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Abstract. Mapping Sea Ice Concentration (SIC) and understanding sea ice properties and variability is important especially

today with the recent Arctic sea ice decline. Moreover, accurate estimation of the sea ice effective temperature (Teff ) at 50 GHz

is needed for atmospheric sounding applications over sea ice and for noise reduction in SIC estimates. At low microwave

frequencies, the sensitivity to atmosphere is low, and it is possible to derive sea ice parameters due to the penetration of

microwaves in the snow and ice layers. In this study, we propose simple algorithms to derive the snow depth, the snow-5

ice interface temperature (TSnow−Ice) and the Teff of Arctic sea ice from microwave brightness temperatures (TBs). This

is achieved using the Round Robin Data Package of the ESA sea ice CCI project, which contains TBs from the Advanced

Microwave Scanning Radiometer 2 (AMSR2) collocated with measurements from Ice Mass Balance (IMB) buoys and the

NASA Operation Ice Bridge (OIB) airborne campaigns over the Arctic sea ice. The snow depth over sea ice is estimated with

an error of ∼6 cm using a multilinear regression with the TBs at 6V, 18V, and 36V. The TSnow−Ice is retrieved using a linear10

regression as a function of the snow depth and the TBs at 10V or 6V. The Root Mean Square Errors (RMSEs) obtained are 1.69

and 1.95 K respectively, with the 10V and 6V TBs. The Teff at microwave frequencies between 6 and 89 GHz is expressed as

a function of TSnow−Ice using data from a thermodynamical model combined with the Microwave Emission Model of Layered

Snow-packs. Teffs are estimated from the TSnow−Ice with a RMSE of less than 1 K.

1 Introduction15

In situ observations of the variables controling the sea ice energy and momentum balance in polar regions are scarce. One way

to overcome this observational gap is to use satellites for measuring sea ice properties. The objective of this study is to estimate

key sea ice variables from satellite remote sensing to improve Sea Ice Concentration (SIC) mapping and polar atmospheric

sounding applications.

Sea ice dynamics and thermodynamics is controlled by the regional heat budget (Maykut and Untersteiner, 1971). In general,20

sea ice is covered by snow, which can reach a mean thickness of up to ∼50 cm in the Arctic (Sato and Inoue, 2018). Snow on

sea ice strongly affects the sea ice energy and radiation balance, with its high insulation and reflectivity of solar radiation. Snow
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is a poor conductor of heat: it insulates the sea-ice and reduces the winter ice growth. In summer, its high albedo reduced the

sea-ice melting rate. Sato and Inoue (2018) suggest that the recent sea ice growth has been effectively limited by the increase in

snow depth on thin ice during winter. Current sea ice models include snow schemes (e.g., Lecomte et al. (2011)), with the snow

depth and temperature gradient in the snow pack modulating the sea ice growth and melt. Improved estimates of Snow Depth

(SD), as well as Snow-Ice interface Temperature (TSnow−Ice) from satellite observations would provide valuable information5

on the vertical thermodynamics in the snow and ice, to improve current sea ice models and therefore the prediction of sea ice

growth.

Here we propose a simple algorithm to retrieve the snow depth and the TSnow−Ice from passive microwave observations

from the Advance Microwave Scanning Radiometer 2 (AMSR2), based on a large dataset of collocated in situ and satel-

lite observations. An extensive Round Robin Data Package (RRDP) has been developed during the European Space Agency10

(ESA) sea ice Climate Change Initiative (CCI) project (http://www.seaice.dk/ecv2/rrdb-v1.1/). It contains in situ data from

the Ice Mass Balance (IMB) buoys, and the Operation Ice Bridge (OIB) airborne campaigns collocated with AMSR2 bright-

ness temperature measurements between 6 and 89 GHz. Algorithms already exist to retrieve the snow depth from microwave

observations. Markus and Cavalieri (1998) and Comiso et al. (2003) use the spectral gradient ratio of the 18.7 and 37 GHz

in vertical polarization to deduce the snow depth over sea ice. This method has been developed for dry snow in Antarctica.15

With the help of the RRDP, we will revisit the methodology for the Arctic region. Tonboe et al. (2011) showed from radiative

transfer simulations that there is a high linear correlation between the TSnow−Ice and the passive microwave observations at

6 GHz. Preliminary results from (Grönfeldt, 2015) evidenced the possibility to derive the temperature of sea ice from passive

microwave observations using simple regression models. This work will be extended here.

Passive microwave satellite observations between 50 and 60 GHz are extensively used to provide the atmospheric temper-20

ature profiles in Numerical Weather Prediction (NWP) centers, with instruments such as the Advanced Microwave Sounding

Unit-A (AMSU-A) or the Advanced Technology Microwave Sounder (ATMS). For an accurate estimation of the tempera-

ture profile in the lower atmosphere, quantifying the surface contribution is required. The surface contribution depends on

frequency and it is the product of the surface emissivity and the surface effective Temperature (Teff ). Teff is defined as the

integrated temperature over a layer corresponding to the penetration depth of the given frequency: the larger the wavelength,25

the deeper the penetration in the medium. The problem is particularly complicated over sea ice, due to its large spatial and

temporal variability and the interaction between the radiation and the medium (English, 2008; Tonboe et al., 2013; Wang et al.,

2017). The layering and the vertical structure in the snowpack, as well as the scattering from snow grains and voids, are af-

fecting the microwave emission processes (Mathew et al., 2008; Rosenkranz and Mätzler, 2008; Harlow, 2009, 2011; Tonboe,

2010; Tonboe et al., 2011). The relationship between Teff and the physical temperature profile is complicated, especially at30

microwave frequencies ≥18 GHz, but it has been shown that from 6 to 50 GHz, there is a high correlation between the Teff

and the TSnow−Ice (Tonboe et al., 2011). With TSnow−Ice estimated from the AMSR2 observations, we will deduce the sea

ice Teff at AMSR2 frequencies between 6 and 89 GHz, using linear regression.

Section 2 describes the dataset and the methodology used in this study. The snow depth retrieval is presented in Section

3. Section 4 reports on the TSnow−Ice retrieval. Finally, microwave sea ice Teff at 50 GHz is derived, for application to35
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temperature atmospheric sounding (section 5). Secion 6 discuss the snow depth and the TSnow−Ice retrieval results over a

winter over the Arctic. Section 7 concludes this study.

2 Materials and Methods

2.1 The database of collocated satellite observations and in situ measurements

The RRDP from the ESA sea ice CCI project is a dataset openly available. It contains an extensive collection of collocated5

satellite microwave radiometer data with in situ buoy or airborne campaign measurements and other geophysical parameters,

with relevance for computing and understanding the variability of the microwave observations over sea ice. It covers areas with

0% and 100% of SIC and different sea ice types (thin ice, first-year ice, multiyear ice), for all seasons including summer melt.

In our study, we will focus on Arctic sea ice during winter in regions with 100% sea ice cover. Two different dataset from the

RRDP are used: AMSR2 brightness temperatures (TBs) collocated with IMB buoy measurements, and AMSR2 TBs collocated10

with OIB airborne campaign measurements.

AMSR2 is a passive microwave radiometer on board the JAXA GCOM-W1 satellite (launch on May 18, 2012). AMSR2 has

14 channels at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5 and 89 GHz for both vertical and horizontal polarizations and it observes at 55◦

of incidence angle. In the RRDP, the spatial resolution of each channel is resampled to the 6.9 GHz resolution (32×62 km )

before collocation with buoy or airborne campaign measurements (RRDP report, Pedersen and Saldo (2016)).15

IMB buoys are installed by the Cold Regions Research and Engineering Laboratory (CRREL) to measure the ice mass

balance of the Arctic sea ice cover. Buoy components include acoustic sounders and a string of thermistors. The thermistor

string is extending from the air, through the snow cover and sea ice, into the water with the temperature sensors located every

10 cm along the string. It measures the physical temperature with an accuracy of 0.1 K. The acoustic sounder measures the

position of snow and ice surfaces (i.e., the snow depth) with a precision of 5 mm. The buoys also include instruments to20

measure air temperature, barometric air pressure and GPS geographical position (Perovich et al., 2017). Several IMB buoys

are deployed by the CRREL at different locations and times during the year. We only use Arctic buoy data recorded during

winter (December 1st to April 1st) to avoid cases where ice has started to melt. A summary of buoys information corresponding

to these criteria is given in Table 1 and the IMB buoy locations are shown in Figure 1. IMB buoy measurements collocated

with AMSR2 TBs used in this study totalize 2845 observations.25

For snow depth retrieval, we also used data from the OIB airborne campaign. The NASA OIB project has collected ice and

snow depth data in the Arctic during annual flight campaigns (March-May) since 2009. The data are especially valuable in this

context since they contain snow depth information from the snow radar onboard the aircraft, not only from single points, but

continuously along the flight path. In the RRDP, the snow depth data from OIB radar are averaged into 50 km sections to be

collocated with AMSR2 observations. For our study we use the OIB data from the 2013 campaign. It totalizes 408 observations30

over 8 days in March and April. Figure 1 summarizes the location of IMB buoys and OIB campaigns over the Arctic ocean.

It is important to note that there are discrepancies due to the scale, when comparing point measurements from buoys with the

spatially averaged data from satellites or aircrafts (Dybkjær et al., 2012). The buoy data are neither interpolated or smoothed
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Table 1. List of the IMB buoys used in this study.

Buoy Duration of measurements Deployment Position on December 1st Mean snow Mean ice

ID during winter (dd/mm/yy) location (lat; lon) depth (cm) thickness (cm)

2012G 01/12/12 - 06/02/13 Central Arctic (85,79◦; -134,88◦) 34.1 162.8

2012H 01/12/12 - 06/02/13 Beaufort Sea (80,39◦; -129,23◦) 23.2 173.3

2012J 01/12/12 - 06/02/13 Laptev Sea (82,87◦; 139,09◦) 25.5 100.3

2012L 01/12/12 - 06/02/13 Beaufort Sea (80,36◦; -138,55◦) 8.5 330.1

2013F 01/12/13 - 31/03/14 Beaufort Sea (76,15◦; -146,27◦) 50.3 145.7

2013G 01/12/13 - 31/03/14 Beaufort Sea (75,84◦; -151,46◦) 21.3 249.4

2014F 01/12/14 - 11/03/15 Beaufort Sea (76,32◦; -143,10◦) 16.1 151.8

2014I 01/12/14 - 12/03/15 Beaufort Sea (78,52◦; -148,70◦) 22.6 155.3

Figure 1. IMB buoys and OIB flight locations over Arctic sea ice. Squares indicate the position of IMB buoys on December 1st and circles

indicate the starting points of OIB campaigns.

in time. E.g., in terms of surface air temperatures measured at adjacent buoys and ice stations there are about 1 K to 4 K

differences per 100 km (Lindsay et al., 1994).
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2.2 The database of simulated effective temperature and brightness temperature from sea ice properties

For estimation of the Teff , we use a microwave emission model and a thermodynamical model to relate physical snow and ice

properties to TBs and Teffs of sea ice. The model used here is a sea ice version of the Microwave Emission Model of Layered

Snowpacks (MEMLS) (Wiesmann and Mätzler, 1999) described in Mätzler (2006). The simulations were part of an earlier

version of the RRDP and the simulation methodology is described in Tonboe (2010).5

2.3 Methodology

In this study, we propose simple algorithms, using multilinear regressions, to derive the snow depth, the TSnow−Ice, and the

Teff of sea ice from AMSR2 TBs.

The measurements from the IMB buoys 2012G, 2012H, 2012J, and 2012L, collocated with AMSR2 TBs, are used as the

training dataset for the different regressions to retrieve snow depth and TSnow−Ice. These buoys have been selected because10

they are located in different regions across the Arctic and show a large range of snow depths. The measurements from IMB

buoys 2013F, 2013G, 2014F and 2014I which are all located in the Beaufort sea are used as the testing dataset.

First, the IMB snow depth is expressed as a function of the AMSR2 TBs using a multilinear regression. The OIB data are

used for the forward selection and the IMB buoy training dataset is used to perform the regression. Second, the TSnow−Ice is

expressed as a function of TBs and snow depth, using linear regressions. An automated method to detect the position of the15

snow-ice interface on the vertical temperature profile measured by the IMB buoy thermistor string is developed (Section 4.1).

Then, the IMB buoy training dataset is used to perform the regressions. For this part there are two consecutive regressions: the

first one is done between the centered (the average was subtracted) TSnow−Ice and TBs ; the second one is done between the

TSnow−Ice corrected for the TB dependence and the snow depth. Third, the sea ice Teff at different microwave frequencies is

expressed as a function of the TSnow−Ice. This final step is using the simulations from a thermodynamical model and MEMLS20

to derive linear regression equations for the Teff at frequencies between 6 and 89 GHz. The Teff at 50 GHz is the one of

interest for atmospheric sounding applications.

3 Snow depth estimation

3.1 Multilinear regression to retrieve the snow depth

A forward selection method is used to choose the best AMSR2 channels to retrieve snow depth. It is a statistical method to25

determine the best predictor combinations (here, AMSR2 TBs) to retrieve a variable (here, snow depth). Our training dataset

for this forward selection is the OIB snow depth from the 2013 campaign included in the RRDP. OIB data are chosen for

forward selection because the data cover a large area with a wide range of snow depths. In addition, the scale of the averaged

OIB data is closer to satellite footprint than buoy measurements, increasing the consistency with the satellite observations.

Forward selection tests have also been done with the IMB buoy training dataset but the results were not satisfying. We find30
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that the best channel combination for snow depth retrieval is the combination of the 3 channels at 6.9, 18.7, and 36.5 GHz in

vertical polarization (6V, 18V, and 36V).

Then, a multilinear regression is conducted using the training dataset (IMB buoys G, H, J, L in 2012 collocated with AMSR2

TBs). The snow depth is given as a linear combination of the TBs at 6V, 18V, and 36V :

SD = 1.7701 +0.0175 ·TB6V − 0.0280 ·TB18V + 0.0041 ·TB36V , (1)5

with SD the snow depth expressed in m and TB in K. This model was trained with snow depths between 5 and 40 cm.

The forward selection has been also tested constraining the number of predictors to 2 and 4. The combinations obtained

are: 18V and 36V for 2 channels, and 6V, 18V, 36V, and 89V for 4 channels. Then, the multilinear regression has been

performed using these combinations of 2 or 4 channels. The results show that the 3 channel combination is the best (see results

in Table 2), in terms of RMSE and correlation, comparing to the 2 or 4 channel combination (Comparing with IMB buoys10

measurements except 2013F buoy, RMSE=4.85 cm and R=0.68 using 2 channels, and RMSE=12.19 cm and R=0.52 using 4

channels. Comparing with OIB data, RMSE=8.04 cm, R=0.67 using 2 channels and RMSE=7.8 cm, R=0.87 using 4 channels).

3.2 Results of the snow depth retrieval

Figure 2 shows the comparison between the observed snow depth measured by the acoustic sounder of IMB buoys, the regressed

snow depth computed from AMSR2 TBs with equation 1, and the snow depth estimate from Markus and Cavalieri (1998).15

The RMSE between the IMB buoys snow depth observations and our snow depth regression is 10.6 cm and the correlation

coefficient is 0.65, using all the IMB buoys. For the Markus and Cavalieri (1998) snow depth, the RMSE is 15.7 cm and the

correlation coefficient is 0.53. The snow depth estimation of Markus and Cavalieri (1998) fits well the snow depth from the

buoy 2013F compared to our regression, but overestimates the snow depth of the buoy 2013G, 2014F, and 2014I by about

15 cm. Therefore, our snow depth regression is more appropriate for these buoy measurements except for the buoy 2013F.20

The buoy 2013F observes a large snow depth (> 40 cm) which is outside the bounds of our snow depth model. Tests are

conducted to improve the estimation, including the 2013F buoy in the training dataset, with equal numbers of observations

for different range of snow depths: it does not improve the results. The Markus and Cavalieri (1998) model and our model

obtained the same snow depth estimation between buoys 2013G and 2013F. It is consistent because these buoys are spatialy

very close. Therefore, we suspect that the 2013F buoy is located on a ridge or hummock where the local snow depth is large25

but not detectable at the satellite footprint scale. Without including the buoy 2013F in the computation, the RMSE for our snow

depth model is 5.1 cm and the correlation coefficient is 0.77.

We also compare the snow depth retrievals with the measurements of the 2013 OIB campaigns (see Figure 3). For our snow

depth regression (Eq. 1) and Markus and Cavalieri (1998) estimate, the RMSEs are 6.26 cm and 7.25 cm, respectively, and

the correlation coefficients are both 0.87. All the results are summarized in Table 2. Note that the uncertainties on OIB data30

for the 2013 campaigns are between 2 cm and 22 cm with a mean standard deviation of 11 cm. Spatial scales are different

when comparing satellite measurements or airborne campaign measurements (which have an extended footprint) with buoy
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Table 2. Snow depth retrieval scores

Data and retrieval method Correlation RMSE (cm)

IMB buoys

Our regression (Eq. 1) 0.65 10.6

Markus and Cavalieri (1998) 0.53 15.7

IMB buoys without 2013F

Our regression (Eq. 1) 0.77 5.1

OIB campaigns (2013)

Our regression (Eq. 1) 0.87 6.26

Markus and Cavalieri (1998) 0.87 7.25

Figure 2. Time series of the comparison between snow depths from IMB buoy observations, our multilinear regression (Eq. 1), and the

estimate of Markus and Cavalieri (1998). The begin of the measurements with a new IMB buoy is indicated on the x-axis.

measurements. Discrepancies can appear due to the spatial variability of the snow depth. It can explain that the correlation is

higher when comparing snow depth estimated from AMSR2 TBs with the snow depth observed from OIB radar.

4 Snow-ice interface temperature estimation

4.1 Automatic interface position detection

During winter the air temperature is very cold (-30◦C) meaning that the snow surface temperature is cold compared to ice and5

water temperatures. Through sea ice, the temperature profile is nearly piecewise linear and temperature increases with depth

(see Figure 4). In the air, the temperature gradient is small because of turbulent mixing. In the snow, the temperature gradient is

highest (∼35 K/m) due to the thermal properties of snow. Therefore, air-snow and snow-ice interface positions can be detected

by changes in the temperature gradient. At the snow-air interface the second derivative of the temperature profile reaches a
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Figure 3. Time series of the comparison between snow depths from OIB observations, our multilinear regression (Eq. 1), and the estimate of

Markus and Cavalieri (1998). The begin of the measurements with a new OIB campaign is indicated on the x-axis.

Figure 4. Averaged temperature profile (From December to February) measured by the IMB buoy 2012G, with air-snow and snow-ice

interface levels detected with our automated method.

maximum. At the snow-ice interface, the temperature gradient being lower in the ice than in the snow, the second derivative

of the temperature profile reaches a minimum. Using these properties of the sea ice temperature profile, an automated method

is implemented to detect the air-snow and the snow-ice interface positions in the temperature profile measured by the buoy

thermistor string.

Figure 4 shows an averaged temperature profile through sea ice during winter, with the air-snow and snow-ice interface5

positions detected with our automated method. This method performs best during winter when the air is cold. It may not be

applicable if the snow depth is lower than the vertical resolution of the thermistor string (10 cm), or if sea ice start to melt and

the temperature profile develops gradually toward an isothermal state.
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Figure 5. Correlation coefficient between the TSnow−Ice from IMB buoys and the AMSR2 TBs.

4.2 Correlation between the brightness temperature and the snow-ice interface temperature

During winter, the vertical position of the snow-ice interface, with respect to the buoy thermistor string, is fixed. The thermistor

string is frozen into the ice which means that the thermistor at the snow-ice interface will stay at that interface unless there is

surface melt or snow ice formation and this rarely happens during winter. For each IMB buoy, the snow-ice interface is detected

with our automated method described in section 4.1.5

We use a correlation analysis to select the TBs at different frequencies describing the variability of the TSnow−Ice. Figure

5 shows the correlation coefficient between TSnow−Ice and AMSR2 TBs computed using the data from all IMB buoys (Table

1). The 89 GHz TBs are highly correlated with the air temperature (R>0.75). The 18.7, 23.8 and the 36.5 GHz TBs have a low

correlation with TSnow−Ice because of microwave scattering in the snow or shallow microwave penetration into the snow. The

7.3 GHz channel is ignored because it contains practically the same information as the 6.9 GHz channel. The TBs at 6.9 and10

10.65 GHz in vertical polarization, have the highest correlation with TSnow−Ice (R>0.5). Therefore the 10.65 and the 6.9 GHz

in vertical polarization (10V and 6V) channels are selected as inputs to the linear regression to retrieve the TSnow−Ice.

4.3 Linear regressions to retrieve the snow-ice interface temperature

To express the TSnow−Ice as a function of the TB at 6V and 10V, the linear regressions are calculated on centered data. For each

buoy, the averaged TSnow−Ice is subtracted from the TSnow−Ice measurements (the same is done with the TB measurements).15

Thus, the temperature offset between the buoys is removed and the slope in the linear regression is unchanged. Figure 6 shows

the linear regression between the TSnow−Ice and the TB at 6V and 10V, using the measurements from buoys 2012G, 2012H,

2012J, and 2012L. The slope coefficients estimated between the TSnow−Ice and the TB at 6V and 10V are 1.086±0.020 and

1.078±0.019 respectively.

The offset in the linear regression equations between TSnow−Ice and the TB is different for each buoy, because it depends20

on the snow depth. The TSnow−Ice dependence on snow depth can be explained by the thermal insulation of snow (Maaß et al.,

9

The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-223
Manuscript under review for journal The Cryosphere
Discussion started: 12 November 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 6. Centered TSnow−Ice expressed as a function of the centered TBs at 10V (left) and 6V (right). Data from the IMB buoys are in

colored points and the linear regression is the solid black line.

2013). Here, we establish an empirical relationship between the TSnow−Ice corrected of the TB linear dependence at 10V or

6V, and the snow depth as follows:

TSnow−Ice− a1 ·TB10V or 6V = a2 · f(SD) + a3, (2)

with f(SD) a function of snow depth.

Three different linear regressions have been tested to relate the TSnow−Ice using: the snow depth directly, the inverse of the5

snow depth, and the logarithm of snow depth. Figure 7 shows the TSnow−Ice corrected from TB dependence as a function of

snow depth. The different regressions are tested using the training dataset (IMB buoys: G, H, J, and L in 2012). The regression

showing the best results is the one using the logarithm of the snow depth (solid black line in Fig. 7). The linear regression

using the snow depth directly (red dashed line in Fig. 7) leads to an overestimation of the TSnow−Ice for large snow depth. The

regression using the inverse of the snow depth (red dotted line in Fig. 7) leads to an underestimation for small snow depth. The10

RMSEs obtained on the TSnow−Ice are compared and the relation using the logarithm of snow depth shows the lowest RMSE.

Based on these results, the final equations to relate the TSnow−Ice to the snow depth and the TB at 10V and at 6V are:

TSnow−Ice = 1.078 ·TB10V + 5.67 · log(SD)− 5.13 (3)

TSnow−Ice = 1.086 ·TB6V + 3.98 · log(SD)− 10.70 (4)15

where TSnow−Ice and TB are expressed in K, and SD is expressed in m.

4.4 Results of the snow-ice interface temperature retrieval

Figure 8 shows the comparisons between the observed TSnow−Ice and the regressed TSnow−Ice using the 10V and 6V TBs

(Eq. 3 and 4), and the in situ snow depth measured by the acoustic sounder of IMB buoys. The regression of the TSnow−Ice
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Figure 7. TSnow−Ice corrected of the 10V TB (left) and of the 6V TB (right) dependence as a function of snow depth. Data from the IMB

buoys are represented by different colors, the regression using the snow depth is the dashed red line, the regression using the inverse of snow

depth is the red dotted line, and the regression using the logarithm of the snow depth is the solid black line.

Figure 8. Time series of the comparisons between TSnow−Ice observations from IMB buoys (black line), and TSnow−Ice regressions with

TBs at 10V (blue line) and at 6V (red line). The snow depth used in equations 3 and 4 is the snow depth observed by the IMB buoy sounder.

The begin of the measurements with a new IMB buoy is indicated on the x-axis.

using the in situ snow depth with the 10V TBs (Eq. 3) is slightly better (RMSE = 1.69 K) than the regression with the 6V TBs

(Eq. 4) (RMSE = 1.95 K). The variability due to the snow depth is better described with the regression using the 10V TBs.

Figure 9 is the same as Figure 8 but using our snow depth estimation (Eq. 1). The RMSEs are 2.78 K for the 10V regression

and 2.84 K for the 6V regression. The results are degraded because of the snow depth regression especially for the buoys with

thick snow (∼50 cm) or thin snow (∼5 cm) (e.g., buoy 2013F and buoy 2012L). Note that uncertainties can be introduced5

in the estimate when choosing the level of the snow-ice interface because the vertical resolution of the IMB buoy thermistor

string is 10 cm.
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Figure 9. Same as Figure 8, using the regressed snow depth (Eq. 1) in place of in situ snow depth

5 Sea ice effective temperature estimation

5.1 Bias between the model and the observations

The Teff is only available in a simulated dataset using a thermodynamical model and MEMLS. The model set-up and the

simulations are described in Tonboe (2010). In this dataset the TBs, the TSnow−Ice, and the Teffs are simulated together

using the input snow and ice profiles from the thermodynamical model. Even though the simulated data are comparable to5

observations in terms of mean and standard deviation, both the thermodynamical model and the emission model are physical

models and they are not tuned to observations. This means that a bias is expected between the TSnow−Ice from MEMLS and

the TSnow−Ice from our regressions based on in situ observations.

The bias obtained is the mean value of the difference between the TSnow−Ice from MEMLS, and the TSnow−Ice regressed

from equations 3 and 4 using the inputs of the simulated data. Biases of 3.97 K and 4.01 K are estimated, for the regressions10

with 10V and 6V respectively. The RMSEs computed between the TSnow−Ice from MEMLS and the TSnow−Ice regressed and

corrected of the bias at 10V and 6V are 2.7 K and 2.07 K, respectively.

Figure 10 shows the TSnow−Ice from MEMLS data as a function of TB at 10V and 6V with the TSnow−Ice computed from

our regressions (Eq. 3 and 4), with and without the bias correction. We can see that the slopes of our linear regressions are

consistent with the data simulated from MEMLS.15

5.2 Linear regression between the effective temperature and the snow-ice interface temperature

The Teff near 50 GHz in vertical polarization is correlated with the TSnow−Ice (Tonboe et al., 2011) and it can be expressed

as a linear function of the TSnow−Ice. We use the MEMLS simulated data to calculate the linear regression between the

TSnow−Ice and the Teff at 6.9, 10.65, 18.7, 23.8, 36.5, 50, and 89 GHz in vertical polarization. Teffs at vertical and horizontal

polarizations are about the same. Only the vertical polarization is considered here, because TBs measurements are noisier at20

horizontal polarization due to the variability of sea ice emissivity at this polarization.
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Figure 10. Comparisons between the TSnow−Ice from the MEMLS simulated data in blue points, the regressed TSnow−Ice (Eq. 3 and 4)

in dashed black line and the regressed TSnow−Ice debiased to fit the MEMLS simulations in solid black line at 10V (left) and 6V (right)

channels.

Figure 11. Regression of the TSnow−Ice as a function of Teff at different frequencies. The data from the MEMLS simulations are in blue

points and the linear regression is the solid black line.

Figure 11 shows the Teff at 50V as a function of TSnow−Ice. The linear regressions between the TSnow−Ice and the Teff

at different frequencies are computed. The results are given in Table 3. The slope coefficient of the regression increases with

frequency, meaning that the sensitivity of the Teff to the TSnow−Ice is increasing with frequency between 6 and 89 GHz. A

slope coefficient lower than 1 means that the emitting layer of the Teff at the given frequency is deeper than snow-ice interface.

At 50 GHz the slope coefficient is near to 1, meaning that the emitting layer is at the same depth as the snow-ice interface. The5

RMSEs obtained are below 1 K, with the regression of Teff at 50V showing the lowest RMSE (0.33 K), and at 89V showing

the highest RMSE (0.92 K). These linear regressions between the Teff and the TSnow−Ice are the final step to retrieve the Teff

of sea ice at microwave frequencies as a function of TBs, by using the work in the previous section to express the TSnow−Ice

as a function of TBs.
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Table 3. Regressions of the Teff for different frequencies at vertical polarization as a function of the TSnow−Ice.

Frequency slope offset RMSE

(GHz) coefficient (K) (K)

6.9 0.888 30.2 0.89

10.7 0.901 26.6 0.75

18.7 0.920 21.5 0.63

23.8 0.932 18.4 0.57

36.5 0.960 10.9 0.41

50 0.989 2.96 0.33

89 1.06 -16.4 0.92

6 Discussion

For days in November, January, and April, Figure 12 shows the maps of the snow depth estimated with our multilinear regres-

sion (Eq. 1), the TSnow−Ice estimated with our multilinear regression (Eq. 3), and the multiyear ice concentration products

from the University of Bremen (https://seaice.uni-bremen.de). To perform our regressions, we use the AMSR2 TBs (Level

L1R) provided by JAXA and the SIC from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis5

Interim (ERA-Interim) data. Only the areas with 100% SIC are considered to compute the snow depth on sea ice and the

TSnow−Ice with our method. Maps of the multiyear ice concentration from University of Bremen are derived from AMSR2

and from the Advanced SCATterometer (ASCAT) with the method of Ye et al. (2016a, b).

The results show that the snow depth is larger (40 cm) in the north of Greenland (Warren et al., 1999) due to the presence

of drift snow caused by the numerous pressure ridges present in this area (Hanson, 1980), as anticipated. We can observe10

that the snow depth is higher in November and April than in January as expected as the snow accumulates moderately during

November, very slowly during December and January, and starts to re-accumulate moderately from February to May (Warren

et al., 1999).

For TSnow−Ice, in January and April when the air temperature is cold (∼ -30◦ for our situations on January 5 and April

5, 2016), the areas with large snow depth show larger TSnow−Ice because of the thermal insulation power of the snow. It15

is different in November: the air temperature is warmer (∼ -5◦, for the situation on November 5, 2015) and the areas with

thinner snow show larger TSnow−Ice which are close to the air temperature. Note that we can observe low TSnow−Ice in some

locations near the sea ice margins due to the presence of open ocean in the satellite footprint. As the brightness temperature of

open water is low, the total brightness temperature measured is decreased and it impacts our TSnow−Ice estimation.
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Figure 12. Maps of the snow depth (first row) and the TSnow−Ice (second row) estimated from our multilinear regression using AMSR2

TBs, with MultiYear Ice (MYI) concentration products (third row) from the University of Bremen on November 5, 2015 (left), January 5,

2016 (middle) and April 5, 2016 (right).

Visually the TSnow−Ice shows a high correlation with the distribution patterns of multiyear ice concentration of the same

days: the highest values are found in the north of Greenland and in the Canada Basin, with some branches of higher values

extending from there towards the Siberian coast, marking the Beaufort gyre of the Arctic sea ice drift (see e.g. the animations

for the same year at https://seaice.uni-bremen.de/multiyear-ice-concentration/animations/). The main differences between first-

year ice and multiyear ice are, on average, the higher thickness of multiyear ice and its higher snow load . Both effects will5

influence the TSnow−Ice. Under the same conditions, a higher ice thickness will lead to a lower TSnow−Ice. In contrast, it will
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be higher if only the snow depth is increased. The positive correlation between multiyear ice concentration and TSnow−Ice

suggests that the influence of the higher snow depth on multiyear ice outbalances that of the higher ice thickness on the

TSnow−Ice, emphasizing the important role of snow on sea ice in its thermodynamic balance.

The similar patterns observed between the maps of the TSnow−Ice and the multiyear ice concentration on Figure 12 are

encouraging and gives confidence to the methodology developped here, as these multiyear ice concentration products are5

issued from a completely independent estimation done at the University of Bremen and distributed daily to users.

7 Conclusions

We derive simple algorithms to estimate sea ice parameters such as the snow depth, the TSnow−Ice, and the Teff of sea ice at

microwave frequencies, from AMSR2 channels. This is achieved using the ESA RRDP which contains AMSR2 data collocated

with IMB buoy data and OIB campaign data. In addition, simulated TB output from a sea ice version of MEMLS are used for10

the regression of the Teff . All the equations to retrieve these sea ice parameters are derived using several linear and multilinear

regressions.

Our regression to retrieve the snow depth over winter Arctic sea ice uses the TBs at 6.9, 18.7 and 36.5 GHz in vertical

polarization. A RMSE of 6 cm is obtained on the estimated snow depth. To retrieve the TSnow−Ice, two relations are derived

using two different AMSR2 channels: 10V and 6V, and the snow depth. The two regressions show similar results. The errors15

obtained are 1.69 K and 1.95 K respectively at 10V and 6V. Finally the Teffs at 6.9, 10.65, 18.7, 23.8, 36.5, 50, and 89 GHz

in vertical polarization are retrieved as a function of TSnow−Ice using linear regressions. At the final step, the RMSEs of the

linear regressions between the simulated TSnow−Ice and the Teff for all channels are lower than 1 K, with a minimum value of

0.33 K at 50 GHz which is a key frequency for atmosphere temperature retrieval. The methodology to estimate snow depth and

TSnow−Ice has been applied to several days during a winter season. It shows consistent results with multiyear ice concentration20

estimates obtained independently.

These algorithms can be used to create snow depth and TSnow−Ice products which can improve the study of sea ice variability

(e.g., sea ice growth). Informations on the TSnow−Ice may help in sea ice models by constraining the sea ice temperature

gradient and the thermodynamical ice growth. The Teff estimations can be used in atmospheric radiative transfer calculations

and to reduce noise in SIC retrieval algorithms (Tonboe et al., 2013) (e.g., EUMETSAT OSISAF global SIC product).25
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