1	Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic
2	Sweden
3	
4	Kuang-Yu Chang*,
5	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
6	Berkeley, California, USA
7	William J. Riley,
8	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
9	Berkeley, California, USA
10	Patrick M. Crill,
11	Department of Geological Sciences, Stockholm University, Stockholm, Sweden
12	Robert F. Grant,
13	Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
14	Virginia <mark>I.</mark> Rich,
15	Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
16	and,
17	Scott <mark>R.</mark> Saleska,
18	Department of Ecology and Evolutionary Biology, University of Arizona, Tucson,
19	Arizona, USA
20	
21	
22	*Corresponding author: Kuang-Yu Chang, ckychang@lbl.gov
23	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
24	Berkeley, California, USA

25 Phone: (510) 495-8141

Abstract

27	Permafrost peatlands store large amounts of carbon potentially vulnerable to
28	decomposition. However, the fate of that carbon in a changing climate remains uncertain
29	in models due to complex interactions among hydrological, biogeochemical, microbial,
30	and plant processes. In this study, we estimated effects of climate forcing biases present
31	in global climate reanalysis products on carbon cycle predictions at a thawing permafrost
32	peatland in subarctic Sweden. The analysis was conducted with a comprehensive
33	biogeochemical model (ecosys) across a permafrost thaw gradient encompassing intact
34	permafrost palsa with an ice core and a shallow active layer, partly thawed bog with a
35	deeper active layer and a variable water table, and fen with a water table close to the
36	surface, each with distinct vegetation and microbiota. Using in situ observations to
37	correct local cold and wet biases found in the Global Soil Wetness Project Phase 3
38	(GSWP3) climate reanalysis forcing, we demonstrate good model performance by
38 39	(GSWP3) climate reanalysis forcing, we demonstrate good model performance by comparing predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges,
39	comparing predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges,
39 40	comparing predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate
39 40 41	comparing predicted and observed carbon dioxide (CO_2) and methane (CH_4) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere,
39 40 41 42	comparing predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to
 39 40 41 42 43 	comparing predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to their higher CH ₄ emissions. Our simulations indicate that projected precipitation increases
 39 40 41 42 43 44 	comparing predicted and observed carbon dioxide (CO_2) and methane (CH_4) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to their higher CH_4 emissions. Our simulations indicate that projected precipitation increases could accelerate CH_4 emissions from the palsa area, even without further degradation of
 39 40 41 42 43 44 45 	comparing predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to their higher CH ₄ emissions. Our simulations indicate that projected precipitation increases could accelerate CH ₄ emissions from the palsa area, even without further degradation of palsa permafrost. The GSWP3 cold and wet biases for this site significantly alter

- 49 examined permafrost thaw gradient. Future studies should thus not only focus on changes
- 50 in carbon budget associated with morphological changes in thawing permafrost, but also
- 51 recognize the effects of climate forcing uncertainty on carbon cycling.

52 1. Introduction

53	Confidence in future climate projections depends on the accuracy of terrestrial
54	carbon budget estimates, which are presently very uncertain (Friedlingstein et al., 2014;
55	Arneth et al., 2017). In addition to the complexity in physical process representations, a
56	major source of this uncertainty comes from challenges in quantifying climate responses
57	induced by biogeochemical feedbacks. Increases in atmospheric carbon dioxide (CO ₂)
58	concentrations can directly stimulate carbon sequestration from plant photosynthesis
59	(Cox et al., 2000; Friedlingstein et al., 2006) and indirectly stimulate carbon emissions
60	(e.g., from soil warming and resulting increased respiration), although the predicted
61	magnitudes of these exchanges strongly depend on model process representations (Zaehle
62	et al., 2010; Grant, 2013, 2014; Ghimire et al., 2016; Chang et al, 2018).
63	The undecomposed carbon stored in permafrost is of critical importance for
64	biogeochemical feedbacks to climate because it is about twice as much as currently is in
65	the atmosphere (Hugelius et al., 2014) and is vulnerable to release to the atmosphere as
66	permafrost thaws (Schuur et al., 2015). O'Donnell et al. (2012) suggested that permafrost
67	thaw would result in a net loss of soil organic carbon from the entire peat column because
68	accumulation rates at the surface were insufficient to balance deep soil organic carbon
69	losses upon thaw. Jones et al. (2017) indicated that the loss of sporadic and discontinuous
70	permafrost by 2100 could result in a release of up to 24 Pg of soil carbon from permafrost
71	peatlands to the atmosphere. Lundin et al. (2016) reported that it is plausible (71%
72	probability) for the subarctic landscapes to serve as a net carbon source to the atmosphere
73	while its peatland components being atmospheric carbon sinks, which highlights the
74	importance of spatial heterogeneity on high latitude carbon budget estimation.

75	In addition to the overall carbon balance of the changing Arctic, the type of
76	carbon gaseous emission is important to climate feedbacks. High latitudes are predicted
77	to get wetter (IPCC, 2014), and saturated anaerobic conditions facilitate methane (CH ₄)
78	production, which is a much more efficient greenhouse gas than CO ₂ in terms of global
79	warming potential. Even habitats that can be net carbon sinks can produce positive
80	radiative forcing impacts on climate due to CH ₄ release, as Bäckstrand et al. (2010)
81	showed for a subarctic peatland. Under projected warming and wetting trends in the
82	Arctic (Collins et al., 2013; Bintanja and Andry, 2017), carbon cycle feedbacks over the
83	permafrost region could become stronger as increased precipitation enhances surface
84	permafrost thaw and strengthens CH4 emissions by expansion of anaerobic volume
85	(Christensen et al., 2004; Wickland et al., 2006).
86	The Stordalen Mire in northern Sweden (68.20°N, 19.03°E) is in the
87	discontinuous permafrost zone, encompassing a mosaic of thaw stages with associated
88	distinct hydrology and vegetation (Christensen et al. 2004; Malmer et al., 2005),
89	microbiota (Mondav and Woodcroft et al., 2014; Mondav et al., 2017; Woodcroft and
90	Singleton et al., 2018), and organic matter chemistry (Hodgkins et al., 2014). These
91	landscapes have been shifting over the last half-century to a more thawed state, likely due
92	to recent warming (Christensen et al. 2004). Drier hummock sites dominated by shrubs
93	have degraded to wetter sites dominated by graminoids (Malmer et al., 2005; Johansson
94	et al., 2006). The thaw-induced habitat shifts are associated with increases in landscape-
95	scale CH ₄ emissions (Christensen et al. 2004; Johansson et al., 2006; Cooper et al., 2017)
96	reflective of the higher CH ₄ emissions of the wetter thawed habitats (McCalley et al.,
97	2014). The higher CO_2 uptake in later thaw-stage habitats has not compensated for the

98 increase in positive radiative forcing from elevated CH₄ emissions (Bäckstrand et al.,
99 2010; Deng et al., 2014).

100 The impacts of climate sensitivity on the terrestrial carbon cycle have been 101 investigated at the global scale, and the results highlight the need to consider uncertainty 102 in climate datasets when evaluating permafrost region carbon cycle simulations 103 (Ahlström et al., 2017; Guo et al., 2017; Wu et al., 2017). Ahlström et al. (2017) showed 104 that climate forcing biases are responsible for a considerable fraction (~40%) of the 105 uncertainty range in ecosystem carbon predictions from 18 Earth System Models (ESMs) 106 reported by Anav et al. (2013). Guo et al. (2017) concluded that the differences in climate 107 forcing contribute to significant differences in simulated soil temperature, permafrost 108 area, and Active Layer Depth (ALD). Wu et al. (2017) demonstrated that differences 109 among climate forcing datasets contributes more to predictive uncertainty than 110 differences in apparent model sensitivity to climate forcing. However, notably, none of 111 these studies accessed the effects on CH₄ emissions, and their spatial resolution could not 112 represent site-level spatial heterogeneity observed in arctic tundra (Grant et al. 2017a; 113 2017b).

Here, we use the ecosystem model *ecosys*, which employs a comprehensive set of coupled biogeochemical and hydrological processes, to estimate the effects of climate forcing uncertainty and sensitivity on CO₂ and CH₄ exchanges and thaw depth

simulations. For the Stordalen Mire site, we estimated bias in the Global Soil Wetness

118 Project Phase 3 (GSWP3) climate reanalysis dataset using site-level long-term

119 meteorological measurements and evaluated impacts on simulated soil and plant

120 processes across the permafrost thaw gradient. This approach enables us to assess model

121	sensitivity to individual climate forcing biases, instead of the aggregated uncertainty
122	range embedded in climate datasets (e.g., variations of climate conditions represented in
123	different climate datasets) presented in previous studies. We address the following
124	questions for our study site at the Stordalen Mire: (1) What are the biases embedded in
125	the GSWP3 climate reanalysis dataset? (2) How do those biases affect model predictions
126	of thaw depth, CO_2 exchanges, and CH_4 exchanges? (3) How does climate sensitivity
127	vary across the stages of permafrost thaw? In addition to improving understanding of
128	permafrost responses to climate, we identify ecosystem carbon prediction uncertainty
129	induced by climate forcing uncertainty in general as the biases found in GSWP3 were
130	consistent with other climate reanalysis datasets during the last decade (section 3).
131	
132	2. Methods and Data
133	2.1 Study site description
134	Our study sites are located at the Stordalen Mire (68.20 °N, 19.03 °E: 351 m
135	above sea level), which is about 10 km southeast of the Abisko Scientific Research
136	Station (ANS) in northern Sweden. The Stordalen Mire is in the discontinuous permafrost
137	zone along the 0 °C isotherm where permafrost at low elevations primarily presents in
138	peatlands, bordered by lakes to the northwest and southeast (Kokfelt et al., 2010). A large
139	portion of the mire consists of a slightly elevated drained area underlain by permafrost
140	characterized by a hummocky topography, and the remaining portion is largely lacking
141	permafrost with fen-like conditions (Johansson et al., 2006). The recent warming (more
142	than 1 °C) has deepened the mean ALD measured at the Stordalen Mire by around 20 cm
143	since the early 1980's, accompanied by palsa collapses and thermokarst erosion

144	(Christensen et al., 2004; Malmer et al., 2005; Johansson et al., 2006). Specifically, the
145	mean ALD has increased from 0.48 m to 0.63 m in the drier part of the mire and from
146	0.63 m to 0.86 m in the wetter part, from 1970's to 2000's (Rydén B. E. and Kostov;
147	Johansson et al., 2006).
148	Significant changes in climate over this region have been recorded during the last
149	few decades. The annual mean air temperature measured at the ANS has risen by 2.5 $^{\circ}$ C
150	from 1913 to 2006, where it exceeded the 0 °C threshold (0.6 °C in 2006) for the first
151	time over the past century (Callaghan et al., 2010). The measured annual total
152	precipitation has also increased from 306 mm y ⁻¹ (years 1913 to 2009) to 336 mm y ⁻¹
153	(years 1980 to 2009) (Olefeldt and Roulet, 2012), along with increased variability in
154	extreme precipitation (Callaghan et al., 2010). The measured annual maximum snow
155	depth has increased from 59 cm (years 1957 to 1971) to 70 cm (years 1986 to 2000),
156	however, the snow cover period with snow depth greater than 20 cm has decreased from
157	5.8 months (years 1957 to 1971) to 4.9 months (years 1986 to 2000) (Malmer et al.,
158	2005).
159	Inception of peat deposition at the Stordalen Mire has been dated at around 6,000
160	calendar years before present (cal. BP) (Sonesson 1972) in the southern part of the mire
161	and at around 4,700 cal. BP in the northern part (Kokfelt et al., 2010). Kokfelt et al.
162	(2010) suggested that permafrost aggregation initiated during the Little Ice Age (around
163	120–400 cal. BP) in the Stordalen Mire. At present, the Stordalen Mire can be broadly
164	classified into three peatland types: intact permafrost palsa, partly thawed bog, and fen
165	(Hodgkins et al., 2014), hereafter referred to as palsa, bog, and fen (Figure 1). The spatial
166	distribution of these peatland types in 2000 are described in Olefeldt and Roulet (2012).

167	Based on Swedish military photography, all three of the investigated peatland
168	types have existed since at least the 1930's. The palsa sites are ombrotrophic and raised
169	0.5 to 2.0 m above their surroundings, with a relatively thin peat layer (0.4 to 0.7 m,
170	Rydén et al., 1980), thinner active layer depth (less than 0.7 m in late summer), and no
171	measurable water table depth (Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet,
172	2012). The bog sites are ombrotrophic and are wetter than the palsa sites, with a thicker
173	peat layer (0.5 to ~1 m, Rydén et al., 1980), deeper ALD (greater than 0.9 m <mark>, the deepest</mark>
174	measurement depth), and water table depth fluctuating from 35 cm below the peat surface
175	to the ground surface (Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet, 2012). The
176	fen sites are minerotrophic, receiving a large amount of water from a lake to the east of
177	the mire, with water table depths near or above the ground surface (Bäckstrand et al.,
178	2008a; 2008b; Olefeldt and Roulet, 2012).
179	Differences in hydrology and permafrost conditions create high spatial
180	heterogeneity with different soil moisture, pH, and nutrient conditions that support
181	different plant communities (Bäckstrand et al., 2008a; 2008b). The palsa is dominated by
182	dwarf shrubs with some sedges, feather mosses, and lichens (Malmer et al., 2005;
183	Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet, 2012). The bog is dominated by
184	Sphagnum spp. mosses with a moderate abundance of sedges (Malmer et al., 2005;
185	Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet, 2012). The fen sites we studied are
186	dominated by sedges (Bäckstrand et al., 2008a; 2008b).
187	

2.2 Field measurements

189	Continuous daily meteorological measurements have been recorded at the ANS
190	since 1913, including air temperature, precipitation, wind speed, wind direction, relative
191	humidity, and snow depth. Measurements of solar radiation, longwave radiation, and soil
192	temperature are also available at the ANS since 1982. The soil thaw depth (measured to
193	90 cm) and water table depth measurements were taken in the three peatland types 3 to 5
194	times per week from early May to mid-October during 2003 to 2007 (Bäckstrand et al.,
195	2008b).
196	CO ₂ and CH ₄ exchanges at the three peatland types were measured with
197	automated chambers during the thawed seasons from 2002 to 2007 (Bäckstrand et al.,
198	2008b). Chamber lids were removed when snow accumulates in winter (around
199	November), and the sampling period <mark>s</mark> for each year ranged from 60 days (28 March (day
200	87) to 27 May (day 147)) in 2002 (shortest) to 193 days (28 May (day 148) to 7
201	December (day 341)) (longest) (Bäckstrand et al., 2008b; Bäckstrand et al., 2010). Three
202	chambers were installed in the palsa, another three in the bog, and two more in the fen
203	(we term each chamber a 'subsite' in the following). Each chamber covered an area of
204	0.14 m^2 with a height of 25–45 cm depending on the vegetation and the depth of insertion
205	and was closed for 5 minutes every 3 hours to measure CO ₂ and total hydrocarbon (THC)
206	exchanges. CH ₄ exchanges were manually observed approximately 3 times per week, and
207	these measurements were used to quantify the proportion of CH_4 in the measured THC
208	(Bäckstrand et al., 2008a). The CH ₄ exchanges were near zero in the palsa sites
209	(Bäckstrand et al., 2008a; Bäckstrand et al., 2008b; Bäckstrand et al., 2010), so they were
210	not used in model evaluation. We used the CO_2 and CH_4 exchanges observed at 3-hourly
211	steps when the R^2 values recorded in the measurements were greater than 0.8 (Tokida et

213	measurements per day (Table 1). The quality-controlled daily measurements only
214	covered 12.4-33.7% of the daily data points because of the lack of continuous quality-
215	controlled 3-hourly measurements. The data screening was applied to exclude unreliable
216	measurements and avoid biases from inappropriate gap filling, which is necessary for
217	model evaluations. More detailed descriptions of the CO ₂ and CH ₄ exchanges
218	measurements can be found in Bäckstrand et al. (2008a).
219	
220	2.3 GSWP3
221	GSWP3 is an ongoing modeling activity that provides global gridded
222	meteorological forcing $(0.5^{\circ} \ge 0.5^{\circ} = 0.5^{\circ})$ and investigates changes in energy, water,
223	and carbon cycles throughout the 20^{th} and 21^{st} centuries. The GSWP3 dataset is based on
224	the 20 th Century Reanalysis (Compo et al., 2011), using a spectral nudging dynamical
225	downscaling technique described in Yoshimura and Kanamitsu (2008). A more detailed
226	description of the GSWP can be found in Dirmeyer (2011) and van den Hurk et al.
227	(2016).
228	In this study, we extracted the meteorological conditions at the Stordalen Mire
229	from 1901 to 2010 from the GSWP3 climate reanalysis dataset. The 3-hourly products of
230	air temperature, precipitation, solar radiation, wind speed, and specific humidity were
231	interpolated to hourly intervals with cubic spline interpolation to serve as the
232	meteorological inputs used in our model.
233	The GSWP3 dataset was chosen over other existing climate reanalysis datasets for
234	its spatial and temporal resolutions. For example, the Climatic Research Unit (CRU;

al., 2007), and then calculated the associated daily mean exchanges when there were 8

235	Harris et al., 2014) dataset provided monthly meteorological forcing at $0.5^{\circ} \ge 0.5^{\circ}$
236	resolution; the National Centers for Environmental Prediction (NCEP; Kalnay et al.,
237	1996; Kanamitsu et al., 2002) dataset provided 6-hourly meteorological forcing at T62
238	Gaussian grid (~1.915° x 1.895° resolution); the CRUNCEP (Viovy, 2018) dataset
239	provided 6-hourly meteorological forcing at $0.5^{\circ} \ge 0.5^{\circ}$ resolution; and the European
240	Centre for Medium-Range Weather Forecasts (ECMWF; Berrisford et al., 2011) dataset
241	provided 3-hourly meteorological forcing with 125 km (~1.125°) horizontal resolution.
242	
243	2.4 Model description
244	<i>Ecosys</i> is a comprehensive biogeochemistry model that simulates ecosystem
245	responses to diverse environmental conditions with explicit representations of microbial
246	dynamics and soil carbon, nitrogen, and phosphorus biogeochemistry. The above-ground
247	processes are represented in multi-layer plant interacting canopies that are allowed to
248	change with changing environmental conditions, and the below-ground processes are
249	represented in multiple soil layers with multi-phase subsurface reactive transport. Ecosys
250	operates at variable time steps (down to seconds) determined by convergence criteria, and
251	it can be applied at patch scale (spatially homogenous one-dimensional) and landscape
252	scale (spatially variable two- or three-dimensional). Detailed descriptions, including
253	inputs, outputs, governing equations, parameters, and references of the ecosys model can
254	be found in Grant (2013). A qualitative summery of the <i>ecosys</i> model structure is
255	provided in the supplemental material to this article.
256	The ecosys model has been extensively tested against eddy covariance fluxes and
257	related ecophysiological measurements with a wide range of sites and weather conditions

258	in boreal, temperate, and tropical forests (Grant et al., 2007a; Grant et al., 2007c; Grant et
259	al., 2009a; Grant et al., 2009b; Grant et al., 2009c; Grant et al., 2010), wetlands (Dimitrov
260	et al., 2011; Grant et al., 2012b; Dimitrov et al., 2014; Mezbahuddin et al., 2014),
261	grasslands (Grant and Flanagan, 2007; Grant et al., 2012a), tundra (Grant et al., 2003;
262	Grant et al., 2011b; Grant 2015; Grant et al., 2015), croplands (Grant et al., 2007b; Grant
263	et al., 2011a), and other permafrost-associated habitats (Grant and Roulet, 2002; Grant,
264	2017a; Grant et al., 2017b). All ecosys model structures are unchanged from those
265	described in these earlier studies.
266	2.5 Experimental design
267	To evaluate the effects of climate on model predictions, we conducted four sets of
268	simulations at each of the three peatland types at the Stordalen Mire from 1901 to 2010.
269	The climate data from 1901 to 2001 were used for model initialization (i.e., spinup) and
270	those from 2002 to 2010 were used for analysis. The 110 year simulations were
271	performed to ensure the simulation was equilibrated with local climate (Grant et al.
272	2017a).
273	The meteorological conditions for all the simulations were based on the hourly
274	data extracted from the GSWP3 climate reanalysis dataset (section 2.3). The monthly
275	mean bias of the GSWP3 for this location was calculated by comparing it to the air
276	
	temperature and precipitation measured at the ANS, for years 1913 to 2010 (section 3.1).
277	
277 278	temperature and precipitation measured at the ANS, for years 1913 to 2010 (section 3.1).
	temperature and precipitation measured at the ANS, for years 1913 to 2010 (section 3.1). The full series of air temperature and precipitation extracted from GSWP3 were then

281 outputs adjusted by the corresponding bias calculated from observations in a reference282 period.

283 The simulation results from CTRL should represent the reliability of applying 284 ecosys at the Stordalen Mire because CTRL is driven by the best local climate 285 description. We first evaluated predicted thaw depth, water table depth, and CO₂ and CH₄ 286 exchanges using the CTRL simulation (section 3.2 to 3.4). In the second set of 287 simulations, BIASED-COLD, the biased GSWP3 air temperature data was used, and we 288 corrected only the GSWP3 precipitation. Deviations between CTRL and BIASED-COLD 289 reflect biased air temperature's effects on responses across the thaw gradient. In the third 290 set of simulations, BIASED-WET, we bias-corrected the air temperature extracted from 291 GSWP3, which allows us to quantify the effects of biased precipitation. Finally, we used 292 the meteorological conditions directly extracted from GSWP3 to drive our fourth set of 293 simulations, BIASED-COLD&BIASED-WET, which reveals the uncertainty range of 294 subarctic peatland simulation associated with the local biases in GSWP3 climate forcing. 295 While the three peatland types share the same climate conditions, they differ in 296 soil hydrologic conditions and vegetation characteristics (section 2.1; Figure 1). The bulk 297 density and porosity profiles were set to the values reported in Rydén et al. (1980), who 298 suggested a decreasing trend of bulk density and an increasing trend of porosity from palsa (0.12 Mgm⁻³ at surface; 92–93% within the upper 10 cm) to bog and fen (0.06 299 Mgm⁻³ at surface; 96–97% within the upper 10 cm). The peatland soil carbon-to-nitrogen 300 301 (CN) ratios and pH values were assigned according to Hodgkins et al. (2014), who 302 documented an increasing trend of pH from palsa (4.0), to bog (4.2), to fen (5.7), and a 303 decreasing trend of soil organic matter CN ratio from bog (46 ± 18), to palsa (39 ± 24), to

304	fen (19±0.4). Commor	values o	of field ca	apacity	(0.4)) and	l wilting	point ((0.15)) were used
-----	-------------	-----------	----------	-------------	---------	-------	-------	-----------	---------	--------	-------------

for the three peatland types (Deng et al., 2014). The soil property and vegetation

306 parameters used in our simulation for the three peatland types are summarized in

- 307 Supplemental Material Table1 and Supplemental Material Table2, respectively.
- 308

309 3 Results and Discussion

310 **3.1 GSWP3 climate comparison to observations**

311 As described in section 2.3, we extracted meteorological conditions at the 312 Stordalen Mire from the GSWP3 climate reanalysis dataset. The closest GSWP3 grid cell 313 was centered at 68.0 °N and 19.0 °E, which covers the Stordalen Mire and the ANS. The 314 annual mean air temperature and precipitation calculated at this GSWP3 grid cell were -3.65 °C and 683.88 mm y⁻¹, respectively, for years 1913 to 2010. A cold bias (-3.09 °C) 315 316 was identified in the GSWP3 annual mean air temperature during the 1913 to 2010 317 period, although a very high correlation coefficient (r = 0.99) was found when compared 318 with the ANS measurements (Figure 2a). Both time series exhibit an overall warming trend from the early 20th century to the present (0.01°C y⁻¹), with an even larger warming 319 trend from 1980 to 2010 (0.05 °C y⁻¹ [ANS] and 0.04 °C y⁻¹ [GSWP3]). 320 321 Similarly, the GSWP3 annual total precipitation data correlates well with ANS measurements (r = 0.80) but has a wet bias of 380 mm y^{-1} between 1913 and 2010 322 323 (Figure 2b). An increasing trend in annual total precipitation was recorded in both time series from the early 20th century to present (0.47 mm y^{-2} [ANS] and 1.07 mm y^{-2} 324 [GSWP3]), although a decreasing trend was found from 1980 to 2010 (-0.56 mm y^{-2} 325 [ANS] and -2.39 mm y^{-2} [GSWP3]). 326

The seasonal cycle of the GSWP3 monthly mean air temperature also matches that measured at the ANS, with a very high correlation coefficient (r = 0.99; Figure 3a). The underestimation bias and inter-annual variability of GSWP3 air temperature are

330 greater in winter (maximum underestimate in December, at -4.52 °C with inter-annual

331 variability of 3.53 °C) and smaller in summer (minimum underestimate in July, at -1.52

332 °C with inter-annual variability of 1.65 °C), respectively.

The magnitude and inter-annual variability of the GSWP3 monthly mean precipitation are comparable between winter and summer, while the ANS measurements exhibit stronger seasonality with lower magnitudes during winter. Despite the differences found in seasonal patterns, a high correlation coefficient (r = 0.64) was found between the monthly mean precipitation extracted from GSWP3 and the ANS measurements. The overestimation of monthly mean precipitation was greatest in December (43.25 mm month⁻¹) and smallest in August (18.75 mm month⁻¹).

These comparisons suggest that GSPW3 air temperature and precipitation data reasonably capture measured seasonal and long-term trends over past decades, but are biased cold and wet compared to observations, especially during winter. Similar cold and wet biases exist in CRUNCEP and ECMWF climate reanalysis datasets during our 2003 to 2007 study period (Supplemental Material Figure 1). The annual mean air temperature and precipitation at the Stordalen Mire for years 2003 to 2007 were -2.49 °C and 795.09 mm y⁻¹ -2.46 °C and 708.60 mm y⁻¹ and -2.28 °C and 765.67 mm y⁻¹ in the GSWP3,

347 CRUNCEP, and ECMWF climate reanalysis datasets, respectively.

348

349 **3.2 Model testing**

350 **3.2.1 Thaw depth**

351 We first evaluated ecosys against observations using bias-corrected climate 352 forcing (i.e., the CTRL simulation). Predicted thaw depth agrees well with measurements 353 collected from 2003 to 2007 for all examined peatland types (Figure 4), with a correlation 354 coefficient of 0.95, 0.87, and 0.41 at the palsa, bog, and fen, respectively. Both 355 simulations and observations show that the rate of thaw depth deepening in the summer 356 varies with peatland type (i.e., relatively slow, moderate, and rapid in the palsa, bog, and 357 fen, respectively). 358 Predicted and observed maximum thaw depths (i.e., ALD) in the intact permafrost

550 Tredicted and observed maximum thaw depths (i.e., ALD) in the indact permanosi

palsa were between 45 and 60 cm in September. In the partly thawed bog, the simulated

360 thaw depth is slightly shallower than that observed before August. The simulated bog

thaw depth exceeds 90 cm by the end of August, which matches the time when measured

thaw depth reaches its maximum. In contrast, the thaw depth exceeds 90 cm nearly one

363 month earlier in the fen. The patterns of thawing permafrost presented here are consistent

with Deng et al. (2014), who simulated the same site using the DNDC model.

365

359

366 3.2.2 CO₂ exchanges

The daily Net Ecosystem Exchange (NEE) simulated in the CTRL simulation reasonably captures observed seasonal dynamics from 2003 to 2007 for all the examined peatland types (Figure 5). The simulations and observations generally showed net CO_2 uptake (with some episodic CO_2 emissions) during summer and release during winter. The observations and simulations also showed large CO_2 emissions in the palsa site during fall of 2004. Simulated fall CO_2 bursts in the three sites in other years could not be

373	confirmed because of a lack of observations during these periods. Similar to the patterns
374	reported in Raz-Yaseef et al. (2016), some episodic CO ₂ emission pulses were simulated
375	as surface ice thaws in spring, but there were no measurements to confirm those events.
376	The correlation coefficients of the simulated and observed daily NEE ranged from 0.58 to
377	0.60, and most of the discrepancies between the simulations and observations were within
378	the ranges of NEE variability measured at different subsites (automated chambers) within
379	the same peatland type. The simulated CO_2 uptake rates in the bog were greater than the
380	observations in summer, which could be due to overestimated plant biomass or
381	overestimated CO_2 uptake rate per plant biomass. However, we currently do not have
382	data to examine the cause of this overestimation because the CO_2 flux derived from
383	automated chambers only represents the aggregated results of all controlling factors.
384	As described in section 2.2, simulated CO ₂ exchanges were evaluated for 3-hourly
385	and daily time steps when quality-controlled measurements were available (R^2 values and
386	relative root mean squared errors (RRMSEs) shown in Table 2). Simulated NEE is in
387	reasonable agreement with the 3-hourly NEE measurements with RRMSEs ranging
388	from 8.4 to 19.1%. Model comparisons with observations were generally poorer at daily
389	time steps, although the calculated RRMSEs were comparable to those reported in Deng
390	et al. (2014). We suspect these differences resulted from uncertainty in determining an
391	accurate observed daily NEE that is representative of the entire peatland type. This may
392	be due to: (1) limited daily data points (less than 14% across the study period, Table 1)
393	due to lack of continuous quality-controlled 3-hourly measurements, and (2) the large
394	variability of daily NEE ranges measured at different subsites within the same peatland
395	

et al., 2010; Deng et al., 2014) and fine scale spatial heterogeneity of the system. More
detailed measurements with higher spatial and temporal resolutions within the same
peatland type would be necessary to characterize the effects of this type of heterogeneity.

400 **3.2.3 Water table depth and CH₄ exchanges**

401 Simulated water table depth generally captures observed seasonal patterns 402 measured in the bog and fen sites from 2003 to 2007 (Figure 6a, c). During summer, the 403 predicted bog water table depth fluctuates around the ground surface (-7 to -1 cm), and 404 the predicted water table depth is at or above the ground surface in the fen. Water table 405 depths simulated by *ecosys* are generally higher than measured in the bog, where 406 measured water table depths are often below the ground surface with greater seasonal 407 variability. Simulated fen water table depths have better overall fit to observations, being 408 higher (~5 cm) than measurements in 2003 and 2004, close to measurements in 2005 and 409 2006, and slightly deeper (~2 cm) than measurements in 2007. These differences in 410 modeled and observed water table depth could be driven by the limitations of our one-411 dimensional column simulation that could not resolve topographic effects and thus hinder 412 the variations of water table depth, which is a particular issue in simulating the dynamic 413 water table of the bog. For example, no excessive water could be transported to the 414 neighboring grids to deepen local water table depth under our current model 415 configuration. A multi-dimensional simulation that includes realistic topographic effects 416 could help improve the representation of water table dynamics, and estimates of the 417 measurement uncertainty would help facilitate the assessment of simulation bias.

418	Simulated and measured daily CH4 exchanges correlate reasonably well in the
419	bog (r = 0.49) and well in the fen (r = 0.65) across the study period (Figure $\frac{6}{6}$ b, d). Both
420	the simulations and observations have stronger CH4 emissions during summer with peak
421	emissions in late summer. Some episodic CH4 emission pulses (Mastepanov et al., 2008)
422	were simulated during shoulder seasons, and the simulated amount of post-growing
423	season CH ₄ emissions agrees well with those measured in 2007.
424	Most of the discrepancies between simulated and observed CH ₄ emissions were
425	within the variability of measurements across subsites within the same peatland type. The
426	3-hourly and daily RRMSEs ranged from 11.1 to 22.3% (Table 2) and the daily RRMSEs
427	were comparable to results presented in Deng et al. (2014). Our results show that model
428	evaluation of CH4 emissions with finer temporal resolution observations is not necessarily
429	superior to evaluation with coarser temporal resolution, as compared to the NEE
429 430	superior to evaluation with coarser temporal resolution, as compared to the NEE counterpart, which could be related to comparatively lesser CH ₄ emission variability
430	counterpart, which could be related to comparatively lesser CH ₄ emission variability
430 431	counterpart, which could be related to comparatively lesser CH ₄ emission variability
430 431 432	counterpart, which could be related to comparatively lesser CH_4 emission variability measured across subsites within the same peatland type (Figure 6b, d).
430 431 432 433	counterpart, which could be related to comparatively lesser CH ₄ emission variability measured across subsites within the same peatland type (Figure 6b, d). 3.3 Variability across the permafrost thaw gradient
430 431 432 433 434	 counterpart, which could be related to comparatively lesser CH₄ emission variability measured across subsites within the same peatland type (Figure 6b, d). 3.3 Variability across the permafrost thaw gradient Thaw rate and ALD increase along the thaw gradient (i.e., palsa to bog to fen),
430 431 432 433 434 435	 counterpart, which could be related to comparatively lesser CH₄ emission variability measured across subsites within the same peatland type (Figure 6b, d). 3.3 Variability across the permafrost thaw gradient Thaw rate and ALD increase along the thaw gradient (i.e., palsa to bog to fen), and landscape variations are generally greater than simulated inter-annual variability
430 431 432 433 434 435 436	 counterpart, which could be related to comparatively lesser CH₄ emission variability measured across subsites within the same peatland type (Figure 6b, d). 3.3 Variability across the permafrost thaw gradient Thaw rate and ALD increase along the thaw gradient (i.e., palsa to bog to fen), and landscape variations are generally greater than simulated inter-annual variability (Figure 7a). Maximum carbon uptake also increases along the thaw gradient, and

the inter-comparison of carbon budgets estimated at the Stordalen Mire, and to better

441 capture the actual seasonality recorded at the study site. The results show that the

- 442 magnitude of mean growing season CO_2 uptake is highest in the fen and lowest in the
- 443 palsa (Table 3). The same rank applies to the magnitude of mean CO₂ emissions over the
- 444 non-growing season, although differences across the thaw gradient are smaller.
- 445 CH₄ emission rates increase significantly along the thaw gradient, and the palsa
- site emissions are negligible (Figure $\frac{7}{c}$). Mean cumulative CH₄ emissions simulated in
- the fen are much higher than those in the bog, and most CH₄ emissions occur during the
- growing season (Table 3). The higher CH₄ emissions in the fen can be attributed to its
- faster seasonal thaw rate (Figure 7a) and a water table depth close to the surface (Figure
- 450 $\frac{6}{6}$ c). Seasonal cumulative NEE and CH₄ emissions from observations could not be
- 451 accessed due to the lack of continuous quality controlled carbon flux measurements
- 452 during our study period (Table 1).
- 453

454 **3.4** Climate sensitivity of permafrost thaw

- 455 **3.4.1 Thaw responses to climate**
- 456 Our results indicate that the ALD currently simulated in the bog and fen is around
- 457 108 cm and 130 cm, respectively. However, the maximum depth of our thaw depth
- 458 measurements is 90 cm, which makes it difficult to evaluate our model performance on
- 459 ALD simulation. Our results highlight the need to acquire measurements at deeper depth
- 460 to resolve whether there is no permafrost currently remaining in the bog and fen, or there
- 461 is a talik with permafrost developed deeper than the simulated ALDs. Such information
- 462 could be important in predicting microbial activity and thermokarst in permafrost

463 peatlands (Schuur et al., 2015), but it may not significantly alter the effects of climate
464 forcing uncertainty discussed in our study.

465	For each of the four sets of simulations with different climate forcing (section
466	2.5), simulated mean ALD from 2003 to 2007 is always greatest in the fen and lowest in
467	the palsa (Figure 8). This consistent trend along the thaw gradient indicates that ALDs
468	are largely regulated by their distinct ecological and hydrological conditions, because all
469	three sites had the same climate forcing in each set of simulations (i.e., CTRL, BIASED-
470	COLD, BIASED-WET, and BIASED-COLD&BIASED-WET). Therefore, the palsa,
471	bog, and fen have different resilience against the changes in climate forcing, and this type
472	of ecosystem resilience plays an important role in determining ALD under changes in
473	climate conditions.
474	Effects of climate on simulated ALD are similar across peatland types (Figure 8).
475	With increased precipitation (BIASED-WET vs. CTRL), simulated ALD generally
476	becomes deeper with greater inter-annual variability because the increased snowpack
477	depth keeps the soil warmer with lower soil ice content during winter. This effect is less
478	prominent in the comparison between experiments BIASED-COLD and BIASED-
479	COLD&BIASED-WET, because the cold biases in these two experiments (section 3.1)
480	constrain thaw depth development. For example, summertime soil heating in some of the
481	simulation years was not strong enough to thaw the soil ice between 20-40 cm completely
482	in the BIASED-COLD&BIASED-WET run, resulting in shallower ALDs simulated in
483	the palsa and fen even with the snowpack warming effect. The simulated ALD also
484	becomes deeper with higher air temperature (CTRL vs. BIASED-COLD; BIASED-WET
485	vs. BIASED-COLD&BIASED-WET) at all the examined peatland types. This response

486 is more evident in the comparison between experiments BIASED-WET and BIASED-

487 COLD&BIASED-WET, probably driven by their wet biases (section 3.1) that facilitate

488 thaw depth deepening (via increased thermal conductivity and advective heat transport;

489 Grant et al. 2017a). Similar dependencies between ALD and climate were shown in

490 Åkerman and Johansson (2008) and Johansson et al. (2013), based on multi-year

491 measurements and snow manipulation experiments.

492 Therefore, the combined cold and wet biases in the GSWP3 climate reanalysis

493 dataset could counteract their individual effects on simulated ALD development at the

494 Stordalen Mire. Our results indicate a 28.6%, 0.7%, and 11.7% underestimation of ALD

simulated in the palsa, bog, and fen, respectively, when applying the GSWP3 climate

496 reanalysis data over this region without proper bias correction (BIASED-

497 COLD&BIASED-WET vs. CTRL). Our sensitivity analysis suggests that projected

498 warming and wetting trends (Collins et al., 2013) could significantly increase ALD in the

499 Arctic, since increases in precipitation and air temperature can both contribute to ALD

500 deepening.

501

502 **3.4.2** Carbon budget responses to climate

Simulations with the four climate forcing datasets (section 2.5) indicate annual
mean (from 2003 to 2007) CO₂ sinks and CH₄ sources, except the weak CO₂ emissions
simulated in the fen in experiment BIASED-COLD&BIASED-WET due to reduced
sedge productivity driven by increased temperature and oxygen stresses (Figure 9a,b).

507 Our results also indicate that differences in annual CO_2 and CH_4 exchanges across the

508 four climate forcing datasets for a single peatland type are as large as those across

509	peatland types for a single climate forcing dataset (Figure $9a,b$). These large CO ₂ and
510	CH ₄ exchanges climate sensitivities demonstrate that the peatland's dynamical responses
511	to climate have stronger effects on the carbon cycle than on ALDs (Figure 8).
512	With bias-corrected precipitation, increased air temperature (CTRL vs. BIASED-
513	COLD) leads to stronger CO ₂ uptake and greater CH ₄ emissions at all the examined
514	peatland types (Figure 9a,b), mainly because enhanced sedge growth facilitates carbon
515	cycling under a warmer environment (results not shown). This air temperature sensitivity
516	affects CO ₂ and CH ₄ exchanges within the same peatland type without significantly
517	changing ALD (Figure 8). For both experiments, CO_2 uptake and CH_4 emissions are
518	greatest in the fen and lowest in the palsa, consistent with the measurements reported in
519	Bäckstrand et al. (2010) for the same period. Based on the Coupled Model
520	Intercomparison Project, phase 5 (CMIP5) ESM simulations, arctic annual mean surface
521	air temperature is projected to increase by 8.5±2.1 °C over the 21st century (Bintanja and
522	Andry, 2017). This projected air temperature increase is more than double the air
523	temperature difference between site-observed and GSWP3 temperatures, which could
524	significantly enhance CH ₄ emissions regardless of palsa degradation into bog and fen.
525	On the other hand, wet biases (BIASED-WET and BIASED-COLD&BIASED-
526	WET) increase CH ₄ emissions in the palsa; wetter and colder conditions result in as much
527	CH ₄ release as the current fen, while wetter conditions alone drive palsa emissions
528	comparable to the current bog (Figure 9b). The large precipitation sensitivity found in
529	palsa CH ₄ emissions could have strong effects on palsa carbon cycling because arctic
530	precipitation is projected to increase by $50 - 60\%$ towards the end of the 21 st century
531	(based on CMIP5 estimates; Bintanja and Andry, 2017). The comparison between

- 532 experiments BIASED-WET and BIASED-COLD&BIASED-WET shows that in the
- 533 palsa, increased air temperature strengthens CO₂ uptake and weakens CH₄ emissions.
- 534 This shift is primarily driven in the model by increased shrub and moss productivity
- under the warmer environment, which facilitate CO₂ uptake while drying out the soil and
- reducing CH₄ emissions (results not shown). In the bog and fen sites, increased air
- temperature under wet bias strengthens both the simulated CO₂ uptake and CH₄
- 538 emissions (BIASED-WET vs. BIASED-COLD&BIASED-WET), due to enhanced sedge
- 539 growth under the warmer environment that facilitates carbon cycling in the experiment
- 540 BIASED-WET. The low CH₄ emissions in bog and fen simulated in experiment
- 541 BIASED-COLD&BIASED-WET are driven by increased temperature and oxygen
- stresses that greatly reduce heterotrophic respiration (CH₄ production) and sedge cover
 (aerenchyma transport).
- 544 We assessed the integrated effects of the changes in CO₂ and CH₄ exchanges 545 identified in the full suite of simulations in terms of the Net Carbon Balance (NCB) and 546 net emissions of greenhouse gases expressed as CO₂ equivalents (Net Greenhouse Gas 547 Balance; NGGB). NCB was defined as the sum of the annual total CO_2 and CH_4 548 exchanges. NGGB was defined in a similar fashion as the NCB, but considers the greater 549 radiative forcing potential of CH₄ than CO₂ (28 times over a 100-year horizon, Myhre et 550 al., 2013) when calculating the annual total. The calculated NCB values are mostly 551 negative because the stronger CO₂ uptake dominates the weaker CH₄ emissions (Figure 552 9c). The results suggest that all the examined peatland types serve as net carbon sinks 553 under current climate (CTRL), consistent with the estimates reported in Deng et al. (2014) and Lundin et al. (2016). We find a 24, 36, and 38 g C $m^{-2} y^{-1}$ underestimation of 554

555 NCB simulated in the palsa, bog, and fen sites, respectively, due to the cold and wet 556 biases in the GSWP3 climate reanalysis dataset (BIASED-COLD&BIASED-WET vs. 557 CTRL). NGGB is affected more strongly by CH₄ emissions (Figure 9d) due to its larger 558 radiative forcing potential. NGGB values are positive over the bog and fen, suggesting 559 that these sites have positive radiative forcing impacts despite being net carbon sinks. 560 NGGB simulated in the palsa is generally negative (i.e., a net sink from the atmosphere) 561 due to lower CH₄ emissions, except for the simulation conducted without any climate bias 562 correction (correcting only air temperature increased CH₄ emissions but not enough to 563 compensate for the significantly higher CO₂ sink). Our results indicate that the simulated NGGB would be biased by 298, -66, and -252 g CO_2 -eq m⁻² y⁻¹ in the palsa, bog, and fen, 564 565 respectively, without proper bias correction for the GSWP3 climate reanalysis dataset 566 (BIASED-COLD&BIASED-WET vs. CTRL). Using the GSWP3 products directly thus 567 effectively eliminates the positive radiative forcing from the expanding bog and fen, 568 while creating a potentially dramatically inaccurate positive radiative forcing from the 569 shrinking palsa.

- 570
- 571

3.4.3 Climate sensitivity versus landscape heterogeneity

572 Climate sensitivity and landscape heterogeneity are defined here as variability 573 across the four climate forcing datasets for a single peatland type, and variability across 574 three peatland types with bias-corrected climate (CTRL), respectively. We estimated 575 carbon cycle variability associated with climate sensitivity and landscape heterogeneity to 576 quantify the corresponding uncertainty in our annual carbon cycle assessments from 2003 577 to 2007. Our results indicate that differences in simulated annual mean CO₂ exchanges

578 and NCB from climate sensitivity are greater than those from landscape heterogeneity 579 (Figure 9a,c); i.e., annual CO₂ uptake strength is more sensitive to climate forcing 580 uncertainty than to peatland type representation. In terms of the simulated annual mean 581 CH_4 emissions and NGGB, our results indicate that variability from climate sensitivity is 582 comparable to those from landscape heterogeneity (Figure 9b,d). Therefore, bias-583 corrected climate and realistic peatland characterization are both necessary to reduce the 584 uncertainty in representing carbon cycling dynamics and their radiative forcing effects. 585 In addition to their effects on carbon cycle predictions, changes in climate 586 conditions also affect permafrost degradation and thus induce changes in areal cover of 587 peatland types. Malmer et al. (2005) showed that there were -0.95, 0.24, and 0.62 ha areal 588 cover changes (-10.3%, 4.0%, and 46.3% percentage changes) from 1970 to 2000 in 589 palsa, bog, and fen, respectively, at the Stordalen Mire. By applying the annual mean 590 CO₂ and CH₄ exchanges simulated with bias-corrected climate from 2003 to 2007, the areal cover changes from 1970 to 2000 alone would lead to -44 kg C y⁻¹, 76 kg C y⁻¹, and 591 2076 kg CO₂-eq y⁻¹ changes in annual mean CO₂ exchanges, CH₄ exchanges, and NGGB, 592 593 respectively, at the Stordalen Mire. The changes in landscape scale carbon cycle 594 dynamics indicate that the radiative warming impact of increased CH₄ emissions is large 595 enough to offset the radiative cooling impact of increased CO₂ uptake at the Stordalen 596 Mire, consistent with the estimates reported in Deng et al. (2014). The areal cover 597 changes across peatland types could persist or accelerate under the projected warming 598 and wetting trends in the Arctic (Collins et al., 2013; Bintanja and Andry, 2017), which 599 could stimulate CH₄ emissions and produce a stronger radiative warming impact. 600

601 **4**. Conclusions

620

602 We evaluated the climate bias in a widely used atmospheric reanalysis product 603 (GSWP3) at our northern Sweden Stordalen Mire site. We then applied a comprehensive 604 biogeochemistry model, *ecosys*, to estimate the effects of these biases on active layer 605 development and carbon cycling across a thaw gradient at the site. Our results show that 606 *ecosys* reasonably represented measured hydrological, thermal, and biogeochemical cycle 607 processes in the intact permafrost palsa, partly thawed bog, and fen. We found that the 608 cold and wet biases in the GSWP3 climate reanalysis dataset significantly alter model 609 simulations, leading to biases in simulated Active Layer Depths, Net Carbon Balance, and Net Greenhouse Gas Balance by up to 28.6%, 38 g C m^{-2} y⁻¹, and 298 g CO₂-eq m^{-2} 610 611 y^{-1} , respectively. The Net Carbon Balance simulated with bias-corrected climate suggests 612 that all the examined peatland types are currently net carbon sinks from the atmosphere, 613 although the bog and fen sites can have positive radiative forcing impacts due to their 614 higher CH₄ emissions. 615 Our results indicate that the annual means of ALD, CO₂ uptake, and CH₄ 616 emissions generally increase along the permafrost thaw gradient at the Stordalen Mire 617 under current climate, consistent with previous studies in this region. Our analysis 618 suggests that palsa, bog, and fen differ strongly in their carbon cycling dynamics and 619 have different responses to climate forcing biases. Differences in simulated CO₂ and CH₄

621 landscape heterogeneity across the examined permafrost thaw gradient. Model

622 simulations demonstrate that the palsa site exhibits the strongest sensitivity to biases in

exchanges driven by uncertainty from climate forcing are as large as those from

623 air temperature and precipitation. The wet bias in GSWP3 could erroneously increase

624	predicted CH ₄ emissions from the palsa site to a magnitude comparable to emissions
625	currently measured in the bog and fen sites. These results also show that increased
626	precipitation projected for high latitude regions could strongly accelerate CH ₄ emissions
627	from the palsa area, even without degradation of palsa into bog and fen. Future studies
628	should thus recognize the effects of climate forcing uncertainty on carbon cycling, in
629	addition to tracking changes in carbon budgets associated with areal changes in
630	permafrost degradation.
631	
632	Acknowledgements
633	This study was funded by the Genomic Science Program of the United States Department
634	of Energy Office of Biological and Environmental Research under the ISOGENIE
635	project, grant DE-SC0016440, to Lawrence Berkeley Laboratory under contract DE-
636	
	AC02-05CH11231, and by support from the Swedish Research Council (VR) to PMC.
637	AC02-05CH11231, and by support from the Swedish Research Council (VR) to PMC. We thank the Abisko Scientific Research Station of the Swedish Polar Research

640 References

- 641 Ahlström, A., Schurgers, G. and Smith, B.: The large influence of climate model bias on
- 642 terrestrial carbon cycle simulations, Environmental Research Letters, 12(1),

643 014004, doi:10.1088/1748-9326/12/1/014004, 2017.

- Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung,
- 645 M., Myneni, R. and Zhu, Z.: Evaluating the Land and Ocean Components of the
- Global Carbon Cycle in the CMIP5 Earth System Models, J. Climate, 26(18),

647 6801–6843, doi:10.1175/JCLI-D-12-00417.1, 2013.

- Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B., Bayer, A. D.,
- Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M., Friedlingstein, P.,
- 650 Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S., Pugh, T. A. M., Robertson,
- E., Viovy, N., Yue, C. and Zaehle, S.: Historical carbon dioxide emissions caused
- by land-use changes are possibly larger than assumed, Nature Geoscience, 10(2),

653 79–84, doi:10.1038/ngeo2882, 2017.

- Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. and Bastviken, D.: Non-
- 655 methane volatile organic compound flux from a subarctic mire in Northern
- 656 Sweden, Tellus B, 60(2), 226–237, doi:<u>10.1111/j.1600-0889.2007.00331.x</u>,
 657 2008a.
- Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. and Bastviken, D.: Total
 hydrocarbon flux dynamics at a subarctic mire in northern Sweden, Journal of
 Geophysical Research: Biogeosciences, 113(G3), doi:10.1029/2008JG000703,
 2008b.

662	Backstrand, K., Crill, P. M., ski, M. JK., Mastepanov, M., Christensen, T. R. and
663	Bastviken, D.: Annual carbon gas budget for a subarctic peatland, Northern
664	Sweden, 14, 2010.
665	Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P. W.,
666	Kobayashi, S., Uppala, S. and Simmons, A.: The ERA-Interim archive Version
667	2.0, 2011.
668	Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nature Climate Change,
669	7(4), 263–267, doi: <u>10.1038/nclimate3240</u> , 2017.
670	Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt, U. and
671	Johansson, M.: A new climate era in the sub-Arctic: Accelerating climate changes
672	and multiple impacts, Geophysical Research Letters, 37(14),
673	doi:10.1029/2009GL042064, 2010.
674	Chang, KY., Paw U, K. T. and Chen, SH.: The importance of carbon-nitrogen
675	biogeochemistry on water vapor and carbon fluxes as elucidated by a multiple
676	canopy layer higher order closure land surface model, Agricultural and Forest
677	Meteorology, 259, 60-74, doi:10.1016/j.agrformet.2018.04.009, 2018.
678	Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M., Malmer, N., Friborg,
679	T., Crill, P. and Svensson, B. H.: Thawing sub-arctic permafrost: Effects on
680	vegetation and methane emissions, Geophysical Research Letters, 31(4),
681	doi: <u>10.1029/2003GL018680</u> , 2004.
682	Collins, M., R. Knutti, J. Arblaster, JL. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao,
683	W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and

684 M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and

Irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change. T. F. Stocker et al., Eds., Cambridge University Press, 1029-
1136.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,
Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S.,
Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk,
M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross,
T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D. and Worley, S. J.: The
Twentieth Century Reanalysis Project, Quarterly Journal of the Royal
Meteorological Society, 137(654), 1–28, doi:10.1002/qj.776, 2011.
Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H.,
Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe,
S. A., Lewkowicz, A. G., Williams, M. and Hartley, I. P.: Limited contribution of
permafrost carbon to methane release from thawing peatlands, Nature Climate
Change, 7(7), 507–511, doi: <u>10.1038/nclimate3328</u> , 2017.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J.: Acceleration of
global warming due to carbon-cycle feedbacks in a coupled climate model, 408,
4, 2000.
Deng, J., Li, C., Frolking, S., Zhang, Y., Bäckstrand, K. and Crill, P.: Assessing effects of
permafrost thaw on C fluxes based on multiyear modeling across a permafrost
thaw gradient at Stordalen, Sweden, Biogeosciences, 11(17), 4753-4770,
doi: <u>10.5194/bg-11-4753-2014</u> , 2014.

708	Dimitrov, D. D., Bhatti, J. S. and Grant, R. F.: The transition zones (ecotone) between
709	boreal forests and peatlands: Ecological controls on ecosystem productivity along
710	a transition zone between upland black spruce forest and a poor forested fen in
711	central Saskatchewan, Ecological Modelling, 291, 96-108,
712	doi:10.1016/j.ecolmodel.2014.07.020, 2014.
713	Dimitrov Dimitre D., Grant Robert F., Lafleur Peter M. and Humphreys Elyn R.:
714	Modeling the effects of hydrology on gross primary productivity and net
715	ecosystem productivity at Mer Bleue bog, Journal of Geophysical Research:
716	Biogeosciences, 116(G4), doi:10.1029/2010JG001586, 2011.
717	Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project (GSWP),
718	Journal of Hydrometeorology, 12(5), 729–749, doi: <u>10.1175/JHM-D-10-05010.1</u> ,
719	2011.
720	Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P.,
721	Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T.,
722	Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P.,
723	Reick, C., Roeckner, E., Schnitzler, KG., Schnur, R., Strassmann, K., Weaver,
724	A. J., Yoshikawa, C. and Zeng, N.: Climate–Carbon Cycle Feedback Analysis:
725	Results from the C ⁴ MIP Model Intercomparison, Journal of Climate, 19(14),
726	3337–3353, doi: <u>10.1175/JCLI3800.1</u> , 2006.
727	Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S.
728	K. and Knutti, R.: Uncertainties in CMIP5 Climate Projections due to Carbon
729	Cycle Feedbacks, Journal of Climate, 27(2), 511–526, doi:10.1175/JCLI-D-12-
730	<u>00579.1</u> , 2014.

731	Ghimire, B., Riley, W. J., Koven, C. D., Mu, M. and Randerson, J. T.: Representing leaf
732	and root physiological traits in CLM improves global carbon and nitrogen cycling
733	predictions, Journal of Advances in Modeling Earth Systems, 8(2), 598-613,
734	doi: <u>10.1002/2015MS000538</u> , 2016.
735	Grant, R. F.: Modelling changes in nitrogen cycling to sustain increases in forest
736	productivity under elevated atmospheric CO2 and contrasting site conditions,
737	Biogeosciences, 10(11), 7703-7721, doi:10.5194/bg-10-7703-2013, 2013.
738	Grant, R. F.: Nitrogen mineralization drives the response of forest productivity to soil
739	warming: Modelling in ecosys vs. measurements from the Harvard soil heating
740	experiment, Ecological Modelling, 288, 38-46,
741	doi:10.1016/j.ecolmodel.2014.05.015, 2014.
742	Grant R. F. and Flanagan L. B.: Modeling stomatal and nonstomatal effects of water
743	deficits on CO2 fixation in a semiarid grassland, Journal of Geophysical
744	Research: Biogeosciences, 112(G3), doi:10.1029/2006JG000302, 2007.
745	Grant, R. F. and Roulet, N. T.: Methane efflux from boreal wetlands: Theory and testing
746	of the ecosystem model Ecosys with chamber and tower flux measurements,
747	Global Biogeochemical Cycles, 16(4), 2-1-2-16, doi:10.1029/2001GB001702,
748	2002.
749	Grant, R. F., Oechel, W. C. and Ping, CL.: Modelling carbon balances of coastal arctic
750	tundra under changing climate, Global Change Biology, 9(1), 16–36,
751	doi:10.1046/j.1365-2486.2003.00549.x, 2003.
752	Grant, R. F., Black, T. A., Humphreys, E. R. and Morgenstern, K.: Changes in net
753	ecosystem productivity with forest age following clearcutting of a coastal

754	Douglas-fir forest: testing a mathematical model with eddy covariance
755	measurements along a forest chronosequence, Tree Physiol., 27(1), 115–131,
756	2007a.

757	Grant, R. F., Arkebauer, T. J., Dobermann, A., Hubbard, K. G., Schimelfenig, T. T.,
758	Suyker, A. E., Verma, S. B. and Walters, D. T.: Net Biome Productivity of
759	Irrigated and Rainfed Maize-Soybean Rotations: Modeling vs. Measurements,
760	Agronomy Journal, 99(6), 1404, doi:10.2134/agronj2006.0308, 2007b.
761	Grant, R. F., Barr, A. G., Black, T. A., Gaumont Guay, D., Iwashita, H., Kidson, J.,
762	McCAUGHEY, H., Morgenstern, K., Murayama, S., Nesic, Z., Saigusa, N.,
763	Shashkov, A. and Zha, T.: Net ecosystem productivity of boreal jack pine stands
764	regenerating from clearcutting under current and future climates, Global Change
765	Biology, 13(7), 1423–1440, doi:10.1111/j.1365-2486.2007.01363.x, 2007c.
766	Grant, R. F., Margolis, H. A., Barr, A. G., Black, T. A., Dunn, A. L., Bernier, P. Y. and
767	Bergeron, O.: Changes in net ecosystem productivity of boreal black spruce
768	stands in response to changes in temperature at diurnal and seasonal time scales,
769	Tree Physiology, 29(1), 1–17, doi:10.1093/treephys/tpn004, 2009a.
770	Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., Dunn, A. L., Metsaranta, J.,
771	Wang, S., McCaughey, J. H. and Bourque, C. A.: Interannual variation in net
772	ecosystem productivity of Canadian forests as affected by regional weather
773	patterns – A Fluxnet-Canada synthesis, Agricultural and Forest Meteorology,
774	

- 775 Grant, R. F., Hutyra, L. R., Oliveira, R. C., Munger, J. W., Saleska, S. R. and Wofsy, S.
- 776 C.: Modeling the carbon balance of Amazonian rain forests: resolving ecological

- controls on net ecosystem productivity, Ecological Monographs, 79(3), 445–463,
 doi:10.1890/08-0074.1, 2009c.
- Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., Mccaughey, J. H. and Trofymow,
- 780 J. A.: Net ecosystem productivity of temperate and boreal forests after
- 781 clearcutting—a Fluxnet-Canada measurement and modelling synthesis, Tellus B:
- 782 Chemical and Physical Meteorology, 62(5), 475–496, doi:10.1111/j.1600-
- 783 0889.2010.00500.x, 2010.
- Grant, R. F., Kimball, B. A., Conley, M. M., White, J. W., Wall, G. W. and Ottman, M.
- J.: Controlled Warming Effects on Wheat Growth and Yield: Field Measurements
 and Modeling, Agronomy Journal, 103(6), 1742–1754,
- 787 doi:10.2134/agronj2011.0158, 2011a.
- 788 Grant, R. F., Humphreys, E. R., Lafleur, P. M. and Dimitrov, D. D.: Ecological controls
- on net ecosystem productivity of a mesic arctic tundra under current and future
- climates, Journal of Geophysical Research: Biogeosciences, 116(G1),
- 791 doi:10.1029/2010JG001555, 2011b.
- Grant, R. F., Baldocchi, D. D. and Ma, S.: Ecological controls on net ecosystem
- productivity of a seasonally dry annual grassland under current and future
- climates: Modelling with ecosys, Agricultural and Forest Meteorology, 152, 189–
- 795 200, doi:10.1016/j.agrformet.2011.09.012, 2012a.
- 796 Grant, R. F., Desai, A. R. and Sulman, B. N.: Modelling contrasting responses of wetland
- productivity to changes in water table depth, Biogeosciences, 9(11), 4215–4231,
- doi:10.5194/bg-9-4215-2012, 2012b.

799	Grant R. F., Humphreys E. R. and Lafleur P. M.: Ecosystem CO2 and CH4 exchange in a
800	mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1.
801	Modeling versus measurements, Journal of Geophysical Research:
802	Biogeosciences, 120(7), 1366–1387, doi:10.1002/2014JG002888, 2015.
803	Grant, R. F., Mekonnen, Z. A., Riley, W. J., Wainwright, H. M., Graham, D. and Torn,
804	M. S.: Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1.
805	Microtopography Determines How Active Layer Depths Respond to Changes in
806	Temperature and Precipitation, Journal of Geophysical Research: Biogeosciences,
807	122(12), 3161–3173, doi: <u>10.1002/2017JG004035</u> , 2017a.
808	Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B. and Torn, M. S.: Mathematical
809	Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography
810	Determines How CO $_2$ and CH $_4$ Exchange Responds to Changes in Temperature
811	and Precipitation: GHG Exchange in Arctic Polygonal Tundra, Journal of
812	Geophysical Research: Biogeosciences, 122(12), 3174–3187,
813	doi: <u>10.1002/2017JG004037</u> , 2017b.
814	Guo, D., Wang, H. and Wang, A.: Sensitivity of Historical Simulation of the Permafrost
815	to Different Atmospheric Forcing Data Sets from 1979 to 2009, Journal of
816	Geophysical Research: Atmospheres, 122(22), 12,269-12,284,
817	doi: <u>10.1002/2017JD027477</u> , 2017.
818	Harris, I., Jones, P. D., Osborn, T. J. and Lister, D. H.: Updated high-resolution grids of
819	monthly climatic observations - the CRU TS3.10 Dataset, International Journal of
820	Climatology, 34(3), 623-642, doi:10.1002/joc.3711, n.d.

821	Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S.
822	R., Rich, V. I. and Chanton, J. P.: Changes in peat chemistry associated with
823	permafrost thaw increase greenhouse gas production, Proceedings of the National
824	Academy of Sciences, 111(16), 5819–5824, doi: 10.1073/pnas.1314641111, 2014.
825	van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville,
826	H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W.,
827	Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S.,
828	Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M. and Sheffield, J.:
829	LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture
830	Model Intercomparison Project – aims, setup and expected outcome,
831	Geoscientific Model Development, 9(8), 2809-2832, doi:10.5194/gmd-9-2809-
832	2016, 2016.
832 833	2016, 2016. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL.,
833	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL.,
833 834	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
833 834 835	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z.,
833 834 835 836	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon
833 834 835 836 837	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences,
833 834 835 836 837 838	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11(23), 6573–6593, doi:10.5194/bg-11-6573-2014, 2014.
833 834 835 836 837 838 839	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11(23), 6573–6593, doi:10.5194/bg-11-6573-2014, 2014. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I,

843	Johansson, M., Callaghan, T. V., Bosiö, J., Åkerman, H. J., Jackowicz-Korczynski, M.
844	and Christensen, T. R.: Rapid responses of permafrost and vegetation to
845	experimentally increased snow cover in sub-arctic Sweden, Environmental
846	Research Letters, 8(3), 035025, doi: 10.1088/1748-9326/8/3/035025, 2013.
847	Johansson, T., Malmer, N., Crill, P. M., Friborg, T., &Kerman, J. H., Mastepanov, M. and
848	Christensen, T. R.: Decadal vegetation changes in a northern peatland, greenhouse
849	gas fluxes and net radiative forcing, Global Change Biology, 12(12), 2352-2369,
850	doi: <u>10.1111/j.1365-2486.2006.01267.x</u> , 2006.
851	Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C. and Ewing,
852	S.: Rapid carbon loss and slow recovery following permafrost thaw in boreal
853	peatlands, Glob. Chang. Biol., 23(3), 1109–1127, doi:10.1111/gcb.13403, 2017.
854	Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
855	Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins,
856	W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds,
857	R., Jenne, R. and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull.
858	Amer. Meteor. Soc., 77(3), 437–472, doi:10.1175/1520-
859	0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
860	Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, SK., Hnilo, J. J., Fiorino, M. and
861	Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), Bull. Amer. Meteor. Soc.,
862	83(11), 1631–1644, doi:10.1175/BAMS-83-11-1631, 2002.
863	Kokfelt, U., Reuss, N., Struyf, E., Sonesson, M., Rundgren, M., Skog, G., Rosen, P., and
864	Hammarlund, D.: Wetland development, permafrost history and nutrient cycling

- 865 inferred from late Holocene peat and lake sediment records in subarctic Sweden,
- 866 J. Paleolimn., 44, 327–342, doi:10.1007/s10933-010-9406- 8, 2010.
- 867 Lundin, E. J., Klaminder, J., Giesler, R., Persson, A., Olefeldt, D., Heliasz, M.,
- 868 Christensen, T. R. and Karlsson, J.: Is the subarctic landscape still a carbon sink?
- 869 Evidence from a detailed catchment balance, Geophysical Research Letters,
- 870 43(5), 1988–1995, doi:<u>10.1002/2015GL066970</u>, 2016.
- 871 Malmer, N., Johansson, T., Olsrud, M. and Christensen, T. R.: Vegetation, climatic
- 872 changes and net carbon sequestration in a North-Scandinavian subarctic mire over
- 873 30 years, Global Change Biology, 11(11), 1895–1909, doi:<u>10.1111/j.1365-</u>
- 874 <u>2486.2005.01042.x</u>, 2005.
- 875 Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Ström, L., Tamstorf,
- 876 M. P. and Christensen, T. R.: Large tundra methane burst during onset of
- freezing, Nature, 456(7222), 628–630, doi:<u>10.1038/nature07464</u>, 2008.
- 878 McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E.-H., Mondav,
- 879 R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W. and Saleska, S. R.:
- 880 Methane dynamics regulated by microbial community response to permafrost
- thaw, Nature, 514(7523), 478–481, doi:<u>10.1038/nature13798</u>, 2014.
- 882 Mezbahuddin, M., Grant, R. F. and Hirano, T.: Modelling effects of seasonal variation in
- 883 water table depth on net ecosystem CO₂ exchange of a tropical peatland,
- Biogeosciences, 11(3), 577–599, doi:<u>10.5194/bg-11-577-2014</u>, 2014.
- 885 Mondav, R., McCalley, C. K., Hodgkins, S. B., Frolking, S., Saleska, S. R., Rich, V. I.,
- 886 Chanton, J. P. and Crill, P. M.: Microbial network, phylogenetic diversity and
- community membership in the active layer across a permafrost thaw gradient,

888	Environmental Microbiology, 19(8), 3201–3218, doi: <u>10.1111/1462-2920.13809</u> ,
889	2017.
890	Mondav, R., Woodcroft, B. J., Kim, EH., McCalley, C. K., Hodgkins, S. B., Crill, P.
891	M., Chanton, J., Hurst, G. B., VerBerkmoes, N. C., Saleska, S. R., Hugenholtz, P.,
892	Rich, V. I. and Tyson, G. W.: Discovery of a novel methanogen prevalent in
893	thawing permafrost, Nature Communications, 5, 3212, doi: 10.1038/ncomms4212,
894	2014.
895	Myhre, G., D. Shindell, FM. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, JF.
896	Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T.
897	Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In:
898	Climate Change 2013: The Physical Science Basis. Contribution of Working
899	Group I to the Fifth Assessment Report of the Intergovernmental Panel on
900	Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J.
901	Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
902	University Press, Cambridge, United Kingdom and New York, NY, USA, pp.
903	659–740, doi:10.1017/ CBO9781107415324.018.
904	O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z. and
905	Wickland, K. P.: The Effects of Permafrost Thaw on Soil Hydrologic, Thermal,
906	and Carbon Dynamics in an Alaskan Peatland, Ecosystems, 15(2), 213–229,
907	doi:10.1007/s10021-011-9504-0, 2012.
908	Olefeldt, D. and Roulet, N. T.: Effects of permafrost and hydrology on the composition

and transport of dissolved organic carbon in a subarctic peatland complex, Journal

910	of Geophysical Research: Biogeosciences, 117(G1), doi: 10.1029/2011JG001819,
911	2012.

- 912 Piao, S., Liu, Z., Wang, T., Peng, S., Ciais, P., Huang, M., Ahlstrom, A., Burkhart, J. F.,
- 913 Chevallier, F., Janssens, I. A., Jeong, S.-J., Lin, X., Mao, J., Miller, J.,
- 914 Mohammat, A., Myneni, R. B., Peñuelas, J., Shi, X., Stohl, A., Yao, Y., Zhu, Z.
- 915 and Tans, P. P.: Weakening temperature control on the interannual variations of
- 916 spring carbon uptake across northern lands, Nature Climate Change, 7(5), 359–
- 917 363, doi:<u>10.1038/nclimate3277</u>, 2017.
- 918 Raz-Yaseef, N., Torn, M. S., Wu, Y., Billesbach, D. P., Liljedahl, A. K., Kneafsey, T. J.,
- 919 Romanovsky, V. E., Cook, D. R. and Wullschleger, S. D.: Large CO2 and CH4
- 920 emissions from polygonal tundra during spring thaw in northern Alaska,
- 921 Geophysical Research Letters, 44(1), 504–513, doi:10.1002/2016GL071220,
 922 2017.
- Rydén, B. E., Fors, L. and Kostov, L.: Physical Properties of the Tundra Soil-Water
 System at Stordalen, Abisko, Ecological Bulletins, (30), 27–54, 1980.
- 925 Rydén B. E. and Kostov, L.: Thawing and freezing in tundra soil. In: Ecology of a
- 926 Subarctic Mire, Ecological Bulletins, Vol. 30 (ed. Sonesson M), pp. 251–282.
 927 Swedish Natural Science Research Council, Stockholm, 1980.
- 928 Schuur, E. a. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J.,
- 929 Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt,
- 930 D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C. and Vonk, J.
- 931 E.: Climate change and the permafrost carbon feedback, Nature, 520(7546), 171–
- 932 179, doi:10.1038/nature14338, 2015.

933	Sonesson, M. (1972) Cryptogams. In: International biological programme—Swedish
934	tundra biome project. Technical report No. 9, April 1972. Swedish Natural
935	Science Research Council Ecological Research Committee.
936	Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A. and
937	Hatano, R.: Falling atmospheric pressure as a trigger for methane ebullition from
938	peatland, Global Biogeochemical Cycles, 21(2), doi:10.1029/2006GB002790,
939	2007.
940	Viovy, N.: CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land
941	Model, Research Data Archive at the National Center for Atmospheric Research,
942	Computational and Information Systems Laboratory, Boulder CO.
943	Wickland, K. P., Striegl, R. G., Neff, J. C. and Sachs, T.: Effects of permafrost melting
944	on CO2 and CH4 exchange of a poorly drained black spruce lowland, Journal of
945	Geophysical Research: Biogeosciences, 111(G2), doi: 10.1029/2005JG000099,
946	2006.
947	Woodcroft, B. J., Singleton, C. M., Boyd, J. A., Evans, P. N., Emerson, J. B., Zayed, A.
948	A. F., Hoelzle, R. D., Lamberton, T. O., McCalley, C. K., Hodgkins, S. B.,
949	Wilson, R. M., Purvine, S. O., Nicora, C. D., Li, C., Frolking, S., Chanton, J. P.,
950	Crill, P. M., Saleska, S. R., Rich, V. I. and Tyson, G. W.: Genome-centric view of
951	carbon processing in thawing permafrost, Nature, doi: 10.1038/s41586-018-0338-
952	<u>1</u> , 2018.
953	Wu, Z., Ahlström, A., Smith, B., Ardö, J., Eklundh, L., Fensholt, R. and Lehsten, V.:
954	Climate data induced uncertainty in model-based estimations of terrestrial

- 955 primary productivity, Environmental Research Letters, 12(6), 064013,
- 956 doi:10.1088/1748-9326/aa6fd8, 2017.
- 957 Yoshimura, K. and Kanamitsu, M.: Dynamical Global Downscaling of Global
- 958 Reanalysis, Monthly Weather Review, 136(8), 2983–2998,
- 959 doi:<u>10.1175/2008MWR2281.1</u>, 2008.
- 960 Zaehle, S., Friend, A. D., Friedlingstein, P., Dentener, F., Peylin, P. and Schulz, M.:
- 961 Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of
- the nitrogen cycle in the historical terrestrial carbon balance, Global
- 963 Biogeochemical Cycles, 24(1), doi:<u>10.1029/2009GB003522</u>, 2010.
- 964 Zimov, S. A., Davydov, S. P., Zimova, G. M., Davydova, A. I., Schuur, E. a. G., Dutta,
- 965 K. and Chapin, F. S.: Permafrost carbon: Stock and decomposability of a globally
- 966 significant carbon pool, Geophysical Research Letters, 33(20),
- 967 doi:<u>10.1029/2006GL027484</u>, 2006.
- 968

Table 1. Temporal coverage of quality-controlled CO₂ and CH₄ exchanges measured by

970 automated chambers at the three peatland types in the Stordalen Mire during the years

972

		CO_2			CH_4		
Sites	Number of data points	3 Hourly	Daily	Number of data points	3 Hourly	Daily	
		coverage	coverage		coverage	coverage	
		(%)	(%)		(%)	(%)	
Palsa	12752	65.8	12.4	N/A	N/A	N/A	
Bog	12821	68.5	12.7	6660	96.2	25.0	
Fen	8989	63.8	13.7	4923	90.5	33.7	
The temporal coverage represents the percentage of data points that are passed our							

973 quality-controlled threshold at the corresponding time steps.

974	Table 2.	Evaluation of the 3 hourly	and daily CO2 and CH	4 exchanges simulated at the

975 palsa, bog, and fen sites.

			3-Hourly		Daily
		R^2	RRMSEs (%)	R^2	RRMSEs (%)
Sites	C component				
Palsa	CO_2	0.48	13.4	0.36	18.3
		0110		0.20	1010
Bog	CO_2	0.63	19.1	0.44	35.8
	CH_4	0.31	16.3	0.47	22.3
F	60	0.64	0.4	0.42	25.5
Fen	CO_2	0.64	8.4	0.43	25.5
	CH_4	0.44	11.1	0.54	16.9

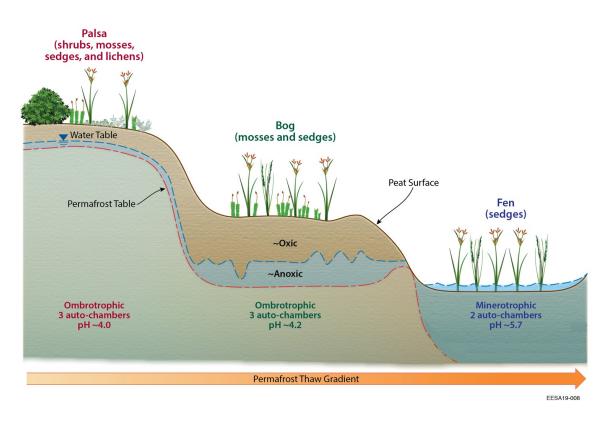

RRMSEs are relative root mean squared errors.

Table 3. Means and standard deviations of cumulative CO₂ and CH₄ exchanges simulated

		Growing season; Days 119–288		Non-growing season; Days 1–118 and 289–365		
		Mean	Standard deviation	Mean	Standard deviation	
Sites	C flux component					
Palsa						
	CO_2	-72.70	19.10	38.89	4.09	
	CH_4	0.04	0.02	0.01	0.002	
Bog						
	CO_2	-79.59	21.46	42.89	2.16	
	CH_4	3.52	0.45	0.42	0.11	
Fen						
	CO_2	-88.65	7.26	44.41	6.13	
	CH_4	10.86	3.95	0.78	0.18	
$\frac{11}{0}$ as exp	changes are in i	inits of σ C r	n^{-2}			

979 in the palsa, bog, and fen during the period 2003 to 2007.

980 All gas exchanges are in units of g C m^{-2} .

- 983 Figure 1. Schematic diagram of the sampling sites at Stordalen Mire, adapted from
- 984 Johansson et al. (2006).

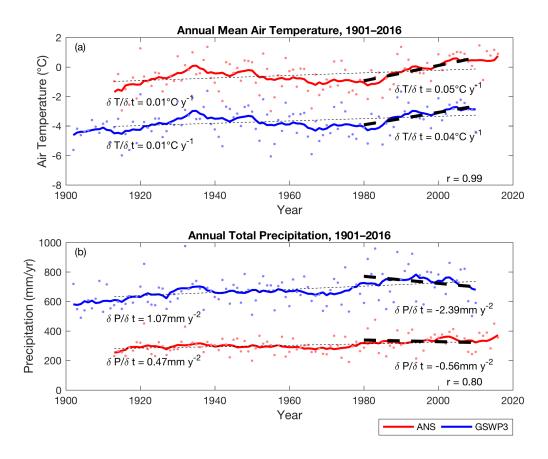
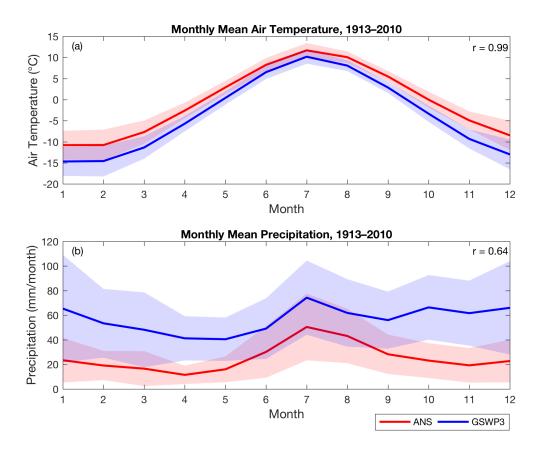
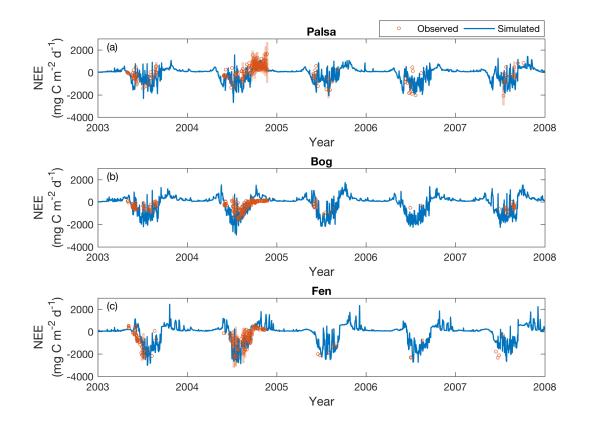


Figure 2. Time series of air temperature (a) and precipitation (b) measured at ANS (red;
years 1913–2016) and extracted from GSWP3 (blue; years 1901–2010). Dots are the
annual means and solid lines are the decadal moving averages of the corresponding
annual means. Thin and thick dashed lines are the trends for years 1913–2010, and years
1980–2010, respectively. The inset r values are the correlation coefficients calculated
between the two time series.

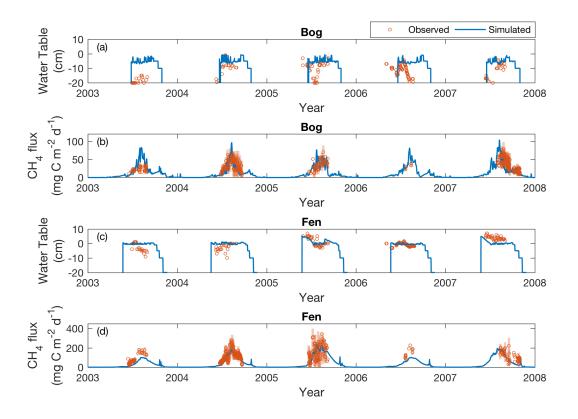




Figure 3. Monthly mean air temperature (a) and precipitation (b) measured at ANS (red)
and extracted from GSWP3 (blue). The shaded area is the inter-annual variability for the
corresponding dataset, represented by the standard deviations calculated at each month.
The inset r values are the correlation coefficients calculated between the two time series.

1001 Figure 4. Simulated (solid lines) and measured (open circles) seasonal dynamics of thaw

1002 depth at the palsa (a), bog (b), and fen (c) sites from 2003 to 2007. Downward arrows

1003 indicate the time when measured thaw depth exceeds 90 cm for a measurement year.

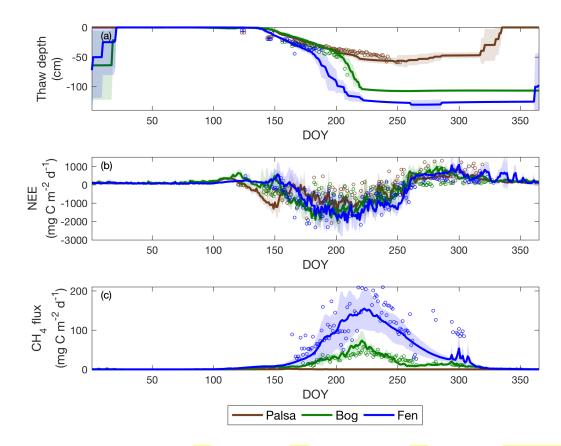


1006 Figure 5. Simulated (solid lines) and measured (open circles) daily CO₂ exchanges (NEE)

1007 at the palsa (a), bog (b), and fen (c) sites, from 2003 to 2007. Shaded bars are the

1008 standard deviations of daily NEE measured across subsites under each peatland type.

1009 Positive and negative values indicate effluxes from and influxes to the site, respectively.

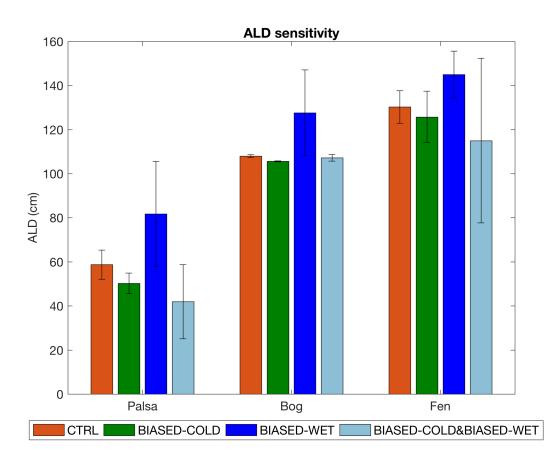


1012 Figure 6. Simulated (solid lines) and measured (open circles) water table depths and daily

1013 CH₄ emissions at the bog and fen from 2003 to 2007. Shaded bars are the standard

1014 deviations of the daily CH₄ emissions measured across the subsites under each peatland

1015 type.



1018 Figure 7. Daily thaw depth (a), daily NEE (b), and daily CH_4 (c) exchanges for the three

1019 sites from 2003 to 2007. Solid lines and open circles are the simulated and measured

1020 inter-annual means for each day of year, respectively. The shaded area is the simulated

- 1021 inter-annual variability for the corresponding dataset, represented by the standard
- 1022 deviations calculated at each day of year. Positive and negative carbon flux values
- 1023 indicate effluxes from and influxes to the site, respectively.
- 1024

1026 Figure 8. Simulated ALD at the palsa, bog, and fen for four sets of climate forcing

1027 (Section 2.5). Bars and error bars are means and standard deviations calculated from

- 1028 2003 to 2007, respectively.
- 1029
- 1030

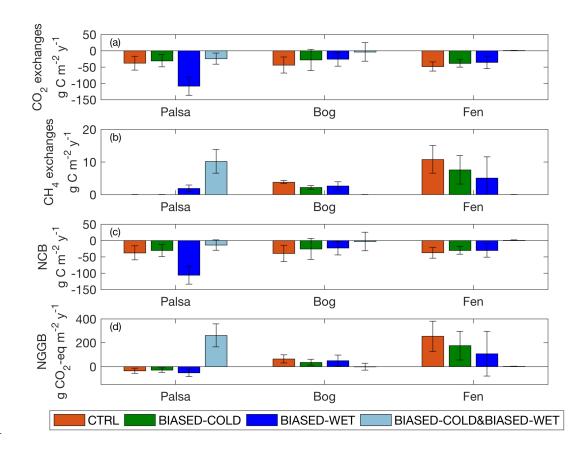


Figure 9. Annual CO₂ exchanges (a), CH₄ exchanges (b), Net Carbon Balance (c), and
Net Greenhouse Gas Balance (d) simulated at the palsa, bog, and fen, under each set of
simulations. Bars and error bars are the means and standard deviations calculated from
2003 to 2007, respectively. Positive and negative values indicate effluxes from and
influxes to the site, respectively.