation 
of the surface albedo (Choudhury and Chang, 1981; Pirazzini et al., 2015).” 
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Abstract. For large scale and long term Arctic climate simulations appropriate parameterization of the surface albedo are re-

quired. Therefore, the sea ice surface (SIS) albedo parameterization of the coupled regional climate model HIRHAM–NAOSIM

was examined against
:::::::::
broadband

::::::
surface

::::::
albedo

:
measurements performed during the joint ACLOUD (Arctic CLoud Obser-

vations Using airborne measurements during polar Day) and PASCAL (Physical feedbacks of Arctic boundary layer, Sea ice,

Cloud and AerosoL) campaigns which were performed in May/June 2017 north of Svalbard. The SIS albedo parameterization5

was tested using measured quantities of the prognostic variables surface temperature and snow depth to calculate the surface

albedo and the individual fractions of the ice surface subtypes (snow covered ice, bare ice, and melt ponds) derived from digital

camera images taken onboard of the Polar 5/6 aircraft. Based on data gained during
:::
The

:::::::
selected

::::::::::
low-altitude

::::
(less

::::
than

:::
100

:::
m)

::::
flight

:::::::
sections

::
of

::::::
overall

:
12 flights , it

::::
were

:::::::::
performed

:::
over

:::::::
surfaces

:::::::::
dominated

:::
by

::::
snow

:::::::
covered

:::
ice.

::
It was found that the range

of parameterized SIS albedo for individual days is smaller than that of the measurements. This was attributed to the biased10

functional dependence of the SIS albedo parameterization on temperature. Furthermore, a temporal
:::::::::::
time-variable

:
bias was

observed with higher values compared to the modeled SIS albedo (0.88 compared to 0.84 for 29 May 2017) in the beginning

of the campaign, and an opposite trend towards the end of the campaign (0.67 versus 0.83 for 25 June 2017). Furthermore, the

surface type fraction parameterization was tested against the camera image product which revealed an agreement within 1 %.

An adjustment of the variables, defining the parameterized SIS albedo, and additionally accounting for the cloud cover could15

reduce the root mean squared error from 0.14 to 0.04 for cloud free/broken cloud situations and from 0.06 to 0.05 for overcast

conditions.

1 Introduction

Arctic amplification is significantly driven by the snow/ice albedo feedback. The reduction in snow/ice cover results in a

decrease of surface albedo, which enhances the solar heating of the surface due to more absorption of solar radiation at the20

surface, leading to a further decrease of snow and ice cover (Schneider and Dickinson, 1974; Curry et al., 1995). In particular, in

1



spring , when the solar insolation is rapidly increasing, the Arctic climate system is highly sensitive to changes of sea ice cover

(Groisman et al., 1994; Hall, 2004; Déry and Brown, 2007). Pithan and Mauritsen (2014) quantified the strength of various

feedback mechanisms contribution to Arctic amplification using climate simulations from the Coupled Model Intercomparison

Project Phase 5 (CMIP5; Taylor et al., 2012) and found that the snow/ice albedo feedback is the second main contributor

::::::
besides

:::
the

:::::
lapse

:::
rate

::::::::
feedback. Studies as presented by Pithan and Mauritsen (2014) show the need of models to represent5

the individual processes and feedback mechanisms that contribute to Arctic amplification. In general, these feedbacks are

qualitatively captured in current climate models, but their magnitude and relative contributions are quite uncertain (Qu and

Hall, 2014; Fletcher et al., 2015).

In particular, the spread of climate model results with respect to
::::::::::
quantifying the snow/ice albedo feedback has been discussed

(Qu and Hall, 2014; Thackeray and Fletcher, 2016; Thackeray et al., 2018) . Exemplarily, Thackeray et al. (2018) calculated10

the sensitivity of snow-covered surface albedo (α) to surface temperature (Tsurf ) in terms of ∆α/∆Tsurf based on the CMIP5

model results, and compared the model output with estimates from satellite observations and reanalysis data. They found a

range of -0.67 % K−1 > ∆α/∆Tsurf > -1.26 % K−1 compared to an observed value of -1.22 % K−1. Qu and Hall (2014) derived

a range of ∆α/∆Tsurf between -0.46 % K−1 to -1.37 % K−1 for a similar study based on CMIP5 models. They concluded that

the parameterization of snow and ice surface albedo in several models contributes significantly to the bias in the magnitude of15

the feedback, as a result of the strong sensitivity of simulated snow-covered surface albedo to surface warming. Flanner et al.

(2011) and Crook and Forster (2014) have identified an underestimation of the snow/ice albedo feedback in models compared

to observations.

In the Arctic, ∆α/∆Tsurf is primarily related to the reduction of snow/ice cover leading to a decrease of surface albedo,

mostly affected by the change of snow properties caused by snow metamorphism processes (Fletcher et al., 2012). Therefore,20

the representation of the evolution of snow cover and surface albedo, in particular in the melting period, is crucial to obtain

reliable estimates from climate models. The scale of snow cover variations is significant on meter-scales, much smaller than

common grid sizes of climate models, therefore, snow/ice cover fractions are parameterized in models, often as function of

snow depth or mass. With respect to snow albedo, most climate models assume constant values for fresh and old snow with

some assumptions considering the transition between both extremes (linear or polynomial dependency). Either the snow albedo25

change dependends on time since last snowfall and snow age, or a relation between temperature and snow albedo is applied

to account for snow property changes. Pirazzini (2009) and Thackeray et al. (2018) gave a comprehensive overview of the

different assumptions describing snow albedo and cover in climate models.

The CMIP5 model spread in the representation of the sea ice surface (SIS) albedo directly affects the estimates of the cloud

radiative forcing (CRF) as shown by Karlsson and Svensson (2013). In particular in summer months, the strong dependence of30

the CRF from the surface albedo may even lead to different signs in modelled CRF. In fact, during the summer, the differences

in SIS albedo contributes more to the model spread in CRF estimates than cloud fraction (Karlsson and Svensson, 2013).

A careful validation of the model output with observations is mandatory. Snow/ice albedo and cover are mainly validated

against satellite observations (e.g., Qu and Hall, 2014; Zhou et al., 2014; Fletcher et al., 2015; Verseghy et al., 2017; Thackeray

et al., 2018). This is an appropriate method to compare the model output for periods over several years documenting annual35
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and seasonal changes deduced from observations and climate models. However, the variety of representations of the snow/ice

albedo and cover in these models represents a main reasons for the spread of the model output. Therefore, a direct validation of

the surface albedo parameterizations can reveal shortcomings of the applied assumptions. To apply these parameterizations, de-

coupled from the model itself, the input parameters (e.g., surface temperature, snow age) have to be provided by measurements.

Satellite observations are limited in their spatial and temporal resolution. The latter issue gets important during rapid melting5

events, which cannot be adequately documented by satellite-based albedo measurements, commonly accumulated over sev-

eral days as the 16-day MODIS (Moderate Resolution Imaging Spectroradiometer) product (Wang et al., 2014). Furthermore,

optical surface observations by satellites are restricted to cloud free situations.

On a local scale, Curry (2001) and Køltzow (2007) applied various surface albedo parameterization schemes on the one year

data set of ground-based observations collected during the Surface Heat Budget of the Arctic Ocean project (SHEBA, Persson10

et al., 2002). They found that the seasonal cycle of the surface albedo is not-well represented by most of the parameterizations.

In particular, the temperature-dependent schemes calculated too low surface albedo values in the transition period between

spring and summer. Pedersen and Winther (2005) investigated the performance of different surface albedo schemes based

on measurements performed over 59 years at eight ground sites located in Russia, France, and on Svalbard. On average, the

modeled snow surface albedo exhibited smaller values than the measurements. Overall, the local mean root mean squared error15

(RMSE) between the observed and modeled albedo ranged between 0.09 and 0.15 for the individual models. Pedersen and

Winther (2005) emphasized the need for comparisons on larger spatial scales. On model grid scales this can be only achieved

against satellite observations.

In this paper, a comparison is performed on an intermediate spatial scale. Aircraft and ground-based observations taken

during the concurrent ACLOUD (Arctic CLoud Observations Using airborne measurements during polar Day) and PASCAL20

(Physical feedbacks of Arctic boundary layer, Sea ice, Cloud and AerosoL) campaigns (Wendisch et al., 2018) are used to

validate the SIS albedo scheme of the coupled regional climate model HIRHAM–NAOSIM (Dorn et al., 2018). Both campaigns

were performed north of Svalbard during the spring–summer transition in 2017. As typical for climate models, the snow/ice

albedo is parameterized as a function of surface temperature, whereas snow cover fraction is related to the snow depth. In

Section 2, the measured data set (surface albedo, temperature, snow depth, snow/ice fraction) and the parameterization scheme25

are presented. The validation of the surface albedo and ice/snow cover fraction parameterization was performed for several

flights under different sun illumination conditions. A resulting adjustment of the SIS albedo parameterization in HIRHAM–

NAOSIM for sea ice surfaces is given in Section 3.

2 Sea ice surface albedo scheme and measurements

2.1 Sea ice albedo scheme of HIRHAM–NAOSIM30

The most recent version of the coupled regional climate model HIRHAM–NAOSIM consists of the atmosphere component

HIRHAM5 and the ocean-sea ice component NAOSIM in its fine-resolution version. A detailed model description is given

by Dorn et al. (2018). Using a regional model with focus on the Arctic allows an improved description of Arctic processes
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and feedbacks between atmosphere, sea ice, and ocean (Rinke et al., 2013). However, as stated by Køltzow (2007), the model

sensitivity to changes in the SIS albedo parameterization would be higher in such coupled climate models, which may lead to

larger uncertainties.

The latest version of the SIS albedo scheme applied in HIRHAM–NAOSIM is described by Dorn et al. (2009). Here only

the essential equations are presented, which are directly applied on the measured data set. For an inhomogeneous surface, the5

surface albedo in a model grid cell can be considered as a sum of the individual surface albedo values weighted by the areal

fractions (c) of the respective surface subtypes:

α= ci ·αi + (1− ci) ·αow , (1)

with the subscript i indicating the sea ice types, and ow representing open water. Since the surface albedo of sea ice is highly

variable compared to open water, which is assumed to be 0.1, the individual albedo of ice types needs to be classified in10

subtypes: snow-covered ice (subscript s), bare ice (subscript bi) and melt ponds (subscript m) following the parameterization

of Køltzow (2007). This results in an overall SIS albedo calculated by:

αi = cs ·αs + cm ·αm + (1− cs − cm) ·αbi . (2)

The albedo of the surface subtypes is variable due to their changing physical properties. In particular in the melting season, the

surface reflection properties are changing on a daily basis depending on the surface temperature and snow depth. In the SIS15

albedo scheme applied in HIRHAM–NAOSIM, Dorn et al. (2009) estimated ranges of possible surface albedo values as shown

in Table 1.

Table 1. Minimum and maximum values of surface albedo of snow covered ice, bare ice, and melt ponds as used in the SIS albedo scheme.

Ice Subtype Albedo Albedo

minimum (αmin) maximum (αmax)

Snow covered ice 0.77 0.84

Bare ice 0.51 0.57

Melt ponds 0.16 0.36

The parameterized surface albedo of the subtypes is determined by:

α= αmin + (αmax −αmin) · f(Tsurf) , (3)

with f(Tsurf) representing the surface temperature dependent function:20

f(Tsurf) = min(1,max(0,Tsurf/Td)) , (4)

where Tsurf and Td are given in degrees Celsius. Td describes a temperature threshold, where the surface albedo change of the

subtypes is expected to be significant. In HIRHAM–NAOSIM the value of Td is set to -0.01 ◦C for snow covered and bare ice,
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while for melt ponds Td is estimated with -2 ◦C (Dorn et al., 2009). This results in a sharp drop of albedo for bare ice and snow

covered ice from αmax to αmin between Tsurf = -0.01 and 0.0 ◦C, whereas for melt ponds a linear decrease of αm between

Tsurf = -2.0 and 0.0 ◦C is estimated.

After parameterization of the sea ice subtype surface albedo, their areal fractions according to Eq. (2) need to be retrieved to

calculate the final SIS albedo of the model grid cell. The discrimination between bare ice and snow covered sea ice is estimated5

by the prognostic variable snow thickness (hs) in HIRHAM–NAOSIM. The parameterization of the snow cover fraction as

presented by Dorn et al. (2009) reads:

cs = cs,max · tanh

(
hs
h0.75

)
, (5)

where cs,max is the maximum snow cover fraction of 0.99 and h0.75 gives the snow thickness at which 75 % of the sea ice is

covered by snow, which is estimated with h0.75 = 0.03 m. The melt pond fraction is parameterized by:10

cm = cm,max · (1− f(Tsurf)) , (6)

as suggested by Køltzow (2007) with cm,max = 0.22 giving the maximum melt pond fraction.

The parameterized SIS albedo for a sea ice cover of 100 % is illustrated in Figure 1a. It comprises the temperature dependence

of the subtype’s surface albedo (Eq. 3) and the melt pond fraction (Eq. 6), as well as the snow depth dependence of the surface

fraction of snow covered ice (Eq. 5). The significant gradient of the surface albedo around 0◦C is mainly related to the choice15

of the small temperature range where the surface albedo of snow covered ice and bare ice migrates from the maximum to

the minimum value within ∆Tsurf = 0.01K. Outside the temperature range between threshold temperature Td and 0.0◦C,

the parameterized SIS albedo is only dependent on the snow depth, which is directly linked to cs. The change in the surface

subtype fractions, exemplarily determined for -0.1◦C, is shown in Figure 1b. The bare ice fraction (cbi = 1− cs − cm) is only

dominating when snow depth values are lower than 0.02
:::
0.01 m

::
for

::::
this

:::::::
specific

::::
case. Together with Figure 1a, it becomes20

obvious that the snow depth dependence of the surface subtype fraction gets solely relevant for hs < 0.1 m.

2.2 Ground-based and aircraft observations

To test the SIS albedo scheme of the HIRHAM–NAOSIM model offline from the HIRHAM–NAOSIM output, measured values

of the prognostic variables Tsurf and hs are used to calculate the SIS albedo and the individual fractions of the sea ice subtypes.

The combined ACLOUD/PASCAL campaigns were conducted in May/June 2017 north of Svalbard as part of the (AC)325

project (Wendisch et al., 2017). During ACLOUD, airborne observations of cloud, aerosol particle, and surface properties were

collected by the two research aircraft Polar 5 and Polar 6. In connection to the aircraft activities, during PASCAL ground-

based measurements on a drifting ice floe station and ship-borne observations with the Research Vessel (RV) Polarstern were

conducted in close collocation to the aircraft. Also a data set of the SIS albedo was sampled from buoy observations from the

beginning of June to mid of July. An overview of the concurrent campaigns and a synoptic overview is given by Wendisch et al.30

(2018) and Knudsen et al. (2018), respectively. Three different synoptic periods were classified during ACLOUD/PASCAL, a

cold period (23–29 May 2017), followed by a warm period (30 May to 12 June 2017), and a normal period (13–26 June 2017).
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Figure 1. (a) Contour plot of the SIS albedo dependent on snow depth and surface temperature as parameterized from the SIS albedo scheme

of HIRHAM–NAOSIM for an area with 100 % sea ice cover. The vertical red-dotted line marks a surface temperature of -0.1◦C, for which

the surface subtype fractions are plotted in (b).

Suitable measurement cases for the validation of the SIS albedo scheme were selected based on the following restrictions:

(i) flight altitude lower than 100 m to minimize atmospheric masking in the surface albedo from the aircraft, (ii) aircraft pitch

and roll angle are in a range of ± 4◦, and (iii) no clouds between aircraft and surface. Applying these filters on the aircraft

data, suitable flight sections on 14 flights were identified. The corresponding flight paths of these days from both aircraft are

plotted in Figure 2. The percentage sea ice concentration derived for 15 June 2017 from satellite observations by the Advanced5

Microwave Scanning Radiometer (AMSR) instrument (Spreen et al., 2008) is displayed in the background. As indicator of

the variability of the sea ice concentration within the course of the campaign, the 75 %-isolines for 27 May and 26 June are

additionally plotted in gray and black color. The most significant decrease of sea ice extension becomes obvious between 8◦

and 12◦ longitude in the Northwest of Svalbard. In May, the sea ice edge was far south in this region, due
:
.
::::
Due to northerly

windscoupled with ,
:
a southerly to southwesterly sea ice drift

:::
was

:::::::
observed. With the beginning of the warm period at the end10

of May, the southerly winds led to a north-eastward ice drift
:::::::::::::::::::
(Wendisch et al., 2018). This specific area was mainly observed at

the end of May by both aircraft, and mid of June by the Polar 5 aircraft. However, most of the selected flights were conducted

over regions with more than 80 % sea ice coverage.

During a three-weeks period, snow depth was measured along a 3 km long transect (spatial resolution along track approx.

1 m) over the PASCAL sea ice floe using a Magna Probe (Sturm and Holmgren, 2018). The temporal development of the daily15

snow depth frequency distribution along the transect is depicted in Figure 3. The mean snow depth decreased rapidly in the

course of the campaign as a result of melting in the warm period from 37±24 cm on 5 June to 22±18 cm on 14 June. Mostly

relevant for the magnitude of snow albedo is a snow depth below 10 cm, where the albedo reveals an asymptotic increase with

increasing snow depth (Grenfell and Perovich, 2004; Perovich, 2007). Considering only the percentage of measurements with

6



Figure 2. Selected flight sections from Polar 5 and Polar 6 during ACLOUD/PASCAL (colored lines). The black stars indicate the area

reached by the drifting ice floe between 5 June and 14 June 2017. In the background, the sea ice concentration derived from satellite

measurements (AMSR-sensor) for 15 June is shown. Additionally, the 75 %-isolines of the sea ice concentration are plotted for 27 May (in

gray) and 26 June (in black).

hs < 10 cm, an increase
:::::::
revealed

:::
an

:::::::
increase

::
of

:::
this

:::::::
fraction

:::
on

:::
the

::::::
overall

::::
snow

:::::
depth

:::::::::::
observations from 9 % on 5 June up to

32 % on 14 Junewas observed.

According to Eq. (3), surface temperature data are needed to apply the SIS albedo scheme of HIRHAM–NAOSIM. Onboard

of both aircraft, Polar 5 and Polar 6, a nadir pointing infrared sensor (KT19.85, Wendisch et al., 2018) with a field of view

of 2◦ was installed to measure the brightness temperature of the surface along the flight track. The instrumental sensitivity5

covers parts of the atmospheric window between 9.6µm and 11.5µm wavelength. Within this spectral range, the emissivity

of snow and sea ice surfaces varies between 0.965 and 0.995 depending on snow type (Hori et al., 2006). The mean surface

temperature and its standard deviation is shown for specific days in Figure 4a. Since Polar 5 was mainly operated above the

clouds, less days with suitable cases were found compared to the Polar 6 data set. The increase of surface temperature at the

end of May indicates the change of the synoptic situation (Wendisch et al., 2018). In particular temperatures between -2◦ and10

0◦C mid of June represent a crucial range where the albedo of sea ice may change significantly, as considered in Eq. (4). The

temporal development of the standard deviation in Figure 4 shows that the variability of surface temperature caused by the

contrast between warmer open water and colder sea ice along the individual flight tracks decreases with time.

The effect of the surface temperature increase on the SIS albedo is directly evaluated using concurrent measurements of the

surface albedo by upward and downward looking pyranometers. These pyranometers (Wendisch et al., 2018) were installed on15

both aircraft to sample the broadband solar irradiance between 0.2 – 3.6 µm wavelength. The irradiance data were corrected
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Figure 3. Histogram of snow depth in cm measured by the Magna Probe on the ice floe during PASCAL for different days of the period 5–14

June. Additionally, the mean snow depth and the standard deviation, as well as the fraction of measurements with a snow depth below 10 cm

(frhs<10cm) is given for each day.

Figure 4. (a) Mean surface temperature over sea ice along flight tracks for selected days derived from KT19 measurements onboard of Polar

5 and Polar 6. (b) Mean albedo of sea ice surface. The error bars give the standard deviation.

for aircraft attitude (pitch and roll angle) following the techniques described by Bannehr and Schwiesow (1993). A deconvo-

lution method was applied on the pyranometer measurements to enhance the temporal resolution (20 Hz) of the slow-response

sensors (Ehrlich and Wendisch, 2015). The daily mean surface albedo along the selected flight sections as derived from the

ratio of upward and downward irradiances is shown in Figure 4b.
::
As

::::::::
indicated

:::
by

:::
the

:::::
range

::
of

::::
the

:::::::
standard

:::::::::
deviation,

:::
the

:::::
spatial

:::::::::
variability

::
of

:::
the

::::
SIS

::::::
albedo

::::
may

::::
have

:::
the

:::::
same

::::
order

:::
of

:::::::::
magnitude

::::
than

:::
the

:::::::
temporal

::::::::
variation.

:
A broad range of ice5
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surface albedo values is noticeable between the end of May (α = 0.86) and the end of June (α < 0.6) as was also shown by

Wendisch et al. (2018) (cf. Figure 12 in there). The clearly delayed decrease, caused by the temperature increase, indicates the

transformation of sea ice properties.

The fractions of sea ice subtypes were documented by commercial digital cameras on both aircraft (Ehrlich et al., 2012;

Wendisch et al., 2018). The cameras were equipped with a 180◦-fisheye lens to observe the entire lower hemisphere with a5

spatial resolution of 3908 × 2600 pixels. Images were taken every six seconds. Laboratory calibrations of the cameras were

performed with respect to their spectral, geometrical, and radiometrical properties. Subsequently, the raw signal for each image

pixel was transferred to an absolute radiance value per viewing angle. Techniques to classify the surface types from remote

sensing imagery, in particular in Arctic regions, have been introduced by several authors (Perovich et al., 2002; Pedersen et al.,

2009; Renner et al., 2013; Divine et al., 2015). In this study, the method of partitioning the image by manually selecting red,10

green, and blue (RGB) thresholds, based on color intensity histograms, is applied (Perovich et al., 2002). Depending on the

illumination conditions, these thresholds were set based on training samples.

The temporal change of the surface subtype fractions derived from Polar 6 measurements along the flight sections, as plotted

in Figure 2, is summarized in Figure 5. It shows the daily mean surface subtype fractions of snow covered ice, bare ice, melt

ponds, and open water. Note that also flooded sea ice at the sea ice edge might be interpreted as melt ponds by the surface15

classification method, since these areas exhibit similar spectral features in their reflectectivity as melt ponds. This explains also

the occurrence of classified melt pond pixels in the images taken on 31 May.

Since the region of observation is variable (Figure 2), only results of distinct days can be compared with each other. Ex-

emplarily, the mean open water fraction on 31 May was 6 % (Polar 6). The same area was probed on 18 June by the Polar

5 giving a mean open water fraction of 70 %
::::
(not

::::::
shown). More northern areas were overflown on 5 June, 14 June, and 1620

June. Compared to a 96 % sea ice coverage on 5 June, mid of June 90 % of the area was classified as sea ice. However, the

fractions of the sea ice subtypes were almost constant (97 % snow covered ice and 3 % melt ponds and bare ice). Summarized,

the surface types were dominated by open water and snow covered ice, whereas melt ponds have only a minor contribution

in the probed area during ACLOUD/PASCAL. Thus, the measured quantities are representative for the period describing the

beginning of the melting season.25

3 Validation of the HIRHAM–NAOSIM surface albedo scheme

3.1 Procedure

The validation of the SIS albedo scheme of HIRHAM–NAOSIM comprises two components: (a) the surface albedo itself

(Sec. 3.2), and (b) the surface subtype fraction parameterization (Sec. 3.3). The procedure is illustrated in Figure 6. The

characterization of the surface is based on the digital camera images. For each time step of the images the derived surface30

albedo from the pyranometers and the surface temperature of the KT19 is selected.

In step (a) the measured surface albedo was compared with the calculated albedo based on the surface subtype fractions

deduced from the camera images. Tsurf is taken to determine the temperature dependent function f(Tsurf) according to Eq. (4).
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Figure 5. Subtype fractions of ice and water surface for selected flight sections
::
of

::::
Polar

:
6
:
during ACLOUD/PASCAL.

Figure 6. Flow chart of validation procedure
:
of

:::
(a)

::::::
surface

:::::
albedo

:::::
(blue

::::::::::
background),

:::
and

:::
(b)

::::::
surface

::::
type

::::::
fraction

::::
(red

::::::::::
background)

::::::::::::
parameterization.

Since Eq. (4) will be representative for one scene, only images with 90 % sea ice coverage were selected to omit temperature

variations in the field of view of the pyranometer caused by different temperatures of open water and sea ice. Surface subtype

fractions derived by the camera were calculated based on two approaches: (i) the summation of area sizes of similar surface

types (linear approach), and (ii) similar to (i) but additionally with a weighting by the cosine of the viewing angle. The later

approach takes into account that the irradiance is defined as the angular integration of the radiance weighted by the cosine5

of the viewing angle. This implies that the reflected radiation from side directions has a minor contribution than
::::::
relative

::
to

::
the

:
radiation coming from directly below the aircraft

::::
nadir

::::::::
direction. For a precise validation of Eq. (2) the albedo needs to
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be measured for all individual surface subtypes close to the surface. Aircraft observations always integrate over a larger area.

Therefore, approach (i) might lead to uncertainties due to the
:::::
neglect

::
of

:
cosine weighting. For this reason, the derived surface

subtype fractions of both approaches are compared. Mean surface subtype fractions over the different flights were calculated

and mean differences not larger than 2 % were found between the two approaches (i) and (ii). The correlation coefficient of the

linear regressions between the surface subtype fractions of both approaches were larger than 0.98. Because of this approximate5

equality the comparison of measured and parameterized SIS albedo was simplified using only the derived surface subtype

fractions, which were based on the linear approach.

Since the digital camera images deliver surface subtype fractions of snow covered ice, melt ponds, bare ice, and open water,

the individual subtype fractions have to be adapted for the application of Eq. (2). There, only the fractions of the sea ice

subtypes are considered to weight αs, αm, and αbi and to calculate the overall SIS albedo αsi. Therefore, the surface subtype10

fractions are rescaled with respect to their total sum.

In step (b) the fraction parameterization of snow covered sea ice and melt ponds (Eqs. (5) and (6)) is validated against

estimated surface subtype fractions derived from the digital images. The surface subtype fraction parameterization is based on

measured surface temperatures from the KT19 and snow depth data provided from the magna probe. The selection of cases is

limited as compared to the SIS albedo scheme validation, caused by the availability of snow depth data in the surrounding of15

the aircraft flight paths. Only flight sections in the vicinity of the ice floe station were taken into account. Since snow depth is

highly variable (Figure 3), the parameterization was applied for the whole distribution of snow depth for the individual days

and the measured KT19 temperature. Out of this, the mean parameterized surface subtype fraction for each image time step is

compared to the measured fraction of sea ice subtypes. Only scenes with total ice coverage of 95 % were considered. Finally,

the SIS albedo parameterization is applied based on the modeled surface subtype fractions from step (b).20

3.2 Application of the sea ice albedo parameterization

Histograms of the measured and parameterized SIS albedo based on measured surface subtype fractions and surface tempera-

ture for individual days during ACLOUD/PASCAL are shown in Figure 7. The days 27 May and 20 June were excluded here,

because the number of cases per day was less than 50. The distributions indicated by the thick colored lines, represent the

results for a sea ice cover larger than 90 %. Additionally, all cases independent of sea ice coverage are plotted by thin dotted25

::::
solid lines. Table 2 summarizes the daily mean measured and parameterized SIS albedo together with their standard deviation

of the shown distributions.

The impact of open water within the field of view gets mainly obvious for 18 June and 26 June, where measured and param-

eterized SIS albedo exhibit also modes for smaller albedo values. For 18 June, the cases showing open water are dominated by

subtype fractions cow > 50 %, which results in α < 0.5. In contrast, on 26 June, the images indicate the presence of ice floes30

with cow lying in the range between 20 % and 30 %, leading to α > 0.5.

Two issues become noticeable when comparing the histograms. First, the parameterized SIS albedo shows a narrower dis-

tribution than the measured surface albedo. This is especially pronounced for scenes of uniform surface type and surface

temperatures which result in f(Tsurf) = 0 according to Eq. (4). In particular, on 29 May temperatures below -4 ◦C over mostly
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Figure 7. (a)-(l) Histograms of measured (red) and parameterized (black) surface albedo for all selected days. Thick lines represent the cases

when more than 90 % of the surface is covered by sea ice. Thin dotted
::::::
Thinner lines show all cases matching the selection criteria described

in Sec. 2.2.

snow covered ice were measured. This results in a narrow distribution of the SIS albedo, which corresponds to the maximum

albedo of snow covered ice αmax = 0.84 (Table 1). Only with an increase of temperature, when snow melting is considered

in the SIS albedo parameterization and when multiple sea ice subtypes are identified in the image, a broader distribution of

parameterized albedo is observed (26 June, Figure 7l).

The second issue obvious from Figure 7 is the temporal change when comparing both SIS albedo distributions. In the5

beginning of the campaign, when Tsurf is lower than -2 ◦C, the parameterized SIS albedo is systematically lower than the

measured one (see also Table 2). In contrast, at the end of June this relation is reversed,
:::::
while

::
in
:::
the

::::::::
transition

::::::
period

:::
the

:::::
mean

:::::::::::
parameterized

::::
SIS

::::::
albedo

:::::
agrees

::::
well

::::
with

:::
the

:::::::::::::
measurements,

::::::::::
particularly

::
for

::::::::
overcast

::::
cloud

:::::::::
conditions. An exception of this

trend was found for 31 May when the mean measured albedo of sea ice (α = 0.77) was lower than the parameterized albedo

(α = 0.83). Sea ice concentration maps from the AMSR sensor show that the ice edge moves further North from 29 May to10

31 May, in the area of the flight tracks. This results in more structured snow covered ice for
:
an

::::::::
increase

::
of

::::::
surface

:::::::::
roughness

::
on

:
31 May , as it

:::::
which

:
is also apparent from the digital camera images. Furthermore, different illumination conditions were

observed on both days. While on 29 May the SIS albedo was measured under overcast conditions, broken clouds up to clear

sky occurred on 31 May. The effect of cloud conditions on the surface albedo was already discussed by several authors before

as by Choudhury and Chang (1981) and Yamanouchi (1983) or more recently by Pirazzini et al. (2015). Clouds tend to15

increase the proportion of radiation in the visible spectrum.
:::::
affect

:::
the

:::::::
spectral

:::::::
behavior

::
of

:::
the

:::::::
incident

:::::
solar

:::::::
radiation

::::
and

:::
the

:::::::::
directional

::::::::::
dependence.

::
In

::::::
cloudy

:::::::::
conditions

:::
the

::::::::
incoming

::::::::
radiation

::::
field

:
is
:::::::::
dominated

:::
by

:::
the

::::::
diffuse

::::::::::
component,

:::::::
whereas

:::
the

::::::::::
transmission

::
of

::::::::
radiation

:::::::
through

:::
the

::::::
clouds

::
is

:::::::::::::::::::
wavelength-dependent.

:::::
Since

:::
the

::::
solar

::::::::
radiation

::
is

::::::
mainly

::::::::
absorbed

:::
by

:::::
cloud

:::::::
particles

::
in

:::
the

::::::::::
near-infrared

:::::::
spectral

:::::
range,

::
a
:::::
larger

::::::
fraction

:::
of

:::::
visible

::
to

::::::
global

:::::::
radiation

::
is

:::::::
incident

::
on

:::
the

::::::
surface

:::::::::
compared

::
to

::::
clear

:::
sky

:::::::::
conditions.

:::::::::::
Furthermore,

:::
the

::::::::
enhanced

::::::::::::::::
multiple-scattering

:::::::
between

::::::
clouds

:::
and

:::::
snow

::::::
surface

::::::::::
additionally

::::::::::
contributes20
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::
to

:::
the

::::::
spectral

::::
shift

:::
of

:::
the

:::::::
incident

::::::::
radiation. Consequently, the broadband albedo increases under overcast conditions.

::::::
cloudy

:::::::::
conditions.

Effects of the solar zenith angle (SZA)
::
on

:::
the

::::::::
observed

:::::::::
differences

::
in

:
Figure

:::
7a,

::
b can be excluded here, since for both days

the SZA was in the range between 65◦ and 68◦. Thus, the increased roughness together with
::::
likely

::::::::::
dominating

:::::
effect

:::
of

::
the

:
clear sky conditions might

:::::::
together

::::
with

:::
the

:::::::::
increased

::::::::
roughness

:
lead to a decrease of the measured SIS albedo. Snow5

metamorphism leading to ,
:::::::
whereas

:::
the

:::::
snow

:::::::::::::
metamorphism

::::::
causing

:
larger grain sizes is probably of minor importance, since

the surface temperature is below melting temperature (Tsurf = -4 ◦C).

Table 2. Averaged SIS surface albedo and standard deviation (sdv) of each flight retrieved from aircraft observation and parameterization.

Additionally, the mean temperature, number of cases, and the illumination conditions are given. Note, that only cases with an ice fraction

larger than 90 % are considered here.

Date in 2017 Surface Temperature (◦) Measured Albedo Parameterized Albedo Number of Cases Cloud Conditions

mean±sdv mean±sdv mean±sdv

29 May -7.4±0.5 0.88±0.06 0.84±0.01 146 overcast

31 May -4.7±0.4 0.77±0.06 0.83±0.02 151 clear / broken cloud

2 June -1.9±0.5 0.83±0.06 0.83±0.06 157 overcast

4 June -2.2±0.6 0.85±0.07 0.83±0.03 189 overcast

5 June -0.7±0.5 0.82±0.05 0.82±0.03 272 overcast

8 June -2.1±0.5 0.79±0.06 0.83±0.02 85 clear / broken cloud

14 June -0.2±0.3 0.82±0.06 0.82±0.03 50 overcast

16 June -0.4±0.3 0.74±0.07 0.82±0.02 53 overcast

17 June -0.7±0.3 0.76±0.06 0.82±0.03 118 overcast

18 June -0.2±0.2 0.75±0.07 0.82±0.03 53 clear / broken cloud

25 June -0.4±0.2 0.67±0.03 0.83±0.02 342 clear

26 June 0.0±0.2 0.59±0.04 0.76±0.04 64 clear / broken cloud

In the HIRHAM–NAOSIM albedo scheme, the parameterized SIS albedo of all surface subtypes only depends on the tem-

perature and the predefined maximum and minimum thresholds of the surface albedo (Eq. (3)). This relation is tested against

the measured temperature dependence. For the selected flights, the fraction of melt ponds and bare ice subtypes have never ex-10

ceeded the 90 % threshold, which was set to assume a homogeneous surface type. Therefore, the evaluation of the relationship

between temperature and SIS albedo based on the ACLOUD data set is limited to the snow covered sea ice subtype. All data

were filtered with respect to a fraction of cs = 100 %. The mean values of surface temperature and SIS albedo for all selected

flights is shown in Figure 8a. The data set is separated according to the daily illumination conditions, either overcast (closed

symbols) or clear sky / broken cloud (open symbols). Additionally, the corresponding parameterized SIS albedo is marked by15

the dashed line, revealing the sharp drop of albedo around 0 ◦C.
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Figure 8. Mean albedo of snow covered ice scenes as function of surface temperature (a) and time (b) separated into clear sky / broken clouds

and overcast situations. Vertical bars indicate the standard deviation of the averaged surface temperature on each day. The symbols represent

the measured albedo and the dashed gray line represents the parameterized albedo.

Figure 8 illustrates that the measured SIS albedo does not follow the surface temperature dependence as assumed by the

parameterization. In general, the albedo is decreasing over the early summer with changing temperature. A short term tem-

perature increase does not necessarily result in a sharp drop of surface albedo as would be predicted by Eq. (3). In fact, the

decrease in SIS albedo is mainly caused by a temporal change (Figure 8b) of the surface properties, as grain size and snow

thickness, which is not covered by .
:::
As

:::::::
obvious

::::
from

::::
Eq.

:::
(3),

::::
both

::::::::::
parameters

:::
are

:::
not

:::::::::
considered

::
in

:
the SIS albedo scheme.5

Such a
::::::::::::::
parameterization

::
of

::::::::::::::::::
HIRHAM-NAOSIM.

::::
The temporal decrease of albedo was already observed in Figure 4b with

difference that Figure 4b includes also selected scenes of multiple subtypes. Consequently, not only the conversion of surface

subtypes results in the decrease of SIS albedo, but rather the temporal change of snow reflection properties of the snow covered

sea ice subtype, which accounts for the largest fraction of all subtypes in the studied cases (see Figure 5).

Besides snow property changes, also the illumination conditions might have an impact on the variation of the surface albedo10

::::::::::::::::::::::::::::::::::::::::::
(Choudhury and Chang, 1981; Pirazzini et al., 2015). Lower SIS albedo values were measured for all cases under cloudless

and broken cloud conditions compared to overcast situations with similar surface temperatures ranges. This indicates that the

SIS albedo parameterization should also take account of the dependence on cloud cover fraction.

3.3 Application of the surface type classification and full albedo scheme

In this section, the fraction parameterization following Eqs. (5) and (6) is applied including measured snow depth and surface15

temperature data. While surface temperature data were collocated in time and space with the digital camera observations, the

ground-based measured snow depth data were sampled not directly below the aircraft on the selected flight days. Therefore,

the data set was further limited to cases where the aircraft position has not more than 50 km distance from the points of snow

depth measurements. In addition, the flight date may differ by one day from the ground-based observation of snow depth.

Both restrictions in space and time should ensure the representativeness of local point measurement of the snow depth for the20

selected area.
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Table 3 summarizes the statistics of the measured and parameterized fractions for each day. Here, the median instead of

the daily mean is calculated to exclude the effect of outliers. Furthermore, the distance of the upper and the lower quartiles

are given to estimate the range of measured fractions. According to Eq. (5), the snow depth determines the fraction of snow

covered ice. The maximum value of cs of 0.99 is reached for a snow depth larger than 10 cm as defined in Eq. (5). The snow

depth distributions in Figure 3 reveal that for all days, apart from 15 June, the majority of snow depth values is larger than5

10 cm. Therefore, it is not surprising that the parameterized fractions of snow covered ice is 99 % in all these cases independent

from the shape of the snow depth distribution. The remaining 1 % fraction is either related to melt ponds or bare ice, as defined

by the surface temperature. Equation (6) determines the melt pond fractions and indirectly the fraction of the bare ice subtype,

because the sum of all three subtypes adds up to one. From the temperatures measured along the selected flight paths, melt

ponds were calculated for the days 5 June and 14 June. In summary, the measured and parameterized surface subtype fractions10

are in very good agreement. However, the variation of surface types is quite low, since the observed region around the ice floe

is covered almost completely by snow. Only in the second half of June, where now snow depth data were measured, the surface

type distribution got more complex.

Table 3. Measured (meas.) and parameterized (par.) subtype fractions of snow covered ice (cs), melt ponds (cm), and bare ice (cbi) for selected

flight sections on individual days. Q2 stands for the median, Q3-Q1 represent the distance of the upper and lower quartiles. Additionally, the

horizontal distance between Polar aircraft and Magna probe is given.

Date in 2017 cs (meas.) cs (par.) cm (meas.) cm (par.) cbi (meas.) cbi (par.) Date in 2017 Distance

Canon data Q2 / Q3-Q1 Q2 Q2 / Q3-Q1 Q2 Q2 / Q3-Q1 Q2 snow depth data (km)

(%) (%) (%) (%) (%) (%)

4 June 100.0 / 0.0 99.0 0.0 / 0.1 0.0 0.0 / 1.7 1.0 5 June 4±5

5 June 99.9 / 3.7 99.0 0.0 / 0.2 1.0 0.1 / 3.5 0.0 5 June 7±8

8 June 99.6 / 7.5 99.0 0.0 / 0.1 0.0 0.4 / 7.3 1.0 9 June 1±2

14 June 100. / 0.1 99.0 0.1 / 0.2 1.0 0.0 / 0.2 0.0 14 June 2±6

Finally, the calculated fractions as derived above were used as input for Eq. (2) to compute the SIS albedo αi for all sections

connected to the ground-based snow depth measurements on the ice floe. Then, together with measured open water fractions,15

the final SIS albedo α was derived according to Eq. (1). In Figure 9 the daily averaged albedo values are presented as a box-

and-whisker plot. As for the subtype fraction statistics, the median and the quartiles are shown, since the number of cases

is quite low (less than ten for 8 June and 14 June) compared to the studied scenes shown in Sec. 3.3 (minimum 50 cases).

No variation of the parameterized SIS albedo is found on most of the days, due to the constant relation between the subtype

fractions. The variation visible on June 5 and June 8 arises from the variable fraction of open water with a subtype albedo of20

αow = 0.1. However, the variability of the measured SIS albedo cannot be fully reproduced by the albedo scheme. The absolute

values of measured and parameterized SIS albedo exhibits largest differences for cases which were measured under cloudless /

15



broken cloud conditions (8 June). As the surface temperature dependence function is the main parameter, the resulting modeled

SIS albedo for Tsurf > 0◦C corresponds with αs = αmin, while on the other days with Tsurf < 0◦C, αs equals αmax.

Figure 9. Box-and-whisker plot of measured (black
:::
red solid lines) and parameterized (red

::::
black

:
dotted lines) surface albedo for selected

flight paths in the surrounding of the ice floe where snow depth data were sampled. Minimum and maximum values are displayed as vertical

bars. The boxes indicate the 25th, 50th (median), and 75th percentiles of the distribution. The individual days are separted by alternate gray

and white areas.

3.4 Adjustment of the sea ice albedo parameterization

From the 12 flight days during the ACLOUD campaign, differences between modeled and measured SIS albedo (αpar, αmeas)

were attributed to the impact of illumination conditions (cloudiness) and the choice of minimum and maximum surface albedo5

values used in Eq. (3). Since uniform subtypes were limited to measurements over snow covered ice, an adjustment of the

parameter αmax, αmin, and the temperature threshold Td is only provided for this subtype. All data points with cs > 99 % were

separated into two classes depending on the cloud cover, similar to the classification shown in Figure 8. The three parameters

were varied systematically to find the optimum combination with a minimum RMSE as calculated by:

min(RMSE) = min

√√√√ 1

n

n∑
i=1

(
αmeas,i −αpar,i(αmax,αmin,Td)

)2 (7)10

The final parameters and the corresponding RMSE values for overcast and clear/broken cloud conditions are summarized in

Table 4 together with the variation range of αmax, αmin, and Td. The minimum and maximum albedo values were tested in a

range of 0.5 up to 1.0 in steps of 0.01. The adjusted albedo parameters clearly describe the two cloud conditions with higher

minimum and maximum values (0.80, 0.88) for overcast conditions and lower values (0.66, 0.79) for clear sky and broken

cloud situations compared to the suggested numbers given in the original sea ice albedo scheme from Dorn et al. (2009) with15

αmin = 0.77 and αmax = 0.84
:
(Table

:::
1). Also the threshold temperature was adjusted from -0.01 ◦C to -2.5 ◦C (cloudless/broken
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cloud) and -3.0 ◦C (overcast). The greatest improvement was found for the parameterization of clear sky surface albedo, where

the RMSE values for all cases with cs > 99 % reduced from 0.133 to 0.044
::::
0.13

::
to

::::
0.04, and for all data matching ci > 90 %

from 0.141 to 0.041
:::
0.14

:::
to

::::
0.04. For overcast situations, the RMSE reduces only slightly from 0.059 to 0.051

::::
0.06

::
to

::::
0.05 for

cs > 99 % and from 0.062 to 0.054 for cases with ci > 90 %.

Table 4. Variation range of minimum and maximum albedo values for snow covered ice and threshold temperature for the adjustment of the

sea ice albedo parameterization following Eq. (3) and (4). The albedo and temperature are modified in steps of 0.01 and 0.1◦C, respectively.

Final fitting values of αmin, αmax, and Td are given for clear/broken cloud and overcast conditions together with the new and old (in brackets)

RMSE values.

Clear/broken cloud Overcast

Range αmin 0.50 to 1.00 0.50 to 1.00

Range αmax 0.50 to 1.00 0.50 to 1.00

Range Td (◦C) -5.0 to -0.1 -5.0 to -0.1

New αmin 0.66 0.80

New αmax 0.79 0.88

New Td (◦C) -2.5 -3.0

RMSE (cs > 99 %) 0.044 (0.133
:::
0.04

:::::
(0.13) 0.051 (0.059

:::
0.05

:::::
(0.06)

RMSE (ci > 90 %) 0.041 (0.141
:::
0.04

:::::
(0.14) 0.054 (0.062

:::
0.05

:::::
(0.06)

4 Summary and Conclusion5

The parameterizations of sea ice albedo and sea ice subtype fraction as used in the SIS albedo scheme of the coupled regional

climate model HIRHAM–NAOSIM were tested with airborne surface albedo, sea ice fraction, and surface temperature mea-

surements taken during the ACLOUD/PASCAL campaign performed north of Svalbard in May/June 2017. The SIS albedo

parameterization requires information on surface temperature and sea ice subtype (snow covered ice, bare ice, and melt ponds)

cover fractions. In HIRHAM–NAOSIM, these subtype fractions are calculated from the prognostic variables of surface tem-10

perature and snow depth. In this paper, we use corresponding measurements of these parameters, calculate the respective sea

ice fractions and surface albedo using the scheme of HIRHAM–NAOSIM, and compare with concurrent measurements.

In a first step, both parameterizations (sea ice albedo and sea ice fraction) were considered separately to compare them with

measurements of surface albedo and surface subtype fraction. In step two, both parameterizations were combined. Based on

the measured surface temperature and surface subtype fractions, the SIS albedo was calculated for low-level flight sections15

which were selected from 12 flights over Arctic sea ice under different illumination conditions.

It was found that (i) the daily histograms of the modeled surface albedo exhibit a narrower distribution than the aircraft

measurements, in particular for surface temperatures that are outside of the transition range between dry and melting snow/ice.

Furthermore, (ii) a temporal shift of the deviation between both products was observed with lower modeled SIS albedo com-
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pared to measurements in the beginning of the campaign (0.84 vs. 0.88) and higher values derived at the end (0.76 vs. 0.59).

Finally, (iii) a dependence of the illumination conditions was observed from the measurements, which are confirmed by former

publications (e.g., Choudhury and Chang, 1981; Pirazzini et al., 2015) reporting also lower SIS albedo values for clear sky

conditions than in overcast situations.

The subytpe fraction parameterization was applied to ground-based measurements of the snow depth taken on an ice floe for5

cases when the aircraft position was within a 50 km radius. The modeled surface subtype fractions agreed within 1 % with the

measurements, which is also related to the fact that the variability of surface types in the observed area is low with mostly snow

covered surfaces. As a result, similar findings were derived when using modeled fractions for the SIS albedo parameterization

compared to the decoupled case.

Finally, the SIS albedo parameterization was adjusted for the ACLOUD/PASCAL conditions by defining new values of10

maximum and minimum surface albedos and threshold temperatures for snow covered sea ice under cloud-free/broken clouds

and overcast situations, resulting in deviations to the standard parameters ∆αmin = +0.03 / -0.11 (overcast/cloud-less), ∆αmax

= +0.04 / -0.05, and a new temperature threshold value of Td = -3.0◦C / -2.5◦C compared to Td = -0.01◦C as used in the

standard scheme. These adjustments reduced the RMSE from 0.14 to 0.04 for cloud-less/broken clouds and from 0.06 to 0.05

for overcast conditions. The implementation of the adjusted SIS albedo parameterization into HIRHAM-NAOSIM is underway.15

In the near future, we plan to perform ensemble sensitivity experiments and statistically evaluate the model’s skill, including

the involved feedback mechanisms.
::::::::
Although,

:::
the

:::::
cloud

:::::
cover

::::::::::
simulations

:::::
were

::::::::
improved

::
in

::::::::::
HIRHAM5

::::::::::::::::
(Klaus et al., 2016)

:
,
:::
the

:::::::::::
simultaneous

::::::::
evaluation

:::
of

:::
SIS

::::::
albedo

:::
and

:::::::::::::
cloud-radiation

::::::::::::::::::::::::::::::::::::::
(e.g., following Karlsson and Svensson, 2013)

::
in

:::
the

:::::::
coupled

:::::
model

::::::::::::::::::
HIRHAM-NAOSIM

::
is

:::
still

:::
on

:::
the

::::::
agenda.

:

These results indicate that the correlation between surface temperature and snow surface albedo, and the choice of the20

minimum and maximum albedo values can serve only as rough estimate of the real albedo. As already shown by Pirazzini

(2009), the daily mean surface albedo dependence on surface temperature exhibits a significant variation and is affected by the

surface albedo of underlying sea ice when snow melting has started.

Two main conclusions can be drawn from this study. First considering the dependence on cloud cover fraction in the SIS

albedo parameterization, and a second one adjusting the maximum and minimum values of the surface albedo, in particular25

for low snow depth. For a snow depth lower than 10 cm, snow albedo is significantly decreasing with decreasing snow depth

(Perovich, 2007), which could be considered in an adapted parameterization as proposed by Ahmad and Haider (2015). Both

parameters, cloud fraction and snow depth are variables delivered by HIRHAM–NAOSIM.

Furthermore, a
:::
our

::::::
results

::::::
indicate

::::
that

:::
the

::::
snow

::::
type

::::::::
variation

::::
(e.g.,

:::::::
change

::
of

:::::::::
roughness,

::::
grain

::::
size,

:::::::
density)

::
is

::
of

:::
the

:::::
same

::::
order

:::
of

:::::::::
importance

:::
for

::::::
albedo

:::::::::
variations

::::
than

:::
the

::::::::::
illumination

::::::
(cloud

::::::
cover)

:::::
effect.

::::
This

::::::::
supports

:::
the

::::
need

:::
to

:::
put

::::::
efforts

::
to30

:::::::
improve

:::
the

::::
snow

:::::::
process

::::::::::::::
parameterizations

::
in
:::::::
coupled

:::::::
models

::
as

::::::::
discussed

::
by

::::::::::::::::
Hunke et al. (2010)

:
.

:
A
:
larger data set will be necessary to check if the adjustments based on the ACLOUD/PASCAL conditions are valid for other

conditions and locations. The
::::::::
presented

::::::
results

:::
are

::::
valid

:::
for

::::::
nearly

::::::
100 %

::::
snow

:::::::
covered

:::
sea

::::
ice.

::
In

:::
the

::::
later

:::::::
summer

:::::::
season,

::::
melt

:::::
ponds

:::::::
become

::
an

:::::::::
important

::::::
feature.

:::::
Still,

::
it

:
is
::::::::

expected
::::
that

:::
the

:::::
effect

::
of

:::::
cloud

:::::
cover

:::
on

:::
the

::::::::
variation

::
of

:::
the

::::
melt

:::::
pond

:::::
albedo

:::::
plays

::
a
::::
role

:::
due

::
to
::::

the
::::::
spectral

:::::
shift

::
of

:::::::
incident

::::::::
radiation.

::::
The

:
upcoming Multidisciplinary drifting Observatory for35
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Studies of the Arctic Climate (MOSAiC) will provide such an opportunity starting in autumn 2019, when the research vessel

Polarstern will be drifting with the sea ice for one year supported by two major aircraft campaigns, where the instrumental

setup from ACLOUD will be extended by a snow depth radar and a infrared imager, providing an unique data set to validate

albedo schemes which are based on surface temperature and snow depth information.
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