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Abstract. Sea ice leads are an important feature in pack ice in the Arctic. Even covered by thin ice, leads can still serve as 

prime windows for heat exchange between the atmosphere and the ocean, especially in the winter. Lead geometry and 

distribution in the Arctic have been studied using optical and microwave remote sensing data, but turbulent heat flux over leads 

has only been measured onsite during a few special expeditions. In this study, we derive turbulent heat flux through leads at 10 

different scales using a combination of surface temperature and lead distribution from remote sensing images and 

meteorological parameters from a reanalysis dataset. First, ice surface temperature (IST) was calculated from Landsat-8 

Thermal Infrared Sensor (TIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) thermal images using a split-

window algorithm; then, lead pixels were segmented from colder ice. Heat flux over leads was estimated using two empirical 

models: bulk aerodynamic formulae and a fetch-limited model with lead width from Landsat-8. Results show that even though 15 

the lead area from MODIS is a little larger, the length of leads is underestimated by 72.9% in MODIS data compared to TIRS 

data due to the inability to resolve small leads. Heat flux estimated from Landsat-8 TIRS data using bulk formulae is 56.70% 

larger than that from MODIS data. When the fetch-limited model was applied, turbulent heat flux calculated from TIRS data 

is 32.34% higher than that from bulk formulae. In both cases, small leads accounted for more than a quarter of total heat flux 

over leads, mainly due to the large area, though the heat flux estimated using the fetch-limited model is 41.39% larger. A 20 

greater contribution from small leads can be expected with larger air–ocean temperature difference and stronger winds.  

1 Introduction 

Leads are linear structures of the ocean surface within pack ice that are exposed to the atmosphere during an opening event 

caused by various forces, such as wind and water stresses. In winter, thin ice forms quickly in newly opened leads due to the 

large temperature difference between the ocean and the atmosphere (Kwok, 2001). The opening of leads breaks the continuity 25 

of insulating ice and creates windows for a stronger air–ocean interaction. Newly opened leads are the main source of ice 

production, brine rejection, and heat transfer from the ocean to the atmosphere (Alam and Curry, 1998). Turbulent heat flux 

over open water could be two orders of magnitude larger than that through mature ice (Maykut, 1978). Although decreasing 

rapidly with growing ice thickness, ice growth rates can still be an order of magnitude larger for 50 cm thick young ice than 

for 3 m thick ice (Maykut, 1986). In the central Arctic, open water usually comprises no more than 1% of the ice pack area 30 

during the winter. However, open water, together with thin ice (<1 m) estimated to be 10% of the whole ice area, contributes 

to more than 70% of the upward heat flux (Maykut, 1978; Marcq and Weiss, 2012). A model study shows that an increased 

lead fraction by 1% can lead to local air temperature warming up to 3.5 K in winter (Lüpkes et al., 2008). 

Leads also allow more surface absorption of radiation due to their lower albedo compared to thick ice. This will accelerate 

sea ice thinning in summer and delay refreezing in early winter, therefore decrease the mechanical strength of the ice cover 35 

and allow even more fracturing, larger drifting speed and deformation, and faster export of sea ice to lower latitudes (Rampal 

et al., 2009). As the ice pack gets thinner (Kwok and Rothrock, 2009) and more mobile (Spreen et al., 2011), favorable for 

deformation and opening, networks of more intensive lead with stronger local influence are expected.  

Since the late 1970s, remote sensing images obtained by satellite sensors, including optical, thermal, and microwave, have 
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been used to detect sea ice leads in the Arctic (Fetterer and Holyer, 1989; Fily and Rothrock 1990; Fett et al., 1997). Lindsay 

and Rothrock (1995) promoted the concept of potential open water for lead detection, which requires both temperature and 

albedo differences between ice surface pixels and open water tie-points. Based on different emissivities of thin ice at two 

microwave frequencies available for the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-

E), Röhrs and Kaleschke (2012) developed a retrieval algorithm to estimate Arctic lead concentration, similar to sea ice 5 

concentration. The algorithm could provide subpixel information on lead distribution, but the resolution is still too coarse to 

detect small leads prevailing in pack ice. Willmes and Heinamann (2015) mapped pan-Arctic lead distribution at 1 km 

resolution using local temperature anomaly △TS to identify leads from surrounding thick ice. Other remote sensing data, 

including altimetry, high-resolution optical, and synthetic-aperture radar (SAR) images, were also used to identify leads in 

limited areas due to constraints of cloud contamination and data acquisition restrictions (Key et all., 1993; Miles and Barry, 10 

1998; Kwok, 2001; Weiss and Marsan, 2004; Wernecke and Kaleschke, 2015; Murashkin et al., 2018). 

Regardless of spectral characteristics used for lead detection, the scale dependence of lead statistics was explored in a few 

studies (Key et al., 1994; Weiss and Marsan, 2004; Marson et al., 2004). Key et al. (1994) studied the effects of the sensor’s 

field of view (FOV) using degraded optical images from the Landsat Multi-Spectral Scanner (MSS). They suggested that the 

mean lead width expands, and the lead fraction drops as the pixel size builds up in gradually degraded images. Assuming 15 

higher heat flux over narrow leads than wider leads, estimated turbulent heat flux was reduced by 45% as the FOV was 

degraded from 80 m to 640 m, mainly due to reduced lead fraction. 

Bulk aerodynamic formulae are frequently used in climate models to generalize the turbulent heat flux from open water 

in Arctic pack ice (Lindsay and Rothrock, 1994; Walter et al. 1995). The bulk formulae attribute heat flux over leads to wind 

speed, temperature differences between the surface and the atmosphere, and a turbulent transfer coefficient for heat, which is 20 

a function of the stability of the near-surface atmosphere and the roughness of the surface. In this approach, Lindsay and 

Rothrock (1994) estimated sensible heat flux using surface temperature retrieved from the Advanced Very-High-Resolution 

Radiometer (AVHRR). While observations suggest that for small leads, down to dozens of meters in width, the discontinuity 

between leads and pack ice causes the creation of a thermal internal boundary layer (TIBL) in the bottom atmosphere, reducing 

turbulent heat exchange on the downwind side (Venkatram, 1977; Andreas et al., 1979). Convective plumes formed above 25 

leads may further complicate the process within the TIBL (Tetzlaff et al., 2015).  

Models were developed for estimation of TIBL thickness and turbulent heat flux over coastal polynyas, leads, and ice 

edges (Alam and Curry, 1997; Andreas and Cash, 1999; Renfrew and King, 2000, Chechin and Lüpkes, 2017). Chechin and 

Lüpkes (2017) modeled boundary layer development downwind of the ice edge, potential temperature, and mix-layer height, 

and wind speed variation was analyzed as well. Renfrew and King (2000) modeled turbulent heat flux over large fetch (5–50 30 

km wide, typical for coastal polynya) during cold-air outbreaks. The dependence of turbulent heat flux on lead width was 

estimated in several studies (Andreas and Murphy, 1986; Alam and Curry, 1997; Andreas and Cash, 1999). On the basis of the 

Monin–Obukhov similarity theory and the surface renewal theory, Alam and Curry (1997) estimated turbulent heat flux over 

leads using an intricate surface roughness model (Bourassa et al., 2001). Sensible heat flux across a single lead is integrated 

from fetch 0 to fetch X. Andreas and Murphy (1986) calculated transfer coefficient CN10 at 10 m height for turbulent heat in 35 

neutral stability, using the nondimensional fetch –X/L, where L is the Obukhov length. A maximum CN10 of 1.8 × 10–3 was 

found at small fetch, and the value decrease to 1.0 × 10–3 with increasing –X/L. Andreas and Cash (1999) computed lead-

average turbulent heat flux using transfer coefficient C∗  as a function of stability parameter –h/L, where h is the fetch-

dependent height of the TIBL. For small fetch (–h/L < 6), turbulent heat is exchanged by mixed free and forced convection, 

resulting in a large C∗ and higher heat flux. 40 

A power law distribution of lead widths was also reported in various studies (Wadhams, 1981; Wadhams et al., 1985; 

Lindsay and Rothrock, 1995), indicating that small leads prevail in the Arctic. Impacts of lead width on heat flux were reported 

by Maslanik and Key (1995) and Marcq and Weiss (2012) using different width distribution models. However, fetch-limited 

models have not been applied to surface temperature fields retrieved from remote sensing imagery to estimate turbulent heat 

flux at regional scale, due to the coarse resolution of operational thermal sensors. Fortunately, the launch of Landsat-8 in 45 

February 2013 has provided a unique opportunity for estimation of turbulent heat flux with finer-resolution temperature fields. 

In this paper, we derive lead distribution using thermal images from two sensors, MODIS and TIRS aboard Terra and 
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Landsat-8, respectively, at different resolution scales. Then we estimate heat flux over leads with remote sensing temperature 

fields using both the bulk formulae and a fetch-limited model proposed by Andreas and Cash (1999). With the result, we 

analyze how the scale property of leads may affect the calculation of heat exchange through leads. 

2 Data 

Three successive scenes of Level 1 terrain-corrected (L1T) Landsat-8 TIRS images and one corresponding MODIS image 5 

acquired on April 26, 2016, were used in this study (Table 1). As shown in Fig. 1, the mosaic image of the three TIRS scenes 

covers an area of about 98,000 km2 in the marginal ice zone (MIZ) in east Beaufort Sea, with floes and leads of various lengths 

and widths spread in the region. We obtained corresponding 10 m wind vector, 2 m air temperature, and dew point temperature 

from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis dataset. This dataset 

provides global coverage with a temporal resolution of 3 hours, 0.125° grid data is available for download (~10 km in study 10 

area, interpolated from original 0.75° grid). The time difference between reanalysis data and Landsat-8 or MODIS images is 

within half an hour.  

 Willmes and Heinamann (2015) used the MOD29 ice surface temperature (IST) product (Hall and Riggs, 2015) from the 

National Snow and Ice Data Center (NSIDC) to retrieve leads. The MOD29 product is filtered for cloud contamination using 

a cloud mask from MOD35. However, inspection of the corresponding MOD29 map of the study area revealed that the pixels 15 

within leads marked as clouds are likely open water with ocean fog or plume over the surface (Fett et al., 1997). Apart from 

that, the study area within the Landsat-8 frame is mostly unobstructed by clouds. To preserve potential lead areas, we applied 

the NSIDC algorithm (Hall et al. 2001) to thermal images from MODIS L1B to calculate IST instead of using the MOD29. 

Therefore, no cloud mask procedure was performed in our study. 

The Landsat-8 satellite is in the same near-polar, sun-synchronous, 705 km circular orbit and position as the Landsat-5 20 

satellite decommissioned in 2013. Landsat-8 data are acquired in 185 km swaths and segmented into 185 km × 180 km scenes 

defined in the second Worldwide Reference System (WRS-2) of path (ground track parallel) and row (latitude parallel) 

coordinates (Arvidson et al., 2001). The TIRS instrument, a major payload aboard Landsat-8, can observe the ocean surface at 

a resolution of 100 m by using split-window thermal infrared bands, comparable to MODIS thermal infrared bands, at a 

resolution of 1000 m. The two narrower thermal infrared channels in the atmospheric window enable application of the widely 25 

used split-window algorithm (SWA) in IST retrieval rather than the single-channel method used for TIRS predecessors. 

Note that in L1T product, the TIRS bands at 100 m resolution were resampled to 30 m by cubic convolution and co-

registered with the Operational Land Imager (OLI) spectral bands. Apart from the TIRS thermal bands, the top of atmosphere 

reflectance from the Landsat-8 near-infrared band was used for classification between ice and open water in surface 

temperature retrieval. A panchromatic band with a resolution of 15 m was used as validation data for lead detection in this 30 

study. 

3 Method 

3.1 IST Retrieval 

Key et al. (1997) developed an SWA for IST retrieval from AVHRR, and the algorithm was then adapted for MODIS thermal 

images with a different set of coefficients (Hall et al. 2001). The equation is as follows: 35 

IST = a + b𝑇31 + 𝑐(𝑇31 − 𝑇32) + 𝑑[(𝑇31 − 𝑇32)(sec 𝑞 − 1)]             (1) 

where T31 and T32 are brightness temperature from MODIS thermal bands B31 and B32; a, b, c, and d are coefficients developed 

for specific sensors using a radiance transfer model; q represents the incidence angle; and sec q is the secant of q.  

Since there is no special SWA available for sea ice surface temperature retrieval from Landsat-8, a land surface temperature 

formulation (Du et al. 2015) developed for a wide range of surface types, including ice and snow, was used:  40 

𝑇𝑠 = 𝑏0 + (𝑏1 + 𝑏2
1−𝜀
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where 𝑇𝑖  and 𝑇𝑗 are the brightness temperatures measured in channels i (~11.0 μm) and j (~12.0 μm), respectively; ε is the 

mean emissivity of the two channels (ε = 0.5 [εi + εj]); and Δε is the emissivity difference between the channels (Δε = εi – εj); 

bk (k = 0, 1, ... 7) represents the algorithm coefficients derived from the simulated dataset. 

As reported in previous studies (Montanaro et al., 2014a; Barsi et al., 2014; Montanaro et al., 2014b; Montanaro et al., 

2014c), thermal infrared radiance measured by Landsat-8 TIRS suffers from straylight, which is caused by out-of-field radiance 5 

that scatters onto the detectors, adding a non-uniform banding signal across the field of view. The magnitude of this extra 

signal can be ~8% or higher (band 11) and is generally twice as large in band 11 as in band 10. Correction algorithms for this 

artifact have been developed and applied in the new version of level L1T Landsat-8 data (Montanaro et al., 2015), and the 

straylight artifact in the current product is reduced by half on average (Gerace and Montanaro, 2017). However, the artifact 

could be amplified in a surface temperature map when SWA is used, with a temperature error of 0~2 K or more (Gerace and 10 

Montanaro, 2017), which would certainly impact lead detection from IST maps. A postprocessing procedure utilizing the linear 

pattern of the straylight artifact is applied to remove this banding noise. First, a median temperature is determined for each 

image pixel from a long enough along-track-only neighborhood. Then a noise image can be obtained by detrending this median 

image (Eppler and Full, 1992), thus the surface temperature image from SWA can be improved for lead detection. 

3.2 Lead detection  15 

In remote sensing images, leads (thin ice and open water) are represented by negative albedo anomalies in the optical range, 

negative brightness temperature anomalies in near infrared (NIR), and positive surface temperature anomalies compared to the 

surrounding thick ice (Fett et al., 1997). Variance caused by uneven illumination, view angle, and air temperature should also 

be taken into account. 

Willmes and Heinemann (2015) reported the use of surface temperature anomalies to detect leads. The temperature 20 

anomaly △TS for each IST pixel is defined as a deviation from the median in a square neighborhood, thus temperature variation 

due to the air temperature field can be removed. This can be expressed in the following equation: 

∆𝑇0 = 𝐼𝑆𝑇 − 𝑀𝐼𝑆𝑇,𝑤                        (3) 

where MIST,w represents the median IST in a square neighborhood with a side length of w. This equation was adapted for 

Landsat-8 IST map using a median from an along-tract-only linear neighborhood to further minimize the straylight artifact. 25 

Since median temperature is selected as background temperature, length w should be at least twice as large as the largest lead 

width within the image area (or along the track) to preserve the lead profile and reduce the temperature gradient caused by air 

temperature variation across the image.  

Generally, surface temperature anomalies for thick ice follow normal distribution with a mean of zero, thus any large 

deviation from the mean can be assumed as a potential lead and extracted using a proper threshold. Several image-based 30 

threshold selection techniques for binary lead segmentation were compared by Willmes and Heinemann (2015), and an iterative 

threshold selection method (Ridler and Calvard, 1978) was recommended for extracting leads from a temperature anomaly 

map. Assuming an initial threshold using the mean temperature anomaly (m0) of the whole image, the iterative method seeks 

a threshold mi which is the mean of averages mA and mB from two clusters divided by mi: Leads (A) and pack ice (B). However, 

any image-based threshold method provides a threshold that can vary significantly due to temperature noise and lead 35 

distribution. For consistency in different scales, several threshold methods were compared for lead detection in both MODIS 

and TIRS temperature maps.  

Using width samples crossed by transects, Lindsay and Rothrock (1995) found mean lead width between 2 and 3 km in 

the Arctic winter; larger means are found in peripheral seas. We modified the method by using an orthogonal system (vertical, 

south-north; horizontal, west-east; Fig. 2) to determine lead width for every lead pixel. A minimum lead extent in two 40 

orthogonal directions was selected for the pixel, i.e., 𝑋 = min (x1, x2). Since the orientation of a single lead is unknown, this 

method tends to overestimate width due to a mismatch between the preset direction and the orientation of the lead (Key and 

Peckham, 1991), but the orthogonal system will help contain the error (𝑋 ≤ √2x). Since we assign lead width to every pixel 

across the lead, length 𝐿𝑖 for lead width 𝑋𝑖 can be calculated as follows: 

𝐿𝑖 =
𝑎0𝑁𝑖

𝑋𝑖
                       (4) 45 
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where 𝑎0 is the pixel size, for TIRS, the value is 30 m, for MODIS, 1km; and 𝑁𝑖 is the number of pixels for width 𝑋𝑖 = 

𝑎0i, (i = 1, 2, 3…). 

3.3 Heat flux model used for lead area 

Turbulent heat flux between the Arctic Ocean and the atmosphere, including sensible (Fs) and latent (Fl) heat flux, is mostly 

dominated by heat flux over open water and thin ice, which constitute leads in pack ice and polynya in coastal area. Turbulent 5 

heat flux over leads can be estimated using bulk aerodynamic formulae or a fetch-limited model developed based on field 

observations. 

3.3.1 Bulk aerodynamic formulae 

Assuming that temperatures in the atmospheric boundary layer are determined by the heat balance over thicker ice and 

turbulent heat exchange does not vary significantly across the narrow areas of leads, then turbulent heat fluxes are mainly 10 

determined by temperature and humidity differences between the surface and atmosphere at reference height r (Maykut, 1978). 

Sensible heat flux (Fs) and latent heat flux (Fl) are given by the following bulk formulae: 

𝐹𝑠 = 𝜌𝑎𝑐𝑝𝐶𝑠ℎ𝑢𝑟(𝑇𝑠 − 𝑇𝑟)                                  (5) 

𝐹𝑙 = 𝜌𝑎𝐿𝑣𝐶𝑙𝑒𝑢𝑟(𝑄𝑠 − 𝑄𝑟)                                   (6) 

where ρa is the air density; cp is the specific heat at constant pressure; Lv is the latent heat of vaporization; 𝑢𝑟, Tr, and Qr are 15 

wind speed, air temperature, and specific humidity at reference height r = 2 m, respectively; Ts is surface temperature; and Qs 

is specific humidity close to the surface. Assuming that air at the surface of ice or water is always saturated, the specific 

humidity at the surface can be derived as: 

𝑄s =
0.622𝑒𝑠0

𝑝−0.378𝑒𝑠0
                      (7) 

where p is the air pressure and es0 represents the saturated vapor pressure at surface temperature Ts: 20 

𝑒𝑠0 = 𝑒010
𝑎𝑡

𝑏+𝑡                       (8) 

with 𝑒0 representing saturated vapor pressure at 0 °C, approximately 6.11 hPa; t is temperature in Celsius; and a and b are 

coefficients (for water surface, a = 7.5, b = 237.3 K; for thin ice, a = 9.5, b = 265.5 K). These equations are also applied for 

specific humidity at 2 m height using dew point temperature data from ERA-interim.  

Csh and Cle are transfer coefficients for sensible heat and latent heat, calculated using equations from Oberhuber (1988) 25 

and Goosse et al. (2000) (see Appendix B). Since the wind speed and air temperature from ERA-interim are at different heights, 

a wind profile equation was used (Ray et al., 2006): 

𝑢10

𝑢𝑟
=

ln 10−ln 𝑍0

ln 𝑟−ln 𝑍0
                       (9) 

where 𝑢10 and 𝑢𝑟 are wind speed at 10 m and 2 m height, and 𝑍0 is surface roughness length. In our study area, the main 

direction of wind from the reanalysis dataset is roughly perpendicular to the dominant orientation of leads. Therefore, only the 30 

wind magnitude was used in our study.  

3.3.2 Fetch-limited model 

When cold air travels to a warmer surface, a convective atmospheric TIBL forms and thickens with distance downwind 

of the surface discontinuity or fetch X (Stull, 1988; see Fig. 2). As the wind blows over water (or thin ice), the near-surface air 

gets warmer with more vapor, while new ice accumulates at the downwind side of the lead, progressively narrows, and seals 35 

the window. Thus, the temperature and humidity differences between the air and the surface decrease. Since sensible and latent 

heat fluxes are proportional to temperature and humidity differences, respectively, turbulent heat transfer also recedes with 

increasing lead width or fetch. Another mechanism is described in Esau (2007) for leads 1–10 km wide. Under weak wind 

conditions (~2 m/s), convective overturning prevents cold breezes from penetrating into the lead area, reducing the average 

turbulent heat flux.  40 
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To estimate turbulent heat flux over small leads, fetch-limited models were developed based on a few observations 

(Andreas and Murphy, 1986; Alam and Curry; 1997; Andreas and Cash, 1999). However, the assumption of universal water 

surface in leads and the application of sea surface roughness model (Andreas and Murphy, 1986; Alam and Curry, 1997) are 

not applicable in our case, where open water and thin ice dominate. Since the signal of TIBL is absent in the coarse grid of 2 

m air temperature from the ERA reanalysis dataset, the data might not be appropriate to demonstrate the Alam and Curry 5 

(1997) model, which relies on accurate measurement of meteorological parameters. Whereas the Andreas and Cash (1999) 

model is more sensitive to lead width than atmospheric conditions (Marcq and Weiss, 2012). Therefore, only the Andreas and 

Cash (1999) model was used in our experiment.  

Andreas and Cash (1999) gave direct formulations of heat fluxes as a function of lead width X based on data fitting from 

three sets of measurements. For free convection conditions in large fetch: 10 

Fs(X) =  C∗ρaCpD(Ts − T𝑎)/∆zT                 (10) 

F𝐿(X) = C∗ρaL𝑣Dw(Qs − Qa)/∆zQ                     (11) 

where D and Dw are the molecular diffusivities of heat and water vapor in air, respectively, and ∆zT and ∆zQ are length 

scales for heat and humidity, respectively, which consider the viscosity of air v and buoyancy differences between the surface 

and reference height r: 15 

∆zT = (
𝑣D

∆B
)

1 3⁄

                     (12) 

∆zQ = (
𝑣Dw

∆B
)

1 3⁄

                        (13) 

∆B =
g

T̅
(∆T +

0.61T̅∆Q

1+0.61Q̅
)                       (14) 

where ∆B is the buoyancy difference; ∆T and ∆Q are the difference of temperature and specific humidity between surface 

and air at reference height r, respectively; and T̅ and Q̅ are the average temperature and specific humidity between them. 20 

The coefficient C∗ is a function of stability, which facilitates the generalization of Eq. (10) and (11) to the transition 

between free and forced convection, thus making them applicable to smaller fetch. C∗ is estimated using lead and polynya data: 

𝐶∗ =
0.3

0.4−ℎ/𝐿
+ 0.15                    (15) 

ℎ = 0.82 ln 𝑋 + 0.02                   (16) 

where h is the depth of the TIBL in meters as a function of lead width X, and L is the Obukhov length given in Eq. (17); L is a 25 

length scale of stability and is negative for unstable stratification, while its magnitude rises with instability. 

𝐿−1 = 8.0 ∗ (
0.65

𝑟
+ 0.079 − 0.0043𝑟)*𝑅𝑖𝑏               (17) 

where 𝑅𝑖𝑏 is the bulk Richardson number: 

𝑅𝑖𝑏 = −
𝑟𝑔

�̅�

𝑇𝑠−𝑇𝑟

𝑢𝑟
2                     (18) 

where g is acceleration due to gravity and 𝑢𝑟 is wind speed obtained from Eq. (9). Apart from lead width, meteorological 30 

parameters are also important in the model. As shown in Fig. 3, for the narrowest lead from TIRS (X = 30 m), turbulent heat 

flux, especially sensible heat, rises quickly with larger △t and stronger wind. Most importantly, assuming a constant 

temperature difference and steady crossing wind, heat flux decreases with increasing fetch and becomes saturated for lead 

width great than 1 km, as depicted in Fig. 4. As the fetch dependence of heat flux over lead is negligible for lead widths greater 

than 1 km, this model was applied to TIRS data only.  35 

4 Results 

4.1 Ice surface temperature 

IST maps retrieved from TIRS and MODIS using Eq. (1) and (2) are shown in Fig. 5. The temperature signature of small leads 
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in the northern part of the image area is largely reduced in the MODIS IST map, due to its coarse resolution and heterogeneous 

pixels, compared to that from TIRS. In addition, the banding effect of straylight is very obvious in the TIRS IST map. This 

artifact was detected and removed by using a median from the along-track linear neighborhood and detrending the median 

image (Fig. 6). The corrected TIRS IST map is shown in Fig. 5 for comparison.  

Although the median and artifact images show a little bias around large leads, the corrected TIRS IST map is very smooth 5 

and more suitable for lead detection and heat flux calculation. Scatter plots of IST from MODIS and TIRS before and after 

correction are shown in Fig. 7. The correlation of IST from two sensors estimated by interpolating MODIS IST to the TIRS 

scale (30 m) is quite good, with a Pearson coefficient of approximately 0.9 (0.902 and 0.896 before and after correction for 

straylight, respectively). The primary coefficient of linear regression improved from 1.025 to 1.004 before and after correction, 

indicating that the corrected TIRS IST is in better agreement with MODIS. However, the root mean square error (RMSE) from 10 

regressions increased from 1.216 K to 1.233 K. It also reveals that for the 250–270 K temperature range, IST retrieved from 

TIRS is generally 0.61–0.70 K higher than that from MODIS.  

4.2 Sea ice lead retrieval 

Regional temperature anomaly maps calculated from IST maps are shown in Fig. 8. The mean surface temperature anomaly is 

0.116 K with a standard deviation (Std) of 1.180 K for MODIS, and 0.283 K with a Std of 1.619 K for TIRS.  15 

Binary lead maps were generated using iterative thresholds (Fig. 9). Large floes and small leads dominate the northern 

part of the images, where temperature is lower, while two very large leads can be observed in the southern portion. The maps 

illustrate that the lead binary retrieved from MODIS captures major lead structures, but small leads are missed in most cases 

compared to leads detected from TIRS. 

Lead area estimated from MODIS is 8074.0 km2, which accounts for 8.25% of the frame area, and for TIRS, 7376.2 km2 20 

and 7.53%. Validation with Landsat-8 panchromatic images shows that large leads tend to be amplified by blurred mixed pixels 

along boundaries, while small leads are neglected due to the coarse resolution of MODIS. 

Lead width was calculated for every lead pixel in the binary maps from MODIS and TIRS, and divided into three 

categories (Table 2): small leads (width ≤ 1 km), medium leads (1 km < width ≤ 5 km), and large leads (width > 5km). Although 

the 1 km resolution is the finest for MODIS thermal, the 1 km wide lead category should provide a reasonable guess of potential 25 

small leads or subpixel leads at MODIS scale (Lindsay and Rothrock, 1995).  

The width distribution of leads from MODIS and small leads from TIRS are plotted in Fig. 10 using the lengths of leads. 

Similar to the concept of number density, the length of each lead width can be fitted with a power law distribution, and the 

exponents from power law fitting are 2.241 and 2.346 for leads from MODIS and TIRS, respectively. The power law 

distribution indicates that narrow leads are prevalent, while a larger exponent implies that smaller leads are more dominant at 30 

TIRS scale.  

The total length of leads with various widths is 10150.3 km from TIRS, including 8502.2 km (83.76%) from small leads 

with width less than 1 km, compared to a total length of 2746.4 km from MODIS, where the narrow leads (1 km wide) only 

account for 1050.0 km (38.23%). Total length of leads is underestimated by 72.9% in MODIS data compared to TIRS data. As 

for the area of leads, small leads (width ≤ 1 km) account for 34.54% of total lead area from TIRS and only 13.00% of lead area 35 

from MODIS (Table 2). 

4.3 Heat flux over leads  

IST, described in Section 4.1, and lead width from TIRS (Section 4.2) were used in bulk formulae and the fetch-limited model 

along with ERA-interim reanalysis data to estimate turbulent heat flux through leads. For consistency, the estimated heat flux 

is positive from ocean to atmosphere. 40 

4.3.1 Bulk formulae 

Turbulent heat flux over lead area is obtained by summing up sensible and latent heat flux from Eq. (5) and (6) using IST and 

lead maps retrieved from MODIS or TIRS (Fig. 11). Table 2 reveals that total heat flux over leads calculated using TIRS IST 
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is 8.40 × 1011 W over a total area of 7376.2 km2. This is 56.70% larger than that from MODIS data (5.36 × 1011 W). About 23% 

of the difference can be explained by IST bias between MODIS and TIRS, but most of the difference comes from small leads. 

Small leads account for 2.16 × 1011 W (25.75%) of total heat flux in TIRS data, almost seven times the heat flux from the 

narrow lead category in MODIS (3.10 × 1010 W, 5.79%).  

4.3.2 The Andreas and Cash (1999) model 5 

As we can see in Fig. 11 and Table 3, total heat flux over leads estimated by the fetch-limited model is 1.11 × 1012 W, 32.34% 

higher than that from bulk formulae, i.e. 8.40 × 1011 W, among which 32.95% of the difference comes from the small lead 

class. In both cases, small leads account for a quarter or more of total heat flux over all leads in both models, due to the large 

area, though the heat flux estimated using the fetch-limited model is 3.06 × 1011 W, 41.39% larger than the 2.16 × 1011 W from 

bulk formulae. For comparison, the estimated heat fluxes from medium and large lead classes also increased by 38.95% and 10 

28.10%, respectively, when the fetch-limited model was applied. However, the contribution of turbulent heat flux from large 

leads is reduced from 34.17% to 32.68%, while the contribution from small leads increased from 25.75% to 27.50%. 

Nonetheless, the fact that large leads with widths greater than 5 km account for 27.16% of total lead area but contribute more 

than 32% of total heat flux over leads is somehow contradictory to the fetch-limited theory.  

Inspection of input data revealed that the 2 m air temperature from ERA-interim has almost the same mean value around 15 

262 K as the surface temperature from Landsat-8. The temperature difference between air and surface, △t, spreads from 1.58 

to 12.38 K, with a mean of 4.88 K, along with an average wind speed of about 7 m/s at 2 m height over leads. The distributions 

of air temperature and surface temperature of leads are plotted in Fig. 12. The temperature difference over narrow leads is too 

small to obtain a robust estimation of turbulent heat flux.  

5 Discussion 20 

5.1 Threshold method 

The operational definition of a lead is a fracture or passageway through ice that is navigable by surface vessels (Canadian Ice 

Service, 2005; World Meteorological Organization, 2014). However, within any optical, thermal, or microwave image, the 

radiometric signature of a narrow lead with open water may be identical to that of a wider lead with thin ice. In most studies 

involving the utility of remote sensing data, any linear features of open water or thin ice within pack ice are regarded as leads 25 

for convenience (Fetterer and Holyer, 1989; Fily and Rothrock 1990; Lindsay and Rothrock, 1995). Due to the confusion in 

the definition of leads in remote sensing images and the need to extract lead signatures from the background, threshold 

segmentation has been frequently used (Eppler and Full, 1992; Lindsay and Rothrock, 1995; Weiss and Marsan, 2004; Marcq 

and Weiss, 2012). Willmes and Heinemann (2015) presented several threshold selection techniques for binary lead 

segmentation. However, thresholds given by image-based methods can vary significantly depending on noise level (caused by 30 

air temperature variance) and lead distribution.  

In our study, a set of thresholds was tested for extracting leads from temperature anomaly maps, areal fractions of leads 

from fixed thresholds, Std thresholds, and an iterative threshold are shown in Table 4. The obtained lead fractions are a 

composite of thresholds and contrast in surface temperature of leads compared to the surrounding ice, i.e., temperature anomaly 

Δt. Since the anomaly maps from the two sensors have different means and standard deviations, mainly due to different 35 

definitions of neighborhood in calculating △t, the results from a fixed threshold might be biased. The iterative thresholds from 

both anomaly maps are a little larger than their first Std thresholds. The difference in lead fractions from the two sensors mainly 

resulted from mixed pixels at MODIS scale, but the threshold should also be considered. When high thresholds (2nd and 3rd 

Std) are applied, the lead fraction extracted from MODIS drops quickly below that from TIRS (as shown in Table 4), and this 

is consistent with results from Key et al. (1994). While larger thresholds lead to underestimating lead distribution, lower 40 

thresholds allow more pixels to be detected as leads, also giving rise to false leads caused by air temperature variance. 

Validation with Landsat-8 panchromatic images shows that the iterative threshold detects most lead structures (89.5%) 

and exhibited better resistance against air temperature noise. Thus, iterative thresholds were selected for lead extraction in this 
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study. 

5.2 Lead width 

Lead geometry and distribution in the Arctic have been studied using optical and microwave remote sensing data (Fily and 

Rothrock, 1990; Lindsay and Rothrock, 1995; Tschudi et al., 2002). A simple one-parameter exponential model was used for 

number density distribution of lead width (Key and Peckham, 1991; Key et al., 1994; Maslanik and Key, 1995): 5 

𝑓(𝑤) =
1

𝜆
𝑒

−𝑤

𝜆                      (19) 

where w is the lead width and the single parameter λ is the mean lead width. However, a mean lead width can be oversimplified 

in diverse circumstances. Lindsay and Rothrock (1995) reported the power law distribution of lead width in AVHRR imagery: 

𝑁𝑇(𝑤) = 𝑎𝑤−𝑏                     (20) 

where NT(w) is the number density of leads of width w per kilometer of width increment; the exponent b indicates the relative 10 

frequency of large and small leads, while the coefficient a is directly related to the lead concentration and the range of widths 

over which the power law is thought to apply. The annual mean of exponent b was found to be 1.60 using AVHRR images 

(Lindsay and Rothrock, 1995). Larger values of b were reported using data with better resolution: 2 and 2.29 for submarine 

sonar observation in Fram Strait (Wadhams, 1981) and Davis Strait (Wadhams et al, 1985) when a 100 m bin width was used, 

2.1–2.6 for 20 m SPOT images in orthographic directions using different thresholds (Marcq and Weiss, 2012). Note that most 15 

of these studies used only width samples crossed by limited linear transects.  

In our study, although lead width follows the power law distribution at both scales, the fitted exponents vary from 2.241 

to 2.346 at resolution from 30 m to 1 km. Since the 30 m L1T images were resampled from the original 100 m TIRS data, the 

actual distribution of leads less than 100 m wide is debatable. In comparison with Landsat-8 TIRS and panchromatic images, 

we find that the lead map generated from the MODIS IST data neglects very small leads, but overestimates the width of other 20 

leads approximately 1 km wide. Overall, the 1 km wide lead category at MODIS scale should provide a reasonable guess of 

potential small or subpixel leads. The small leads retrieved using TIRS provide a valuable reference for the capacity of MODIS 

to detect narrow leads. 

5.3 Comparison of the models 

In both the Andreas and Murphy (1986) and Andreas and Cash (1999) models, for reference height r < 10 m, the ratio 25 

between roughness lengths for momentum and heat, Z0/ZT, is assumed to be ~e2 to calculate Obukhov length L using 

Richardson number Rib (see Eq. (17)). The calculated Obukhov length L has absolute values about 67% higher than those 

using Eq. (B8) and (B13) from the bulk formulae (Oberhuber, 1988; Goosse et al., 2000). If Eq. (B8 ) and (B13) were used to 

solve Obukhov length and coefficient C* in the Andreas and Cash (1999) model, estimated turbulent heat flux will be smaller 

(Table 3), but still 15.53% larger than that from the bulk formulae, with an even larger part of the difference from the small 30 

lead category (42.48%, compared to 32.96% in Section 4.3.2). 

Our results suggest that the contribution of heat flux from small leads mainly results from their large length, or number 

density, and vast area instead of efficiency. Though small leads are more efficient for heat exchange between the ocean and 

the atmosphere, thin ice growing in newly opened leads can quickly cover the exposed ocean surface, thus reducing heat 

exchange. Moreover, due to the mixture of subpixel leads and thick ice, the surface temperature of some pixels in small leads 35 

is much lower than the freezing point. 

Nonetheless, our results show that the fetch-limited model could be used to estimate turbulent heat flux on a regional scale 

with surface temperature fields from remote sensing. However, the fetch-limited model proposed by Andreas and Cash (1999) 

was based mainly on a few observations over open leads and polynya, while most lead pixels detected using temperature 

anomalies in our study are likely covered by thin ice (surface temperature <270 K, Fig. 12). Thus, near-surface air temperature 40 

with finer resolution is needed for validating the turbulent heat flux estimated using the fetch-limited model. 
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5.4 Heat flux for larger temperature differences 

For comparison, a test using preset meteorological conditions was performed using the TIRS lead binary. Assuming the surface 

temperature in leads is right at the freezing point, with a wind speed of 7 m/s at 2 m height and a temperature difference of 5 

K and 10 K, turbulent heat fluxes from both models were calculated (Fig. 13), and are summarized in Table 5. Note that lead 

width in Fig. 13 is on a logarithmic scale.  5 

 Clearly, turbulent heat flux estimated using the Andreas and Cash (1999) model is always higher than that using the bulk 

formulae. For both models, estimated turbulent heat flux with △t of 5 K or 10 K peaks at ~270 m, a smaller width than the 

360 m using △t obtained from TIRS IST and air temperature from ERA-interim.  

The distribution of turbulent heat flux estimated using bulk formulae with △t of 5 K and 10 K depends on the areal fraction 

from each lead category. The contribution from leads with widths greater than 1 km converges to the lower end with fluctuation. 10 

As expected, the estimated total heat flux of 1.68 × 1012 W at △t = 10 K is about twice as large as that at △t = 5 K (8.46 × 1011 

W). 

When the Andreas and Cash (1999) model was applied, small leads were found to have a larger contribution at higher △t, 

3.27 × 1011 W (35.86%) and 6.66 × 1011 W (36.57%) at △t = 5 K and 10 K, respectively, compared to the areal fraction of 

34.54%. More contributions from small leads can be expected at larger temperature differences and stronger wind in winter. 15 

6 Conclusion 

Although the same local temperature anomaly and threshold methods were applied, leads retrieved at MODIS and Landsat-8 

TIRS resolution scales presented very different geometries and distributions. Within the studied area, the total length of leads 

is 10,150.3 km from TIRS, including 8502.2 km (83.76%) from small leads with width less than 1 km. This is in contrast to 

the total length of 2746.4 km from MODIS, where the narrow leads (1 km wide) only account for 1050.0 km (38.23%). The 20 

total length of leads is underestimated by 72.9% in the MODIS data. For the area of leads, small leads (width ≤ 1km) account 

for 34.54% of the total lead area from TIRS, but only 13.00% of the total lead area from MODIS. Although the lead width 

follows the power law distribution at both scales, the fitted exponents vary from 2.241 to 2.346. 

When bulk aerodynamic formulae are applied to the reanalysis dataset, the heat flux estimated using TIRS data is 8.40 × 

1011 W, 56.70% larger than that from MODIS data (5.36 × 1011 W). About 23% of the difference can be explained by IST bias 25 

between MODIS and TIRS, but most of the difference comes from small leads. Small leads account for 2.16 × 1011 W (25.75%) 

of the total heat flux over all leads in the TIRS data, almost seven times the heat flux from the narrow lead category in MODIS 

(3.10 × 1010 W, 5.79%). 

The turbulent heat flux over leads estimated from the TIRS data by the Andreas and Cash (1999) model is 1.11 × 1012 W, 

32.34% higher than that from bulk formulae (8.40 × 1011 W). In both cases, small leads account for about a quarter of the total 30 

heat flux in both models, due to the large area, though the heat flux estimated using the fetch-limited model is 41.39% larger. 

A greater contribution from small leads can be expected with larger temperature differences and stronger wind conditions. A 

near-surface air temperature with finer resolution is still needed for validation of turbulent heat flux estimated using the fetch-

limited model before extensive application. 

Appendix A 35 

Validation using Landsat-8 panchromatic images 

 Top of atmosphere (TOA) reflectance from Landsat-8 panchromatic images were corrected for solar zenith angle and 

mosaicked for validation. Using Jenks’s natural breaks classification method (Jenks, 1963), panchromatic pixels were 

classified into three surface categories: open water and thin ice, refrozen leads, and pack ice. In terms of turbulent heat flux, 

only pixels in the open water and thin ice category were regarded as leads. As can be seen in Table A1, the producer’s accuracy 40 

of lead detection using the iterative threshold is 89.5%, with an omission error of 10.5% and a commission error of 16.1%. 
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Appendix B 

Equations used for turbulent heat flux estimation using bulk formulae (Large and Pond, 1981, 1982; Oberhuber, 1988; Goosse 

et al, 2000; Marcq and Weiss, 2012) are as follows:  

𝑐𝑠ℎ = 0.0327
𝑘

ln(𝑟/𝑧0)
Φ𝑠ℎ = 𝑐𝑠ℎ𝑁Φ𝑠ℎ                        (B1) 

𝑐𝑙𝑒 = 0.0346
𝑘

ln(𝑟/𝑧0)
Φ𝑙𝑒 = 𝑐𝑙𝑒𝑁Φ𝑙𝑒                             (B2) 5 

Φ𝑠ℎ =
√𝑐𝑀/𝑐𝑀𝑁

1−𝑐𝑠ℎ𝑁𝑘−1𝐶𝑀𝑁
−1/2

Ψ𝐻

                         (B3) 

Φ𝑙𝑒 =
√𝑐𝑀/𝑐𝑀𝑁

1−𝑐𝑙𝑒𝑁𝑘−1𝐶𝑀𝑁
−1/2

Ψ𝐿

                        (B4) 

√
𝑐𝑀

𝑐𝑀𝑁
=

1

(1−√𝑐𝑀𝑁𝑘−1Ψ𝑀)
                                  (B5) 

𝑐𝑀𝑁 =
𝑘2

(ln(
𝑟

𝑧0
))

2                              (B6) 

𝑢∗
2 = 𝑐𝑀𝑢𝑟

2                          (B7) 10 

𝑇0 = 𝑇𝑟(1 + 2.2 × 10−3𝑇𝑟𝑞𝑟)                          (B8) 

Surface roughness lengths for momentum are given as: 

𝑧0 = 0.032
𝑢∗

2

𝑔
                        (B9) 

For unstable conditions: 

Ψ𝐻(𝐴) = Ψ𝐿(𝐴) = 2 ln (
1+𝐴2

2
)                       (B10) 15 

Ψ𝑀(𝐴) = 2 ln (
1+𝐴

2
) + ln (

1+𝐴2

2
) − 2 arctan 𝐴 +

𝜋

2
                   (B11) 

A = (1 − 16(𝑟/𝐿))
1/4

                     (B12) 

r/L =
100𝑟

𝑇0𝑢𝑟
2 ((𝑇𝑠 − 𝑇𝑟) + 2.2 × 10−3𝑇0

2(𝑞𝑠 − 𝑞𝑟))                  (B13) 

Appendix C 

Constants 20 

Constants used in IST calculation from Landsat-8 TIRS (Du et al. 2015) are as follows: 

1. ASTER emissivity library (Skoković et al., 2014): 

𝜀𝑤𝑎𝑡𝑒𝑟,10 = 0.991; 𝜀𝑤𝑎𝑡𝑒𝑟,11 = 0.986; 𝜀𝑠𝑛𝑜𝑤/ice,10 = 0.986; 𝜀𝑠𝑛𝑜𝑤/ice,11 = 0.959 

𝜀�̅�𝑎𝑡𝑒𝑟 = 0.9885; Δ𝜀𝑤𝑎𝑡𝑒𝑟 = 0.005 

𝜀 s̅now/ice = 0.9725; Δ𝜀snow/ice = 0.027 25 

2. NIR reflectance threshold for classification between water and ice/snow: 0.1 

3. Water vapor content from MOD05: < 2.5 g·cm–2 

4. bi: b0~7: [–2.78009, 1.01408, 0.15833, –3.4991, 4.04487, 3.55414, –8.88394, 0.09152] 

5. RMSE: 0.34 K 

 30 

Constants used in turbulent heat flux estimation: 

Air density: ρa = 1.3 kg·m–3 
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Kinematic viscosity of air: v = 1.31 × 10–5 m2·s–1 

Molecular diffusivities of heat in the air: D = 1.86 × 10−5 m2·s−1 

Molecular diffusivities of water vapor in the air: Dw = 2.14 × 10−5 m2·s−1 

Specific heat at constant pressure: cp = 1004 J·kg–1·K–1 

Latent heat of vaporization or sublimation: Lw = 2.51 × 106 J·kg–1, Li = 2.86 × 106 J·kg–1 5 

Reference height: r = 2 m 

Gravitational constant: g = 9.8 m·s–2 

Salinity of sea water in the Beaufort Sea: Sw = 27.947 (‰) 

Freezing point of sea water:  

Ts0 = 273.15 – 0.0137- 0.05199Sw – 0.00007225Sw
2 = 271.68 K 10 
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Figure Captions 

Figure 1. Location of study area. Background image is brightness temperature from Moderate Resolution Imaging 

Spectroradiometer (MODIS) band 31 (~11 μm). Location of Landsat-8 images is marked by a red rectangle. 

Figure 2. Detection of lead width using two orthogonal directions. Lead extents in orthogonal system in v and h directions are 

measured as x1 and x2, respectively.  10 

Figure 3. Turbulent heat flux rises with increasing temperature difference △t and intense wind at lead width of 30 m. Solid 

and dashed lines represent sensible and latent heat, respectively. Wind speed is illustrated by line color. Clearly, sensible heat 

flux is basically proportional to △t. 

Figure 4. Turbulent heat flux for each width at wind speed of 5 m/s. Temperature difference between air and lead surface is 

marked by line color. 15 

Figure 5. Ice surface temperature (IST) maps from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) using split-window 

algorithms: (a) IST map from MODIS; (b) IST map from Landsat-8 TIRS; (c) corrected IST map from TIRS. 

Figure 6. Local median and noise image from TIRS IST: (a) along-track median temperature map; (b) noise image by 

detrending of median temperature map. 

Figure 7. Correlation between IST from MODIS and Landsat-8 TIRS before and after correction for straylight. Black lines 20 

are reference for x = y, red lines are linear regression lines with a fitting equation. Number density of scattered points is marked 

by color. (a) Scatter plot of IST from MODIS and Landsat-8 TIRS using split-window algorithm; (b) scatter plot of IST from 

MODIS and corrected IST from Landsat-8 TIRS. 

Figure 8. Local temperature anomalies from (a) MODIS and (b) Landsat-8 TIRS.  

Figure 9. Binary lead maps from (a) MODIS and (b) Landsat-8 TIRS.  25 

Figure 10. Width distribution of leads from MODIS and TIRS in log-log plot. Data points from MODIS and TIRS are plotted 

as orange and blue dots, respectively. Power law fitting is applied. Fitting equations and R squares are shown for comparison. 

Figure 11. Heat flux from MODIS and Landsat-8 using bulk formulae and fetch-limited model. (a) Turbulent heat flux from 

MODIS using bulk formulae; (b) turbulent heat flux from Landsat-8 TIRS using bulk formulae; (c) turbulent heat flux from 

Landsat-8 TIRS using fetch-limited model. 30 

Figure 12. Distribution of 2 m air temperature over leads and surface temperature of all leads; small leads with width <1 km, 

larger leads with width <5 km. 

Figure 13. Contribution of heat flux from each lead width using bulk formulae and fetch-limited model. Turbulent heat flux 

retrieved using fetch-limited model and bulk formulae are plotted using solid and dashed lines, respectively. Heat flux 

calculated using satellite surface temperature, air temperature, and wind speed from reanalysis datasets is drawn in orange; 35 

simulated heat flux at △t = 5 K and 10 K is in blue and green, respectively. 
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Figure 1. Location of study area. Background image is brightness temperature from Moderate Resolution Imaging 

Spectroradiometer (MODIS) band 31 (~11 μm). Location of Landsat-8 images is marked by a red rectangle. 

 

Figure 2. Detection of lead width using two orthogonal directions. Lead extents in orthogonal system in v and h directions are 5 

measured as x1 and x2, respectively.  

 

Figure 3. Turbulent heat flux rises with increasing temperature difference △t and intense wind at lead width of 30 m. Solid 

and dashed lines represent sensible and latent heat, respectively. Wind speed is illustrated by line color. Clearly, sensible heat 

flux is basically proportional to △t. 10 
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Figure 4. Turbulent heat flux for each width at wind speed of 5 m/s. Temperature difference between air and lead surface is 

marked by line color. 

 

Figure 5. Ice surface temperature (IST) maps from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) using split-window 5 

algorithms: (a) IST map from MODIS; (b) IST map from Landsat-8 TIRS; (c) corrected IST map from TIRS. 
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Figure 6. Local median and noise image from TIRS IST: (a) along-track median temperature map; (b) noise image by 

detrending of median temperature map. 

 

Figure 7. Correlation between IST from MODIS and Landsat-8 TIRS before and after correction for straylight. Black lines 

are reference for x = y, red lines are linear regression lines with a fitting equation. Number density of scattered points is marked 5 

by color. (a) Scatter plot of IST from MODIS and Landsat-8 TIRS using split-window algorithm; (b) scatter plot of IST from 

MODIS and corrected IST from Landsat-8 TIRS. 

 

Figure 8. Local temperature anomalies from (a) MODIS and (b) Landsat-8 TIRS.  
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Figure 9. Binary lead maps from (a) MODIS and (b) Landsat-8 TIRS.  

 

Figure 10. Width distribution of leads from MODIS and TIRS in log-log plot. Data points from MODIS and TIRS are plotted 

as orange and blue dots, respectively. Power law fitting is applied. Fitting equations and R squares are shown for comparison. 5 
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Figure 11. Heat flux from MODIS and Landsat-8 using bulk formulae and fetch-limited model. (a) Turbulent heat flux from 

MODIS using bulk formulae; (b) turbulent heat flux from Landsat-8 TIRS using bulk formulae; (c) turbulent heat flux from 

Landsat-8 TIRS using fetch-limited model. 

 

Figure 12. Distribution of 2 m air temperature over leads and surface temperature of all leads; small leads with width <1 km, 5 

larger leads with width <5 km. 

 

Figure 13. Contribution of heat flux from each lead width using bulk formulae and fetch-limited model. Turbulent heat flux 

retrieved using fetch-limited model and bulk formulae are plotted using solid and dashed lines, respectively. Heat flux 

calculated using satellite surface temperature, air temperature, and wind speed from reanalysis datasets is drawn in orange; 10 

simulated heat flux at △t = 5 K and 10 K is in blue and green, respectively. 

Tables 

Table 1. Satellite images and other data used in this study. 

Resource Parameters Spatial resolution Time Notes 

Landsat-8 

TIRS 

Band 5 30 m 21:27 Near-infrared 

Band 8 15 m 21:27 Panchromatic 

Band 10 30 m 21:27 10.60 μm – 11.19 μm 

Band 11 30 m 21:27 11.50 μm – 12.51 μm 

Terra 

MODIS 

Band 31 1000 m 20:55 10.78 μm – 11.28 μm 

Band 32 1000 m 20:55 11.77 μm – 12.27 μm 

ERA-interim 

Reanalysis 

10 m wind 0.125°(~10 km) 21:00 4.8~9.5 m/s 

2 m air temperature 0.125° (~10 km) 21:00 259.3~265.6 K 

2 m dew point 

Temperature 
0.125° (~10 km) 21:00 257.3~263.8 K 

Table 2. Retrieved leads from MODIS and TIRS, and turbulent heat flux estimated using bulk formulae.  

Sensor 
Lead 

category 

Length 

(km) 

Lead area Bulk formulae 

(km2) Contribution (%) Heat flux (W) Contribution (%) 

MODIS 

all 2817 8074  5.36E+11  

≤1 km 1050.0 1050.0 13.00 3.10E+10 5.79 

1 km~5 km 1438.1 4065.0 50.35 1.97E+11 36.79 



21 

 

>5 km 258.3 2959.0 36.65 3.08E+11 57.42 

TIRS 

all 10150.3 7376.2  8.40E+11  

≤1 km 8502.2 2547.7 34.54 2.16E+11 25.75 

1 km~5 km 1440.7 2825.3 38.30 3.37E+11 40.09 

>5 km 207.4 2003.3 27.16 2.87E+11 34.17 

Table 3. Estimated turbulent heat flux (W) for Landsat-8 TIRS using bulk formulae, the Andreas and Cash (1999) model, and modified 

Andreas and Cash model using Obukhov length from Eq. (B8) and (B13) .  

Lead 

category 

Bulk formulae Andreas and Cash and L Andreas and Cash (1999) 

Heat flux Contribution (%) Heat flux  Contribution (%) Heat flux Contribution (%) 

≤1 km 2.16E+11 25.75 2.72E+11 27.99 3.06E+11 27.50 

1 km~5 km 3.37E+11 40.09 3.86E+11 39.75 4.43E+11 39.81 

>5 km 2.87E+11 34.17 3.13E+11 32.25 3.63E+11 32.68 

Total 8.40E+11  9.71E+11  1.11E+12  

Table 4. Threshold candidates for lead detection and corresponding lead fractions. 

 Fixed1 Fixed2 Fixed3 1st Std 2nd Std 3rd Std Iterative 

MODIS 
Threshold (K) 1 2 3 1.29 2.47 3.65 1.52 

Lead fraction (%) 12.59 6.04 3.69 9.73 4.73 2.71 8.25 

TIRS 
Threshold (K) 1 2 3 1.90 3.52 5.14 2.49 

Lead fraction (%) 14.85 8.65 6.62 8.93 5.69 2.82 7.53 

Table 5. Turbulent heat flux (W) for higher temperature difference using Landsat-8 TIRS data and Andreas and Cash (1999) model.  

 Lead 

category 

Real case △T = 5 K, ur = 7 m/s △T = 10 K, ur = 7 m/s 

 Heat flux Contribution (%) Heat flux Contribution (%) Heat flux Contribution (%) 

Bulk 

formulae 

≤1 km 2.16E+11 25.75 2.92E+11 34.54 5.82E+11 34.54 

1~5 km 3.37E+11 40.09 3.24E+11 38.30 6.45E+11 38.30 

<5 km 2.87E+11 34.17 2.30E+11 27.16 4.58E+11 27.16 

Total 8.40E+11  8.46E+11  1.68E+12  

Fetch-

limited 

≤1 km 3.06E+11 27.50 3.27E+11 35.86 6.66E+11 36.57 

1~5 km 4.43E+11 39.81 3.45E+11 37.88 6.85E+11 37.63 

<5 km 3.63E+11 32.68 2.39E+11 26.25 4.69E+11 25.79 

Total 1.11E+12  9.11E+11  1.82E+12  

Table A1. Leads and pack ice pixels detected by Landsat-8 TIRS and panchromatic images at 15 m resolution. 5 

TIRS 

Panchromatic 
Leads Pack ice Total Producer’s accuracy (%) 

Open water and thin ice 27,039,061 3,172,911 30,211,972 89.5 

Refrozen lead 4,710,542 41,620,953 46,331,495  

Pack ice 471,960 368,561,891 369,033,851  

Total 32,221,563 413,355,756 445,577,319  

User’s accuracy (%) 83.9    

 


