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We would like to thank both reviewers for their constructive and insightful criticisms and comments 

on our manuscript. These are taken account of in our revised manuscript. Here we reply to the more 

important criticisms. 

Below, we respond to all comments from both reviews. Reviewer comments, numbered 

chronologically, are in italics, and the author response in plain text. Details of all changes to the 

manuscript to address comments are highlighted in bold text. References to the location in the 

manuscript of changes refer to the revised manuscript without markup displayed 

Reviewer #1 
1. I’m sorry, but so much of the discussion in the manuscript depends on un-referenced and un-

explained "references to previous work" that I think that the manuscript needs to be revised 

significantly. The specific places where the discussion and explanations are inadequate are 

listed below.  

We agree that the exposition of the proposed mechanism inducing the stress concentrations is not 

entirely clear, and that we’ve also used some jargon in some places that hasn’t been properly 

defined for the reader. Rewording and some additional exposition will be added to the manuscript, 

with detail of the changes given in response to specific comments below. 

No changes made in response to this specific comment. Changes that account for this general 

comment are detailed in response to comment #11 

2. Other than the expository problem with the manuscript. I find the science compelling and 

well done. The work is creative and important in the study of iceberg calving mechanisms. 

Here’s the stuff that needs attention (in my estimation):  

Thank you very much for the generous remark, we’re glad that you found the work compelling! 

No changes made in response to this comment. 

3. I wonder if the title really does justice. . . the paper is about bending moments (viscous and 

plastic bodies have bending moments too!) generated by geometry changes at the ice front 

due to ice/ocean and ice/atmosphere and ice/wave interactions. . . the present title could be 

misunderstood to represent “same old basal shear stress” stuff. . ..  

The paper is not specifically about bending moments but rather about forces generated at the bed 

instantaneously at the onset of bending in response to the perturbation. Some further explanation is 

required on this for clarity (see the response to the next comment), but as such, we do not intend to 

change the title. 

No changes made in response to this specific comment. 

4. line 13 - would it be more accurate to say “viscous bending moment” (remember you can 

bend a beam viscously and elastically and viscoelastically) leading to high tensile stress 

concentration at the bed. . . instead of stresses at the ice-bed interface? Who cares what the 

stresses are at the interface if the ice is actually in a state of bending induced fracture? 
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As above, we don’t attribute these stresses to a bending moment. We attribute these longitudinal 

stresses as those required to balance the abrupt decrease in basal shear across the grounding zone.  

We have added a new paragraph starting at page 8, line 4 to clarify and justify our interpretation 

of these stresses. 

5. line 29 - Would this be a place to add a reference to Weertman? 

A reference to Weertman (1957) for the Weertman sliding law has been added to page 4, line 7. 

Lines 7-9 of page 4 have been slightly reworded to account for this addition. 

6. line 18 page 2 - The rotation should be indicated as “bottom out”.  

The description has been changed to refer to “bottom-out” calving events in page 2 line 10, page 2 

line 19 and the caption for figure 1. 

7. line 8 page 3 - If I were to be pedantic, I would say that a reference should be given for 

“Stokes equations” (in actuality, Stokes was prolific and probably has many equations 

associated with his name). Ditto for “Glen’s flow law”. . . a reference should be given.  

A reference to Gagliardini et al. (2013) which solves to same Stokes equations has been provided 

on page 3 line 9. A reference to Glen (1958) has been provided on page 3 line 13. 

8. line 1 page 4 - Is Cauchy stress the same as deviatoric stress?  

The deviatoric stress indicates the deviation from the Cauchy (or full) stress, i.e. it negates the 

average pressure term. For our ~1km thick glacier, the pressure will be ~10MPa everywhere along 

the bed and therefore the Cauchy stress, ignoring additional water pressure, will be compressive 

everywhere.  

This detail has been clarified in the paper with an adjustment to equation 2, and changes to the 

text in page 3 lines 10-12. Also, removal of text in page 4, line 1 which was rendered redundant. 

The identity matrix was added to table 1. 

9. line 9 page 5 - Just out of curiosity why are 191 and 644 meters so precisely known as to be 

significant to the single meter? Can the authors tell us what would happen if the numbers 

were 192 and 643?  

These numbers are part of the model output and the precision is fairly arbitrary. The precision of 

these numbers is not important to our argument, and is in a small part determined by the mesh 

resolution (i.e. the peak occurs at a mesh node). Since it is not possible to identify locations to the 

nearest meter in the figures provided, we will change to reporting them as “approximately 190 m” 

and similarly for other such numbers. 

Changes made to: page 5, line 23; page 5, line 25; page 6, line 2; figure captions for figures 4, 5, 8, 

9, 10. 

10. section 3.1 - What is the a priori reason to expect water pressure to be significantly 

important in the problem? is it for promoting fracture propagation or is it for lubricating the 

base? 

The significance is that the mechanism we suggest relies on the abrupt reduction in basal shear 

stress where the ice ungrounds to produce the longitudinal stresses to balance this. If we apply a 

sliding law where the basal shear stress reduces gradually as a function of effective pressure, we 

wouldn’t expect the same result.  

A sentence has been added to page 7, line 4 to clarify the expectation of different results with a 

different sliding law. 



11. line 4 page 7 - What is “Weertman-like”???? This seems to come in out of the blue. . . 

Weertman published hundreds of papers in his life, what is referred to here? 

line 1 page 9 - Notch-triggered rotation mechanism was shown to be irrelevant under the full 

School regime”. . . Readers will get confused here, because “full School regime” is a weak 

form of jargon that doesn’t really convey the precise ideas (regardless of whether they are 

published in Schoof. . . my hunch is that the authors have a different meaning, i.e., an 

interpretation that they ascribe to the term “full School regime”)  

line 12 and 13 page 9 - “Weertman . . . regime”???? Weertman-like stress peak???? What is 

this, and why the name Weertman???? Seems like citations and explanations are required. 

The discussion is flawed because it relies on readers having prior knowledge of what a 

"Weertman regime" is...  

I’ve grouped these comments together because they all refer to the same thing. We agree with the 

reviewer that we’ve used jargon, the meaning of which has been poorly conveyed to the reader. 

When referring to “regimes”, we meant the use of the Weertman or Schoof sliding law. The “full” 

Schoof regime referred to the use of the Schoof sliding law with full hydrostatic water pressure 

applied along the ice-bed interface. “Weertman-like stress peak” referred to stress concentrations 

that have a similar profile to those produced using the Weertman sliding law. 

Numerous minor changes to the text have been made to clarify this: Page 7, line 27; page 10, line 

7; page 10, lines 18-20. 

Reviewer #2 
1. There is one major issue with the analysis, which is that the authors compare longitudinal 

deviatoric stress with a yield strength estimate from Vaughan (1993). The longitudinal 

deviatoric stress is problematic for two reasons. First, the various components of the 

deviatoric stress are not coordinate system invariant and have little physical meaning: a 

different coordinate system would result in different numbers. It is possible that the authors 

want to look at, say the components of the traction along the bed (which is well defined) or 

the largest principle deviatoric stress (which is also well defined). But this raises the more 

fundamental issue: it is the largest principle Cauchy stress and not the deviatoric stress that 

controls tensile fracture. And it is clear from the manuscript that the authors are fully focused 

on tensile basal crevasses. If the authors want to argue that the stresses are sufficient to 

trigger a tensile basal crevasse then they need to examine the largest principle Cauchy stress. 

Fortunately, this should be straightforward to compute from the full Stokes model. More 

problematically for the analysis performed here, for a kilometer thick glacier, the hydrostatic 

pressure is probably of the order of 10 MPa and may result in a negative (compressive) 

largest principle Cauchy stress. I should point that this is a common problem when dealing 

with failure of ice and especially basal crevasses. The most common solution to this problem 

is to (rather arbitrarily) superpose a hydrostatic pressure associated with water to the largest 

principle Cauchy stress to simulate the effect of water filled crevasses. This is commonly done 

and I think the authors could get away with it here if they want. Technically, you can’t really 

do this and the right way to do it is to calculate the Cauchy stress after introducing an 

infinitely narrow test crack. Doing it the right way, usually results in a compressive stress 

when using the power-law creep rheology of ice. If the authors go the usual route of 

superposing a hydrostatic stress field, I do suggest showing the stress with and without 

water pressure to emphasize that the water pressure is (or is not) critical. 

We have recalculated stresses using the recommended metric of the largest principle stress plus the 

water pressure, referred to as Effective Principle Stress (EPS) in Benn et al. (2017): 
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Unsurprisingly, the resultant stress profiles are similar to those reported in that paper. There is a 

large concentration of EPS in the location where the longitudinal deviatoric stress (τxx) peaks. The 

downstream compressive stress peak and the tensile peak located directly at the bottom corner of 

the calving front are comparatively greatly diminished in EPS as compared with the same features in 

τxx. Figures AC1 and AC2 below compare τxx and EPS calculated for the example reported in figure 4 

of the original submission. 

   

Fig AC1. Comparison of τxx (left) and EPS calculated for the geometry shown in Figure 4. of the original submission. Units of 

stress in MPa. The spatial scale is the same as Figure 4. of the original submission. 

 

Fig AC2. Comparison of τxx and EPS along the basal boundary, for the same geometry as in Figure AC1. 

As the reviewer points out, the ice hydrostatic pressure is of order ~10MPa at the bed and therefore 

without the addition of the water pressure, the largest principle stress σ1 is negative everywhere. It 

was suggested that we add a plot to show that the water pressure is critical to produce a positive 

stress. We feel that this would be unnecessary and not particularly instructive, since pw has a 



constant value of 9.1MPa along the bed. However we will add a sentence to make it clear that the 

addition of pw is critical to our analysis. 

The reviewer suggests that the more correct way to carry out the analysis would be to introduce test 

cracks into the geometry and look at the crack tip stress. We have looked at this (Fig. AC3), but this 

problem has the stress tend to infinity approaching the crack tip, so that although our simulations do 

indicate a substantial stress around the tip, the numerical solutions do no converge with mesh 

resolution. 

   

Fig AC3. Demonstration of the dependence of the crack tip stress upon the mesh spacing, with increasing resolution from 

left to right. The crack is 1m wide at the base, 5m high and located at the position of maximum basal EPS. In each figure, 

the maximum EPS on the colour bar corresponds to the value of EPS at the crack tip. 

One approach to avoid this issue and test the likelihood of the crack to grow or stagnate would be to 

use the methods of linear elastic fracture mechanics (LEFM) to calculate a stress intensity factor for 

the crack tip (e.g. van der Veen, 1998; Krug et al., 2014). 

We feel that following this method would entail a significant extra addition to the paper at this 

stage. Therefore our preferred choice is to use the EPS metric. Using this metric, the substantial 

growth in concentrated EPS following the geometric perturbation would lead to the formation of a 

crevasse at the same location as the original deviatoric stress metric. Other similar modelling studies 

(e.g. Nick et al., 2010; Todd et al., 2014) apply the Nye zero stress criterion (Nye, 1957) to calculate 

the depth of crevasses. Although we do not calculate crevasse depths, we will refer to this criterion 

so relate the high stresses to locations where crevasses will form. 

The following changes were made to account for this: 

• Addition of section 2.3 

• Figure 3 and caption 

• Figure 4 and caption 

• Figure 5 and caption 

• Figure 7 and caption 

• Figure 8 replotted as two figures, figure 8 and figure 9. This is to account for the large shift 

in the vertical scale when switching to the EPS metric. 

• Figure 9 replotted and caption updated (and changed to figure 10) 

• Changed “longitudinal deviatoric stress” to “EPS” at page 5, line 20. 

• Removal of the reference to a tensile strength from Vaughan (1993) at page 5, line 21. 

• Removal of the reference to tensile strength at page 5, line 25. 

• Added sentence at page 5, line 28. 



• Updated text at page 7, lines 12 – 15 to account for changed figures and the updated 

results. 

• Changed text at page 10, line 12 to account for the updated results using EPS. 

• EPS and σ1 added to table 1. 

 
2. Another aspect of the analysis that is somewhat problematic is that the authors are 

comparing their stress metric to the yield strength estimated by Vaughan (1993). My 

understanding, however, is that Vaughan (1993) examined various yield strength envelopes, 

finding that the Von Mises stress envelope provided the best fit to the observations. The Von 

Mises yield criterion, however, is only equivalent to tensile failure in uniaxial loading, which is 

not the case for the model considered here. Recalling that the second deviatoric stress 

invariant invariant is proportional to the Von Mises stress, what I suggest is that in addition 

to the largest principle Cauchy stress, the authors also consider showing the second 

deviatoric stress invariant as an additional stress metric. This stress metric can be more 

directly compared with Vaughan’s estimated yield strength. Note that in two dimensions, the 

second effective deviatoric stress invariant is equal to the maximum shear stress and thus the 

failure mechanism predicted by this envelope would be shear, rather than purely tensile 

failure and, if the authors go this route, the authors will need to be careful to point this out. 

Although we speculated that shear failure is important for tall calving cliff in Bassis and 

Walker (2012), I’m not aware of any strong observational evidence supporting shear failure 

in calving so the authors may want to take this suggestion under advisement as the broader 

community has doubts about the viability of shear failure. 

As discussed in our response to point 1 above, this issue is avoided as a result of switching to use of 

the EPS stress metric. 

No changes were made in response to this specific comment. Changes already detailed in response 

to comment #1 remove the Vaughan (1993) tensile strength as a crevassing criterion, but it is still 

referenced in section 2.3 to justify our interpretation of the results. 

3. Another minor point is that the authors convincingly argue that time scales they are 

interested are short compared to the time scales of flow and thus they can ignore the effect 

of ice flow on their experiments. However, if the time scale of interest is short compared to 

the time scale of flow, then this would seem to imply that an elastic rheology would be 

appropriate. This is surprising to most, but the elastic stress can be quite different from the 

viscous stress and this is primarily a consequence of the non-linearity in the creep flow law 

used. 

We are pleased that the reviewer finds our arguments regarding timescales convincing. We agree 

with this minor point that the stress should include an elastic component, though we suspect that 

the boundary conditions are the key factor, rather than nonlinearity. Here we have neglected elastic 

forces along the lines of (e.g. Benn et al., 2017; O’Leary and Christofferson, 2013) but accept that 

inclusion would change our results quantitatively. We do still expect a substantial increase in stress 

around the grounding line, since the force formerly acting on the bed downstream must be 

transferred upstream. 

No changes were made in response to this comment. 

4. The authors should be a little bit careful when discussing sliding laws, water pressure and the 

stress regime because glaciers are actually three-dimensional with bumps in the bed. In 

three-dimensions, these bumps play a pretty big role in controlling the stress transmission 



upstream because portions of the calving front maybe well grounded whilst other portions 

are close to flotation. 

A new paragraph has been added at page 10, line 2 to communicate this point to the reader. 

Additional changes 
The authors made some minor further changes in order to correct minor mistakes, clarify meaning 

or improve the flow of the text, which were not based on recommendations by the reviewers. 

• Changed “mass balance of the Greenland Ice Sheet” to “Greenland Ice Sheet mass 

balance”, page 1 line 21. 

• Added Greenlandic name of JI, page 1 line 24. 

• Changed “superbuoyancy” to “super-buoyancy”, page 2 line 7. 

• Added an extra final line to paragraph, page 2 line 13. 

• Removed “further we”, page 2, line 25. 

• Removed “however”, page 2, line 31. 

• Added “when not present”, page 2 line 22. 

• Added “applied here”, page 9 line 5. 

• Changed “suggests” to “suggested”, page 9 line 9. 

• Changed “trigger” to “induce”, page 9 line 16. 

• For the sake of consistency, “basal drag” has been replaced with “basal shear stress” since 

these two terms were being used interchangeably. Changes made at page 4, line 9; page 4, 

line 15; page 5, line 27; page 7, line 31; page 9, line 4; page 9, line 28, table 1. 

• Updated references to Cuffey and Patterson (2010) to account for differing page numbers. 

• Updated figure 6 to match format of other figures. Figure content and caption unchanged. 

• Added “The”, to the start of page 10, line 7. 

• Changed “significantly” to “greatly” to enhance readability, page 10, line 26. 

• Added “Code availability” section. 

• Updated “Acknowledgements” section to clarify MT’s grant reference number. 

• Corrected numerous typos in the references. 
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Abstract. Iceberg calving parameterisations currently implemented in ice sheet models do not reproduce the full observed 

range of calving behaviours. For example, though buoyant forces at the ice front are known to trigger full-depth calving 

events on major Greenland outlet glaciers, a multi-stage iceberg calving event at Jakobshavn Isbræ is unexplained by 10 

existing models. To explain this and similar events, we propose a notch-triggered rotation mechanism whereby a relatively 

small subaerial calving event triggers a larger full-depth calving event due to the abrupt increase in buoyant load and the 

associated stresses generated at the ice-bed interface. We investigate the notch-triggered rotation mechanism by applying a 

geometric perturbation to the subaerial section of the calving front in a diagnostic flowline model of an idealised glacier 

snout, using the full-Stokes, finite element method code Elmer/Ice. Different sliding laws and water pressure boundary 15 

conditions are applied at the ice-bed interface. Water pressure has a big influence on the likelihood of calving, and stress 

concentrations large enough to open crevasses were generated in basal ice. Significantly, the location of stress concentrations 

produced calving events of approximately the size observed, providing support for future application of the notch-triggered 

rotation mechanism in ice-sheet models. 

1 Introduction 20 

Iceberg calving from marine-terminating glaciers is an important component of the mass balance of the Greenland Ice Sheet 

mass balance. Calving accounted for a third of total mass loss between 2009 and 2012 (Enderlin et al., 2014). Moreover, 

calving is an important control on the flow dynamics of tidewater glaciers, reducing the backstress in the glacier snout region 

and leading to flow acceleration and dynamic thinning (Thomas, 2004). The acceleration of Jakobshavn Isbræ (JI, Sermeq 

Kujalleq in Greenlandic) by a factor of 4 since 1995, for example, is linked with its continued calving retreat following the 25 

disintegration of its ice shelf (Joughin et al., 2012). 

 

Current models of iceberg calving fail to capture the full range of observed processes, and as such the parameterisations 

applied within ice sheet models are limited. van der Veen (1996) proposed the empirical height-above-flotation criterion, 

whereby the glacier calves to a point where its terminus is some fixed height above the flotation thickness. Although this 30 

method successfully reproduced advance and retreat behaviour for Columbia Glacier (Vieli et al., 2001) and Helheim Glacier 
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(Nick et al., 2009), a major shortcoming was the inability for ice to thin below the flotation thickness and form an ice tongue. 

A more physically based approach (Benn et al., 2007a, b) assumed that crevasses penetrating to the waterline penetrate 

through the full glacier thickness. This simple theory has been used in many recent modelling studies (e.g. Otero et al., 2010; 

Nick et al., 2013; Cook et al., 2014). However, since crevasse depths are calculated based on the equilibrium between 

longitudinal stretching and ice overburden pressure (Nye, 1957), calving in these models arises only as a result of ice flow 5 

dynamics. The effect of localised processes such as melt-water undercutting (Luckman et al., 2015) or ice-cliff collapse 

(Bassis and Walker, 2012), or of super-buoyancy upon near-terminus stresses is not captured in these models. 

 

Buoyant forces have been proposed as a driver of large calving events observed at major Greenland Ice Sheet marine-

terminating glaciers. Full-depth, rotating slabbottom-out calving events observed at Helheim Glacier resulted from buoyant 10 

flexure of the glacier snout and the propagation of basal crevasses (e.g. Murray et al., 2015). Wagner et al. (2016) also 

showed that applying a buoyant force to an elastic beam model of a glacier resulted in large basal tensile stresses, which 

were further amplified by the emergence of a submarine protrusion of the calving face due to sea surface melting. Buoyant 

forces may be at play in driving as-yet unexplained calving styles. 

 15 

A multiple-iceberg calving event was observed at JI in August 2009 (Walter et al., 2012) that is not fully explained by 

existing calving models, but which we propose is tied to buoyant force changes over the course of the multi-stage calving 

event. In this observation, the collapse of a subaerial portion of the ice cliff was followed minutes later by a much larger, 

full-depth, bottom-out rotating slab calving event across the same section of the front. We consider a mechanism to explain 

this event whereby a substantial portion of the snout becomes buoyant immediately following a small subaerial calving 20 

event, which we term “notch-triggered rotation”. In this mechanism, visualised in Fig. 1, the sudden increase in buoyant load 

causes the snout to lift and rotate. The resultant basal tensile stresses initiate basal crevassing, which rapidly propagates 

through the full glacier thickness. This mechanism is similar to the “footloose” mechanism investigated by Wagner et al. 

(2014) and earlier proposed by Scambos et al. (2005) for the breakup of tabular icebergs. However, in this study we consider 

the very short timescales arising from abrupt changes in the geometry, and further we analyse the viscous stresses originating 25 

at the ice-bed interface rather than the elastic stresses resulting purely from bending. 

 

Using a diagnostic numerical glacier model, we investigate whether notch-triggered rotation is a plausible calving 

mechanism. With sophisticated prognostic models, calving criteria can be tested by application to real glacier geometries 

(e.g. Nick et al., 2010; Krug et al., 2014) and the calving rate response to various environmental forcings can be quantified 30 

(e.g. Cook et al., 2014; Todd et al., 2014). Simpler diagnostic models, however, provide insight into iceberg calving 

mechanisms by resolving the internal stresses under instantaneously imposed geometries (e.g. Hanson and Hooke 2000, 

2003; O’Leary and Christofferson, 2013). Here we use a diagnostic model that is able to quantify changes in the stress field 

induced by geometrical perturbations of the ice front. 
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2 Model setup 

In this study we use a two-dimensional diagnostic flowline model of an idealised glacier snout, to determine whether the 

magnitude of stresses generated by the notch-triggered rotation mechanism is sufficient to result in calving. The mechanisms 

of crevasse propagation through the ice thickness are not examined. We apply the buoyant forcing in the model by cutting a 

notch into the subaerial ice cliff to a length ln from the waterline to the surface (Fig. 2). The ice flow solution is calculated 5 

using the open source, full-Stokes, finite element Elmer/Ice modelling software (Gagliardini et al., 2013). 

2.1 Ice flow model 

Elmer/Ice calculates velocity and stress profiles within the glacier by solving the Stokes equations for an incompressible 

fluid (e.g. Gagliardini et al., 2013): 

∇ ∙ 𝒖 = 0 (1) 

∇ ∙ 𝛔 + 𝜌𝑖𝒈 = ∇ ∙ 𝝉 − ∇𝑝 + 𝜌𝑖𝒈 = 0 (2) 

where u is the velocity vector, σ the Cauchy stress tensor, ρi = 918 kg m-3 the ice density, g = (0,0,-9.81) m s-2 the 10 

acceleration due to gravity, τ the deviatoric stress tensor 𝝉 = 𝝈 + 𝑝𝐈,, p the isotropic pressure 𝑝 = −tr(𝝈)/3 and I the 

identity matrix, ρi = 918 kg m-3 the ice density and g = (0,0,-9.81) m s-2 the acceleration due to gravity. The ice rheology is 

described using Glen’s flow law which relates deviatoric stress to the strain rate (𝜀𝑖̇𝑗) (Glen, 1958):: 

𝜏𝑖𝑗 = 2𝜇𝜀𝑖̇𝑗  (3) 

The effective viscosity μ is defined as 

𝜇 =
1

2
𝐴−1/𝑛𝜀𝑒̇

(1−𝑛)/𝑛
 

(4) 

where 𝜀𝑒̇
2 is the square of the second invariant of the strain rate tensor and n = 3 is the commonly used exponent in Glen’s 15 

flow law. The Arrhenius factor A is expressed as 

𝐴 = 𝐴0 exp(−𝑄/𝑅𝑇′) (5) 

where A0 is a constant, Q the creep activation energy, R the universal gas constant and T′ the temperature of ice relative to 

the pressure melting point (Cuffey and Patterson, 2010, p.64). For symbols and values used in this study, see Table 1. The 

temperature of glacier ice is set at a constant -9 °C. 

 20 

2.2 Boundary conditions 

We use typical boundary conditions for a tidewater glacier. Along the upper surface, as well as the rear and lower surfaces 

delineating the notch when one is present, or the subaerial portion of the ice front otherwisewhen not present, we ignore 

atmospheric pressure and apply a stress-free boundary condition: 

𝜎𝑛𝑛 = 0 (6) 
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𝜎𝑛𝑡 = 0 

where σ is the Cauchy stress and subscripts n and t refer to normal and tangential directions. Hydrostatic pressure is applied 

at the ice front below the waterline: 

𝑝𝑤 = −𝜌𝑤𝑔𝑧 (7) 

where pw is the water pressure, ρw = 1028 kg m-3 the ice density and the vertical z axis is centred at the waterline. At the rear 

boundary 10 km upstream, lithostatic pressure is applied along with an inflow velocity of 5000 m a-1, chosen to roughly 

match the flow speed of JI at a similar distance from the calving front (Vieli and Nick, 2011). 5 

 

At the basal boundary, a choice of sliding laws was available for grounded ice. Weertman-type power lawsThe Weertman 

law (Weertman, 1957) are commonly used in glacier modelling applications (e.g. Krug et. al., 2014; Cornford et. al., 2015). 

This law) takes the form: 

𝜏𝑏 = 𝐶|𝑢|𝑚−1𝑢 (8) 

with τb the basal dragshear stress, C the Weertman friction coefficient and sliding exponent m = 1/3. Values of C range from 10 

105 to 108 Pa m-1/3 s1/3, which includes the more realistic range of modelled values of ~106 to ~107 Pa m-1/3 s1/3 determined 

from surface velocity observations around Greenland outlet glaciers (Lee et al., 2015).  

 

Alternatively, a Coulomb-limited sliding law (Schoof, 2005; Gagliardini et al., 2007) can be applied (referred to as the 

“Schoof law” from here on in). This law accounts for the effect of water pressure through an effective pressure term 𝑁 =15 

−𝜎𝑛𝑛 − 𝑃𝑤. Basal drag shear stress is expressed as 

𝜏𝑏 = 𝐶𝑐 ∙ 𝑁 (
𝜒

1 + 𝛼𝜒𝑞
)
1/𝑛

 
(9) 

where 

𝜒 =
𝑢

𝐶𝑐
𝑛𝑁𝑛𝐴𝑠

 (10) 

and 

𝛼 =
(𝑞−1)𝑞−1

𝑞𝑞
. (11) 

Cc = 1 is the maximum value of τb/N, q = 1 is the post-peak exponent, As is the value of the sliding coefficient in the absence 

of cavitation and n is the flow law exponent. As in previous studies (e.g. Nick et al., 2010; Krug et al., 2014) a free 20 

hydrological connection is assumed between the subglacial drainage system and the sea, so hydrostatic water pressure is 

applied at the ice-bed interface. 

 

The contact problem (Durand et al., 2009) is solved at the ice-bed interface to determine where ice is grounded or floating. In 

this implementation, nodes touching the bedrock where the normal stress exerted by the ice is greater than the seawater 25 

pressure (𝜎𝑛𝑛 > 𝑝𝑤(𝑧𝑏)) are considered grounded and have zero vertical velocity, while nodes that have separated from the 
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bedrock or where 𝜎𝑛𝑛 ≤ 𝑝𝑤(𝑧𝑏) are floating and can have non-zero vertical velocity. The model is initialised with the glacier 

fully grounded along its entire length. 

2.3 Stress analysis 

As in other studies (e.g. Nick et al., 2010; Todd et al., 2014), we assess the likelihood of crevasse opening from the 

magnitude of the resulting stress distribution. The largest principal Cauchy stress σ1 is coordinate system invariant, 5 

accounting for crevasse opening in any direction: 

𝜎1 =
𝜎𝑥𝑥 + 𝜎𝑧𝑧

2
+ √(

𝜎𝑥𝑥 − 𝜎𝑧𝑧
2

)
2

+ 𝜎𝑥𝑧
2 

(12) 

Because the overburden pressure beneath a kilometre-thick column of ice is in the order of 10 MPa, σ1 is negative almost 

everywhere at depth. Following Benn et al. (2017), we superpose the hydrostatic water pressure to define the effective 

principal stress (EPS): 

EPS = 𝜎1 + 𝑝𝑤 (13) 

The hydrostatic pressure is similar in magnitude to the ice overburden pressure at the glacier bed. 10 

 

In previous modelling studies (e.g. Otero et al., 2010; Cook et al., 2012), crevasses were assumed to exist in regions of the 

glacier where the stress is tensile (σ > 0), following the method proposed by Nye (1957). Schulson (2001) suggests a fracture 

strength of 0.8 MPa for polycrystalline ice at -10 °C with a grain size of 10 mm, with decreasing strength for increasing grain 

size. Vaughan (1993) estimated tensile strength between 0.09 MPa and 0.32 MPa by fitting a von Mises failure envelope to 15 

field observations of crevassed and uncrevassed regions. In this study we do not calculate crevasse penetration heights, 

therefore we do not apply a crevassing or calving criterion. Instead, we infer the existence of crevasses where the EPS is of a 

similar magnitude to these estimates (~0.5 MPa). 

3 Model Results 

Experiments were run for a glacier with water depth dw = 900 m, terminus thickness ht = 980 m, surface slope α = 3° and C = 20 

2.371 x 106 Pa m-1/3 s1/3, with notches cut to varying lengths. For these experiments, full hydrostatic pressure (Eq. 7) was 

applied along the basal boundary. Figure 4 shows longitudinal deviatoric stresses τxxEPS mapped for the ln = 100 m case, 

with the ln = 0 m case mapped in Fig. 3 for comparison. Basal stresses are plotted for ln = 0 m, ln = 80 m and ln = 100 m (Fig. 

5). An estimate of the tensile strength of glacier ice from Vaughan (1993) is also plotted to provide estimates of the critical 

stress required for basal crevasse opening. 25 

 

Notch cutting caused basal ice to become ungrounded between approximately 191 190 m and 644 640 m upstream of the ice 

front for ln = 100 m (Fig. 4). Prominent stress concentrations associated with ungrounding and regrounding also appeared at 
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the basal boundary which were not present in the unperturbed case. These stresses exceed the tensile strength of ice and 

would therefore result in crevasse initiation. The tensile stress stress peak centred around approximately 644 640 m upstream 

of the ice front resulted from separation of basal ice from the bedrock, as the buoyant snout tended to lift. The abrupt change 

in basal drag shear stress across the grounding zone, where ice that has separated from the bedrock accelerates, gave rise to 

this stress peak. Further notch-cutting caused this stress peak to shift upstream and increase in magnitude. The substantial 5 

growth in concentrated stress at this location to approximately 1.4 MPa would likely result in crevasse opening. 

 

The region of compressive stress centred around approximately 191 190 m upstream of the ice front arose from ice 

regrounding on the bedrock downstream of the grounding line, due to the backstress applied on the ice front by hydrostatic 

pressure. An imbalance between the hydrostatic and cryostatic pressure normal to the terminus tends to warp the snout 10 

downwards (see Fig. S1; Reeh, 1968), with the same effect seen at the start of prognostic model runs by Benn et al. (2017). 

Experiments in which the hydrostatic pressure from the pro-glacial water body was removed, or the bedrock lowered 

downstream of the grounding line, did not include this compressive stress peak while still featuring the tensile stress peak, 

supporting our assertion that the compressive stress concentration resulted from basal ice regrounding. 

 15 

Corresponding longitudinal velocity maps for the frontal region are shown in Fig. S2 (unperturbed) and Fig. S3 (ln = 100 m). 

There is an acceleration of ~2000 m a-1 following the notch cutting, resulting from the reduced basal friction in the 

ungrounded region. 

 

A critical notch length lcrit was required before the glacier snout became buoyant and the tensile stress peak appeared. A 20 

sensitivity study was carried out to explore the relationship of this critical notch length to the bed stickiness and the glacier 

surface slope (Fig. 6), and to determine how this relationship affects the maximum basal stress (Fig. 7). Setting the notch 

length ln = lcrit resulted in a noisy maximum basal stress signal so we instead set ln = lcrit + 25 m which allows a coherent 

pattern to emerge. 

 25 

Ungrounding occurred even without a notch on glaciers with very slippery beds for all surface slopes, and at all values of the 

friction coefficient for a 2° surface slope. For steeper surface slopes the critical notch length increased with bed stickiness 

before levelling off. For a given value of the friction coefficient, the critical notch length also increased with surface slope. 

Similarly, the maximum basal stress increased with both friction coefficient and surface slope. For very slippery beds the 

maximum stress was below the upper boundary of the tensile strength envelope, but significantly it was above the critical 30 

stress for crevasse initiation through the realistic range of friction coefficients C = 106 to 107 Pa m-1/3 s1/3. 

 

These experiments reveal a complex picture of the conditions that favour calving. An explanation for the relationship 

between the critical notch length and bed stickiness does not readily present itself, and this effect may warrant further 
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investigation. The relationships of surface slope with both the critical notch length and the maximum basal stress are more 

easily explained. The terminus of a steeper sloped glacier is more strongly grounded, requiring the removal of more ice to 

render it buoyant, than a more gently sloping glacier. The longer submarine foot and larger buoyant forces that result then 

favour larger basal stresses (e.g. Wagner et al., 2016). 

3.1 Water pressure dependency 5 

Tidewater glaciers such as JI are subject to the influence of water pressure where they meet the ocean, therefore it is 

appropriate to examine the region around the grounding line and calving front using a water pressure- dependent sliding law. 

Since the large basal stresses were generated by the abrupt change in basal shear stress across the grounding line, a sliding 

law in which the basal shear stress reduces gradually as a function of effective pressure would not be expected to produce 

such large stress concentrations. To investigate the effects of water pressure upon the notch-triggered rotation mechanism, 10 

experiments were conducted using the Schoof law (Eq. 9). In all following experiments a similar setup as before was used, 

with α = 3°, a varying notch length, and the sliding coefficient As = 3.169 x 10-21 Pa-3 m s-1. Experiments F0 and F100 were 

carried out with full hydraulic connectivity at the ice-bed interface, and experiments Z0 and Z100 with zero hydraulic 

connectivity (i.e. pw = 0 everywhere). See Table 2 for details of parameters used in Schoof law experiments.  

 15 

The resulting stress profiles for these experiments (Fig. 8) are highly dependent on the basal water pressure, . with 

eExperiments Z0 and Z100 (Fig. 8) exhibiting exhibited stress patterns identical very similar to theose produced by the 

Weertman law experiments, although the stress is compressive everywhere due to the exclusion of water pressure, inhibiting 

any possibility of crevasses opening. However, with full water pressure applied (F0 and F100, Fig. 9), there is a region of 

large tensile stress that exists independent of any perturbation. Notch cutting has minimal impact on the magnitude or 20 

location of this region. This region of large stress exists because the basal shear stress in the frontal region is small, since the 

effective pressure is zero; therefore, the basal shear stress is increased upstream, and this upstream transferal of stress occurs 

via a region of increased englacial tensile stress. The magnitude of these stresses suggests an inherent instability for glaciers 

in such a configuration when subject to full basal water pressure. 

 25 

The assumption of perfect hydraulic connectivity, however, may not hold for large distances upstream of the grounding line 

(Cuffey and Paterson, 2010, p. 283). We therefore carried out additional experiments P0 and P100 (Fig. 10)  to simulate 

limited hydraulic connectivity by linearly reducing the water pressure at the ice-bed interface from full hydrostatic pressure 

at the front to zero at the rear of the domain (Table 2), similarly to Leguy et al. (2014). Experiment P0  shows a region of 

large tensile stress, like similar to but smaller than those seen in experiments F0 and F100 (Fig. 9). The notch perturbation in 30 

experiment P100 results in a Weertman-like stress peak similar to those produced by the Weertman law which is 

significantly larger in magnitude than the unperturbed stress peak. 
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4 Discussion 

Our experiments show that perturbations to the ice front geometry can induce large stress concentrations in basal ice. The 

magnitude and location of these stress concentrations shows a strong dependency on the basal dragshear stress. For a glacier 

snout already close to flotation, only a relatively small perturbation was required to induce large stresses. This is in line with 

the observed relationship between calving rate and water depth (Brown et al., 1982). 5 

 

The large internal stress concentrations reported here are attributed to the requirement to balance the abrupt decrease in basal 

shear stress across the grounding line and are not associated with bending stresses. This distinction is based on the following 

observations. Firstly, the region of additional high stress is sharply focused at the glacier bed and is not balanced by a region 

of compressive stress at the surface as would be expected for a viscous bending moment (Mosbeux et al., 2019). Secondly, 10 

the stress concentration is compressive where the ice regrounds further downstream, whereas a bending stress at this location 

would also be tensile. Finally, we have shown that the form and magnitude of stress is highly dependent upon the choice of 

sliding law and application of basal water pressure, which would be largely irrelevant for bending stresses. 

 

The choice of diagnostic model for a calving study was criticised by Cook et al. (2014) after their prognostic model showed 15 

much greater sensitivity to atmospheric as opposed to oceanic forcing than diagnostic models (O’Leary and Christoffersen, 

2013), suggesting that this was due to the inability of a diagnostic model to respond to stress perturbations through ice 

deformation. However, over the short timescales of interest in this study, deformation of ice is negligible. In our 

experiments, measured vertical velocities for the ungrounded regions of basal ice were of the order ~10 m a-1, equating to 

~0.1 mm of lifting over 5 minutes, which would have negligible effect on the stress field. Therefore, our choice of a 20 

diagnostic model is an appropriate one for this study. 

 

As in other diagnostic studies we did not apply a calving criterion, instead using the location of basal stress peaks as an 

indication of where crevasses may form. For this to result in calving on the timescale proposed requires the assumption of 

full-thickness crevassing on timescales much faster than those observed by e.g. Murray et al. (2015). Given a sufficiently 25 

large buoyancy force, this assumption can be held as true, as once a crack has initiated, the tensile stress which opened that 

crack refocuses at the crack tip causing it to continue to propagate. As the crevasse increases in height, hydrostatic pressure 

acting to open the crevasse decreases at a faster rate than the ice overburden pressure acting to close it; therefore, larger basal 

stresses are required for full-depth crevassing than for crevasse initiation. However, once a crevasse has started to propagate 

and the downstream portion of the snout has begun to lift and rotate, elastic stresses further contribute to the crevasse growth 30 

in a feedback process. Benn et al. (2017) reported that glacier geometries that did not result in calving in Elmer/Ice via 

crevasse depth calving laws still produced large full-depth calving event when exported into HiDEM, a model representing 

glacier ice as a lattice of particles connected by breakable elastic beams. Further investigation of the rate and modes of 
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crevasse propagation could integrate Linear Elastic Fracture Mechanics into a glacier model featuring basal crevasses (van 

der Veen, 1998), or use a model such as HiDEM in conjunction with Elmer/Ice (Benn et al., 2017). 

 

Our study builds on that of O’Leary and Christoffersen (2013), which also explored the effect of geometrical perturbations at  

the ice front on the likelihood of calving. Their study found that undercutting led to larger calving events and a higher overall 5 

calving rate, which appears to be at odds with the results presented here: undercutting would reduce the buoyant load and 

potentially stabilise the terminus. Our results differ because the sharp transition in basal drag shear stress is not possible at 

the stress-free surface boundary applied here. Furthermore, the geometry of their model was set up to explore surface 

crevassing while ours was designed to explore basal crevassing. In reality a mixture of these effects may be working together 

to promote or prohibit calving. 10 

 

Figure 1 suggestsed the subaerial calving event may result from undercutting by a waterline notch. Although this process is 

observed at some glaciers (e.g. Kirkbride and Warren, 1997; Röhl, 2006) it is questionable whether it could be a major factor 

in the Ilulissat Icefjord (where the original observation was made), in which the loosely bonded mélange in summer may act 

to damp any wavecutting action (Amundson et al., 2010). An alternative potential mechanism for triggering the subaerial 15 

calving event is provided by spontaneous collapse of the ice cliff. The maximum stable cliff height for damaged glacier ice 

was calculated by Bassis and Walker (2012) as 110 m while Hanson and Hooke (2003) suggested a maximum stable height 

of ~ 70 m based on diagnostic model experiments. The ice cliffs of JI approach 100 m but rarely exceed this height, 

suggesting that the inherent instability of ice cliffs may be the limiting factor and could trigger induce calving through notch-

triggered rotation. 20 

 

Buoyancy in a glacier snout can also be induced by thinning due to high surface melt rates. However, the almost immediate 

increase of buoyant load resulting from the subaerial calving event proposed here occurs on timescales much faster than can 

be accommodated by ice creep, leading to a higher probability of calving (e.g. Boyce et al., 2007). The specific location of 

the basal stress peak varied with many parameters including the notch length but tended to be within one ice thickness of the 25 

terminus, consistent with observations (e.g. Walter et al., 2012, Murray et al., 2015). The location of the peak stress always 

occurred much further back from the terminus than the cliff at the rear of the notch, leading to an amplification of the 

original subaerial calving event. The value of this amplifying factor cannot be accurately quantified within the limitations of 

a diagnostic model; however, it may present a method of linking environmental forcings to the calving rate. 

 30 

There are a number of possible refinements to our model. We ignored lateral drag, which combines with basal drag shear 

stress to support the driving stress. Although lateral drag may be negligible along the flowline of wide ice streams, JI was 

able to form a floating tongue so it must be assumed that lateral drag is significant (e.g. Thomas, 2004). Its omission may 

have caused the model to overstate the dependence of basal stresses on the basal sliding law. Our model also omits the effect 
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of temperature. The viscosity of ice and transmission of stresses are dependent on thermal gradients. JI has large vertical 

temperature gradients (Lüthi et al., 2002) and temperate basal ice, which are thought to play a role in its fast sliding. Warmer 

basal temperatures may act to damp the intensity of basal stress concentrations. 

 

The reader should note that our model geometry is idealised. In reality, glacier beds are highly non-uniform, with variations 5 

in geometry, water and overburden pressure across a range of spatial and temporal scales. Bedrock bumps therefore play an 

important role in controlling the stress transmission upstream. It is plausible that these variations could result in basal stress 

concentrations of a similar magnitude to the mechanism discussed here. 

 

NotchThe notch-triggered rotation mechanism was shown to be irrelevant under the full Schoof regimewhen using the 10 

Schoof law with full water pressure, since a glacier in these conditions would tend to be vulnerable to buoyant calving 

anyway. This raises the question of whether the Schoof law with full water pressure provides an accurate representation of 

basal sliding for JI. We expect low effective pressure in the frontal region, however given that the glacier snout is mostly 

grounded in the summer (e.g. Amundson et al, 2010), perfect hydraulic connectivity cannot be assumed along the ice-bed 

interface. Complete suppression of water pressure at the ice-bed interface resulted in a basal stress pattern identical very 15 

similar to the Weertman case, although strongly compressive everywhere due to the exclusion of water pressure in the 

calculation of EPS, and therefore very unlikely to result in crevassing. With Cc = q = 1 and m = 1/n as in this study, it can be 

easily shown that large N (~10 MPa in the absence of water pressure) leads to small χ and Eq. (9) reduces to a Weertman 

power law: 

𝜏𝑏 = (𝑢𝑏𝐴𝑠
−1)

1 𝑛⁄
. (1214) 

 20 

On the other hand, limiting the basal water pressure without supressing it completely (experiments P0 and P100) resulted in 

a transition case displaying similar behaviour from to both the Weertman and Schoof regimeslaws; the unperturbed stress 

profile was similar to that produced by thee Schoof law case, but the perturbation resulted in a significantly larger 

Weertman-like stress peak like those produced by the Weertman law. This raises the possibility that a lightly grounded 

glacier snout, already in a state of basal tension, could be subjected to high enough stress by a minor subaerial calving event, 25 

like that observed at JI (Walter et al., 2012), to cause full depth crevassing and buoyant calving. 

5 Conclusions 

Our results show that the notch-triggered rotation mechanism does produce calving for an idealized marine-terminating 

glacier. Although notch-triggered rotation did not significantly affect stresses when applying the Schoof law under full 

hydrostatic pressure, removing the assumption of perfect hydraulic connectivity at the ice-bed interface significantly greatly 30 

enhanced the likelihood of calving through this mechanism. Significantly, a realistic length scale for calving events, on the 
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order of hundreds of meters and generally less than one ice thickness, naturally results from the model physics. Fast flowing 

glaciers near flotation and with shallow surface slopes may be especially vulnerable to buoyant calving due to basal 

crevassing. The notch-triggered rotation mechanism proposed here to explain the observed calving event (Walter et al., 

2012) does not replace other models of calving. Instead, it bolsters our understanding of calving by providing insight into 

multi-stage calving events occurring particularly on large, fast-flowing tidewater glaciers. 5 
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Parameter Symbol Value Units 

Arrhenius factor A  Pa-3 s-1 

Coulomb sliding coefficient As 3.169 x 10-21 Pa-3 m s-1 

Arrhenius prefactor A0 1916 Pa-3 s-1 

Weertman friction coefficient C 105 – 108 Pa m-1/3 s-1/3 
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Maximum value of τb/N Cc 1  

Water depth dw 900 m 

Effective principal stress EPS  Pa 

Acceleration due to gravity g 9.81 m s-2 

Terminus thickness ht 980 m 

Identity matrix I   

Critical notch length lcrit  m 

Notch length ln  m 

Weertman sliding exponent m 1/3  

Effective pressure N  Pa 

Glen’s flow law exponent n 3  

Pressure tensor pp  Pa 

Water pressure pw  Pa 

Post-peak exponent q 1  

Creep activation energy Q 139 kJ mol-1 

Universal gas constant R 8.314 J K-1 mol-1 

Pressure-adjusted temperature T’  K 

Velocity tensor u  m s-1 

Glacier surface gradient α 2 – 5 ° 

Strain rate tensor 𝛆̇  s-1 

Square of 2nd invariant of 𝛆̇ 𝜺̇𝒆
𝟐  s-2 

Effective viscosity μ  Pa s 

Ice density ρi 918 kg m-3 

Water density ρw 1028 kg m-3 

Cauchy stress tensor σ  Pa 

Largest principal Cauchy stress σ1  Pa 

Deviatoric stress tensor τ  Pa 
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Basal dragshear stress τb  Pa 

Table 1. Symbols and values of physical and numerical constants and parameters used in this study. 
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Experiment Hydraulic connectivity ln (m) x1 (m) x0 (m) 
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F0 Full 0 10000 10000 

F100 Full 100 10000 10000 

Z0 Zero 0 0 0 

Z100 Zero 100 0 0 

P0 Partial 0 0 10000 

P100 Partial 100 0 10000 

Table 2. Hydraulic connectivity along the ice-bed interface for experiments using the Schoof law. Water pressure is 100% of the 

full hydrostatic pressure (Eq. 7) downstream of position x1. Between x1 and x0 water pressure reduces linearly to 0%. 
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Figure 1. Proposed calving mechanism. (a) Lightly grounded terminus of a tidewater glacier with approximate dimensions of e.g. 

Jakobshavn Isbræ. (b) A weakness develops in the subaerial section of the front due to (e.g.) undercutting by a wave-cut notch at 

the waterline. (c) A small subaerial calving event rapidly increases the buoyant load, causing the terminus to tend to lift and rotate. 

Basal crevasses open and propagate rapidly upwards. (d) Full-depth crevassing results in a large, rotating-slabbottom-out calving 

event. The long-term calving rate is driven by the notch melt rate but is amplified by an unconstrained factor. 5 

 

 

 

 

 10 

Figure 2. Example mesh and boundary conditions (not to scale). Mesh resolution increases close to the calving front and basal 

boundaries. Symbols: normal stress 𝝈𝒏𝒏, shear stress 𝝈𝒏𝒕.  
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Figure 3. Longitudinal deviatoricEffective principal stress map of the terminus of the glacier before the cutting of a notch, with 

contours at 0.1 MPa spacing. Note the qualitative similarity to stress maps presented in Hanson and Hooke (2000, 2003). dw = 900 

m, ht = 980 m, α = 3° and C = 5.623 x 106 Pa m-1/3 s1/3. The black contour denotes EPS = 0 MPa, white contours are spaced at 0.25 

MPa intervals. 5 
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Figure 4. Longitudinal deviatoricEffective principal  stress map of the terminus of the glacier with a notch cut to a length ln = 100 

m, with contours at 0.1 MPa spacing. dw = 900 m, ht = 980 m, α = 3° and C = 5.623 x 106 Pa m-1/3 s1/3. Ungrounding occurred 

between approximately 1910 m and 6404 m. The black contour denotes EPS = 0 MPa, white contours are spaced at 0.25 MPa 

intervals. 5 
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Figure 5. Plots of basal longitudinal deviatoric stresseffective principal stress for ln = 0 m, 80 m and 100 m. dw = 900 m, ht = 980 m, 

α = 3° and C = 5.623 x 106 Pa m-1/3 s1/3. The shaded region denotes the tensile strength envelope calculated from Vaughan (1993). 

The large basal stress concentrations from Fig. 4 correspond to the peak and trough in the ln = 100 m plot. Ungrounding occurred 

between approximately 2530 m and 575 m for ln = 80 m, and between approximately 1910 m and 644 640 m for ln = 100 m. Note 5 
that for this setup, the critical notch length lcrit = 79 m. 
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Figure 6. Stress switchingCritical notch length lcrit plotted for a range of Weertman coefficients C and surface gradients α. 
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Figure 7. Basal stress EPS maximum plotted with the notch length equal to lcrit + 25 m across a range of Weertman coefficients and 

surface gradients. The shaded region denotes the tensile strength envelope calculated from Vaughan (1993). 
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Figure 8. Comparison of basal stresses using the Coulomb sliding law with full (red lines) and zero (blue lines) water pressure 

inhibited at the ice-bed interface, before (solid linesZ0) and after (dashed linesZ100) cutting of a 100 m notch. Ungrounding 

occurred between approximately 200 m and 3810 m for F0, 16 m and 510 m for F100, and between approximately 243 240 m and 

612 610 m for Z100. No ungrounding occurred for Z0. 5 
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Figure 9. Comparison of basal stresses using the Coulomb sliding law with full water pressure at the ice-bed interface, before (F0) 

and after (F100) cutting of a 100 m notch. Ungrounding occurred between approximately 200 m and 380 m for F0 and between 

approximately 20 m and 510 m for F100. 
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Figure 910. Comparison of basal stresses using the Coulomb sliding law with partial hydraulic connectivity at the ice-bed 

interface, before (solid blue lineP0) and after (red dashed lineP100) cutting of a 100m notch. Ungrounding occurred between 

approximately 158 160 m and 637 640 m for P100 and not at all for P0. 
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