
Second Response to the Reviewers
We thank the reviewers for their careful reading and their comments.

Response to reviewer 1
I am happy with the corrections/improvements in the paper following my suggestions/comments in the 1st
round of review. However, the statement in the conclusion that "It can also be applied to FYI as the 6V
and 10V channels are not sensitive to the ice type (Spreen et al., 2008)" is contradicted by Ivanova et al,
2015 (The Cryosphere, 9, 1797-1817) which show clear differences between TBs of FY and MY ice, also for
6 and 10 GHz. I suggest a less categorical wording.

The sentence has been changed by "It can also be applied to FYI as the 6V and 10V
channels have a limited sensitivity to the ice type (Comiso, 1983; Spreen et al., 2008)"

Response to reviewer 2
Dear authors,

you did partly a very good job in improving the manuscript so that many passages can be understood
much better now. However, I don’t think it is ready for publication yet and - in my eyes - should not yet be
accepted. The main reason for this is that I am still missing critical reflections on A) the inter-dependence
of the used input data, on B) the uncertainty of the input data (namely the potential of OIB and IMB data
being biased) and the propagation of this into the final products, and on some of the figures displaying the
results (namely Figure 8, 9, and 12). In a regular paper A) and B) would be discussed in the Discussion
section - which is however used to present the "end product" and a bit discussion of it. This does not replace
a critical review about how reliable this suite of used regressions on partly correlated and partly potentially
biased input data is. I recommend therefore, that the authors sit together for some more revisions of the
manuscript before it can be accepted for publication.

Upfront I have to admit, that I am not particularly happy with the way and the degree of detail the
authors have responded to my review. Many questions were ignored and hence not answered - neither in
the reply to the comments nor in the paper manuscript. And a considerable amount of the questions and
comments was realized in the paper manuscript in a not too convincing manner. This applies, for instance,
to using literature which does not provide the basic information required (see the P2,L24 comment (see
below)).

- Another example is this one: One of your replies to my review (original manuscript Page 6, Line
14-20) was: "Yes, I computed the snow depth using the AMSR2 Tbs at 19V and 37V following the equa-
tions/coefficients described in Markus and Cavalieri, 1998." and then later "We removed MandC98 compari-
son. MandC98 is not designed for Arctic. It was here as a reference for the comparison but we do not want
to evaluate it." The way you reply to the comments is confusing. In addition, what you write is not correct.
Yes, MandC98 is not designed for the Arctic. But one can of course use it over first-year ice. This has been
done, there are papers about it and there are even data sets of it which are freely available. So, please also
in the reply to reviewers’ comments pay attention to what you write - particularly for a journal like "The
Cryosphere" where the discussion can be seen by others.

Responses to these questions have been embedded in the text. We believe it is clear now.
- And finally this one, where you seemingly ignored a few of my questions and comments. My comments:

P5, L25 to P6, L6: - Please explain why you use the OIB product with the much better spatial coverage and
hence representation of the satellite footprint conditions only for the forward selection. Would it have been
more straightforward and logical to carry out both, the forward selection AND the regression using the OIB
data? What is the added value using the IMB snow depth values? - Please provide an additional table in
which the results of the statistical forward selection are summarized. - Please explain the statistical measures
used in the forward selection. May I ask whether you tried all frequency and polarization combinations?
How many in total did you try? - Please provide at least an example, e.g. a scatterplot or 2-dimensional
histogram, in which you illustrate the relationship between the 3 channels used for the best retrieval and the

1



OIB snow depth data. It would be very intriguing to see how much the measurements scatter around the
regression lines.

Your reply: "We want our snow depth algorithm to be optimized for IMB measurements. The IMBs also
measure the Tsnow-ice which is one of our interest variable and the Teff is derived from the Tsnow-ice. So
the OIB data were chosen for the forward selection only because the forward selection was not satisfactory
with the IMB data as the snow depth variability is limited. It is a stepwise forward selection. To select the
most relevant AMSR2 channels, the stepwise regression (Draper,N. R., and H. Smith. Applied Regression
Analysis. Hoboken. NJ: Wiley- Interscience,1998. pp. 307-312.) was used. It is a sequential parameter
selection technique designed specifically for least-squares fitting. The method begins with an initial model,
at each step p-value are computed and predictors included in the model are adjusted. We can constrain the
number of predictors (here AMSR2 Tbs at different channels) to as many as we want."

But these are just reflections of my impression of how the authors dealt with the review. More important
are the following concerns:

What the authors still fail to provide - in my eyes - is a proper discussion about the uncertainties involved.
The linear regressions are taken as if they provide the truth and I have difficulties to see a critical review
and discussion of the results which go into that direction. Training and evaluation with independent parts
of a data set which potentially has biases does not improve the result. It only tells that the results obtained
potentially have the same bias as the data used for "evaluation".

- OIB data have a certain uncertainty, are known to underrepresent thick snow over deformed sea ice and
also over MYI, and to have problems with a particularly thin snow cover - as evidenced in the literature in
the recent 5 years.

Yes the uncertainties on the OIB snow depth we used in this study are given P7 L23-25 of
the revised manuscript version 3. We added in the data description the reference you mention
below.

- IMB snow depth estimates have an uncertainty which is briefly mentioned in the data/methods section
but which impact on the results is not further discussed.

The precision of the snow depth measured by the acoustic sounder is 5 mm as described
in the data/methods section, and it is negligeable compared to the RMSE obtained with our
snow depth retrieval which is around 5 cm.

- The interdependence of the products and methods (see my first review) by using the same channel
combinations or derivates in almost all steps of the production chain is not discussed; adding one sentence I
find a bit short.

The interdependence of the products are explicit as the equations are given. It is discussed
especially with the comparison of Figures 8 and 9.

- A detailed discussion of Figures 8 and 9 is still missing - even though the authors started to give some
information in the reply to my review. I want to encourage the authors to write more of this into their paper!
It will give the reader the impression that the authors critically thought about the results obtained and that
the authors are aware of the limitations and caveats in input data and methods. Publishing a resulting data
set on a web page is, by the way, not a quality marker and cannot replace an independent quality assessment.

The results are disccused in section 4.4.
Other than that I have the following remaining concerns:
- Still an illustration of the suite of methods used with a diagram would strongly aid in understanding

the paper. It would also illustrate much better (and perhaps solve my concern with this regard) about which
parameters and input TBs enter which part of the retrieval. Such an illustration could serve as a perfect
starting point to better estimate the uncertainties of the retrieved parameters which are partly depending
on each other and hence errors in one parameter propagate into the next one.

See the Figure 1 attached to this response.
- I hoped that the concept of using a "centred" TB would have re-formulated the way it is understandable

better, i.e. writing about "deviations from a mean TB" or "residual TBs" or similar.
We added " the linear regressions are calculated on centered data (i.e. the anomaly)"
- Once again: The produced quantities rely heavily on the usability and applicability of IMB and OIB
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Figure 1: Flow diagram

measurements for your purpose. Therefore, even though these data are taken from the RRDP, it is in my
eyes not sufficient to refer to the documentation there - particularly in case of the OIB data. This is a remote
sensing product of the snow depth and not an in situ snow depth measurement.

We added the references you suggested below.
- Still, it is not clear what the error in the IMB snow depth measurements is and what the impact on

the results is. I mean, perhaps everything is in place and readily explained but I did not find a statement
like: "Deployment of the thermistor chains used in the IMBs is always such that one known thermistor is
placed exactly at the snow-ice interface." *** That way the 5 mm precise measurement of the location of
any surface (snow or ice) to the acoustic sounder would allow a precise measurement of the snow depth -
however, at one single place only - not like with the AWI buoys deployed in the Southern Ocean where 4
snow depth measurements are made and averaged to avoid biases due to snow drift or similar - which is
another error source ignored by the authors. Any statement like the one mentioned at *** would also help
in the discussion of how accurate we know the snow-ice interface location and temperature.

The IMB snow depth is measured by the acoustic sounders with 5mm precision, we added:
"There are two acoustic sounders located above the snow surface and below the sea ice. The
acoustic sounders measure the position of snow and ice surfaces (top and bottom) with a
precision of 5 mm, from which the snow depth is computed."

- Still, I am not particularly satisfied with the discussion of Figure 12, your main end product. One thing
I have difficulties with is the strong gradient in Tsnow-ice in an area where the MYI concentration is high
and where the snow depth is >= 0.4 m for both January and April cases. In addition to the >= 0.4 m snow
depth areas I comment about further down in this re-review I am wondering also about those quite large
areas with a snow depth below 5 cm and about the dynamics of the snow depth distribution over the course
of the winter shown.

To understand you might want to see the air temperature (see the Figure 2 below). We
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Figure 2: Air temperature at 2m from ERA-Interim

modified the colorscale of Figure 12, see the response below with the histograms.
P2, L24: Although one can find information about sea-ice emissivities in the paper by Spreen et al. (2008)

I would definitely prefer citing an older reference, potentially one where these emissivities have actually been
measured.

We added a reference to Comiso, 1983. Comiso, J. C. (1983), Sea ice effective microwave
emissivities from satellite passive microwave and infrared observations, J. Geophys. Res.,
88(C12), 7686-7704, doi:10.1029/JC088iC12p07686.

P3, L8-10: I am very happy with the more detailed description what Teff is. The only problem in
understanding is the expression "integrated" being used for temperature as well as emissivity. What the
difference between integrated and just, e.g., the mean temperature or emissivity of the respective layer?

Temperature and emissivity can change with depth with a non linear behavior. It is this
not the mean temperature or emissivity but the integration of these parameters over thickness
that matters.

P4, L8-18: In Line 12 you write "The acoustic sounder measures the position of the snow and ice surfaces
with a ... computed". In the response to the reviewers’ comments you clearly state that it is two sounders
and one measures the location of the snow (or ice) surface and the other one measures the location of the ice
underside. Both together results in the total sea ice plus snow thickness. Why is the response more detailed
than what you write in the text? - The accuracy of the snow depth (and ice-snow interface location) is
unknown, right? - unless one of the thermistors is placed exactly at the ice-snow interface.

We replaced the sentence by :" There are two acoustic sounders , one is located above
the snow surface and the other is located below the sea ice. They measure the position of
... computed." There are two different instrument: the acoustic sounder which measures the
snow depth with a known accuracy of 5mm, and the thermistor string from which we derive
the temperature of the snow-ice interface. The problem is that with the thermistor string,
the thermistor chosen to measure the snow-ice interface is not necessarily located at the real
snow-ice interface position, the shift can be up to 5 cm.

Page 5, L4-5: Since the OIB data set is an important ingredient of your soup it might make sense to be
very careful (and critical) with statements about resolution and uncertainty of the OIB snow depth products
because in addition to (and since) Kurtz et al. (2013) quite some research has been conducted and results of
that point to i) rather a double vertical resolution of the one quoted (see e.g. Kwok and Maksym, 2014) as
well as ii) a minimum snow depth of about 8 cm required to be detected unambiguously (again Kwok and
Makysm, 2014; Holt et al, 2015). A summary of various approaches and their limitations has been given by
Kwok et al. (2017, https://doi.org/10.5194/tc-11-2571-2017). This latter reference would also be perfectly
suited - particularly for OIB - for Line 10, in addition to the reference given already.

Thank you for the references they have been added: "Recent studies evidence larger errors
on OIB snow depth (Kwok and Maksym, 2014) with issues to detect snow depth under 8 cm
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(Kwok and Maksym, 2014; Holt et al., 2015). These different limitations are summarized in
Kwok et al. (2017)." The exact StD of the snow depth measurements from OIB radar used
in this study are given in section 3.2. "Note that the uncertainties on OIB data for the 2013
campaigns are between 2 cm and 22 cm with a mean Standard Deviation (StD) of 11 cm".

Page 8, Line 1-3: I suggest to provide the months here, i.e. March/April for OIB and October (?)
to April for IMB. In addition: What you write here, lets me conclude that the "forward selection" of the
relevant channels mentioned earlier, based on OIB data, is perhaps not having that much of an influence on
the results.

The months have been added.
Page 9, Line 9-12: Yes, thank you. Exactly. And the same is true for the snow depth because a surface

measurement with 5 mm precision is worth nothing (harshely put) if the location of the snow-ice interface
is only known with 50 mm accuracy.

As explained above there are two different measurements. The snow depth is known with
5 mm precision, because the acoustic sounders measure the snow surface, the top ice surface,
and the bottom ice surface with 5 mm precision. The thermistor which measure the snow-
ice interface temperature can be located not exactly at the real snow-ice interface and this
introduces a shift of up to 5 cm with the real interface position.

Page 12, Line 2: I doubt that Spreen et al. (2008) do make any statement about ice types in relation to
10V and 6V GHz channels of the AMSR-E instrument. Please correct and choose a correct reference. So,
following your statement it doesn’t matter whether I have 3 m thick MYI or 50 cm thick FYI, with a 10V or
6V GHz channel both look the same and there are no issues with different penetration depths and salinities?

A reference to Comiso 1983 has been added. The emissivity of FYI and MYI have been
computed at 6.6 and 10.7 GHz using SMMR.

It has been commented by Leif Toudal Pedersen also. We replaced the sentence by "...the
channels 10V and 6V have a limited sensitivity to the ice type (Comiso, 1983; Spreen et al.,
2008)."

Page 15, L1 and 4/5: I would find it more logical to have the details of the MYI product mentioned
directly behind its first occurrence here, i.e. the sentence in Line 4/5 should go to Line 1 after the URL of
the MYI concentration data set.

Ok. The modification has been done.
Figure 12: Is the maximum snow depth to be retrieved 40 cm? I am asking because I am wondering

about the snow depth distribution which according to the color scale the snow depth is "exactly" 40 cm.
Perhaps you either shed light on this in the text or provide a histogram of the snow depth distribution for
the three maps shown so that a reader can discover more details. - In addition to the white dots denoting,
e.g., the meridians, there is quite some other noise in the maps of the snow depth and possibly also in the
maps of the snow-ice interface temperature . Can you comment on this? Or is this simply a low-quality
figure used for peer-review and the final figure will be of enhanced quality without noise / gaps?

No it is not the maximum snow depth that can be retrieved. Looking at the snow depth
histogram, the distribution is between 0 and 60 cm. The colorscale has been changed and
we improved the figure quality. You can see the histograms of snow depth and Tsnow-ice in
Figures 3 and 4".
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Figure 3: Snow depth distribution

Figure 4: Tsnow-ice distribution
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Estimating the snow depth, the snow-ice interface temperature, and
the effective temperature of Arctic sea ice using Advanced
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data
Lise Kilic1, Rasmus Tage Tonboe2, Catherine Prigent1, and Georg Heygster3

1Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France
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Abstract. Mapping Sea Ice Concentration (SIC) and understanding sea ice properties and variability is important especially

today with the recent Arctic sea ice decline. Moreover, accurate estimation of the sea ice effective temperature (Teff ) at 50 GHz

is needed for atmospheric sounding applications over sea ice and for noise reduction in SIC estimates. At low microwave

frequencies, the sensitivity to atmosphere is low, and it is possible to derive sea ice parameters due to the penetration of

microwaves in the snow and ice layers. In this study, we propose simple algorithms to derive the snow depth, the snow-5

ice interface temperature (TSnow−Ice) and the Teff of Arctic sea ice from microwave brightness temperatures (TBs). This

is achieved using the Round Robin Data Package of the ESA sea ice CCI project, which contains TBs from the Advanced

Microwave Scanning Radiometer 2 (AMSR2) collocated with measurements from Ice Mass balance Buoys (IMBs) and the

NASA Operation Ice Bridge (OIB) airborne campaigns over the Arctic sea ice. The snow depth over sea ice is estimated with

an error of 5.1 cm using a multilinear regression with the TBs at 6V, 18V, and 36V. The TSnow−Ice is retrieved using a linear10

regression as a function of the snow depth and the TBs at 10V or 6V. The Root Mean Square Errors (RMSEs) obtained are 2.87

and 2.90 K respectively, with the 10V and 6V TBs. The Teff at microwave frequencies between 6 and 89 GHz is expressed as

a function of TSnow−Ice using data from a thermodynamical model combined with the Microwave Emission Model of Layered

Snow-packs. Teff is estimated from the TSnow−Ice with a RMSE of less than 1 K.

1 Introduction15

In situ observations of the variables controling the sea ice energy and momentum balance in polar regions are scarce. One way

to overcome this observational gap is to use satellites for measuring sea ice properties. The objective of this study is to estimate

key sea ice variables from satellite remote sensing to improve current sea ice models and prediction, Sea Ice Concentration

(SIC) mapping in the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSISAF) project, and polar atmospheric

sounding applications.20
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Sea ice thermodynamics is controlled by the regional heat budget (Maykut and Untersteiner, 1971). In general, sea ice is

covered by snow, which can reach a mean thickness of up to ∼50 cm in the Arctic (Sato and Inoue, 2018). Snow on sea ice

strongly affects the sea ice energy and radiation balance, with its high insulation of heat and reflectivity of solar radiation.

Snow is a poor conductor of heat: it insulates the sea-ice and reduces the winter ice growth (Fichefet and Maqueda, 1999). In

summer, its high albedo reduces the sea-ice melting rate. The high albedo of snow on sea ice compared to open water albedo5

plays an important role in the sea ice albedo feedback mechanism and Arctic amplification (Hall, 2004). Sato and Inoue (2018)

suggest that the recent sea ice growth has been effectively limited by the increase in snow depth on thin ice during winter.

Current sea ice models include snow schemes (e.g., Lecomte et al. (2011)), with the snow depth and temperature gradient in

the snow pack modulating the sea ice growth and melt. Improved estimates of Snow Depth (SD), as well as Snow-Ice interface

Temperature (TSnow−Ice) from satellite observations would provide valuable information on the vertical thermodynamics in10

the snow and ice, to improve current sea ice models and therefore the prediction of sea ice growth.

Here we propose a simple algorithm to retrieve SD and TSnow−Ice from passive microwave observations from the Ad-

vanced Microwave Scanning Radiometer 2 (AMSR2), based on a large dataset of collocated in situ and satellite observations.

An extensive Round Robin Data Package (RRDP) (Pedersen et al. (2018),https://figshare.com/articles/Reference_dataset_for_

sea_ice_concentration/6626549) has been developed during the European Space Agency (ESA) sea ice Climate Change Ini-15

tiative (CCI) project and the SPICES (Space-borne observations for detecting and forecasting sea ice cover extremes) project

(http://www.seaice.dk/ecv2/rrdb-v1.1/). It contains in situ data from the Ice Mass balance Buoys (IMBs), and the Operation

Ice Bridge (OIB) airborne campaigns collocated with AMSR2 brightness temperature measurements between 6 and 89 GHz.

Algorithms already exist to retrieve the snow depth from microwave observations. Markus and Cavalieri (1998) and Comiso

et al. (2003) use the spectral gradient ratio of the 19 and 37 GHz (GR37/19) in vertical polarization to deduce the snow depth20

over sea ice. This method has been developed for dry snow on First Year Ice (FYI) in Antarctica, and it is applicable only

to this ice type. Sea ice emissivity depends on the ice type. At frequencies ≥ 18 GHz, the ice emissivity is higher for FYI

than for Multi Year Ice (MYI) (Spreen et al., 2008)
:::::::::::::::::::::::::::::
(Comiso, 1983; Spreen et al., 2008). The difference of emissivity between

the 19 and 37 GHz can be used to retrieve the snow depth or the sea ice type. Therefore, the snow depth algorithms which

use this gradient ratio (GR37/19) are strongly dependent to the ice type. Improvements of Markus and Cavalieri (1998) have25

been suggested by Markus et al. (2011) and Kern and Ozsoy-Çiçek (2016). More recently, Rostosky et al. (2018) revisit the

methodology for the Arctic region, using a new gradient ratio between 7 and 19 GHz (GR19/7), to derive snow depth over both

FYI and MYI. For their study, they use the snow depth of OIB campaigns obtained in March and April. With the help of the

RRDP, we will extend the methodology to the full winter (from December 1st to April 1st) for the Arctic region using the IMB

snow depth data.30

Tonboe et al. (2011) showed from radiative transfer simulations that there is a high linear correlation between the TSnow−Ice

and the passive microwave observations at 6 GHz. Preliminary results from Grönfeldt (2015) evidenced the possibility to derive

the temperature of sea ice from passive microwave observations using simple regression models. This work will be extended

here to estimate TSnow−Ice over Arctic sea ice.
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Passive microwave satellite observations between 50 and 60 GHz are extensively used to provide the atmospheric temper-35

ature profiles in Numerical Weather Prediction (NWP) centers, with instruments such as the Advanced Microwave Sounding

Unit-A (AMSU-A) or the Advanced Technology Microwave Sounder (ATMS). For an accurate estimation of the temperature

profile in the lower atmosphere, quantifying the surface contribution is required. The surface contribution i.e., the surface

brightness temperature (TB) depends on the frequency, and it is the product of a surface effective emissivity (eeff ) and a

surface effective Temperature (Teff ):5

TB = eeff ·Teff (1)

Teff is defined as the integrated temperature over a layer corresponding to the penetration depth at the given frequency: the

larger the wavelength, the deeper the penetration into the medium. In the same way, eeff represents the integrated emissivity

over a layer corresponding to the penetration depth. It depends on the frequency, the incidence angle, and the sub-surface

extinction and reflections between snow and sea ice layers (Tonboe, 2010). Therefore, estimating the surface contribution is10

particularly complicated over sea ice, due to the layering and the vertical structure of the snowpack wich are affecting the

microwave emission processes (Mathew et al., 2008; Rosenkranz and Mätzler, 2008; Harlow, 2009, 2011; Tonboe, 2010;

Tonboe et al., 2011), and to the large spatial and temporal variability of sea ice and snow cover (English, 2008; Tonboe

et al., 2013; Wang et al., 2017). The understanding of the relationship between Teff and the physical temperature profile is

complicated, especially at microwave frequencies ≥18 GHz when scattering occurs, but it has been shown that from 6 to15

50 GHz there is a high correlation between the Teff and the TSnow−Ice (Tonboe et al., 2011). With TSnow−Ice estimated

from the AMSR2 observations, we will deduce the sea ice Teff at AMSR2 frequencies between 6 and 89 GHz, using linear

regression.

Section 2 describes the dataset and the methodology used in this study. The snow depth retrieval is presented in Section

3. Section 4 reports on the TSnow−Ice retrieval. Finally, microwave sea ice Teff at 50 GHz is derived, for application to20

temperature atmospheric sounding (Section 5). Section 6 discusses the snow depth and the TSnow−Ice retrieval results over a

winter in Arctic. Section 7 concludes this study.

2 Material and Methods

2.1 The database of collocated satellite observations and in situ measurements

The RRDP from the ESA sea ice CCI project is a dataset openly available (Pedersen et al. (2018), https://figshare.com/articles/25

Reference_dataset_for_sea_ice_concentration/6626549). It contains an extensive collection of collocated satellite microwave

radiometer data with in situ buoy or airborne campaign measurements and other geophysical parameters, with relevance for

computing and understanding the variability of the microwave observations over sea ice. It covers areas with 0% and 100% of

SIC and different sea ice types (thin ice, first-year ice, multiyear ice), for all seasons including summer melt. In our study, we

will focus on Arctic sea ice during winter in regions with 100% sea ice cover. Two different datasets from the RRDP are used:30
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Table 1. List of the IMBs used in this study, with the mean snow depth (column 5) and the mean ice thickness (column 6) computed over the

duration of the measurements (column 2).

Buoy Duration of measurements Deployment Position on December 1st Mean snow Mean ice

ID during winter (dd/mm/yy) location (lat; lon) depth (cm) thickness (cm)

2012G 01/12/12 - 06/02/13 Central Arctic (85,79◦; -134,88◦) 34.1 162.8

2012H 01/12/12 - 06/02/13 Beaufort Sea (80,39◦; -129,23◦) 23.2 173.3

2012J 01/12/12 - 06/02/13 Laptev Sea (82,87◦; 139,09◦) 25.5 100.3

2012L 01/12/12 - 06/02/13 Beaufort Sea (80,36◦; -138,55◦) 8.5 330.1

2013F 01/12/13 - 31/03/14 Beaufort Sea (76,15◦; -146,27◦) 50.3 145.7

2013G 01/12/13 - 31/03/14 Beaufort Sea (75,84◦; -151,46◦) 21.3 249.4

2014F 01/12/14 - 11/03/15 Beaufort Sea (76,32◦; -143,10◦) 16.1 151.8

2014I 01/12/14 - 12/03/15 Beaufort Sea (78,52◦; -148,70◦) 22.6 155.3

AMSR2 brightness temperatures (TBs) collocated with IMB measurements, and AMSR2 TBs collocated with OIB airborne

campaign measurements.

AMSR2 is a passive microwave radiometer on board the JAXA GCOM-W1 satellite (launched in May 18, 2012). AMSR2

has 14 channels at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5 and 89 GHz for both vertical and horizontal polarizations and it observes at

55◦ of incidence angle. In the RRDP, the spatial resolution of each channel is resampled by JAXA to the 6.9 GHz resolution

(32×62 km ) (see AMSR2 L1R products, Maeda et al. (2011) and Maeda et al. (2016)) before collocation with buoy or airborne

campaign measurements (RRDP report, Pedersen and Saldo (2016) and Pedersen et al. (2018)).5

IMBs are installed by the Cold Regions Research and Engineering Laboratory (CRREL) to measure the ice mass balance of

the Arctic sea ice cover (Richter-Menge et al., 2006; Perovich and Richter-Menge, 2006). Buoy components include acoustic

sounders and a string of thermistors. The thermistor string is extending from the air, through the snow cover and sea ice, into the

water with the temperature sensors located every 10 cm along the string. It measures the physical temperature with an accuracy

of 0.1 K. The acoustic sounder measures
::::
There

:::
are

:::
two

:::::::
acoustic

::::::::
sounders

::::::
located

:::::
above

:::
the

:::::
snow

::::::
surface

:::
and

::::::
below

::
the

:::
sea

::::
ice.10

:::
The

:::::::
acoustic

::::::::
sounders

:::::::
measure

:
the position of snow and ice surfaces

:::
(top

::::
and

:::::::
bottom) with a precision of 5 mm, from which

the snow depth is computed. The buoys also include instruments to measure air temperature, barometric air pressure and GPS

geographical position (Perovich et al., 2017). Several IMBs are deployed by the CRREL at different locations and times during

the year. We only use Arctic buoy data recorded during winter (December 1st to April 1st) to avoid cases where ice starts to

melt. The IMB available for this study are all located on MYI, with an ice thickness≥ 1 meter. A summary of buoy information15

corresponding to these criteria is given in Table 1 and the IMB locations are shown in Figure 1. IMB measurements collocated

with AMSR2 TBs used in this study totalize 2845 observations.
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Figure 1. Ice Mass balance Buoy (IMB) and Operation Ice Bridge (OIB) flight locations over Arctic sea ice. Squares indicate the position of

IMBs on December 1st and circles indicate the starting points of OIB campaigns.

For snow depth retrieval, we also used data from the OIB airborne campaign. The NASA OIB project has collected ice and

snow depth data in the Arctic during annual flight campaigns (March-May) since 2009. The data are especially valuable in this

context since they contain snow depth information from the snow radar onboard the aircraft, not only from single points, but

continuously along the flight path. The vertical resolution of the OIB snow radar is 3 cm, and the uncertainty on the snow depth

is around 6 cm compared with in situ measurements (Kurtz et al., 2013).
:::::
Recent

::::::
studies

::::::::
evidence

:::::
larger

:::::
errors

:::
on

::::
OIB

:::::
snow

::::
depth

::::::::::::::::::::::::
(Kwok and Maksym, 2014)

:::
with

::::::
issues

::
to

:::::
detect

:::::
snow

:::::
depth

:::::
under

::
8

:::
cm

::::::::::::::::::::::::::::::::::::
(Kwok and Maksym, 2014; Holt et al., 2015)

:
.5

:::::
These

:::::::
different

:::::::::
limitations

:::
are

::::::::::
summarized

::
in
::::::::::::::::
Kwok et al. (2017)

:
. In the RRDP, the snow depth data from OIB snow radar are

averaged into 50 km sections to be collocated with AMSR2 observations. For our study we use the OIB data from the 2013

campaign. It totalizes 408 observations over 8 days in March and April and covers FYI and MYI areas. Figure 1 summarizes

the location of IMBs and OIB campaigns over the Arctic ocean.

It is important to note that there are discrepancies due to the scale, when comparing point measurements from buoys with10

the spatially averaged data from satellites or aircrafts (Dybkjær et al., 2012).

2.2 The database of simulated effective temperature and brightness temperature from sea ice properties

For the estimation of Teff , we use a microwave emission model coupled with a thermodynamic model. The emission model

uses the temperature, density, snow crystal and brine inclusion size, salinity, and snow or ice type to estimate the microwave

emissivity, the Teff , and the TB of sea ice. It is coupled with a thermodynamic model in order to provide realistic microphysical15
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inputs. The thermodynamic model for snow and sea ice is forced with ECMWF ERA40 meteorological data input: surface air

pressure, 2m air temperature, wind speed, incoming shortwave and longwave radiation, relative humidity, and accumulated

precipitation. It computes a centimeter scale profile of the parameters used as inputs to the emission model. The emission

model used here is a sea ice version of the Microwave Emission Model of Layered Snowpacks (MEMLS) (Wiesmann and

Mätzler, 1999) described in Mätzler (2006). The simulations were part of an earlier version of the RRDP and the simulation5

methodology is described in Tonboe (2010). This MEMLS simulation uses among its inputs the snow depth and the TSnow−Ice

and compute Teffs and TBs at different frequencies (from 1.4 to 183 GHz). The dataset contains 1100 cases and is called the

MEMLS simulated dataset in the following.

2.3 Methodology

In this study, we propose simple algorithms, using multilinear regressions, to derive the snow depth, the TSnow−Ice, and the10

Teff of sea ice from AMSR2 TBs.

The measurements from the IMB 2012G, 2012H, 2012J, and 2012L, collocated with AMSR2 TBs, are used as the training

dataset for the different regressions to retrieve snow depth and TSnow−Ice. These buoys have been selected because they are

located in different regions across the Arctic and show a large range of snow depths. The measurements from IMB 2013F,

2013G, 2014F and 2014I which are all located in the Beaufort sea are used as the testing dataset.15

First, the IMB snow depth is expressed as a function of the AMSR2 TBs using a multilinear regression (see Section 3.1).

The OIB data are used for the forward selection and the IMB training dataset is used to perform the regression. Second, the

TSnow−Ice is expressed as a function of TBs and snow depth, using linear regressions. An automated method to detect the

position of the snow-ice interface on the vertical temperature profile measured by the IMB thermistor string is developed (see

Section 4.1). Then, the IMB training dataset is used to perform the regressions (see Section 4.3). For this part there are two20

consecutive regressions: the first one is done between the centered (the average was subtracted) TSnow−Ice and TBs ; the

second one is done between the TSnow−Ice corrected for the TB dependence and the snow depth. Third, the sea ice Teff at

different microwave frequencies is expressed as a function of the TSnow−Ice (see Section 5.2). This final step is using the

simulations from a thermodynamical model and MEMLS to derive linear regression equations for the Teff at frequencies

between 6 and 89 GHz. The Teff at 50 GHz is of special interest for atmospheric sounding applications.25

3 Snow depth estimation

3.1 Multilinear regression to retrieve the snow depth

A forward selection method is used to choose the best AMSR2 channels to retrieve snow depth. It is a statistical method to

determine the best predictor combinations (here, AMSR2 TBs) to retrieve a variable (here, snow depth). We use the stepwise

regression (Draper and Smith, 1998). It is a sequential predictor selection technique: at each step statistic tests are computed,30

and the predictors included in the model are adjusted. Our training dataset for this forward selection is the OIB snow depth
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from the 2013 campaign included in the RRDP. OIB data are chosen for forward selection because the data cover a large area

with a wide range of snow depths. In addition, the scale of the averaged OIB data is closer to satellite footprint than buoy

measurements, increasing the consistency with the satellite observations. Forward selection tests have also been done with the

IMB training dataset but the results were not satisfactory. We find that the best channel combination for snow depth retrieval is

the combination of the 3 channels at 6.9, 18.7, and 36.5 GHz in vertical polarization (6V, 18V, and 36V).5

Then, a multilinear regression is conducted using the IMB training dataset (buoys G, H, J, L in 2012 collocated with AMSR2

TBs). The snow depth is given as a linear combination of the TBs at 6V, 18V, and 36V :

SD = 1.7701 + 0.0175 ·TB6V − 0.0280 ·TB18V + 0.0041 ·TB36V , (2)

with SD the snow depth expressed in m and TB in K. This model was trained with snow depths between 5 and 40 cm.

The forward selection has also been tested constraining the number of predictors to 2 and 4. The combinations obtained are:10

18V and 36V for 2 channels, and 6V, 18V, 36V, and 89V for 4 channels. Then, the multilinear regression has been performed

using these combinations of 2 or 4 channels. The results show that the 3 channel combination is the best in terms of RMSE and

correlation compared to the 2 or 4 channel combination (see Section 3.2).

3.2 Results of the snow depth retrieval

Figure 2 shows the comparison between the observed snow depth measured by the acoustic sounder of IMB and the regressed15

snow depth computed from AMSR2 TBs with Eq. 2. The RMSE between the IMB snow depth observations and our snow depth

regression is 12.0 cm and the correlation coefficient is 0.66, using the IMBs 2013F, 2013G, 2014F and 2014I (which are not in

the training dataset). The buoy 2013F observes a large snow depth (> 40 cm) which is outside the bounds of our snow depth

model. Tests are conducted to improve the estimation, including the 2013F buoy in the training dataset, with equal numbers

of observations for different ranges of snow depths: it does not improve the results. Our model obtained the same snow depth20

estimation between buoys 2013G and 2013F. It is consistent because these buoys are spatialy very close. Therefore, we suspect

that the 2013F buoy is located nearby a ridge or hummock where the local snow depth is large but not detectable at the satellite

footprint scale. Without including the buoy 2013F in the computation, the RMSE for our snow depth model is 5.1 cm and the

correlation coefficient is 0.61.

We also compare the snow depth retrievals with the measurements of the 2013 OIB campaigns (see Figure 3) with the ice25

type computed from the gradient ratio between 19 and 37 GHz (Baordo and Geer, 2015). Our snow depth regression (Eq. 2)

RMSE is 6.26 cm and the correlation coefficient with OIB observations is 0.87. Note that the uncertainties on OIB data for the

2013 campaigns are between 2 cm and 22 cm with a mean Standard Deviation (StD) of 11 cm (OIB snow depth StD provided

in the RRDP). Looking at Figure 3, our snow depth regression is applicable to both ice types. The RMSEs computed for MYI

and FYI are respectively 7.2 cm and 3.9 cm, and the correlations are 0.71 and 0.03. The RMSE is smaller for FYI because30

the snow depth variability of FYI is also smaller. The low correlation obtained for FYI can come from the limited number of

observations and because the snow depth variability observed is within the signal noise.
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Figure 2. Time series of the comparison between snow depths from IMB observations and our multilinear regression (Eq. 2). The beginning

of the measurements with a new IMB is indicated on the x-axis.

Figure 3. Time series of the comparison between snow depths (left y-axis) from OIB observations and our multilinear regression (Eq. 2).

The beginning of the measurements with a new OIB campaign is indicated on the x-axis. For each measurement, the ice type is indicated in

grey dashed line (right y-axis).

Spatial scales are different when comparing satellite measurements or airborne campaign measurements with buoy measure-

ments. Discrepancies can appear due to the spatial variability of the snow depth. It can explain that the correlation is higher

when comparing snow depth estimated from AMSR2 TBs with the snow depth observed from OIB radar. It is also important5

to note that the OIB campaign data are from late winter to beginning of spring
::::::
(March

::
to

:::::
April), while IMB measurements are

from winter
:::::::::
(December

::
to

:::::::
March). The snow depth regression being developed on IMB measurements, this small change in

the season can contribute to the larger RMSE observed with OIB data.
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Figure 4. Averaged temperature profile (From December to February) measured by the IMB 2012G, with air-snow and snow-ice interface

levels detected with our automated method.

4 Snow-ice interface temperature estimation

4.1 Automatic interface position detection10

During winter, the air temperature is very cold meaning that the snow surface temperature is cold compared to ice and water

temperatures. Through sea ice, the temperature profile is piecewise linear and temperature increases with depth (see Figure

4). In the air, the temperature gradient is small because of turbulent mixing. In the snow, the temperature gradient is larger

due to the thermal properties of snow. Therefore, air-snow and snow-ice interface positions can be detected by changes in the

temperature gradient. At the snow-air interface, the second derivative of the temperature profile reaches a maximum. At the5

snow-ice interface, the temperature gradient being lower in the ice than in the snow, the second derivative of the temperature

profile reaches a minimum. Using these properties of the sea ice temperature profile, an automated method is implemented to

detect the air-snow and the snow-ice interface positions in the temperature profile measured by the buoy thermistor string.

Figure 4 shows an averaged temperature profile through sea ice during winter, with the air-snow and snow-ice interface

positions detected with our automated method. This method performs best during winter when the air is cold. It may not10

be applicable if the snow depth is lower than the vertical resolution of the thermistor string (10 cm), or if sea ice starts to

melt and the temperature profile develops gradually toward an isothermal state. The method selects the thermistor which is

located the closest to the interface. Note that the real interface position can be located between two thermistors. Therefore, the

shift between the real interface position and the thermistor the closest to the interface can be up to 5 cm. This can introduce

uncertainties in our TSnow−Ice regression.15
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Figure 5. Correlation coefficient between the TSnow−Ice from IMBs and the AMSR2 TBs, as a funtion of AMSR2 frequency.

4.2 Correlation between the brightness temperature and the snow-ice interface temperature

During winter, the vertical position of the snow-ice interface is fixed with respect to the buoy thermistor string. The thermistor

string is frozen into the ice which means that the thermistor at the snow-ice interface will stay at that interface unless there

is surface melt or snow ice formation and this rarely happens during winter. For each IMB, the snow-ice interface is detected

with our automated method described in Section 4.1.

We use a correlation analysis to select the TBs at different frequencies describing the variability of the TSnow−Ice. Figure

5 shows the correlation coefficient between TSnow−Ice and AMSR2 TBs computed using the data from all IMBs (Table 1).

The 89 GHz TBs are highly correlated with the air temperature (R>0.75). The 18.7, 23.8 and the 36.5 GHz TBs have a low

correlation with TSnow−Ice because of microwave scattering in the snow and/or shallow microwave penetration into the snow.5

The 7.3 GHz channel is ignored because it contains practically the same information as the 6.9 GHz channel. The TBs at

6.9 and 10.65 GHz at vertical polarization, have the highest correlation with TSnow−Ice (R>0.5). Therefore the 10.65 and the

6.9 GHz at vertical polarization (10V and 6V) channels are selected as inputs to the linear regression to retrieve the TSnow−Ice.

4.3 Linear regressions to retrieve the snow-ice interface temperature

To express the TSnow−Ice as a function of the TB at 6V and 10V, the linear regressions are calculated on centered data .
:::
(i.e.10

::
the

:::::::::
anomaly).

:
For each buoy, the averaged TSnow−Ice is subtracted from the TSnow−Ice measurements (

:::
and the same is done

with the TB measurements). Thus, the temperature offset between the buoys is removed and the slope of the linear regression

is unchanged:

∆TSnow−Ice = a1 ·∆TB6V or10V ⇔ TSnow−Ice = a1 ·TB6V or10V + offsetbuoy (3)
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Figure 6. Centered TSnow−Ice expressed as a function of the centered TBs at 10V (left) and 6V (right). Data from the IMBs are in different

colors depending on the buoy and the linear regression is the solid black line.

with ∆TSnow−Ice and ∆TB describing the centered TSnow−Ice and TB. Figure 6 shows the linear regression between the15

TSnow−Ice and the TB at 6V and 10V, using the measurements from buoys 2012G, 2012H, 2012J, and 2012L. The slope

coefficients (a1) estimated between the TSnow−Ice and the TB at 6V and 10V are 1.086±0.020 and 1.078±0.019 respectively.

The offset (offsetbuoy) in the linear regression equations between TSnow−Ice and the TB is different for each buoy, because

it depends on the snow depth. The TSnow−Ice dependence on snow depth can be explained by the thermal insulation of snow

(Maaß et al., 2013; Untersteiner, 1986). Here, we establish an empirical relationship between the TSnow−Ice corrected of the20

TB linear dependence at 10V or 6V, and the snow depth as follows:

TSnow−Ice− a1 ·TB10V or 6V = a2 · f(SD) + a3, (4)

with f(SD) a function of snow depth.

Three different linear regressions have been tested to relate the TSnow−Ice using: the snow depth directly, the inverse of

the snow depth, and the logarithm of snow depth. Figure 7 shows the TSnow−Ice corrected from TB dependence as a function5

of snow depth. The different regressions are tested using the training dataset (IMB G, H, J, and L in 2012). The regression

showing the best results uses the logarithm of the snow depth (solid black line in Fig. 7). The linear regression using the snow

depth directly (red dashed line in Fig. 7) leads to an overestimation of the TSnow−Ice for large snow depth. The regression

using the inverse of the snow depth (red dotted line in Fig. 7) leads to an underestimation for small snow depth. The RMSEs

obtained on the TSnow−Ice are compared and the relation using the logarithm of snow depth shows the lowest RMSE. Based10

on these results, the final equations to relate the TSnow−Ice to the snow depth and the TB at 10V and at 6V are:

TSnow−Ice = 1.078 ·TB10V + 5.67 · log(SD)− 5.13 (5)

TSnow−Ice = 1.086 ·TB6V + 3.98 · log(SD)− 10.70 (6)
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Figure 7. TSnow−Ice corrected of the 10V TB (left) and of the 6V TB (right) dependence as a function of snow depth. Data from the IMBs

are represented by different colors, the regression using the snow depth is the dashed red line, the regression using the inverse of snow depth

is the red dotted line, and the regression using the logarithm of the snow depth is the solid black line.

where TSnow−Ice and TB are expressed in K, and SD is expressed in m.15

4.4 Results of the snow-ice interface temperature retrieval

Figure 8 shows the comparisons between the observed TSnow−Ice and the regressed TSnow−Ice using the 10V and 6V TBs

(Eq. 5 and 6), and the in situ snow depth measured by the acoustic sounder of IMB. The RMSEs are computed using the

IMB 2013F, 2013G, 2014F, and 2014I. The regression of the TSnow−Ice using the in situ snow depth with the 10V TBs (Eq.

5) is slightly better (RMSE = 1.78 K) than the regression with the 6V TBs (Eq. 6) (RMSE = 1.98 K). The variability due

to the snow depth is better described with the regression using the 10V TBs. Figure 9 is the same as Figure 8 but with our

snow depth estimation (Eq. 2). The RMSEs are 2.87 K for the 10V regression and 2.90 K for the 6V regression. The results

are degraded because of the snow depth regression especially for the buoys with thick snow (∼50 cm) or thin snow (∼5 cm)5

(e.g., buoy 2013F and buoy 2012L). Note that the regression is tested with IMBs which are all located on MYI. However, our

algorithm to derive the TSnow−Ice is also applicable over FYI areas, as our snow depth algorithm is applicable to both ice

types and our TSnow−Ice algorithm uses the channels 10V or 6V which are not sensitive
::::
have

::
a

::::::
limited

:::::::::
sensitivity to the ice

type (Spreen et al., 2008)
:::::::::::::::::::::::::::::
(Comiso, 1983; Spreen et al., 2008).

5 Sea ice effective temperature estimation

5.1 Bias between the model and the observations

Teff is related to the frequency and the incidence angle of the satellite observations. It is not a geophysical variable that we

can measure directly as an in situ parameter. A microwave emission model has to be used to computed the Teffs from the5

geophysical parameters. The Teff used here is available from a simulated dataset using a thermodynamical model and the
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Figure 8. Time series of the comparisons between TSnow−Ice observations from IMBs (black line), and TSnow−Ice regressions with TBs at

10V (blue line) and at 6V (red line). The snow depth used in Eq. 5 and 6 is the snow depth observed by the IMB sounder. The beginning of

the measurements with a new IMB is indicated on the x-axis.

Figure 9. Same as Figure 8, using the regressed snow depth (Eq. 2) in place of in situ snow depth

microwave emission model MEMLS. The model set-up and the simulations are described in Tonboe (2010). In this dataset,

the TBs and the Teffs are simulated using the TSnow−Ice and the input snow and ice profiles from the thermodynamical

model. Even though the simulated TB data are comparable to observations in terms of mean and standard deviation, both

the thermodynamical model and the emission model are based on physical equations and are not tuned to observations. TBs10

simulated with MEMLS are not fitted to AMSR2 TBs meaning that a bias is expected between the TSnow−Ice of the MEMLS

simulated dataset (TSnow−Ice MEMLS) and the TSnow−Ice estimated with our regression.

The bias obtained is the mean value of the difference between the TSnow−Ice MEMLS , and the TSnow−Ice regressed from

Eq. 5 and 6 using the TBs of the MEMLS simulated dataset as inputs. Biases of 3.97 K and 4.01 K are estimated, for the re-

gressions with 10V and 6V respectively. The RMSEs computed between the TSnow−Ice MEMLS and the TSnow−Ice regressed5

and corrected of the bias at 10V and 6V are 2.7 K and 2.07 K, respectively.

Figure 10 shows the TSnow−Ice from MEMLS simulated dataset as a function of TB at 10V and 6V, and the TSnow−Ice

computed from our regressions (Eq. 5 and 6), with and without the bias correction. We can see that the slopes of our linear

regressions are consistent with the data simulated from MEMLS.
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Figure 10. Comparisons between the TSnow−Ice MEMLS from the MEMLS simulated data in blue points, the regressed TSnow−Ice (Eq. 5

and 6) in dashed black line, and the regressed TSnow−Ice debiased to fit the MEMLS simulations in solid black line at 10V (left) and 6V

(right) channels.

5.2 Linear regression between the effective temperature and the snow-ice interface temperature10

The Teff near 50 GHz in vertical polarization is correlated with the TSnow−Ice (Tonboe et al., 2011) and it can be expressed

as a linear function of the TSnow−Ice:

Teff(freq,pol) = b1(freq,pol) ·TSnow−Ice MEMLS + b2(freq,pol) (7)

with Teff , b1 and b2 depending on the frequency (freq) and on the polarization (pol). We use the MEMLS simulated dataset to

calculate the linear regression between the TSnow−Ice and the Teff at 6.9, 10.65, 18.7, 23.8, 36.5, 50, and 89 GHz in vertical15

polarization. Teffs at vertical and horizontal polarizations are about the same. Only the vertical polarization is considered here,

because TBs measurements are noisier at horizontal polarization due to the variability of sea ice emissivity at this polarization.

Figure 11 shows the Teff at 50V as a function of TSnow−Ice. The linear regressions between the TSnow−Ice and the Teff

at different frequencies are computed. The coefficients b1 and b2 of Eq. 7 are given in Table 2. The slope coefficient of the

regression increases with frequency, meaning that the sensitivity of the Teff to the TSnow−Ice is increasing with frequency

between 6 and 89 GHz. A slope coefficient lower than 1 means that the penetration depth at the given frequency is deeper than

snow-ice interface. At 50 GHz the slope coefficient is near to 1, meaning that the penetration depth is close to the depth of the

snow-ice interface. The RMSEs are below 1 K, with the regression of Teff at 50V showing the lowest RMSE (0.33 K), and at5

89V showing the highest RMSE (0.92 K).

These linear regressions between the Teff and the TSnow−Ice MEMLS (Eq. 7) are the final step to retrieve the Teff of

sea ice at microwave frequencies as a function of TBs, using the work in the previous sections to express the TSnow−Ice as

a function of TBs (Eq. 2, and Eq. 5 or 6). The biases between the AMSR2 observations and the MEMLS simulated dataset
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Table 2. Regressions of the Teff for different frequencies at vertical polarization as a function of the TSnow−Ice (see Eq. 7) using the

MEMLS simulated dataset.

Frequency slope offset RMSE

(GHz) coefficient (K) (K)

b1 b2

6.9 0.888 30.2 0.89

10.7 0.901 26.6 0.75

18.7 0.920 21.5 0.63

23.8 0.932 18.4 0.57

36.5 0.960 10.9 0.41

50 0.989 2.96 0.33

89 1.06 -16.4 0.92

are taken into account replacing TSnow−Ice MEMLS by TSnow−Ice estimated from AMSR2 TBs with a bias correction (see10

Table 2):

Teff(freq,pol) = b1(freq,pol) · (TSnow−Ice− 3.97) + b2(freq,pol), for the regression using 10V TB (8)

Teff(freq,pol) = b1(freq,pol) · (TSnow−Ice− 4.01) + b2(freq,pol), for the regression using 6V TB (9)

6 Discussion15

For days in November, January, and April, Figure 12 shows the maps of the snow depth estimated with our multilinear regres-

sion (Eq. 2), the TSnow−Ice estimated with our multilinear regression (Eq. 5), and the MYI concentration products from the

University of Bremen (https://seaice.uni-bremen.de).
:::::
Maps

::
of

:::
the

::::
MYI

::::::::::::
concentration

::::
from

:::::::::
University

::
of

:::::::
Bremen

:::
are

:::::::
derived

::::
from

:::::::
AMSR2

::::
and

::::
from

:::
the

:::::::::
Advanced

:::::::::::::
SCATterometer

::::::::
(ASCAT)

:::::
with

:::
the

::::::
method

:::
of

:::::::::::::::
Ye et al. (2016a, b)

:
. To perform our re-

gressions, we use the AMSR2 TBs (Level L1R) provided by JAXA and the SIC from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim) data. Only the areas with 100% SIC are considered to com-

pute the snow depth on sea ice and the TSnow−Ice with our method. Maps of the MYI concentration from University of Bremen

are derived from AMSR2 and from the Advanced SCATterometer (ASCAT) with the method of Ye et al. (2016a, b).5
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Figure 11. Regression of the Teff as a function of TSnow−Ice at 50 GHz in vertical polarization. The data from the MEMLS simulations

are in blue points and the linear regression is the solid black line.

The results show that the snow depth is larger (40 cm) in the north of Greenland (Warren et al., 1999; Shalina and Sandven,

2018) due to the presence of drift snow caused by the numerous pressure ridges present in this area (Hanson, 1980), as

anticipated. We can observe that the snow depth is larger in areas with larger MYI concentrations. The variability of the

snow cover is low during winter, as the snow depth reaches a maximum by December and remains relatively unchanged until

snowmelt (Sturm et al., 2002).

For TSnow−Ice, in January and April when the air temperature is cold (between -20 and -30◦C over the whole Arctic, on5

January 5 and April 5, 2016 from ERA-Interim air temperature), the areas with large snow depth show larger TSnow−Ice

because of the thermal insulation power of the snow. It is different in November: the air temperature is warmer (∼ -5◦C near

Kara sea, ∼ -15◦C near Laptev sea and ∼ -25◦C in central Arctic and Beaufort sea, on November 5, 2015 from ERA-Interim

air temperature) and the areas with thinner snow show larger TSnow−Ice which are close to the air temperature (Perovich and

Elder, 2001). Note that we can observe low TSnow−Ice in some locations near the sea ice margins due to the presence of open10

ocean in the satellite footprint. As the brightness temperature of open water is low, the total brightness temperature measured

is decreased and it impacts our TSnow−Ice estimation.

Visually the TSnow−Ice shows a high correlation with the distribution patterns of multiyear ice concentration of the same

days: the highest values are found in the north of Greenland and in the Canada Basin, with some branches of higher values

extending from there towards the Siberian coast, marking the Beaufort gyre of the Arctic sea ice drift (see the animations15

for the same year at https://seaice.uni-bremen.de/multiyear-ice-concentration/animations/). The main differences between FYI

and MYI are, on average, the higher thickness of MYI and its higher snow load. Both effects will influence the TSnow−Ice.

Under the same conditions, a higher ice thickness will lead to a lower TSnow−Ice. In contrast, it will be higher if only the

snow depth is increased. The positive correlation between MYI concentration and TSnow−Ice suggests that the influence of the

higher snow depth on MYI outbalances that of the higher ice thickness on the TSnow−Ice, emphasizing the important role of20

snow on sea ice in its thermodynamic balance.
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Figure 12. Maps of the snow depth (first row) and the TSnow−Ice (second row) estimated from our multilinear regression using AMSR2

TBs, with MultiYear Ice (MYI) concentration products (third row) from the University of Bremen on November 5, 2015 (left), January 5,

2016 (middle) and April 5, 2016 (right).

The similar patterns observed between the maps of the TSnow−Ice and the MYI concentration on Figure 12 are encouraging

and gives confidence in the methodology developed here, as these MYI concentration products are from an independent work

done at the University of Bremen and distributed daily to users. However it should be noted that the input channels of both

methods overlap in some AMSR2 channels, and even different channels show some covariance (Scarlat et al., 2017).25
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7 Conclusions

We derive simple algorithms to estimate sea ice parameters such as the snow depth, the TSnow−Ice, and the Teff of sea ice at

microwave frequencies, from AMSR2 channels. This is achieved using the ESA RRDP which contains AMSR2 data collocated

with IMB data and OIB campaign data. In addition, simulated TB outputs from a sea ice version of MEMLS are used for the

regression of the Teff . All the equations to retrieve these sea ice parameters are derived using several linear and multilinear30

regressions.

Our regression to retrieve the snow depth over winter Arctic sea ice uses the TBs at 6.9, 18.7 and 36.5 GHz in vertical

polarization. A RMSE of 5.1 cm is obtained between the estimated and the IMB snow depths using an independent IMB

test dataset. This snow depth retrieval is applicable to FYI and MYI, with lower uncertainties for FYI than for MYI (3.9 cm

compared to 7.2 cm). To retrieve the TSnow−Ice, two relations are derived using two different AMSR2 channels (10V or 6V)

and the estimated snow depth. The two regressions show similar results. The errors are 2.87 K and 2.90 K respectively at 10V

and 6V. This TSnow−Ice retrieval has been tested only for MYI. It can also be applied to FYI as the 6V and 10V channels

are not sensitive
:::
have

::
a
::::::
limited

:::::::::
sensitivity to the ice type (Spreen et al., 2008)

:::::::::::::::::::::::::::::
(Comiso, 1983; Spreen et al., 2008). Finally the5

Teffs at 6.9, 10.65, 18.7, 23.8, 36.5, 50, and 89 GHz in vertical polarization are retrieved as a function of TSnow−Ice using

linear regressions. At the final step, the RMSEs of the linear regressions between the simulated TSnow−Ice and the Teff for all

channels are lower than 1 K, with a minimum value of 0.33 K at 50 GHz which is a key frequency for atmosphere temperature

retrieval. The methodology to estimate snow depth and TSnow−Ice has been applied to several days during a winter season. It

shows consistent results with MYI concentration estimates obtained independently.10

These algorithms can be used to create snow depth and TSnow−Ice products which can improve the study of sea ice variability

(e.g., sea ice growth). Informations on the TSnow−Ice may help in sea ice models by constraining the sea ice temperature

gradient and the thermodynamical ice growth. The Teff estimations can be used in atmospheric radiative transfer calculations

and to reduce noise in SIC retrieval algorithms (Tonboe et al., 2013) (e.g., EUMETSAT OSISAF global SIC product).
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