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Abstract. Sea ice leads are an important feature in pack ice in the Arctic. Even covered by thin ice, leads can still serve as the 

prime window for heat exchange between the atmosphere and the ocean, especially in winter seasons. Lead geometry and 

distribution in the Arctic have been studied in previous studies using optical or microwave remote sensing data. But turbulent 

heat flux over lead area has only been measured on site during a few special expeditions. In this study, we derive turbulent 10 

heat flux through leads at different scale using a combination of surface temperature and lead distribution from remote sensing 

images and meteorological parameters from a reanalysis dataset. Firstly, ice surface temperature was calculated from Landsat-

8 Thermal Infrared Sensor (TIRS) and MODIS thermal images using split-window algorithm at 30 m and 1 km scales, 

respectively, then lead pixels are segmented from colder ice. Heat flux over lead area was estimated using two empirical models, 

including bulk aerodynamic formulae and a fetch-limited model with lead width from Landsat-8. Results show that, even 15 

though lead area from MODIS is a little larger, the length of leads is underestimated by 72.9% in MODIS data compared to 

that from TIRS due to the inability to resolve small leads. Heat flux estimated from Landsat-8 TIRS data using bulk formulae 

is 42.33% larger than that from MODIS data. When fetch-limited model was applied, turbulent heat flux calculated from TIRS 

data is 31.87% higher than that from bulk formulae. In both cases, small leads account for more than a quarter of total heat 

flux over lead, mainly due to its large area, though the heat flux estimated using fetch-limited model is 42.26% larger. More 20 

contribution from small leads can be expected at larger air-ocean temperature difference and stronger winds.  

1 Introduction 

Leads are linear structures of ocean surface within pack ice that is exposed to atmosphere during an opening event caused by 

various forces, such as wind and water stresses. In winter, thin ice forms quickly in newly opened leads due to the large 

temperature difference between the ocean and the atmosphere (Kwok, 2001). The opening of leads breaks the continuity of 25 

insulating ice and creates windows for a stronger air-ocean interaction. Newly opened leads are the main source of ice 

production, brine rejection, and heat transfer from the ocean to the atmosphere (Alam and Curry, 1998). The rate of turbulent 

heat transferred over open water could be two orders of magnitude larger than that through mature ice (Maykut, 1978). 

Although decreasing rapidly with growing ice thickness, ice growth rates can still be an order of magnitude larger for 50-cm-

thick young ice than for 3-m-thick ice (Maykut, 1986). In the central Arctic, open water usually comprises no more than 1% 30 

of the ice pack area during the winter seasons. However, open water, together with thin ice (< 1 m) that is estimated to be 10% 

of the whole ice area, contributes to more than 70% of the upward heat flux (Maykut, 1978; Marcq and Weiss, 2012).  

Leads also allow more surface absorption of radiation in late spring and summer due to their lower albedo compared to 

thick ice. This will accelerate sea ice thinning in summer and delay refreezing in early winter, therefore decreasing the 

mechanical strength of the ice cover and allowing even more fracturing, larger drifting speed and deformation, and a faster 35 

export of sea ice to lower latitudes (Rampal et al., 2009). As the ice pack is getting thinner (Kwok and Rothrock, 2009) and 

more mobile (Spreen et al., 2011), favorable for deformation and opening, more intensive network and stronger influence of 

leads are expected.  

Regarding the detection of leads in satellite imagery, Lindsay and Rothrock (1995) promoted the concept of potential open 
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water, which requires both temperature and albedo difference between ice surface pixel and open water tie-point. Röhrs and 

Kaleschke (2012) developed a retrieval algorithm to obtain Arctic lead concentration, similar to sea ice concentration, based 

on different emissivities of thin ice at two microwave frequencies available for AMSR-E. The algorithm could provide sub-

pixel information of lead distribution. But the resolution is still too coarse to detect small leads prevailing in pack ice. Willmes 

and Heinamann (2015) mapped pan-Arctic lead distribution at 1km resolution using of a single parameter, local temperature 5 

anomaly △TS, to identify leads from surrounding thick ice. Other remote sensing data, including altimetry, high resolution 

optical and SAR images were also used to identify leads in limited areas due to constraints of cloud contamination and data 

acquisition restriction (Key et all., 1993; Miles and Barry, 1998; Kwok, 2001; Weiss and Marsan, 2004; Wernecke and 

Kaleschke, 2015; Murashkin et al., 2018). 

Regardless of spectral characteristics used for detection of leads, scale dependence of lead statistics was explored in a few 10 

studies (Key et al., 1994; Weiss and Marsan, 2004; Marson et al., 2004). Key et al. (1994) studied the effects of sensor’s field-

of-view (FOV) using degraded optical images from Landsat Multi-Spectral Scanner (MSS). They suggested that the mean lead 

width expands and the lead fraction drops as the pixel size builds up in gradually degraded images. Assuming that narrow leads 

had a larger heat flux transfer rate than wider leads, estimated turbulent heat flux was reduced by 45% as the FOV was degraded 

from 80 m to 640 m, mainly due to reduced lead fraction. 15 

More often than not, bulk aerodynamic formulae are used in climate models to generalize the turbulent heat flux from 

open water in Arctic pack ice (Lindsay and Rothrock, 1994; Walter et al. 1995). The bulk formulae attribute heat flux from 

leads to wind speed at certain height, the temperature difference between the surface and the atmosphere, and a turbulent 

transfer coefficient for heat, which is a function of the stability of the near-surface atmosphere and the roughness of the surface. 

Sensible heat flux was estimated in this approach by Lindsay and Rothrock (1994) using surface temperature retrieved from 20 

Advanced Very High Resolution Radiometer (AVHRR). While observations suggest that, for small leads down to dozens of 

meters in width, the discontinuity between leads and pack ice causes the creation of a thermal internal boundary layer (TIBL) 

in the bottom atmosphere and the thickness of this TIBL depends mainly on lead width or fetch (Venkatram, 1977; Andreas et 

al., 1979). Fetch limited models (Alam and Curry; 1997; Andreas and Cash,1999) for turbulent heat flux over small leads were 

developed based on a few observations. Besides, a power law distribution of lead width was also reported in various studies 25 

(Wadhams, 1981; Wadhams et al., 1985; Lindsay and Rothrock, 1995), indicating that small leads are prevailing in the Arctic. 

Impacts of lead width on heat flux were reported by Maslanik and Key (1995) and Marcq and Weiss (2012) using a different 

width distribution model. However, fetch-limited models have not been applied to surface temperature fields retrieved from 

remote sensing imagery to estimate turbulent heat flux at regional scale due to the coarse resolution of operational thermal 

sensors. Fortunately, the launch of Landsat-8 in February 11th, 2013 has provided a unique opportunity for estimation of 30 

turbulent heat flux with finer-resolution temperature fields. 

In this paper, we will retrieve lead distribution using thermal images from two sensors (MODIS and TIRS aboard Terra 

and Landsat-8, respectively) at different resolution scales. Then we will estimate heat flux over leads with remote sensing 

temperature field using both the bulk formulae and a fetch-limited model proposed by Andras and Cash (1999). With the result, 

we will analyze how the scale property of leads may impact the calculation of heat exchange through leads. 35 

2 Data 

Three successive scenes of Level 1 terrain-corrected (L1T) Landsat-8 TIRS images and one corresponding MODIS images 

were used in this study (Table 1). As shown in Fig. 1, the mosaic image of the three TIRS scenes covers an area of about 98000 

km2 in the east Beaufort Sea, with floes and leads of various lengths and widths spread in the region. 

The Landsat 8 satellite is in the same near-polar, sun-synchronous,705 km circular orbit and position as the Landsat 5 40 

satellite decommissioned in 2013. Landsat 8 data are acquired in 185 km swaths and segmented into 185 km × 180 km scenes 

defined in the second World-wide Reference System (WRS-2) of path (ground track parallel) and row (latitude parallel) 

coordinates also used by the Landsat 4, 5 and 7 satellites (Arvidson et al., 2001). TIRS instrument is one of the major payloads 

aboard the Landsat 8 satellite which can observe the ocean surface at a resolution of 100 m by using the split-window thermal 

infrared bands, comparable to MODIS thermal infrared bands at a resolution of 1000 m. The two narrower thermal infrared 45 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-262
Manuscript under review for journal The Cryosphere
Discussion started: 25 January 2019
c© Author(s) 2019. CC BY 4.0 License.



3 

 

channels in the atmospheric window enable the application of the widely used split-window algorithm (SWA) in ice surface 

temperature (IST) retrieval rather than the single-channel method used for TIRS predecessors. 

Note that the TIRS bands at 100m resolution are resampled by cubic convolution to 30 m and co-registered with the 

Operational Land Imager (OLI) spectral bands in L1T product. Apart from the TIRS thermal bands, top of atmosphere 

reflectance from Landsat-8 near-infrared band, was used for classification between ice and open water in surface temperature 5 

retrieval. Panchromatic band with a resolution of 15m, was used as validation data for lead detection in this study. 

Corresponding 10m wind vector, 2m air temperature and dewpoint temperature from ECMWF ERA-interim reanalysis 

data set are also used. The ERA-interim reanalysis dataset has a fine spatial resolution of 0.125° (~10km in study area) and a 

temporal resolution of 3 hours. The time difference between reanalysis data and Landsat-8 or MODIS images is within half an 

hour. 10m wind vectors from ERA-interim are transferred to wind magnitude at reference height of 2 m in accordance with air 10 

temperature data. 

3 Method 

3.1 IST Retrieval 

An SWA for IST retrieval was first developed for AVHRR (Key et al. 1997) and adopted for MODIS thermal images with a 

different set of coefficients (Hall et al. 2001). The equation is as followed: 15 

IST = a + b𝑇31 + 𝑐(𝑇31 − 𝑇32) + 𝑑[(𝑇31 − 𝑇32)(sec 𝑞 − 1)]             (1) 

where T31 and T32 are brightness temperature from MODIS thermal bands B31 and B32; a, b, c and d are coefficients 

developed for specific sensors using radiance transfer model; q represents the incidence angle, and sec q is the secant of q.  

Since there is no special SWA available for sea ice surface temperature retrieval from Landsat-8, a land surface temperature 

formulation (Du et al. 2015) developed for a wide range of surface type, including ice and snow, was used:  20 

𝑇𝑠 = 𝑏0 + (𝑏1 + 𝑏2
1−𝜀

𝜀
+ 𝑏3

∆𝜀

𝜀2)
𝑇𝑖+𝑇𝑗

2
+ (𝑏4 + 𝑏5

1−𝜀

𝜀
+ 𝑏6
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𝜀2)
𝑇𝑖−𝑇𝑗

2
+ 𝑏7(𝑇𝑖 − 𝑇𝑗)2        (2) 

where 𝑇𝑖  and 𝑇𝑗 are the brightness temperatures measured in channels i (~11.0 μm) and j (~12.0 μm), respectively; ε is 

the mean emissivity of the two channels (i.e., ε = 0.5 [εi + εj]), while Δε is the emissivity difference between the channels (i.e., 

Δε = εi - εj); bk (k = 0, 1, ... 7) are the algorithm coefficients derived from simulated dataset. 

As reported in previous studies (Montanaro et al., 2014a; Barsi et al., 2014; Montanaro et al., 2014b; Montanaro et al., 25 

2014c), thermal infrared radiance measured by Landsat-8 TIRS suffers from straylight, which is caused by out-of-field radiance 

that scatters onto the detectors thereby adding a non-uniform/banding signal across the field-of-view. The magnitude of this 

extra signal can be ~8% or higher (band 11) and is generally twice as large in band 11 as it is in band 10. Though correction 

algorithms for this artifact have been developed and applied in the new version of level L1T Landsat-8 data (Montanaro et al., 

2015), and the straylight artifact in current product is reduced by half on average (Gerace and Montanaro, 2017). However, 30 

straylight artifact could be amplified in surface temperature map when SWA was used, temperature error could be 0~2K or 

more even after the correction algorithm was applied (Gerace and Montanaro, 2017), this will certainly impact lead detection 

from IST maps. 

A post-processing procedure utilizing the linear pattern of straylight artifact is applied to remove this banding noise. Firstly, 

a median temperature is determined for each image pixel from a long enough along-track-only neighborhood. Then a noise 35 

image could be obtained by detrending this median image (Eppler and Full, 1992), thus the surface temperature image from 

SWA could be improved for lead detection. 

3.2 Lead detection  

In remote sensing images, leads (thin ice and open water) are represented by negative albedo in optical range, negative 

brightness temperature anomaly in near infrared (NIR) and a positive surface temperature anomaly compared to the 40 

surrounding thick ice (Fett et al., 1997). Variance caused by uneven illumination, view angle and air temperature should also 

be taken into account. 
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Willmes and Heinemann (2015) reported the use of surface temperature anomaly to detect leads. The temperature anomaly 

△TS for each IST pixel is defined as deviation from the median in a square neighborhood, thus temperature variation due to 

air temperature field can be removed. This can be expressed in following equation: 

∆𝑇0 = 𝐼𝑆𝑇 − 𝑀𝑒𝑑𝑖𝑎𝑛𝑤                    (3) 

where Medianw represents the median IST in a square neighborhood with side length of w. This equation was adopted to 5 

Landsat-8 IST map using median from an along-tract-only linear neighborhood to further minimize the straylight artifact. 

Since the median temperature is selected as background temperature, the length w should be at least twice as large as the largest 

lead width within the image area (or along track) to reserve lead profile and reduce temperature gradient caused by varying air 

condition across the image.  

Generally, surface temperature anomaly for thick ice follows a normal distribution with a mean of zero, thus any large 10 

deviation from the mean can be assumed as a potential lead and extracted using a proper threshold. Several image-based 

threshold selection techniques for a binary lead segmentation were compared in Willmes and Heinemann (2015), and an 

iterative threshold selection method (Ridler and Calvard, 1978) was recommended for extracting leads from temperature 

anomaly map. However, any image-based threshold method provides a threshold that may vary significantly due to temperature 

noise and lead distribution. For consistency in different scales, several threshold methods were compared for lead detection in 15 

both MODIS and TIRS temperature maps.  

Lead widths were calculated for every lead pixel using an orthogonal system (vertical: south-north and horizontal: west-

east, Fig. 2), and a minimum extent in two orthogonal directions was selected for the pixel, i.e., 𝑥′=min (x1, x2). Since the 

orientation of single lead is unknown, this method tends to overestimate lead width due to the mismatch of preset direction 

and the orientation of lead (Key and Peckham, 1991), but the usage of orthogonal system will contain the error (𝑥′≤ √2x) and 20 

thus suffice the limited used of lead width in our study. 

3.3 Heat flux model used for lead area 

Turbulent heat flux between the Arctic ocean and the atmosphere, including sensible (Fs) and latent (Fl) heat fluxes, is mostly 

dominated by heat flux over open water and thin ice, which constitute leads in pack ice and polynya in coastal area. Turbulent 

heat flux over leads can be estimated using bulk aerodynamic formulae or fetch-limited model developed based on field 25 

observations. 

3.3.1 Bulk aerodynamic formulae 

Assuming that temperatures in the atmospheric boundary layer are determined by the heat balance over the thicker ice and the 

rate of turbulent heat change does not vary significantly across the narrow areas of leads, then the turbulent heat fluxes are 

mainly determined by temperature and humidity differences between the surface and atmosphere at reference height r (Maykut, 30 

1978). The sensible heat flux (Fs) and latent heat flux (Fl) are given by the following bulk formulae: 

Fs=ρacpCsu(Ta-T0)                                     （4） 

and 

Fl=ρaLvCeu(Qa-Q0)                                     （5） 

 where ρa is the air density; cp is the specific heat at constant pressure; Cs is the sensible heat transfer coefficient; Ce is the 35 

evaporation coefficient; Lv is the latent heat of vaporization, u, Ta and Qa are wind speed, air temperature and specific humidity 

at reference height r. T0 and Q0 are air temperature and specific humidity at the surface. Assuming that air at the surface of ice 

or water is always saturated, the specific humidity at surface can be derived as: 

𝑄0 =
0.622𝑒𝑠0

𝑝−0.378𝑒𝑠0
                     (6) 

where p is the air pressure, es0 represents the saturated vapor pressure at surface temperature T0: 40 

𝑒𝑠0 = 𝑒010
𝑎𝑡

𝑏+𝑡                      (7) 

 where 𝑒0  represent saturate vapor pressure at 0℃, approximately 611hPa, t is temperature in Celsius, a and b are 
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coefficient (for water surface, a = 7.5, b=237.3 K; for ice, a=9.5, b=265.5 K). These equations are also applied for specific 

humidity at reference height r = 2 m using dewpoint temperature data from ERA-interim. Note that the heat flux in formulae 

(4) and (5) are directed from atmosphere to ocean. 

3.3.2 Fetch-limited model 

When air travels from a cooler surface to a warmer one, a convective atmospheric TIBL forms and thickens with distance 5 

downwind of the surface discontinuity or fetch X (Stull, 1988; see Fig. 2). As the wind blows over water (or thin ice), the near 

-surface air gets warmer with more vapor, while new ice accumulates at downwind side of the lead, progressively narrows and 

seals the window. Thus, the temperature and humidity differences between the air and the surface decreases. Since the sensible 

and latent heat fluxes are proportional to the temperature and humidity difference, respectively, turbulent heat transfer also 

recedes with increasing lead width or fetch. This means, with the same surface condition, larger lead is less efficient in heat 10 

exchanging in unit area, as shown in Fig. 3. 

The dependence of Hs and Hl on fetch X was estimated in several studies (Andreas and Murphy, 1986; Alam and Curry, 

1997; Andreas and Cash, 1999). Andreas and Cash (1999) give direct formulations of the heat fluxes as a function of the lead 

width X based on data fitting from three sets of measurements. For free convection conditions in large fetch: 

Fs(X)=C∗ρaCpD(Ts − T𝑎)/∆zT                  (8) 15 

F𝐿(X)=C∗ρaL𝑣Dw(Qs − Qa)/∆zQ                     (9) 

where D and Dw are the molecular diffusivities of heat and water vapor in air, respectively; ∆zT and ∆zQ are length 

scales for heat and humidity, respectively, which consider the viscosity of air and the buoyancy difference between the surface 

and the reference height r: 

∆zT = (
𝑣D

∆B
)

1 3⁄

                     (10) 20 

∆zQ = (
𝑣Dw

∆B
)

1 3⁄

                        (11) 

∆B =
g

T̅
(∆T +

0.61T̅∆Q

1+0.61Q̅
)                       (12) 

where ∆B  is the buoyancy difference, ∆T  and ∆Q  are the difference of temperature and specific humidity between 

surface and air at reference height r, respectively, T̅ and Q̅ are the average temperature and specific humidity between them. 

The coefficient C∗ is a function of stability, which facilitates the generalization of the flux formulae (8), (9) to the transition 25 

between free and forced convection, thus applicable to smaller fetch. C∗ is estimated using lead and polynya data and used to 

calculate both sensible and latent heat fluxes: 

𝐶∗ =
0.3

0.4−ℎ/𝐿
+ 0.15                    (13) 

ℎ = 0.82 ln 𝑋 + 0.02                   (14) 

𝐿−1=8.0 ∗ (
0.65

𝑟
+ 0.079 − 0.0043𝑟)*𝑅𝑖𝑏                (15) 30 

𝑅𝑖𝑏=−
𝑟𝑔

�̅�

𝑇𝑠−𝑇𝑟

𝑢𝑟
2                      (16) 

where h is the depth of TIBL in meters as a function of lead width X, and L is the Obukhov length. L is a length scale of 

stability, it’s negative for unstable stratification, while its magnitude rises with instability. 𝑅𝑖𝑏 and 𝑢𝑟 represent Richardson 

number and wind speed at reference height r, and g is the gravitational constant.  

In spite of the width of a lead, the model suggests that heat flux from a lead is also sensitive to meteorological parameters. 35 

As shown in Fig. 3, simulation shows that for the narrowest lead from TIRS (X=30m), turbulent heat flux, especially sensible 

heat, rises quickly with larger △t and stronger wind.  

Most importantly, assuming a constant temperature difference together with a steady crossing wind, heat flux decreases 

with increasing fetch, and becomes saturated for lead width great than 1km, as depicted in Fig. 4. Since the air temperature 

interpolated from the grid data of the ERA-Interim with 0.125° resolution, shows no signal of heating from TIBL caused by 40 
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leads. The application of fetch-limited model is likely to improve the accuracy of estimated turbulent heat flux. As the fetch 

dependence of heat flux over lead is negligible for lead width greater than 1km, thus this model was applied to TIRS data only. 

4 Result 

4.1 Ice surface temperature 

IST maps retrieved from TIRS and MODIS using eq. (1) and (2) are shown in Fig. 5. Temperature signature of small leads in 5 

the north part of the image area is largely reduced in MODIS IST map due to its coarse resolution and heterogeneous pixels, 

compared to that from TIRS. In the meantime, the banding effect of straylight is very obvious in TIRS IST map. This artifact 

was detected and removed by using a median from along-track linear neighborhood and detrend of the median image (Fig. 6). 

Corrected TIRS IST map is also shown in Fig. 5 for comparison.  

Although the median and artifact images show a little bias around large leads, corrected TIRS IST map is very smooth 10 

compared to uncorrected one and more suitable for lead detection using a threshold and heat flux calculation. Scatter plots of 

IST from MODIS and TIRS before and after correction are shown in Fig. 7. The correlation of IST from two sensors estimated 

by interpolation of MODIS IST to TIRS scale (30 m), is quite good with a Pearson coefficient above 0.890 (0.902 and 0.896 

before and after correction for straylight). The primary coefficient of linear regression is improved from 1.025 to 1.004 before 

and after correction, indicating that the corrected TIRS IST is in better agreement with MODIS. However, the RMSE from 15 

regressions increased from 1.216 K to 1.233 K. It also reveals that, for the 250K~270K temperature range, IST retrieved from 

TIRS is generally 0.61~0.70K higher than that from MODIS. 

4.2 Sea ice lead retrieval 

Regional temperature anomaly maps calculated from IST maps are shown in Fig. 8. The mean surface temperature anomaly is 

0.116 K with a standard deviation (Std) of 1.180 K for MODIS and 0.283 K with a Std of 1.619 K for TIRS.  20 

Binary lead maps were generated using iterative thresholds (Fig. 9). Large floes and small leads dominate the northern 

part of the images where temperature is lower, while two very large leads can be observed in the southern portion. The maps 

illustrate that lead binary retrieved from MODIS captures major lead structure, but small leads are missed in most case 

compared to lead detected from TIRS. 

Lead area estimated from MODIS is 8074.0 km2 which account for 8.25% of the frame area (~98000 km2), for TIRS, 25 

7376.2 km2 and 7.53%. Validation with Landsat-8 panchromatic images show that large leads tend to be amplified by blurred 

mixed pixels along boundaries, while small leads are neglected due to the coarse resolution of MODIS. 

4.3 Lead width 

In our study, lead width was calculated for every lead pixel in the binary maps from MODIS and TIRS and divided into three 

categories (Table 2), including small leads (width≤1km), medium leads (1km<width≤5km) and large leads(width>5km). The 30 

width distribution of leads from MODIS and small leads from TIRS are plotted in Fig. 10 using the length of leads. Similar to 

the concept of number density, the length of each lead width, could be fitted with a power law distribution with exponents of 

2.241 for large leads from MODIS and 2.346 for leads from TIRS. The power law distribution indicates that narrow leads are 

prevalent, while larger exponent implies that smaller leads are more dominant at TIRS scale.  

Total length of leads with various widths is 10150.3 km from TIRS, including 8502.2 km (83.76%) from small leads with 35 

width less than 1 km, comparing to total length of 2746.4 km from MODIS, where the narrow leads (1km wide) only account 

for 1050.0 km (38.23%). Total length of leads is underestimated by 72.9% in MODIS data compared to that from TIRS. As 

for the area of leads, small leads (width < 1km) account for 34.54% of total lead area from TIRS, while only 13.00% of lead 

area in MODIS comes from the narrow leads (Table 2). 
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4.4 Heat flux over leads  

IST described in section 4.1 and lead width from TIRS (section 4.3) were used in bulk formulae and fetch-limited model along 

with ERA-interim reanalysis data to estimate turbulent heat flux through leads. For consistency, the estimated heat flux is 

positive from ocean to atmosphere. 

4.3.1 Heat flux using bulk formulae 5 

Turbulent heat flux over lead area is obtained by summing up sensible and latent heat flux from equations (4) and (5) using 

IST and lead maps retrieved from MODIS or TIRS (Fig. 11). Statistic in Table 2 reveals that total heat flux over lead calculated 

using TIRS IST and lead distribution, is 6.59×1011 W over the total area of 7376.2 km2, 42.33% larger than that from MODIS 

data (4.63×1011 W). Small leads account for 1.68×1011 W (25.54%) of total heat flux in TIRS data, more than five times the 

heat flux from the narrow lead category in MODIS (3.28×1010W, 7.08%). 10 

4.3.2 Fetch-limited heat flux 

Since the width-dependent heat flux model is valid for limited width range, this model was applied to Landsat-8 data only. As 

we can see in Fig. 11 and Table 3, total heat flux over leads estimated by fetch-limited model is 8.69×1011 W, 31.87% higher 

than that from bulk formulae i.e. 6.59×1011 W, among which 33.8% of the increase comes from the small lead class. In both 

cases, small leads account for a quarter or more of total heat flux over all leads in both models, due to its large area, though 15 

the heat flux estimated using fetch-limited model is 2.39×1011 W, 42.26% larger compared to 1.68×1011 W from bulk formulae. 

For comparison, the estimated heat fluxes from medium and large leads class also increase by 32.29% and 24.06%, respectively, 

when fetch-limited model was used. However, turbulent heat flux contribution from large lead is reduced from 34.67% to 

32.62%, while contribution from small lead increases from 25.54% to 27.46%. Nonetheless, the fact that large leads with width 

greater than 5km, account for 27.16% of total lead area, but contribute more than 32% of total heat flux over lead, is somehow 20 

contradictive with the fetch-limited theory.  

Inspection of input data revealed that, the 2m air temperature from ERA-interim has almost the same mean value around 

262K as the surface temperature from Landsat-8. The temperature difference between air and the surface, i.e., △t, spreads 

from 1.58 to 12.38K, with a mean of 4.88K, along with a wind speed range from 3.8 to 7.7 m/s in the area. The distribution of 

air temperature and surface temperature of leads are plotted in Fig. 12. The temperature difference over narrow leads is too 25 

small to obtain a robust estimation of turbulent heat flux.  

4.3.3 Conditional heat flux test 

For comparison, a test using preset meteorological conditions was performed on the TIRS lead binary map. With a wind speed 

of 5 m/s at 2 m height and temperature difference of 5 K or 10 K, total heat fluxes from both models were calculated for leads 

with width range from 30m to 5km (Fig. 13), and summarized in Table 4. Note that lead width is in a logarithmic scale.  30 

 Clearly, overall turbulent heat flux estimated using fetch-limited model is always higher than that using bulk formulae 

with the same input. For both models, estimated turbulent heat fluxes with △t of 5K or 10K, peak at a smaller width (270m) 

than the 360m using △t obtained from TIRS IST and air temperature from ERA-interim. Compared to the real situation with 

△t range from 1.58 to 12.38K, although overall turbulent heat flux estimated at △t=5K is lower, more heat flux is effused from 

small leads with width less than 600m.  35 

The distribution of turbulent heat fluxes estimated using bulk formulae with △t of 5K or 10K, depends on the areal fraction 

from each lead category. Contribution from leads with width greater than 1km converges to lower end with fluctuation. As 

expected, the estimated total heat flux of 1.00×1012 W at △t=10K is about twice as that at △t=5K (5.29×1011 W). 

As for the fetch-limited model, small leads are found to have larger contribution at higher △t, i.e. 2.78×1011 W (36.54%) 

and 5.91×1011 W (37.18%) at △t of 5 K and 10 K, respectively, compared to its areal fraction of 34.54% in Table 4. More 40 

contribution from small leads can be expected at larger temperature difference and stronger wind in winter. 
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5 Discussion 

5.1 Threshold method 

Operational definition of lead is fracture or passageway through ice that is navigable by surface vessels (Canadian Ice Service, 

2005; World Meteorological Organization, 2014). However, within any optical, thermal or microwave image, the radiometric 

signature of a narrow lead with open water may be identical to that of a wider lead with thin ice. In most studies involving the 5 

utility of remote sensing data, any linear features of open water or thin ice within pack ice are regard as leads for convenience 

(Fetterer and Holyer, 1989; Fily and Rothrock 1990; Lindsay and Rothrock, 1995). Due to the confusion of lead definition in 

remote sensing images and the need to extract lead from background, threshold segmentation was frequently used for lead 

detection from various satellite sensors and images (Eppler and Full, 1992; Lindsay and Rothrock, 1995; Weiss and Marsan, 

2004; Marcq and Weiss, 2012). Several threshold selection techniques for a binary lead segmentation were presented in a 10 

previous study (Willmes and Heinemann, 2015), however, threshold given by image-based method may vary significantly 

depending on noise level (caused by air temperature variance) and lead distribution.  

In our study, a set of thresholds was tested for extracting leads from temperature anomaly maps from MODIS and Landsat-

8, areal fractions of leads from fixed thresholds, Std thresholds, and an iterative threshold are shown in Table 5. Since the 

anomaly maps from two sensors have different means and standard deviations, mainly due to different definition of 15 

neighborhood in calculation of △t, the result from a fixed threshold might be biased. Iterative thresholds from both anomaly 

maps are a little larger than their first std. Any larger threshold tends to underestimate lead distribution. While lower threshold 

allows more pixel detected as leads, false leads caused by air temperature variance tend to occur. Validation with Landsat-8 

Panchromatic images shows that iterative threshold detects most lead structure (89.5%) and exhibits better resistance against 

air temperature noise. Thus, the iterative thresholds are selected for lead extraction in this study. 20 

5.2 Width distribution of leads 

Lead geometry and distribution in the Arctic have been studied using optical and microwave remote sensing data (Fily and 

Rothrock, 1990; Lindsay and Rothrock, 1995; Tschudi et al., 2002). A simple one-parameter exponential model was used for 

number density distribution of lead width (Key and Peckham, 1991; key et al., 1994; Maslanik and Key, 1995): 

𝑓(𝑤) =
1

𝜆
𝑒

−𝑤

𝜆                      (17) 25 

where w is width of lead, the single parameter λ is the mean lead width. But a mean lead width can be oversimplified in a 

diverse circumstance. Lindsay and Rothrock (1995) reported the power law distribution of lead width in AVHRR imagery: 

𝑁𝑇(𝑤) = 𝑎𝑤−𝑏                     (18) 

 where NT(w) is the number density of leads of width w per kilometer of width increment. The exponent b indicates the 

relative frequency of large and small leads, while the coefficient a is directly related to the lead concentration and the range of 30 

widths over which the power law is thought to apply. The annual mean of exponent b was found to be 1.60 using AVHRR 

images (Lindsay and Rothrock,1995). Larger values of b were reported using data with better resolution: 2 and 2.29 for 

submarine sonar observation in Fram Strait (Wadhams, 1981) and Davis Strait (Wadhams et al, 1985) when 100m bin width 

was used, 2.1~ 2.6 for 20m SPOT image in orthographic direction using different threshold (Marcq and Weiss, 2012). Note 

that most of these studies using only width samples crossed by limited linear transect.  35 

In our study, although lead width follows the same power low distribution at both scales, the fitted exponents vary from 

0.882 to 2.094 at resolution from 30m to 1km. Since the 30m L1T images were resampled from original 100m TIRS data, 

actual distribution of leads with width less than 100m is debatable. In our calculation, lead width was assigned to every pixel 

across the lead instead of a fitted distribution model, and used in fetch-limit heat flux calculation. As a result, heat flux across 

a single lead may vary according to the surface temperature, as can be seen in the largest lead in Fig. 11. 40 

5.3 Application of fetch-limited heat flux model 

Our results suggest that, heat flux contribution from small leads mainly results from its large length, or number density, and 
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vast area, instead of its efficiency. Though small leads are more efficient for heat exchanging between the ocean and the 

atmosphere, thin ice growing in newly opened leads may quickly cover the exposed ocean surface, thus reducing heat exchange. 

Moreover, due to the mixture of subpixel lead and thick ice, the surface temperature of some pixels in small leads is much 

lower than the freezing point. 

Besides, wind direction should also be considered. In our study area, the main direction of wind from the reanalysis dataset 5 

is roughly perpendicular to the dominated orientation of leads. Therefore, wind magnitude instead of wind vector was used in 

our study.  

Our result suggests that, with surface temperature field from remote sensing, fetch-limited model can be used for 

estimation of turbulent heat flux on regional scale. However, since the fetch-limited model proposed in Andreas and Cash 

(1999) was established based on mainly a few observations over open lead and polynya, while most lead pixels detected using 10 

temperature anomaly in our study is likely covered by thin ice (surface temperature <270K, Fig. 12). Near surface air 

temperature with finer resolution is needed for validation of the turbulent heat flux estimated using fetch-limited model before 

extensive application. 

6 Conclusion 

Although the same local temperature anomaly and threshold method were applied, leads retrieved at MODIS and Landsat-8 15 

TIRS resolution scales present very different geometry and distribution. Over the studied area, general length of leads is 

10150.3 km from TIRS, including 8502.2 km (83.76%) from small leads with width less than 1 km. This is in contrast to the 

total length of 2746.4 km from MODIS, where the narrow leads (1km wide) only account for 1050.0 km (38.23%). As for the 

area of leads, small leads (width < 1km) account for 34.54% of the total lead area from TIRS, while only take up 13.00% of 

the total lead area in MODIS. Although lead width follows the same power low distribution at both scales, the fitted exponents 20 

vary from 2.241 to 2.346. 

 When the same bulk aerodynamic formulae were applied with the reanalysis dataset, heat flux estimated using TIRS data 

is 6.59×1011 W, 42.33% larger than that from MODIS data (4.63×1011 W). Small leads account for 1.68×1011 W (25.54%) of 

total heat flux over all leads in TIRS data, more than five times the heat flux from the narrow lead category in MODIS 

(3.28×1010W, 7.08%). 25 

 Turbulent heat flux over leads estimated by fetch-limited model is 8.69×1011 W, 31.87% higher than that from bulk 

formulae (6.59×1011 W). In both cases, small leads account for about a quarter of total heat flux in both models, due to its large 

area, though the heat flux estimated using fetch-limited model is 42.26% larger. More contribution from small leads can be 

expected at larger temperature difference and stronger wind conditions. Near surface air temperature with finer resolution is 

still needed for validation of turbulent heat flux estimated using fetch-limited model before extensive application. 30 

Appendix A 

Validation using Landsat-8 Panchromatic image: 

 Top of atmosphere (TOA) reflectance from Landsat-8 Panchromatic images were corrected for solar zenith angle and 

mosaiced for validation. Panchromatic pixels are classified into three surface categories, i.e., open water & thin ice, refrozen 

leads, and pack ice, using Jenks natural breaks classification method (Jenks, 1963). In terms of turbulent heat flux, only pixels 35 

in the open water & thin ice category is regarded as leads. As can be seen in Table A1, the producer’s accuracy of lead detection 

using iterative threshold is 89.5%, with an omission error of 10.5% and a commission error of 16.1%. 
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Appendix B 

Constants 

Constants used in IST calculation from Landsat-8 TIRS (Du et al. 2015) 

1. MODIS emissivity library:  

𝜀𝑤𝑎𝑡𝑒𝑟,10=0.991; 𝜀𝑤𝑎𝑡𝑒𝑟,11=0.986; 𝜀𝑠𝑛𝑜𝑤,10=0.986; 𝜀𝑠𝑛𝑜𝑤,11=0.959 5 

𝜀�̅�𝑎𝑡𝑒𝑟=0.9885; Δ𝜀𝑤𝑎𝑡𝑒𝑟 =0.005 

𝜀 s̅now=0.9725; Δ𝜀snow =0.027 

2. NIR reflectance threshold for classification between water and ice/snow: 0.1 

3. Water vapor content from MOD05: <2.5g/cm2 

4. bi: b0~7: [-2.78009, 1.01408, 0.15833, -3.4991, 4.04487, 3.55414, -8.88394, 0.09152] 10 

5. RMSE:0.34K 

 

Constants used in turbulent heat flux estimation: 

air density: ρa = 1.3 kg·m-3 

specific heat at constant pressure: cp = 1004 J·kg-1·K-1 15 

sensible heat transfer coefficient: Cs = 0.00144 

evaporation coefficient: Ce = 0.00144 

latent heat of vaporization: L = 2.51 × 106 J·kg-1 

Reference height: r = 2m 

gravitational constant: g=9.8m·s-2 20 

Salinity of sea water in the Beaufort Sea: Sw=27.947 (‰) 

Freezing point of sea water:  

T0 = 273.15 - 0.0137- 0.05199Sw - 0.00007225Sw
2=271.68 

Wind speed profile fitting equation: 

𝑣1=𝑣2 (
𝑧1

𝑧2
)

𝑎

  25 

where a=0.143, vi and 𝑧𝑖(i=1, 2) represents wind speed and the altitude of measurements. 
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Figure Captions 

Figure 1. Location of study area. The background image is brightness temperature from MODIS Band31(~11μm). Location of 

Landsat-8 images are marked by a red rectangle. 

Figure 2. Detection of lead width using two orthogonal directions. Lead extent in orthogonal system (v and h direction) are 45 
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measured as x1 and x2, respectively.  

Figure 3. Turbulent heat flux rises with increasing temperature difference △t and intense wind at lead width of 30m. Solid 

lines and dash lines represent sensible heat and latent heat respectively. Wind speed is illustrated by the color of the lines. 

Clearly, Sensible heat flux is basically proportional to △t. 

Figure 4. Turbulent heat flux for each width at wind speed of 5m/s. Temperature difference between the air and lead surface is 5 

marked by the color of the lines. 

Figure 5. IST maps from MODIS and TIRS using split-window algorithms. (a) IST map from MODIS. (b) IST map from 

Landsat-8 TIRS. (c) Corrected IST map from TIRS. 

Figure 6. Local median and noise image from TIRS IST. (a) Along track median temperature map. (b) noise image by detrend 

of the median temperature map. 10 

Figure 7. Correlation between IST from MODIS and Landsat-8 TIRS before and after correction for straylight. The black lines 

are reference for x = y, and the red lines are linear regression lines with a fitting equation. The number density of scattered 

points is marked by color. (a) Scatter plot of IST from MODIS and Landsat-8 TIRS using split-window algorithm. (b) Scatter 

plot of IST from MODIS and corrected IST from Landsat-8 TIRS. 

Figure 8. Temperature anomaly from MODIS and TIRS. (a) Local temperature anomaly from MODIS. (b) Local temperature 15 

anomaly from Landsat-8 TIRS. 

Figure 9. Binary lead maps from MODIS and TIRS. (a) Binary lead map from MODIS. (b) Binary lead map from Landsat-8 

TIRS. 

Figure 10. Width distribution of leads from MODIS and TIRS in log-log plot. Data points from MODIS and TIRS are plotted 

as orange and blue dots, respectively. Power law fitting is applied. Fitting equations and R squares are shown for comparison. 20 

Figure 11. Heat flux from MODIS and Landsat-8 using bulk formulae and fetch-limited model. (a) Turbulent heat flux from 

MODIS using bulk formulae. (b) Turbulent heat flux from Landsat-8 TIRS using bulk formulae. (c) Turbulent heat flux from 

Landsat-8 TIRS using fetch-limited model. 

Figure 12. Distribution of 2 m air temperature over leads and surface temperature of all leads, small leads with width <1km, 

and larger leads with width <5km. 25 

Figure 13. Contribution of heat flux from each lead width using bulk formulae and fetch-limited model. Turbulent heat flux 

retrieved using fetch-limited model and bulk formulae are plotted using solid lines and dash lines, respectively. Heat fluxes 

calculated using satellite surface temperature, air temperature and wind speed from reanalysis datasets are drawn in orange, 

simulated heat flux at △t = 5K and 10K are rendered in blue and green, respectively. 

 30 

Figure 1. Location of study area. The background image is brightness temperature from MODIS Band31(~11μm). Location of 

Landsat-8 images are marked by a red rectangle. 
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Figure 2. Detection of lead width using two orthogonal directions. Lead extent in orthogonal system (v and h direction) are 

measured as x1 and x2, respectively.  

 

Figure 3. Turbulent heat flux rises with increasing temperature difference △t and stronger wind at lead width of 30m. Solid lines 5 

and dash lines represent sensible heat and latent heat respectively. Wind speed is illustrated by the color of the lines. Clearly, Sensible 

heat flux is basically proportional to △t.  

 

Figure 4. Turbulent heat flux for each width at wind speed of 5m/s. Temperature difference between the air and lead surface is 

marked by the color of the lines.  10 
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Figure 5. IST maps from MODIS and TIRS using split-window algorithms. (a) IST map from MODIS. (b) IST map from Landsat-

8 TIRS. (c) Corrected IST map from TIRS. 

 

Figure 6. Local median and noise image from TIRS IST. (a) Along track median temperature map. (b) noise image by detrend of 5 

the median temperature map. 
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Figure 7. Correlation between IST from MODIS and Landsat-8 TIRS before and after correction for straylight. The black lines 

are reference for x = y, and the red lines are linear regression lines with a fitting equation. The number density of scattered points 

are marked by color. (a) Scatter plot of IST from MODIS and Landsat-8 TIRS using split-window algorithm. (b) Scatter plot of 

IST from MODIS and corrected IST from Landsat-8 TIRS. 5 

 

Figure 8. Temperature anomaly from MODIS and TIRS. (a) Local temperature anomaly from MODIS. (b) Local temperature 

anomaly from Landsat-8 TIRS. 
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Figure 9. Binary lead maps from MODIS and TIRS. (a) Binary lead map from MODIS. (b) Binary lead map from Landsat-8 TIRS. 

 

Figure 10. Width distribution of leads from MODIS and TIRS in log-log plot. Data points from MODIS and TIRS are 

plotted as orange and blue dots, respectively. Power law fitting is applied. Fitting equations and R squares are shown 5 

for comparison. 
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Figure 11. Heat flux from MODIS and Landsat-8 using bulk formulae and fetch-limited model. (a) Turbulent heat flux from 

MODIS using bulk formulae. (b) Turbulent heat flux from Landsat-8 TIRS using bulk formulae. (c) Turbulent heat flux from 

Landsat-8 TIRS using fetch-limited model. 

 

Figure 12. Distribution of 2 m air temperature over leads and surface temperature of all leads, narrow leads with width <1km, and 5 

larger leads with width >5km. 

 

Figure 13. Contribution of heat flux from each lead width using bulk formulae and fetch-limited model. Turbulent heat flux 

retrieved using fetch-limited model and bulk formulae are plotted using solid lines and dash lines, respectively. Heat fluxes calculated 

using satellite surface temperature, air temperature and wind speed from reanalysis datasets are drawn in orange, simulated heat 10 

flux at △t = 5K and 10K are rendered in blue and green, respectively. 

Table 

Table 1. Satellite images and other data used in this study. 

Resource Parameters Spatial-resolution Time Notes 

Landsat-8 

TIRS 

Band5 30m 21:27 near-infrared 

Band8 15m 21:27 Panchromatic 

Band10 30m 21:27 10.60μm-11.19μm 

Band11 30m 21:27 11.50μm-12.51μm 

Terra 

MODIS 

Band31 1000m 20:55 10.78μm–11.28μm 

Band32 1000m 20:55 11.77μm–12.27μm 

ERA-interim 

Reanalysis 

10m wind 0.125°(~10km) 21:00  

2m air temperature 0.125°(~10km) 21:00  

2m dewpoint 

temperature 
0.125°(~10km) 21:00  

Table 2. Turbulent heat flux from MODIS and TIRS using bulk formulae. 

Sensors range 
Length 

(km) 

Area Heat flux 

(km2) Contribution (W) Contribution 
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MODIS 

all 2817 8074  4.63E+11  

≤1km 1050.0 1050.0 13.00% 3.28E+10 7.08% 

1km~5km 1438.1 4065.0  50.35% 1.91E+11 41.16% 

>5km 258.3 2959.0  36.65% 2.40E+11 51.76% 

TIRS 

all 10150.3 7376.2  6.59E+11  

≤1km 8502.2 2547.7 34.54% 1.68E+11 25.54% 

1km~5km 1440.7 2825.3 38.30% 2.62E+11 39.79% 

>5km 207.4 2003.3 27.16% 2.28E+11 34.67% 

Table 3. Total heat flux from Landsat-8 using width -dependent and -independent model. 

Lead category 

according to width 
Areal fraction 

Fetch-limited Bulk formulae 

Flux(W) contribution Flux(W) contribution 

Small: <1km 34.54% 2.39E+11 27.46% 1.68E+11 25.54% 

Medium: 1km~5km 38.30% 3.47E+11 39.92% 2.62E+11 39.79% 

Large: >5km 27.16% 2.83E+11 32.62% 2.28E+11 34.67% 

total  8.69E+11  6.59E+11  

Table 4. Heat flux (W) contribution from different lead category. 

 
Lead category 

Real case △T=5K, u=5m/s △T=10K, u=5m/s 

 Heat flux Contribution Heat flux Contribution Heat flux Contribution 

Bulk formulae 

<1km 1.68E+11 25.54% 1.83E+11 34.54% 3.47E+11 34.54% 

1~5km 2.62E+11 39.79% 2.02E+11 38.30% 3.84E+11 38.30% 

<5km 2.28E+11 34.67% 1.44E+11 27.16% 2.72E+11 27.16% 

total 6.59E+11  5.29E+11  1.00E+12  

Fetch-limited 

<1km 2.39E+11 27.46% 2.78E+11 36.54% 5.91E+11 37.18% 

1~5km 3.47E+11 39.92% 2.86E+11 37.64% 5.94E+11 37.40% 

<5km 2.83E+11 32.62% 1.96E+11 25.81% 4.04E+11 25.42% 

total 8.69E+11  7.60E+11  1.59E+12  

Table 5. Threshold candidates for lead detection and corresponding lead fraction. 

 Fixed1 Fixed2 Fixed3 1st Std 2nd Std 3rd Std iterative 

MODIS 
Threshold (K) 1 2 3 1.29 2.47 3.65 1.52 

Lead fraction 12.59% 6.04% 3.69% 9.73% 4.73% 2.71% 8.25% 

TIRS 
Threshold (K) 1 2 3 1.90 3.52 5.14 2.49 

Lead fraction 14.85% 8.65% 6.62% 8.93% 5.69% 2.82% 7.53% 

Table A1. Leads and pack ice pixels detected by Landsat-8 TIRS and Panchromatic images at 15m resolution. 

TIRS 

Panchromatic 
Leads Pack ice total Producer’s Accuracy 

Open water & thin ice 27039061 3172911 30211972 89.5% 

Refrozen lead 4710542 41620953 46331495  

Pack ice 471960 368561891 369033851  

total 32221563 413355756 445577319  

User’s Accuracy 83.9%    

 5 
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