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Responses to reviewers (2)

We thank the reviewers for their constructive comments which helped improve the second revised
version of the manuscript. In the present document, we provide our responses to the comments of
the two reviewers. The comments of the reviewers are reported in italic, our responses in normal
font and the corresponding modifications in the manuscript in blue. Page and line numbers referred
to in our responses correspond to the version with changes highlighted.

Reviewer 1

General comments

1. I have read the new version of the manuscript and the answers of the authors to the first
round of review. The authors addressed well the main points raised in the first round of re-
view and this improved the quality of the paper. In particular, I enjoyed reading the extended
section presenting results that illustrates well the potential of the method developed by the
authors. Therefore, I recommend this paper to be accepted for publication in TC. I made
below a few comments that the authors should consider prior to publication.

We thank Reviewer 1 for this positive evaluation.

Technical comments

1. P4 L 2: SPC are carrying out measurements at frequency higher than 1 HZ. Nishimura et
al. (2014) used the high-frequency sampling ability of the SPC to determine the speed of
particles during blowing snow events. I recommend the authors to add here something on the
high-frequency sampling ability of the SPC.

We have modified the text as follows:
...particle mass flux usually at a 1-s resolution (but raw data are measured at up to 150 kHz,
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Nishimura et al., 2014).

2. P7 L 3-7: The characteristics of the MASC has already been described in Section 2.1 and
this paragraph could be shortened.

We have shortened the text as follows:
The MASC instrument and the collected images are described in Section 2.1.

3. P 7 L 27: replace “ground surface” by “snow surface”.

Done.

4. P 13 Fig. 7: The graphs are very hard to read. Indeed, it is hard to identify the False positive
and False negative due to their restricted numbers. For some of the plots, the GMM contours
are also hardly visible. It would be very good the authors could make this figure easier to read
prior to publication.

We have modified Fig.7 to improve its readability. It remains a figure with a lot of informa-
tion...

5. P 18 L1: The occurrence of blowing snow in alpine terrain presents a strong variability due to
the influence of the topography on the atmospheric flow. Results would be certainly different
if the MASC had been placing on one of the crests surrounding the Weissflujoch.

We agree with the Reviewer that we expect more blowing snow near the crests in an alpine
terrain. Our point here is however to highlight the fact that even within a structure designed
to minimize wind effects on solid precipitation (the DFIR), we still see blowing snow occur-
rence in the MASC data.

6. P 19 Fig 12: Were these images obtained after application of the median filter? The 3 aligned
white dots on the left images suggested that it is not the case. If possible, I recommend the
authors to show the filtered images here.

We have modified the figure to display the binary images obtained after filtering.

7. P 23, L14: Missing “,” between “GMM” and “too coarse”.

Added.
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Reviewer 2

We thank very much Reviewer 2 for their in-depth and detailed evaluation of our manuscript,
which helped us clarify important aspects.

General comments

1. Primarily, it is as of yet unclear to me whether or not this Gaussian mixture method is nec-
essary or beneficial for categorizing images. Figs 6 and 7, and to some point Figure 14 seem
to suggest that the dominate separating factor for the two end-states is the image frequency.
Though there is a low finite upper limit on this frequency, this is a loose proxy for snow
particle flux in much the same way as a particle counter gives you an index of how many
times a sensor is triggered. Physically, it makes sense for the snow flux to differentiate these
two regimes as the settling velocity of falling particles is much lower than potential trans-
port speeds, and the potential rates of snow transport by the two methods are quite different.
That being said, it would benefit the manuscript greatly if the authors could show that all
the technical machinery of the Gaussian mixture model and the addition of the other image
analysis metrics (Distance Transform, Squared fractal index, Dmax) are indeed necessary to
have accuracy at this order of magnitude and that they are not superfluous technical addi-
tions. Other advantages that I may have overlooked would also benefit from being highlighted
more.

This is an important point, and we thanks the reviewer for raising it so we can better explain
and clarify our approach. As illustrated by the S values in Table 2 and the distributions in
Fig. 6, 7 and 14, the image frequency is the most informative feature to distinguish blowing
snow and precipitation images. But it must be noted that these values and figures correspond
to the training set, composed of selected images of pure blowing snow and pure precipitation.
For these “pure” cases, the image frequency would be enough to separate the two types. But
when considering all types of images, including pure blowing snow and pure precipitation
but also mixture of the two, then the other features contribute to the classification. This
is implicitly visible in Fig. 12: the time interval between the top left image (mixed towards
blowing snow) and the top right one (pure blowing snow) is about 4 s, 3 s between the top
right and the bottom left (pure precipitation), and less than 1 sec between the bottom left
and bottom right (mixed towards precipitation). The image frequency is hence similar and
even larger for the transition between pure precip and mixed precip. So the difference in
the outcome is explained by the other features used for the classification, illustrating their
importance for the mixed cases in particular.
We have added the following text in the comment of Fig. 12:
(and hence the contribution of the features other than image frequency).

2. I think it would be illuminating for a broader audience and enhance the transparency of the
manuscript if it was clearly acknowledged that the normalized angle does not actually give any
indication of what proportion of a given image is blowing snow versus precipitation, but actu-
ally only indicates what the probability is that an image is one of the two end states according
to their training data. As the methods are currently described, this is my understanding of
the Gaussian mixture model output. If this is inaccurate, it would also be of benefit to rectify
future misunderstandings with further clarification. Furthermore, for technical the paper is,
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the validation appears to be largely qualitative, with a tendency towards arguing “typically
there is more blowing snow here than there..”

The Reviewer is right in that the normalized angle corresponds to a probability that a given
mixed image is closer to pure blowing snow (normalized angle close to 1) or pure precipitation
(normalized angle close to 0).
We have added the following text in the description of the normalized angle after Eq.7:
of the considered image (and not the respective proportions within this image)

Concerning validation and its qualitative nature, the Reviewer may be confused between
the quantitative validation of the fitted GMM performed using the training set (end of Sec-
tion 4.2, Fig.8) and the application of the proposed method to the entire data sets from
the Alps and from Antarctica (Section 5), the evaluation of which is qualitative by essence
as we do not have reference data. For the specific aspect of the quantitative evaluation of
the mixing index (related to the normalized angle), we similarly do not have reference data
to compare to... But it is important to remember that the normalized angle is based on a
distance to the cluster centroids, so it is not completely arbitrary.

Specific comments

1. P2L4-10: This drifting versus blowing snow designation is unnecessary, and the authors are
inconsistent in the use of it. The more technical modes of creep, saltation, and suspensions
would be more appropriate differentiations.

We have modified this paragraph into:
Ice particles moving at the snow surface belong to one of the three main types of associated
motion: creep, saltatation and suspension (e.g. Kind, 1990). Given the fact that the ob-
servations used in the present study were collected about 3 m above the ground (or snow
surface) level, the term “blowing snow” hereinafter refers to wind-suspended ice particles.

2. P2L18-20: Please refrain from saying obviously as it undervalues the work.

We changed to “frequently”

3. P2L27: What motion detector system? This has not be referenced yet.

We added “(see Section 2.1)”, as the detection system of the MASC is described there.

4. L28-29: How was this adapted, because Praz et al., 2017 says nothing about “blowing snow”,
“drifting snow”, or “fragmented grains”.

We changed “combined with” into “In addition to”.

5. P2L31-33 Unclear motivating statement.

We have changed into: “...extracted from pictures collected by...”.

6. P3L17 Does this mean the cameras are not synchronously taking pictures? If so, the sampling
frequency is 1 Hz, a distinction of great relevance for blowing snow measurements, where
counts scale with flux. This is confusing for Figure 3. What rate is maximal?
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The pictures are synchronously taken from the three cameras, at a maximum rate of 3 Hz
as can be seen in Figure 6. A reference to Fig.6 has been added at the end of the sentence.

7. P3L20: A better comprehensive reference of (blowing) snow measurement techniques is Kinar
and Pomeroy (2015).

Thanks for the reference! We have also added it earlier in the text (3rd paragraph of the
introduction).

8. P4L5-13 Refer to the Table, and use the actual months that contained observations (8 days
Nov-Jan, etc.), so as to not overstate the amount of data used. Consistently reference the
dates (i.e. not just years for one data set and years and months for the other).

Table 1 lists the dates retained to build the training set but the actual duration of the series
is much larger. We have clarified the duration of the three data sets.

9. P4L13 Was this 11.5 days total? Please clarify.

We are sorry but we do not understand the question from the reviewer. We hope that the
clarification above answers the question.

10. P4L15 Choose not chose.

Changed.

11. P4L15 Rephrase “enough”. A sufficient number of?

Changed.

12. P4L16 classes not class.

Changed.

13. P4L16 Especially? How so?

We changed the text into:
in particular for the Antarctic data set in which mixed images are very frequent.

14. P4L16 Rephrase “appeared less trivial than expected”.

We changed the text into:
...turned out to be more complicated than expected...

15. P4L17 For those that study the cryosphere, but not East Antarctica, how far away are these
stations, and are they similar?

Neumayer is on the coast while Princess Elizabeth in about 200 km in land. These stations
are mentioned simply because the study by Gossart et al (2017) is using data collected
there, but there is no particular importance of their locations for our study. We have added
“coastal” after Neumayer and “inland” after Princess Elizabeth in the text to quickly give
an idea about the different locations of those two stations.

16. P4L19 “For the sake of generalization...” is not a sentence.

We changed the text into:
For the sake of generalization, a large number of representative events was selected across
the three campaigns.
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17. P4L20 Correct the phrase “hydrometeors types as well as snowfall rate”.

We changed the text into:
and a wide range of snowfall intensities

18. P5L5 The sentence beginning with “Similarly” seems like an incomplete or unconnected
thought.

We changed the text into:
a wide range of wind speeds and concentrations

19. P5L7-9 Why would the image frequency need to be lower than the median during pure pre-
cipitation? Is there a physical basis for that?

The median was chosen as a threshold to select values that are high (relatively to their
respective distributions), but there is nor physical reason that the values of image frequency
associated with precipitation should be below the median. This criterion on the image
frequency is used in combination with a similar one for wind and no precipitation during
the preceding hour. So all these criteria combined should ensure to select blowing snow. We
have added after “their respective median estimated over the whole campaign”:
(to select relatively high values)

20. P5L14-16 Please be consistent with tenses throughout the paper “we noticed...one could no-
tice”.

We changed “one could notice” to “we noticed” to be consistent.

21. P5L16 Is augment the right word choice here?

We changed “augment” into “enlarge”.

22. P5L19-20 What is this “uncertainty?” Is this 4263 unique instances, or 1421 unique timesteps?
Previously commented.

The uncertainty mentioned here corresponds to the uncertainty in the manual labeling of
MASC images with particular types. We changed “exact” to “assigned”.
There are 4263 images (considering all cameras independently) corresponding to 1421 unique
timestamps (triplets). We added (1421 triplets) after “4263 images”.

23. P7L6-7 Can you make a mention of the focal length of these cameras? i.e. are all particles
always in focus? This is critical for distinguishing blowing snow particles from falling snow.

The focal length is 12.5 mm, but the particles are not always in focus. An empirical quality
criterion is proposed in Praz et al., (2017) that can be used to automatically filter out images
too much out of focus, but is not used here. The following text has been added (see Section
2.1):
(with a focal length of 12.5 mm)

24. P7L12 What is the window size of your median filter? Median filters have an effective
smoothing, depending on window size, essentially blurring all edges.

This median filter is a “temporal” filter and not a spatial filter. The median image is
computed over 5 consecutive images, as mentioned on l.17.
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25. P7L16 “rarely”, not “hardly”. “in” not “on”. get rid of few or replace with multiple.

Changed.

26. P7L23 Rephrase “by a too long period of time”.

We removed “too long”.

27. P7L27 A more standard and original reference to cite for decomposition of blowing snow
grains is Schmidt, 1980 “Threshold wind-speeds and elastic impact in snow transport”.

We added the reference.

28. P7L29 A bit more effort should be made to cite papers where these ideas originated (Budd
et al., 1966 “The byrd snow drift project: outline and basic results” and Budd 1966 “The
drifting of nonuniform snow particles”).

We added the references.

29. P8L1-3 What does that mean? Sentence starting “As...”

We have modified the sentence as follows:
As the classification is performed at the image level, we need features at the same level and
the information on the geometry and size of each detected particle in the considered image
must hence be transformed into a single descriptor for that image.

30. P9L3 Replace pertinent.

We changed to “relevant”.

31. P10L7 This choice seems awfully arbitrary. Can it be backed up by anything?

This choice is based on the S values obtained for different quantiles tested. It is now men-
tioned in the text.

32. P10L14-15 And what is the significance of having the largest S value?

The distance quantified by the descriptor S (see Eq.1) is selected to rank the different possible
features that can be extracted from a 2D images as MASC pictures. We therefore select the
features corresponding to the highest S values (indicating that the selected features have the
largest discriminative potentials).

33. P10L17 Refers back to my original concern. How do we know all the other machinery sur-
rounding the image frequency is necessary?

See our response to item 1 in the section “General Comments” above.

34. P11L8 You mean many-fold not manifold.

We changed the sentence as follows:
The choice of an unsupervised approach is based on several reasons.

35. P12L1 Clear it up and define what the vectors are: “x=(image freq,...)”.

We have added: (~x = {fi} , i = 1..4, where fi are the 4 features listed in Table 2) after “four
dimensional”.
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36. P12L2 “for this purpose”.

Changed.

37. P12L21 Rephrase “In words”

Changed to “That is to say”.

38. P13L6-7 Where is the degree of mixing actually verified? I only see uncertainty later on, not
something physical. Refer to second major comment.

We do not have reference data to verify the degree of mixing (only images corresponding to
mixed cases but without an estimation of this degree of mixing). See our response to item 2
in the section “General Comments” above.

39. P13L7-8 This “likelihood” is entirely contingent on your method working. If it does not work,
being near the decision boundary means inconclusive.

The mixed cases can only appear at the edges of the GMM peaks, here centered by construc-
tion on the two “pure” ends of the spectrum that are clearly separated in the 4-dimension
space we fit the GMM in (see Fig.7 for instance). Hence the mixed cases are by construction
in between the GMM peaks.
Now the probability we derive is indeed relevant only if the fitted GMM properly describes
the empirical joint distribution. We do not have reference data for mixed cases, so we cannot
quantitatively evaluate this probability for the mixed cases, but the general trend (condi-
tioned by the GMM) is expected to be correct.

40. P13L11-13 Rephrase sentence beginning with “Nevertheless...”

The sentence has been modified as follows:
In order to investigate this issue, an additional set of images corresponding to mixed cases
was built: it exhibited clear differences in the posterior probabilities with the pure blowing
snow and pure precipitation subsets.

41. P15L1 Rephrase “The terms have usually opposite signs...”

The sentence has been rephrased as follows:
The minus in front of the logarithm on the left side of Eq. 6 is used to return positive values...

42. P16L5-7 Again, how was this generated?

The percentage values provided have been obtained by applying the proposed algorithm,
once trained on the specific subsets (see Section 4.2), to the entire data sets at hand (see
Section 2.2). We modified the text as follows to clarify this aspect:
The method presented (and fitted) in the previous sections is now applied to...

43. P16L12-13 This is not immediately clear. Precipitation particles are most clearly evident
in the top subplot, whereas the blowing snow (combined with mixed?) are dominant below.
Please clarify.

The text has been modified as follows:
It is also clear from Figure 10 (bottom) that blowing snow and mixed blowing snow are more
frequent than precipitation and mixed precipitation.
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44. Fig.10 Why is there a peak around 45 degrees? Does this not imply some tendency towards
inconclusive results as the probability is neither one nor the other? I do not recall a training
specifically for mixed grains.

This peak near 0.5 for the normalized angle is also visible in Fig.11 (Davos data set) although
slightly lower (about 0.47). In addition, there is no such peak in Fig.9 (almost pure blowing
snow and pure precip images). This behavior indicates in our view that this peak has
a physical basis and is not a pure artifact. As we do not have (quantitative) referenced
observations for mixed cases, this unfortunately remains a bit speculative...

45. Fig 11 Are these results? What ground truth do we have for a comparison? These results
seem largely qualitative.

Figure 11 displays the outcome of the propose classification method to the entire Davos data
set, as Figure 10 does it for the entire Antarctica data set. As the performance of the method
has been demonstrated to be good for pure blowing snow and pure precipitation (see Section
4.2), these figures do present results, at least for these two categories. Concerning mixed
cases, the results are less quantitative because of the lack of reference data, but still relevant
(as for instance the distributions are different between the two regions, in agreement with
the respective climatic features) and worth showing in our view.

46. P17L5 Reword sentence beginning with “The proposed...”

We modified the sentence as follows:
Beyond global statistics on various data sets as presented above, the proposed approach can
also be used to investigate the type of images at high temporal resolutions.

47. P18L1-2 This seems to imply that you are classifying each cameras images separately. How
often did the three cameras agree or disagree in the same few hundredths of a second? This
comparison would help bolster the claims that the authors are coming up with self-consistent
results. Furthermore, the image classifications self-consistent if one was to remove image fre-
quency? That is, do the other image analysis metrics represent something actually physically
relevant, or are the results then “noisy”.

About the processing of the three views independently and the consistency of the outcome,
this is explained on p.15 (l.25-28). The classification is indeed consistent and marginal
differences appear between the three views, showing the robustness of the classification. The
mention of hundredths of second was erroneous, and was changed to “a few seconds”, as
illustrated in Fig.12.
Concerning the added value of the other descriptors than the image frequency, see item 1 in
the General Comments above.

48. P18L3-4 Rephrase “the type...and mixed”.

The sentence was rephrased as follows:
the types precipitation and mixed are dominant

49. P18L5-6 Rephrase the sentence beginning “Finally...”

The sentence was changed to:
After 22:00, mixed cases dominate and some images corresponding to precipitation are de-
tected towards the end of the event
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50. Fig 12 Really hard to interpret. Please use a binary image or increase the contrast.

We have changed Fig.12 and now use the binary images.

51. Fig 13 Interesting! And whats the actual truth here? How likely is it that there was “Pure
Blowing Snow” happening concurrently with “Pure Precip”?

As with any classification (or model more generally), the truth is hardly known. The concur-
rent occurrence of blowing snow and precipitation is very likely in Dumont d’Urville, where
katabatic winds are very frequent, even during precipitation (Vignon et al., 2019). This is
now mentioned in the text.

52. Fig 14 Use more obvious overlapping patterns. It is unclear what is happening when more
than two distributions start overlapping.

We did our best but could not find a better way to figure the overlap. In addition, the regions
where more than 2 distributions overlap are limited, and although not totally clear, do not
hamper the interpretation of the main aspects of this figure.

53. P20L10 Where is Davos blowing snow? If this is blown right off of the fence tops, it should
look something like a mix of fresh precip and blowing snow as it has not had a chance to
fragment on the ground.

The amount of images corresponding to pure blowing snow in Davos is very limited (0.6%,
see Table 3) and deemed not representative, because of the DFIR. So we decided not to plot
those as we have a lot of pure blowing snow images from Antarctica.

54. P21L15-16 This has not been convincingly argued.

We have rephrased this paragraph to clarify our results.

55. P21L18-19 This is in effect a methods paper with minimal validation. At the moment, these
conclusions are suspect.

We understand the concern about the lack of validation data, for the mixed case only. This
being said, the proposed method is thoroughly evaluated for the pure blowing snow and
pure precipitation types. The text has been modified to better highlights the strengths and
limitations of our approach. But we respectfully disagree with the reviewer when they state
that our conclusions are all suspect.

56. P22L1-3 Why not use the actual weather station data nearby, instead of relying on statistics
from other years. This reliance makes the conclusions weaker than necessary.

We are not sure to get the point... The reference to Gossart et al. (2017) is used here to
show consistency of our results with existing work in the Antarctic environment. And we
do not see how we could use standard meteorological observations (without precipitation) to
infer the respective occurrence of blowing snow and precipitation.

57. P22L19-20 This should be mentioned much earlier, as there is no reason this assumption
should hold.

There is no a priori reason to have the features normally distributed, but the GMM is fitted
in order to best match the empirical distribution, by selectng the GMM parameters minimiz-
ing the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
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Identification of blowing snow particles in images from a
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Abstract. A new method to automatically discriminate between hydrometeors and blowing snow particles on Multi-Angle

Snowflake Camera (MASC) images is introduced. The method uses four selected descriptors related to the image frequency, the

number of particles detected per image as well as their size and geometry to classify each individual image. The classification

task is achieved with a two components Gaussian Mixture Model fitted on a subset of representative images of each class

from field campaigns in Antarctica and Davos, Switzerland. The performance is evaluated by labelling
:::::::
labeling

:
the subset5

of images on which the model was fitted. An overall accuracy and Cohen’s Kappa score of 99.4 and 98.8%, respectively, is

achieved. In a second step, the probabilistic information is used to flag images composed of a mix of blowing snow particles

and hydrometeors, which turns out to occur frequently. The percentage of images belonging to each class from an entire austral

summer in Antarctica and during a winter in Davos, respectively, are presented. The capability to distinguish precipitation,

blowing snow and a mix of those in MASC images is highly relevant to disentangle the complex interactions between wind,10

snowflakes and snowpack close to the surface.

Copyright statement. TEXT

1 Introduction

Over snow covered regions, ice particles can be lifted from the surface by the wind and suspended in the atmosphere. Wind-

driven snow transport is ubiquitous in the cryosphere: over complex terrain (e.g. Winstral et al., 2002; Mott and Lehning, 2010),15

over tundra/prairies (e.g. Pomeroy and Li, 2000) and over polar ice sheets (e.g. Bintanja, 2001; Déry and Yau, 2002; Palm et al.,

2011). Wind-driven snow transport must be taken into account to obtain accurate estimates of the mass balance and radiative

forcings at the surface (e.g. Gallée et al., 2001; Lesins et al., 2009; Scarchilli et al., 2010; Yang et al., 2014). In mountainous

regions, wind-transported snow also creates local accumulations and irregular deposits, being a critical factor influencing

avalanche formation (e.g. Schweizer et al., 2003). Quantifying snow transport during snowfall events and subsequent periods20

of strong winds is essential for local avalanche prediction (e.g. Lehning and Fierz, 2008). In the context of climate change, the

mass balance of the Antarctic ice sheet is of increasing relevance due to its impact on sea level rise (Shepherd et al., 2012). The

sustained katabatic winds in Antarctica generate frequent blowing snow events, that remove a significant amount of new snow
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through transport and sublimation. Wind-transported snow is hence an important factor to take into account when considering

Antarctic mass balance (e.g. Déry and Yau, 2002; Scarchilli et al., 2010; Lenaerts and van den Broeke, 2012; Das et al., 2013).

Blowing snow is also an important process for the mass balance of the Greenland ice sheet (e.g. Box et al., 2006).

The layers formed by wind-suspended ice particles are commonly separated in two classes: drifting snow when the top of

this layer is less than 2 m above ground, blowing snow above (see for instance). The present study focuses on blowing snow5

because
::
Ice

::::::::
particles

::::::
moving

::
at

:::
the

:::::
snow

::::::
surface

::::::
belong

::
to

:::
one

::
of

:::
the

:::::
three

::::
main

:::::
types

::
of

:::::::::
associated

:::::::
motion:

:::::
creep,

:::::::::
saltatation

:::
and

:::::::::
suspension

::::::::::::::
(e.g. Kind, 1990)

:
.
:::::
Given

:::
the

::::
fact

:::
that

:
the observations used for detection were collected more than 2 m above

ground (but the proposed approach could easily be extended to drifting snow if relevant data are collected/available)
::
in

:::
the

::::::
present

:::::
study

::::
were

::::::::
collected

:::::
about

:
3
:::

m
:::::
above

:::
the

::::::
ground

:::
(or

:::::
snow

:::::::
surface)

:::::
level,

:::
the

::::
term

::::::::
“blowing

:::::
snow"

::::::::::
hereinafter

:::::
refers

::
to

:::::::::::::
wind-suspended

:::
ice

:::::::
particles.10

Blowing snow is challenging to measure and characterize. Various approaches have been proposed to monitor blowing snow

at ground level: mechanical traps, nets, photoelectric or acoustic sensors, photographic systems (see Leonard et al., 2012, for a more detailed review)

:::::::::::::::::::::::::::::::::::::::
(Leonard et al., 2012; Kinar and Pomeroy, 2015). Although not specifically designed for blowing snow, present weather sen-

sors have been shown to be valuable to monitor drifting and blowing snow fluxes (e.g. Bellot et al., 2011). Remote sensing,

and lidar systems in particular, have recently been used to characterize the occurrence and depth of blowing snow layers, either15

from space (Palm et al., 2011) or near ground-level (Gossart et al., 2017). Suspended ice particles are under the influence of the

gravitational force, proportional to the size cubed while the drag force is proportional to the area (size squared). With a greater

area to mass ratio, smaller particles are thus more likely to be lifted in the suspension layer. A comparison of ten different

studies of measured and simulated particle size distributions of blowing snow, reveals mean diameters at heights above 0.2 m

ranging from 50 to 160 µm (Gordon and Taylor, 2009).20

Blowing snow may also contaminate precipitation observations collected by ground-based sensors, obviously
:::::::::
frequently in

Antarctica (e.g. Nishimura and Nemoto, 2005; Gossart et al., 2017) where winds are strong and frequent, but also in snowy

regions in general (Rasmussen et al., 2012; Naaim-Bouvet et al., 2014; Scaff et al., 2015). The issue of snowfall measurement is

complex and WMO promoted intercomparison projects to evaluate various sensors and define standards set-ups and protocols

over the last two decades, as illustrated in (Goodison et al., 1998) and the recent SPICE project (http://www.wmo.int/pages/25

prog/www/IMOP/intercomparisons/SPICE/SPICE.html).

The Multi-Angle Snowflake Camera (MASC) is a ground-based instrument designed to automatically captures high resolu-

tion (∼33.5 µm) photographs of falling hydrometeors from three different angles (Garrett et al., 2012). The MASC has been

used in previous studies to investigate snowflake properties (Garrett et al., 2015; Grazioli et al., 2017) and to help interpret

weather radar measurements (Kennedy et al., 2018). Interestingly, blowing snow particles also trigger the
:::::
MASC

:
motion de-30

tector system
:::
(see

:::::::
Section

:::
2.1), producing many images in windy environments. Combined with the

::
In

:::::::
addition

::
to

:
hydrometeor

classification techniques based on MASC images (e.g. Praz et al., 2017), the ability to discriminate between images composed

of blowing snow and precipitation particles is therefore
:::::
would

::::::::
therefore

::
be

:
relevant to characterize blowing snow, to provide

reference observations to improve its remote sensing, as well as to obtain more accurate snowfall estimates from ground-based

sensors. More generally, detailed information about the type of particles pictured
:::::::
extracted

::::
from

:::::::
pictures

::::::::
collected by a MASC35

2
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will enable us to further investigate the complex interactions between wind, snowflakes and snowpack close to the surface in

cold and windy regions.

This article presents a new method to automatically determine if an image from the MASC (and potentially other imaging

instruments) is composed of blowing snow particles, precipitating hydrometeors (snowflakes and ice crystals) or a mix of both.

The classification is accomplished by means of a Gaussian mixture model (GMM) with two components, fitted on a set of5

representative MASC images and evaluated on a manually-built validation set. The paper is organized as follows: Section 2

introduces the data sets used to develop the method and fit the GMM. Section 3 illustrates the different steps to isolate the

particles and extract related features for the clustering task. Section 4 explains the selection of the most relevant features, the

fitting of the GMM as well as the attribution of a flag for mixed images. The main results are shown in Section 5. At last,

limitations and further improvements are discussed in Section 6.10

2 Instrument and data sets

2.1 The Multi-Angle Snowflake Camera

The MASC is a ground-based instrument which automatically takes high-resolution and stereoscopic photographs of hydrom-

eteors in free fall while measuring their fall velocity. Its working mechanism is only summarized hereafter, as more details

and explanations can be found in Garrett et al. (2012), who provide an extensive description of the instrument. Three high-15

resolution cameras (2448 × 2048 pixels), separated by an angle of 36°, are attached to a ring structure and form altogether the

imaging unit (see Fig. 1). The focal point is located inside the ring at about 10 cm from each camera
::::
(with

:
a
:::::
focal

:::::
length

:::
of

::::
12.5

::::
mm). Particles falling through the ring and detected by the two horizontally aligned near-infrared emitter-receiver arrays

trigger the three flashes and the three cameras. The cameras’ apertures and exposure times were adjusted in order to maximize

the contrast on hydrometeor photographs while preventing motion blur effects, leading to a resolution of about 33.5 µm and20

a sampling area of about 8.3 cm2 (see Praz et al., 2017). The maximum frequency of triggering is 3 Hz, that is three image

triplets per second
:::
(see

::::
Fig.

::
6).

These specifications can be compared to the snow particle counter (SPC) which has been used in many studies of blowing

snow (e.g. Nishimura and Nemoto, 2005; Gordon and Taylor, 2009; Guyomarc’h et al., 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Nishimura and Nemoto, 2005; Gordon and Taylor, 2009; Kinar and Pomeroy, 2015; Guyomarc’h et al., 2019)

and can be considered as the reference instrument for monitoring blowing snow (e.g. Crivelli et al., 2016). The SPC has a con-25

trol volume of 2× 25× 0.5 mm3 and assigns particles into 32 diameter classes between 50 and 500 µm. It provides information

on particle diameter (assuming a spherical shape), particle number and particle mass flux
:::::
usually

:
at a 1-s resolution

:::
(but

::::
raw

:::
data

:::
are

::::::::
measured

::
at
:::
up

::
to

:::
150

:::::
kHz,

::::::::::::::::::
Nishimura et al., 2014

:
). For more information about the SPC, the reader is referred to the

articles mentioned above.
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Figure 1. Left: side-view of the MASC with the three flash lamps in white on top, the two detectors as white boxes on the side of the metal

ring (in black and red in front). Right: top view of the inside of the MASC, with the three cameras clearly visible.

2.2 Data sets

The MASC data used to implement and validate the present algorithm were collected during three field campaigns. The first

one took place in Davos, Switzerland during the winter 2015-2016.
::::
from

:::::::
October

::::
2015

::
to

::::
June

:::::
2016.

:
The MASC was placed

at 2540 m a.s.l in a Double Fence Intercomparison Reference (DFIR, see Fig. 2, left), designed to limit the adverse effect of

wind on the measuring instruments in its center (Goodison et al., 1998). The MASC was about 3 m above ground. The two5

other campaigns took place at the French Antarctic Dumont d’Urville station, on the coast of Adelie Land, during the austral

summer 2015-2016
::::
from

:::::::::
November

:::::
2015

::
to

:::::::
February

:::::
2015

:
and from January to July 2017 in the framework of the Antarctic

Precipitation, Remote Sensing from Surface and Space project1 (Grazioli et al., 2017; Genthon et al., 2018). The instrument

was deployed on a rooftop at about 3 m above ground (see Fig. 2, right). A collocated weather station and a micro rain radar

(MRR) were also installed. Nearly three millions images were collected during these measurement campaigns all together.10

From this great amount of data, subsets of pure precipitation and pure blowing snow images were manually selected and fur-

ther analyzed to chose
::::::
choose relevant descriptors and fit a two components GMM. The task of selecting enough representative

images from both class appeared less trivial
:
a
::::::::
sufficient

:::::::
number

::
of

:::::::::::
representative

::::::
images

:::
for

::::
both

::::::
classes

::::::
turned

:::
out

::
to

::
be

:::::
more

::::::::::
complicated than expected, especially for Antarctica, as

:
in

::::::::
particular

:::
for

::::
the

::::::::
Antarctic

::::
data

:::
set

::
in

::::::
which mixed images are

especially common
:::
very

:::::::
frequent. Gossart et al. (2017) used ceilometer data collected at the Neumayer

:::::::
(coastal)

:
and Princess15

Elizabeth
::::::
(inland)

:
stations in East Antarctica to investigate blowing snow, and they suggests that more than 90% of blowing

snow occurs during synoptic events, usually combined with precipitation. For the sake of generalization, as many representative

events as possible were
:
a
::::
large

:::::::
number

::
of

::::::::::::
representative

:::::
events

::::
was selected across the three campaigns. The goal was to cover

a wide range of hydrometeors types as well as snowfall rate
:::
and

:
a
:::::
wide

:::::
range

::
of

::::::::
snowfall

:::::::::
intensities for the precipitation

subset. Similarly, varying
:
a
:::::
wide

:::::
range

::
of

:
wind speeds and concentration densities

::::::::::::
concentrations

:
were considered to build20

1http://apres3.osug.fr
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Figure 2. Experimental set-up conditions of the MASC in a DFIR near Davos (left) and on top of a container at Dumont d’Urville (right).

the blowing snow subset. From the campaigns in Antarctica, pure blowing snow and hydrometeors events were highlighted by

comparing time series of MASC image frequency, wind speed and MRR derived rain rate, as illustrated in Figure 3. It was

noticed that during strong blowing snow events, the number of images captured by the MASC was much larger than during

precipitation events (more than 1 image per second, see Fig. 6). Potential pure blowing snow events were selected when the

MASC image frequency and wind speed were higher than their respective median observed
:::::::
estimated

:
over the whole campaign5

::
(to

:::::
select

::::::::
relatively

::::
high

::::::
values)

:
and no precipitation was detected during the preceding hour. Only events for which these crite-

ria applied for over an hour consecutively were kept. To highlight pure precipitation, the principle was the same but the criteria

were an image frequency and a wind speed lower than the median and a MRR precipitation rate greater than zero. The MRR

has a certain detection limit, so it was noticed that events selected as blowing snow could also occur during undetected light

precipitation. As a result, images from all events were rapidly checked visually and the campaign logbook consulted to ensure10

that the selection was consistent and coherent. In both cases, some events had to be removed because of obvious mixing of

blowing snow and hydrometeors.

As the MASC was deployed inside a DFIR in Davos, no blowing snow events were selected from this campaign. Although

the DFIR is supposed to shelter the inner instruments from wind disturbances, we noticed that many images do not solely

contain pure hydrometeors. From a webcam monitoring the instrumental set up, one could notice
:::
we

::::::
noticed

:
that the fresh15

snow accumulated on the edges and borders of the wooden structure of the DFIR was frequently blown away towards the

sensor. To augment
::::::
enlarge

:
the precipitation subset, events with high snowfall rate but not affected by outliers of fresh wind-

blown snow were added. Finally, some sparse images of obvious pure hydrometeor in the middle of mixed events were also

included in the training set. In total, each subset contained 4263 images and despite possible remaining (limited) uncertainty in

the exact type of images, is assumed to be accurate and reliable enough to serve as reference for the evaluation of the proposed20

technique (see Fig. 8 and Section 4.2).
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Figure 3. Time series and scatter plots of MASC image frequency, wind speed (measured at 10 m) and MRR derived rain rate for the

Antarctica 2015-2016 campaign. The grey shading indicates days during which time steps have been selected for the training set as blowing

snow (dark grey) or precipitation (light grey). In the bottom scatter plots, the markers figure the selected blowing snow and precipitation time

steps. Points on the x-axis in the left scatter plot are potential candidates for pure blowing snow.
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Table 1. Campaigns and dates of selected events for the Blowing snow (BS) and Precipitation (P) subsets.

Antarctica 15-16 Antarctica 17 Davos 15-16

11 Nov BS 08 Feb BS 23 Feb P

22 Nov P 09 Feb BS 25 Feb P

15 Dec P 18 Feb BS 04 Mar P

16 Dec P 19 Feb BS 05 Mar P

30 Dec P 16 Mar P

02 Jan P 25 Mar P

11 Jan P

28 Jan BS

3 Image Processing

3.1 Particle detection

The MASC consists of three cameras mounted on a ring structure with an angle of 36° between them and sharing the same

focal point in the middle of the ring. The motion detector system is composed of two horizontally aligned near-infrared

emitter-receiver arrays, which delimit a 8.3 cm2 detection surface in the center of the structure, where the two beams overlap (see Garrett et al., 2012, for more details)5

. A particle passing through this area triggers the cameras together with three spotlights that illuminate the target. In the present

study, all images have a size of 2448×2048 pixels.

:::
The

::::::
MASC

:::::::::
instrument

:::
and

:::
the

::::::::
collected

::::::
images

:::
are

::::::::
described

::
in

::::::
Section

:::
2.1.

:
Although a single particle activates the cameras,

many MASC pictures contain multiple particles distributed over the entire image, especially when blowing snow occurs. In

fact, the number of particles appearing on a single image is a key characteristic to distinguish between precipitation and blowing10

snow. As a result, it was deemed essential to detect all particles in each image rather than the triggering one only (which is

sometimes unidentifiable). A key challenge of this approach was to get rid of the noisy background. For this purpose, a median

filter was used. The brightness of the background strongly depends on the luminosity at the instant of the picture, which varies

according to the time of day and can change abruptly in partly cloudy conditions when the sun suddenly appears from behind

a cloud. As a result, the median filter shows better performance to remove the background when systematically re-computed15

over a small number of consecutive images. Assuming that snow particles hardly
:::::
rarely appear at the exact same position on

few
::
in

::::::
several

:
consecutive images, the median filter was chosen to be computed over blocks of 5 images per camera angle. To

ensure complete removal of the background when its brightness is greater that the corresponding median, a factor of 1.1 was

applied to the filter. Finally, as some limited residual noise can still remain in the filtered image, a small detection threshold of

0.02 grayscale intensity was applied to isolate the snow particles. Masks of the sky and reflecting parts of the background (i.e.20

metallic plates etc) were created for each camera. The multiplication factor and detection threshold are increased in the regions

delineated by the masks if the normal filtering leads locally to more pixels detected that one can expect from real particles.
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Figure 4. Raw image, median filter, filtered image and final binary image for an example of blowing snow particles. The image size is

2448×2048 pixels, corresponding to 82×68.6mm2. Original MASC images are in grey shades, but the color scheme used here aims to

enhance contrast and details for visual purposes.

These steps are illustrated in Figures 4 and 5. Issues in the filtering may occur if consecutive images are separated by a too

long period of time , during which the ambient luminosity has changed significantly (e.g. before/after the sunrise or sunset).

An example is shown in Figure B1 in Appendix B.

3.2 Feature extraction

Machine learning algorithms require a set of variables, commonly called features or descriptors, upon which the classifica-5

tion is performed. Because of the fragmentation of ice crystals when hitting the ground surface (e.g. Comola et al., 2017)

::::
snow

::::::
surface

::::::::::::::::::::::::::::::::::
(e.g. Schmidt, 1980; Comola et al., 2017), blowing snow is expected to be characterized by much smaller parti-

cle size and much higher particle concentration than snowfall (e.g. Nishimura and Nemoto, 2005; Naaim-Bouvet et al., 2014)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Budd, 1966; Budd et al., 1966; Nishimura and Nemoto, 2005; Naaim-Bouvet et al., 2014). In this study, various quantita-

tive descriptors were therefore calculated according to four different categories: the number of particles and their spread across10

the image, the size of the particles, the geometry of the particles and the frequency at which the images are taken.
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Figure 5. Raw image, median filter, filtered image and final binary image for an example of hydrometeor. The color scheme is used to

enhance details for visual purposes.

Since it is difficult to exactly guess which descriptors are the most adequate to differentiate between blowing snow and

precipitation images, an extensive collection of features was extracted from the blowing snow and precipitation subsets and

compared. The selection of the most relevant ones is explained in the next section. As the classification is performed at the

image level,
::
we

::::
need

:::::::
features

:::
at

:::
the

:::::
same

::::
level

::::
and the information on the geometry and size of each detected particle in

the image was
:::::::::
considered

:::::
image

:::::
must

:::::
hence

:::
be transformed into a single descriptor

::
for

::::
that

:::::
image. Consequently, quantiles5

ranging from 0 to 1 and moments from 1 to 10 were computed out of the distribution of the considered feature within the image.

The image frequency is a descriptor independent from the content of the image and thus from the detection of particles. It is

therefore not affected by potential image processing issues. As each image comes with its attributed timestamp, the average

number of images per minute was calculated with a moving window. The full list of all computed descriptors is displayed in

Appendix A. The extraction of features was conducted with the MATLAB Image Processing Toolbox, in particular the function10

regionprops2.
2https://ch.mathworks.com/help/images/ref/regionprops.html

9
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4 Classification

4.1 Feature selection and transformation

Selecting a pertinent
::::::
relevant

:
set of features and avoiding redundancy is essential for accurate classification, regardless of the

classification algorithm. For each of the four categories of descriptors previously mentioned, the most relevant one (according to

the criterion explained below) was kept. The descriptor maximizing the “inter-clusters over intra-clusters" distance described in5

Eq. 1 was selected. This quantity represents the distance between the mean of the blowing snow and precipitation distributions

(µBS and µP respectively), normalized by the sum of their respective standard deviations (σBS and σP respectively).

S =
|µBS −µP |
1
2 (σBS +σP )

. (1)

For the features describing the number of detected particles and their spread across the image, the cumulative distance10

transform was kept. It represents the sum over each entry of the distance transform matrix3of the binary image. The distance

transform matrix has the same dimensions as the binary image and computes, for each pixel, the Euclidean distance to the

nearest 1 element (i.e. the nearest particle). As a result, an image with many particles well distributed over its entire surface will

have a low cumulative distance transform, while a single particle, even particularly large, will have a high value. This descriptor

is more robust to image processing issues than the raw number of particles, as illustrated in Figure B2 in Appendix B.15

Concerning the size distribution of the particles detected in an image, the quantile 0.7 of the maximum diameter was selected

:::::::
(because

::
it

:::
has

::
the

:::::::
highest

:
S
:::::
value

::::::
among

:::
the

:::::::
different

::::::::
quantiles

::::::
tested). The maximum diameter (Dmax) represents the longest

segment between two edges of a particle (see Praz et al., 2017, for more details). A logarithmic transformation of this feature

was performed to make the distributions of the two classes more Gaussian. The minimum (i.e. quantile 0) squared fractal

index showed the greatest S value (hence discrimination potential) among the features related to the particle geometry indices.20

The fractal index (FRAC) is defined according to the formula proposed by McGarigal and Marks (1995) in the context of

landscape-pattern analysis. It was also more recently used to quantify stand structural complexity from terrestrial laser scans

of forests (Ehbrecht et al., 2017).

Due to its different nature, the image frequency descriptor was selected by default, but it is worth noting that it has the highest

S value (Eq. 1) among all descriptors (Table 2). The marginal distributions of the selected descriptors for the training set are25

shown in Figure 6 to provide an idea of their respective magnitude and variability, as well as to illustrate their discrimination

potential. As noted above, the image frequency is the most informative descriptor to distinguish blowing snow and precipitation.

In summary, four descriptor categories (related to particle size, particle geometry and particle distribution within the image

as well as image frequency) have been defined to distinguish images collected during blowing snow or snowfall, based on

the expected differences in particle size and concentration between the two. A number of descriptors were estimated from30

each image by computing various quantiles and moments of the distributions of geometric properties of the particles in the

3https://ch.mathworks.com/help/images/ref/bwdist.html
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Figure 6. Histograms of selected descriptors for the training blowing snow and precipitation subsets.

Table 2. Selected features and corresponding S values

Feature name S

Image frequency 4.43

Cumulative distance transform 2.89

Maximum diameter quantile 0.7 1.71

Squared fractal index quantile 0 3.81

considered image. One descriptor from each of the four categories defined above (listed in Table 2) was then selected to be

further used for classification as the one maximizing the “inter-clusters over intra-clusters" distance defined in Eq. 1.

4.2 Model fitting

The choice for the binary classification task was made on a Gaussian mixture model, an unsupervised learning technique that

fits a mixture of multivariate Gaussian distributions to the data (see Murphy, 2012; McLachlan and Basford, 1988; Moerland,5

2000, for more details). The mathematical description of a multivariate normal distribution is provided in Eq. 2.

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp{−1

2
(x−µ)TΣ−1(x−µ)}. (2)

where x is a
:::::::
Gaussian

:
multivariate random variable of dimension D, µ its mean and Σ its covariance matrix, with T the

transpose operator.

11



The justification for the
::::::
choice

::
of

::
an

:
unsupervised approach is manifold

::::
based

:::
on

::::::
several

::::::
reasons. First, unsupervised meth-

ods do not depend upon labels. Hence, it is not required to ensure correct labelling
:::::::
labeling of each image in the training set.

As mentioned earlier, many images are composed of mix of blowing snow and precipitation and it is thus difficult to guarantee

the objectivity of all given labels. Second, a clear separation observed between the two subsets would be statistically highly

significant as no prior information is provided to the learning algorithm about the classes. Third, for low dimensional problems,5

unsupervised methods are sometimes less prone to over-fitting and have a better potential of generalization. A main advantage

of the GMM compared to other unsupervised methods is to provide posterior probabilities on the cluster assignments and thus

allow for soft clustering (i.e. probabilistic assignment). In the context of the present study, this is absolutely relevant as there

exists a whole continuum of in-between cases of mixed images. It should be noted that the descriptors were selected using a

reference set (see previous section), but the clustering conducted by means of the GMM is itself unsupervised.10

A two components GMM with unshared full covariance matrices was thus fitted to the four dimensional
::::::::::::::::
(x= {fi} , i= 1..4,

:::::
where

::
fi:::

are
::::

the
:
4
:::::::
features

:::::
listed

:::
in

:::::
Table

::
2)

:
data composed of the blowing snow and precipitation subsets. The MATLAB

Statistics and Machine Learning Toolbox was used to
:::
for this purpose and the model parameters were estimated by maximum

likelihood via the Expectation-Maximization (EM) algorithm4. The features were standardized before fitting the model. The

mixing weights (or component proportions) were artificially set to 0.5 by randomly removing 80 data points from the training15

set and fitting again the GMM to have perfectly balanced classes. This step is essential as the model will then be used to classify

new images (possibly from other campaigns). There are no reasons to give more weight to one component, as the relative

proportion of blowing snow and precipitation images strongly depends on the campaign location. The posterior probabilities

are computed using Bayes rule (Murphy, 2012):

P (zi = k|xi,θ) =
P (xi|zi = k,θ)P (zi = k|θ)

P (xi|θ)
, (3)20

where zi is a discrete latent variable taking the values 1, ...,K and labelling
:::::::
labeling the K Gaussian components. P (zi =

k|xi,θ) is the posterior probability that point i belongs to cluster k (also known as the "responsibility" of cluster k for point

i). P (xi|zi = k,θ) corresponds to the density of component k at point i (i.e. N (xi|µk,Σk)) and P (zi = k|θ) represents the

mixing weight (also denoted πk). Note that the πk are positive and sum to 1. θ refers to the fitted parameters of the mixture25

model {µ1,...,µk,Σ1,...,ΣK ,π1,...,πK}. P (xi|θ) is the marginal probability at point i, which is simply the weighted sum of all

component densities:

P (xi|θ) =

K∑
k=1

πkN (xi|µk,Σk). (4)

As the concern of this study is on two components only, a more compact notation will be used for the rest of the article.

The latent variable z will be replaced by kP and kBS to refer to the precipitation and blowing snow clusters, respectively.30

The term θ, that denotes the model parameters, will be left implicit. Assuming we are at first interested by performing some

4https://ch.mathworks.com/help/stats/gaussian-mixture-models-2.html
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Figure 7. GMM contours and data points projected on the 2D planes. The colors correspond to the four entries of the confusion matrix. The

predictions result from the clustering and the ground truth is the given labels.

hard clustering (i.e. single label to a given image), an image will be classified as blowing snow if P (kBS |xi)> P (kP |xi).

In words
::::
That

::
is

::
to

:::
say, if the posterior probability to belong to the blowing snow cluster is greater than 0.5, an image will

be classified as such (because the posterior probabilities sum to 1). The model performance was assessed by simply labelling

::::::
labeling

:
the data points according to its initial subset. An overall accuracy of 99.4% and a Cohen’s Kappa score of 98.8% were

achieved. The Cohen’s Kappa statistic adjusts the accuracy by accounting for correct predictions occurring by chance (Byrt5

et al., 1993). These high values indicate a very good performance of the fitted GMM. Figure 7 presents the fitted Gaussian

components as well as the reference values (not used in the fitting) for each of the 6 possible pairs of the 4 descriptors. It clearly

illustrates the performance of the fitted GMM and the discriminative power of the descriptor related to image frequency.

To investigate the stability of the Gaussian components, the precipitation and blowing snow subsets were both randomly

permuted and divided in ten equal parts. Ten new training sets of balanced amount of each subset were created and new GMM10

fitted. Figure 8 shows on the top line the boxplots of the Gaussian components parameters µd and σd (i.e. diagonal entries

of Σ) for each of the four dimensions. The boxplots show a limited variability for each feature (below 10%), indicating a

reasonable stability of the fitted parameters. In addition, the bottom line of Figure 8 presents the learning curves, and their fast

convergence to the same horizontal line when more than 30% of the training set is used, indicates a data set large enough for a

reliable fitting of the GMM, without overfitting.15
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Figure 8. Top: stability of the parameters µ and σ (diagonal entries of Σ) for the two Gaussian components. The boxplots show the

distributions of these parameters for each dimension, after fitting the GMM on a 10-fold random split of the training set. The feature number

follows the order given in Table 2. Bottom: learning curves for the fitted GMM, showing the evolution of the train and test Cohen’s kappa

as a function of the proportion of the training samples used. The shaded areas correspond to the 25–75 percentile range computed over 40

iterations of 70-30% random train-test splitting and bold lines are the medians.

4.3 Flag for mixed images

As mentioned earlier, an asset of using a GMM model is the posterior probabilistic information that could help estimate the

degree of mixing of an image. Data points located close to the decision boundary in the multidimensional space are likely to

be composed of a mix of blowing snow particles and hydrometeors. However, distributions of posterior probabilities computed

over thousands of new images from entire campaigns, showed that they were
:::::::
appeared

::
to

::
be

:
stretched out on both end of the5

domain (i.e. close to 0 or 1) and not many images were present in between. This is probably due to the nature of the descriptors

and the resulting shapes and relative positions of the Gaussian distributions. Nevertheless, a subset of mixed images , specially

created for this purpose, highlighted clear discrepancies on
::
In

:::::
order

::
to

:::::::::
investigate

::::
this

:::::
issue,

:::
an

:::::::::
additional

:::
set

::
of

:::::::
images

:::::::::::
corresponding

::
to
::::::
mixed

:::::
cases

:::
was

:::::
built:

:
it
::::::::
exhibited

:::::
clear

:::::::::
differences

::
in

:
the posterior probabilities with the pure blowing snow

and
::::
pure precipitation subsets. However, this differentiation was

:::
This

::::::::::::
differentiation

::::
was

:::::::
however

:
around 10−6 (or 1− 10−6),10

which is not so informative as such. Consequently, it was decided to define a new index, similar to the posterior probability to
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belong to the blowing snow component, but more evenly distributed across the range ]0,1[. The new index uses the negative

logarithm of the posterior probabilities multiplied by the marginal probability. Taking the log of Eq.3 for kBS , we have (the

same applies for kP ):

− log[P (kBS |xi)P (xi)] =− log[P (xi|kBS)P (kBS)]. (5)

Noting that the term P (xi|kBS) on the right hand side isN (xi|µBS ,ΣBS), one can substitute Eq. 2 into the above expres-5

sion, which yields:

− log[P (kBS |xi)]− log[P (xi)] =
1

2
(xi−µBS)TΣ−1

BS(xi−µBS) +
1

2
log(|ΣBS |) +

D

2
log(2π)− log(P (kBS)). (6)

The quadratic term on the right hand side is the Mahalanobis Distance, which is a distance that uses a Σ−1 norm. Hence,

it represents the distance between point xi and the center of the distribution, corrected for correlations and unequal variances

in the feature space (De Maesschalck et al., 2000). The second term is related to the determinant of the covariance matrix10

and equals −3.94 for the Blowing Snow component and −2.59 for the Precipitation one. The two last terms are constant and

sum to 4.37 (the component proportions were set to 0.5 and D = 4). The right side of Eq. 6 is also known as the quadratic

discriminant function (QDF, Kimura et al., 1987), commonly noted gk(xi). The terms have usually opposite signs, but the

:::
The

:
minus in front of the logarithm in

::
on

:::
the

::::
left

:::
side

:::
of Eq. 6 is used here to return positive values and facilitate subsequent

graphical interpretations. Note that the constant term D
2 log(2π) is often removed, but in this case, it ensures that gk(x) is15

positive, even for a Mahalanobis distance of zero. Figure 9 displays a scatter plot of the quadratic discriminant values of both

components for the whole training set. The proposed index is defined as the angle of the vector representing a data point on the

scatter plot, normalized by π
2 . It is thus computed as follows:

ψ =
2

π
arctan

{
− log[P (kP |xi)P (xi)]

− log[P (kBS |xi)P (xi)]

}
. (7)

This normalized angle is bounded in ]0,1[, with values close to 1 (respectively 0) indicating a strong membership
::
of

:::
the20

:::::::::
considered

:::::
image

:::::
(and

:::
not

:::
the

:::::::::
respective

::::::::::
proportions

::::::
within

:::
this

:::::::
image) to the Blowing Snow (respectively Precipitation)

clusters. It is closely related to the asymmetry of the Mahalanobis distances between a point xi and the centers of the two

Gaussian distributions, but corrected by the term 1
2 log(|Σ|) which is different for the two components. The advantage of using

the index in this form, rather than deriving it from the Mahalanobis distances alone, is to respect the decision boundary given by

the maximum a posteriori (MAP) rule. This means, a posterior probability of 0.5 yields a ψ index of 0.5. Finally, quantiles 0.925

(ψP0.9) and 0.1 (ψBS0.1) of the ψ index distributions of the points classified as Precipitation and Blowing Snow, respectively,

are retained as thresholds to flag potential mixed images. The idea is to allow, for both classes, 10% of the training set images

being flagged as mixed. This value is qualitatively supported by the distribution shown in Figure 9. It can be changed by the

user to be more (increasing it) or less (decreasing it) strict on the classification as pure blowing snow or pure precipitation,

depending on the intended application.30

To provide the user of the method with an easily readable output, a mixing index λm is introduced by linearly rescaling

between 0 and 1 the ψ index of the images flagged as mixed (i.e. λm is not defined for pure precipitation or pure blowing snow

15



images):

λm =
0.5

0.5−ψP0.9
(ψ−ψP0.9) if ψ ∈ (ψP0.9,0.5)

=
0.5

0.5−ψBS0.1
((1−ψBS0.1)−ψ) if ψ ∈ [0.5,ψBS0.1)

(8)

The mixing index also respects the hard clustering assignment boundary at 0.5: λm > 0.5 indicates that the image contains

a mix of blowing snow and precipitation particles, but overall being closer to blowing snow and vice versa. Images with a

normalized angle outside the two mixed thresholds have a NaN index of mixing and are considered as pure blowing snow5

particles or pure hydrometeors. Results are provided treating all images independently, but the ψ index can also be averaged

among the three camera angles to provide a unique value per image identifier as well. The median of the range (max - min)

covered by the ψ values from the three individual views is about 0.08 in Davos and 0.05 at Dumont d’Urville, indicating a

limited variability between the three views.

In summary, the classification as mixed case is based on the angle characterizing the considered MASC image in the 2D10

space formed by the axis related to pure blowing snow on the one hand and the one related to pure precipitation on the other

hand. A mixing index λm is finally computed by linearly rescaling the normalized angle over the range of values corresponding

to mixed cases.

5 Results

The method presented
::::
(and

:::::
fitted)

:
in the previous sections is now tested on

::::::
applied

::
to

:
the entire Antarctica 17 campaign15

(January - July 2017) and on
::
to the entire Davos campaign (December 2015 - March 2016). About 2 ·106 images for Antarctica

and 8.5 · 105 for Davos were classified. Table 3 summarized the outcome in terms of respective proportions of pure blowing

snow, pure precipitation, mixed blowing snow and mixed precipitation, for the Antarctic and Alpine data sets. As expected, the

occurrence of blowing snow (pure + mixed) is much more frequent at Dumont d’Urville (75.6%) than at Davos (21.5%, out of

which only 0.6% of pure blowing snow).

Table 3. Percentages of MASC images per category

Class Antarctica (Jan - Jul 2017) Davos (Dec 2015 - Mar 2016)

Pure Blowing snow 36.5% 0.6%

Pure Precipitation 7.2% 39.2%

Mixed Blowing snow 39.1% 20.9%

Mixed Precipitation 17.2% 39.3%

20

Figure 10 shows (top) the distribution of the collected MASC images in the space formed by the two quadratic discriminant

(one for blowing snow, one for precipitation) as well as (bottom) the distribution of the normalized angle for the entire Antarc-

tica 17 campaign. A clear difference with Figure 9 is the large proportion of values corresponding to mixed cases: there are
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Figure 9. Top: scatter plot of the quadratic discriminant values of both components for the training set. Bottom: distributions of the normal-

ized angle for the precipitation and blowing snow subsets and thresholds to identify mixed images

much more points around the one-one line (top) and a small mode around 0.5 (bottom) for the entire campaign than for the

training set (built with much less mixed cases). It is also clear from Figure 10
:::::::
(bottom)

:
that blowing snow and mixed cases are

dominant with respect to
:::::::
blowing

:::::
snow

::
are

:::::
more

:::::::
frequent

::::
than

:::::::::::
precipitation

:::
and

::::::
mixed precipitation.

Figure 11 is similar to Figure 10 but for the entire Davos data set. In comparison with Figure 10, the occurrence of precipita-

tion is much larger (and blowing snow much smaller), which is to be expected given the difference in geographic context (Alps5

vs Antarctica) and experimental set-up (wind-protected vs no wind shield). It should be noted that mixed cases are relatively

frequent and that blowing snow still happens in Davos although the MASC was located in a wind shielding fence (DFIR).

The proposed method makes also possible the analysis of
::::::
Beyond

::::::
global

:::::::
statistics

:::
on

::::::
various

::::
data

::::
sets

::
as

::::::::
presented

::::::
above,

::
the

:::::::::
proposed

::::::::
approach

:::
can

::::
also

:::
be

::::
used

::
to
::::::::::

investigate the type of particles
:::::
images

:
at high temporal resolution

:::::::::
resolutions.

Figure 12 shows an example of the output of the algorithm and corresponding images for a few time steps during a mixed10

event. It illustrates the capability of the proposed approach to distinguish blowing snow, precipitation and mixture in individual

MASC images separated by a few tenths to hundredths of seconds
::::::
seconds

::::
(and

:::::
hence

:::
the

:::::::::::
contribution

::
of

:::
the

:::::::
features

:::::
other

:::
than

::::::
image

:::::::::
frequency). Over a longer time period, Figure 13 displays the evolution of the normalized angle for a mixed event

17



Figure 10. Top: scatter plot of the quadratic discriminant values of both components for the entire Antarctica 17 campaign. Bottom: distri-

bution of the normalized angle and corresponding classification.

during the Antarctica 17 campaign. From roughly 09:00 to 12:00, the type is dominantly
:::::
types precipitation and mixed

:::
are

::::::::
dominant, while between 12:00 and 14:00 the three types (precipitation, mixed, blowing snow) occur simultaneously.

::::
This

::
is

::
to

::
be

::::::::
expected

:
at
:::::

DDU
::::::
where

:::::::
katabatic

::::::
winds

::::
blow

::::
very

:::::::::
frequently,

:::::
even

:::::
during

:::::::::::
precipitation

::::::::::::::::::::
(e.g. Vignon et al., 2019)

:
. From

14:00 to 22:00, blowing snow becomes dominant (because of stronger winds). Finally, after
::::
After

:
22:00, mixed cases dominate

and some images corresponding to precipitation are even detected towards the end of the event. The possibility to identify5

MASC images corresponding to precipitation, blowing snow or a mixture at a temporal resolution high enough to capture the

dynamics of the event is an interesting feature for regions where both are frequently associated.

Considering the full Antarctic and Alpine data sets, it is interesting to analyze the potential differences in their characteristics.

Figure 14 presents the distributions of the four descriptors as in Figure 6, but estimated from the entire data sets and not only

the training sets (for images classified as pure blowing snow or pure precipitation). It can be seen that while the differences are10

limited for precipitation (slightly more frequent and larger in Davos than in Dumont d’Urville), they are significant for blowing

snow: the blowing snow particles appear less fragmented (larger size and fractal index), less scattered within the images (larger

distance transform) and with lower image frequencies in Davos. It should be recalled that the MASC was located in a wind-
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Figure 11. Same as Figure 10 for the entire Davos campaign.

protecting fence in Davos, so first the occurrence of blowing snow is much smaller (0.6 vs 36.5%), and second it is likely

related to fresh snow blown away from the top of the nearby fence.

The MASC resolution (33.5 µm) and thresholding (minimum 3 pixels in area) during image processing lead to an image

resolution not high enough to capture in full detail the geometry of blowing snow particles. It is nevertheless interesting to

plot the distribution of the measured sizes (associated with the MASC sampling area) for blowing snow and precipitation cases5

and compare it to existing values in the literature. Figure 15 displays the distributions of the measured size (quantified here

as Dmax) for blowing snow and precipitation in Antarctica, as well as precipitation in the Swiss Alps. To help visualize the

sometimes overlapping empirical distributions, the fitted Gamma distributions are also plotted. The units are given in [mm],

with the approximation that one pixel is ∼33.5 [µm].

As expected, the size distribution of blowing snow corresponds to smaller sizes than precipitation: the mode is around10

0.2 [mm] for blowing snow and 0.3 to 0.4 [mm] for precipitation. More importantly, the right tail of the distribution is much

larger for precipitation than for blowing snow. It should also be noted that the size is slightly larger in the Alpine data set (as

illustrated by the slightly larger mode of the fitted Gamma distributions).
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Figure 12. Consecutive MASC images from Davos and their respective classification label, normalized angle and mixing index. Label 1 is

for blowing snow. A NaN mixing index means pure hydrometeor (or pure blowing snow). A mixing index close to 1 (top left image) means

that it is near pure blowing snow, while a value close to 0 (bottom right image) indicate proximity to pure precipitation.

Figure 13. Time series of classified MASC images and corresponding ψ values (averaged over the three views) for a mixed event during the

Antarctica 17 campaign.
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Figure 14. Histograms of selected descriptors for the training blowing snow and precipitation images from the entire Dumont d’Urville and

Davos data sets.

Figure 15. Histograms and fitted Gamma distributions of Dmax for images classified as pure blowing snow and pure hydrometeors from

Antarctica and pure precipitation from the Alps.
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Nishimura and Nemoto (2005) provide size distributions of blowing snow and precipitation measured in Antarctica at

Mizuho station using a SPC. The bimodality obtained when combining blowing snow and precipitation data in Figure 15

is in general agreement with the mixed case in their Figure 10. However, the mode for blowing snow appears at a lower size

(below 50 [µm] in their Fig.7 at a height of 3.1 m). As mentioned before, this discrepancy is likely due to the limited effective

resolution in MASC images after processing. In addition, as there are usually many particles in a single image during blowing5

snow, some may be out of focus and artificially appear larger than they are. So we expect the blowing snow features extracted

from MASC data to be biased towards larger particles. It should also be noted that the sampling areas of the two instruments

are different (see Section 2.1) and this could partly explain the differences in the obtained distributions.

Overall, it appears that the MASC images, processed as explained in Praz et al. (2017), are not adapted to a detailed study

of the geometry of blowing snow particles, but are still relevant to distinguish blowing snow and precipitation, to characterize10

mixtures of both and to analyze the dynamics of blowing snow at high temporal resolutions.

6 Conclusions

A novel method to automatically detect images from the MASC instrument corresponding to blowing snow is introduced. The

classification is achieved by a two components Gaussian mixture model fitted on a subset of 8450 representative images from

field campaigns in Antarctica and Davos, Switzerland. To classify the images, the method computes four selected descriptors15

via image processing. The descriptors were selected to be relevant for discriminating between blowing snow particles and

hydrometeors as well as to be robust to image processing artifacts. The
::::::::::
classification

::
is

:::::::
achieved

:::
by

:
a
:::::::::::::
two-component

::::::::
Gaussian

::::::
mixture

::::::
model

:::::
fitted

::
on

::
a
:::::
subset

:::
of

::::
8450

::::::::::::
representative

::::::
images

:::::
from

::::
field

:::::::::
campaigns

::
in
:::::::::

Antarctica
::::
and

::::::
Davos,

:::::::::::
Switzerland.

:::
The

:::::
fitted

::::::
GMM

::
is

:::::
shown

:::
to

::::::
reliably

::::::::::
distinguish

::::::
images

::::::::::::
corresponding

:::
to

::::
pure

:::::::
blowing

:::::
snow

:::
and

:::::
pure

::::::::::
precipitation

::::::
cases.

:::
The

:
GMM posterior probabilities are

:::
also

:
mapped into a new index that allows a better identification of mixed images and20

a flag signals whether an image is classified as pure hydrometeor, pure blowing snow or mixed. For mixed images, an index

between 0 and 1 indicates
:
is
::::::::
proposed

::
to

:::::::
indicate if the image is closer to blowing snow or precipitation.

::
Its

:::::::::
evaluation

:::::::
remains

::::::::
qualitative

:::
as

::::
there

:::
are

::
no

::::::::::
quantitative

:::::::::::
observations

:::
that

:::
can

:::
be

::::
used

::
as

::::::::
reference

:::
for

:::::
mixed

:::::
cases.

:
The outputs are provided for

each image independently or for each triplet of images (i.e. information combined over the three cameras of the MASC).

Results from a measurement campaign conducted at the Dumont d’Urville station on the coast of East Antarctica from25

January to July 2017 suggest that about 75% of the images are affected by blowing snow and that about 36% may be composed

of blowing snow particles only (Table 3). The results also suggest that about 56% of the images could be made of a mix of

blowing snow and precipitation particles, which support findings that in Antarctica, blowing snow is frequently combined with

precipitation (e.g. Gossart et al., 2017). Moreover, time series of the classified images highlight that blowing snow strongly

relies upon fresh snow availability and often starts shortly after the beginning of precipitation (Fig.13), which is also consistent30

with conclusions from Gossart et al. (2017). Results from images taken inside a Double Fence Intercomparison Reference in

Davos at 2540 m a.s.l between December 2015 and March 2016, indicate that despite the sheltering structure, about 60% of

the images could be affected to some extent by blowing snow particles from adjacent fence ledges. In terms of percentage of
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images, these numbers tend to be quite large, as the image frequency is usually much higher when strong blowing snow occurs,

but the occurrence is more balanced in terms of time.

As the method was developed and tested on fundamentally different campaigns, it may have a general applicability to any

other MASC images. However, it should be noted that some descriptors depends on the particular settings (e.g. image size,

pixel resolution) used during the aforementioned campaigns and a new GMM should be fitted if different settings apply. Further5

work should be conducted to evaluate if the method can give satisfactory results on images that do not include a timestamp, as

the image frequency descriptor could not be utilized. In this case, it could be replaced by one or a couple of other descriptors

listed in Table A.1 of Appendix A to strengthen the model. The method could also be adjusted to train a model with a supervised

learning algorithm that provides posterior probabilities such as Bayesian classifiers or logistic regression. However, this would

imply some effort to increase the training set. An inter-comparison between different machine learning algorithms and the10

creation of different validation sets could help gain confidence in the results.

The main limitations of the present method are the assumption of normally distributed features through the use of the

GMM
:
,
:

the too-coarse resolution of the MASC to properly capture the small end of the distribution of blowing snow particle

size, and the dependency of the method on the defined training set. The latter illustrates the problem of generalization. Some

extremely high intensity snowfall events, higher than the ones observed during the Davos and Antarctica campaigns, could be15

erroneously classified as blowing snow with the current model due to the nature of the descriptors. In this case, higher intensity

pure snowfall events should be included in the training set. Another example is the size of the blowing snow particles. During

the campaigns in Antarctica, the MASC was set up on a rooftop at 3 m a.g.l. Several studies have demonstrated that the size

of blowing snow particles tends to decrease with height (Nishimura and Nemoto, 2005; Nishimura et al., 2014). Consequently,

blowing snow particles on images from a MASC that would have been set up at much higher or lower heights may have a20

bias relative to the fitted Gaussian distribution of the Blowing Snow cluster for Dmax. It is thus recommended to follow the

procedure described in this article and fit a new model, if the one provided does not perform well in other contexts.

Appendix A: Feature extraction
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Table A1. Full list of all computed descriptors. Descriptors related to each particle are transformed into a single descriptor for the image

(right column). Selected ones are shown with an asterisk

Image frequency* -

Number of particles detected in the image -

Distance to connect all particles -

Number of particles smaller than a given threshold -

Ratio of the area represented by all particles to the area of the smallest polygon encircling them -

Cumulative distance transform* -

Maximum diameter* quantiles 0-1, Moments 1-5

Particle area quantiles 0-1, Moments 1-5

Particle convex area quantiles 0-1, Moments 1-5

Particle perimeter quantiles 0-1, Moments 1-5

Fractal Index (FRAC), Fractal Index squared* quantiles 0-1, Moments 1-5

Gravelius compactness coefficient (ratio of the perimeter to the one of a circle with equivalent area) quantiles 0-1, Moments 1-5
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Appendix B: Image processing issues

The median filter may perform not satisfactorily, for instance when the background luminosity is changing rapidly (see Fig. B1).

Figure B1. Raw image, median filter, filtered image and final binary image for an example where the median filter does not perform well

due to changes in sky luminosity. Some artifacts appear on the top right of the binary image

Similarly, large precipitation particles may split or appear as such in the MASC images (see Fig. B2), leading to potential

biases in the number of detected particles.

Code availability. TEXT5

Data availability. TEXT

Code and data availability. The MASC images and the matlab codes used in the present work are available upon request to the authors.
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Figure B2. A precipitation particle split into fragments that could be confused with blowing snow particles. The Cumulative distance

transform descriptor is much less affected by such image processing issues than the number of particles.
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