
Answers to Anonymous Referee #1 
 
The authors have taken the sea-ice deformation data from the Radarsat Geophysical Processor System (RGPS) and 
used it to create a data set of Linear Kinematic Features (LKFs), i.e. leads and ridges that extend across the Arctic 
pack ice. Spatial coverage includes the western Arctic Ocean with 12.5 km grid size; temporal coverage is 1996-2008 
during the winter season (Nov-Apr) with 3-day resolution. The LKFs are tracked over time using a new algorithm. 
Summary statistics of the LKF data set are presented. 
The new data set could prove to be useful for calibration and validation of high- resolution sea-ice models, and as a 
climatology of LKFs for comparison with a future Arctic sea-ice cover. The paper is mostly a description of algorithms 
(pages 4-19), but its value lies in the end product – the LKF data set. In my opinion, the paper should be 
published after the following comments are addressed.  
 
We thank the anonymous referee #1 for his detailed review. 
 
===== 
 
General Comments 
Leads are not distinguished from pressure ridges in the data set – they are both labelled as LKFs. Wouldn’t it be 
useful, once an LKF has been identified, to label it as "lead" or "pressure ridge"? Wouldn’t it be possible to do this 
based on the values of divergence within the LKF, with positive divergence indicating a lead and negative divergence 
indicating a pressure ridge? Leads and pressure ridges are radically different types of features. Leads are the sites of 
new ice growth, contributing to the thin end of the ice thickness distribution. Pressure ridges affect air and water drag, 
and contribute to the thick end of the ice thickness distribution. Considering that 165,000 LKFs have been identified, 
wouldn’t it be useful to know what percent of them are leads and what percent are pressure ridges? In my opinion, 
the authors should either go back and label each LKF as a lead or pressure ridge, or explain why it’s impossible or 
too difficult to do so, or why it doesn’t matter. 
 
We fully agree that this topic needs to be discussed in further detail. The idea to use divergence rates to distinguish 
leads and pressure ridges is obvious, but bears some pitfalls. In general, it is right that leads show divergence and 
pressure ridges convergence of ice motion and the converse of this relation can be used to label newly formed LKFs. 
For LKFs with longer lifetime, the converse does not necessarily hold true. Imagine a lead that formed in the previous 
RGPS image due to diverging ice motion and now starts to close due to convergence. Depending on how strong the 
converging ice motion is the lead might develop into a pressure ridge or stay a lead: for weak convergence, the lead 
is just partly closed but still be an opening in the ice cover. For strong convergence, the lead is fully closed and a 
pressure ridge builds up. Therefore, it is only possible to separate leads and pressure ridges using the divergence 
data for LKFs for which the sign of the divergence does not change within the lifetime of the LKF. In addition, the 
spurious noise in divergence rates for RGPS for strongly deformed cells (“Boundary-definition errors” in Lindsay & 
Stern, 2003, Bouillon & Rampal, 2015) introduces uncertainties in this classification. Combing the LKF data-set with 
sea-ice thickness and concentration data (that is not provided by RGPS but for model output) allows to clearly 
distinguish between leads and pressure ridges by using the additional constraints: (1) along a lead the sea-ice 
concentration decreases within the time step, and (2) along pressure ridges the sea-ice thickness increases. 
Given these limitations we refrain from classifying all LKFs in the data-set. Nevertheless, we already provide the 
deformation rates for each LKF in the data-set along with position data to leave the user the option to use this 
information for classification. An appropriate evaluation of this classification would need to be done by the users 
themselves. We estimate that the data-set contains 46% leads, 41% pressure ridges, and 13% not-classified LKFs. 
For this estimate all LKFs are assigned depending on the sign of the divergence rate. If the sign of the divergence 
changes for LKFs with lifetimes longer 3 days, we only use the divergence data before the sign change for labeling 
and mark LKF for the remaining lifetime as not-classified. We add a paragraph to Section 5.1 “Generation of LKF 
data-set” that provides these estimates and a summary of difficulties explained above: 



“The deformation, more precisely the divergence rate, which is saved for each LKF, can be used to distinguish leads 
from pressure ridges in the generation of an LKF. In general, leads form in divergent and pressure ridges in 
convergent ice motion and the converse of this relation can be used to label newly formed LKFs. Persistent LKFs can 
also be labeled in this way, as long as the sign of divergence does not change during the lifetime of an LKF. Consider 
an LKF, initially labelled as a lead in divergence, that encounters convergent motion. Depending on the magnitude of 
convergence, the lead may either only partly close and continue to be an open lead, or it may close completely and 
even evolve into a pressure ridge, making differentiating between leads and ridges difficult. Thus, we refrain from 
labeling all LKFs in the data-set into leads and pressure ridges, but provide the deformation rates for each LKF and 
leave this classification and its evaluation to the informed user. As an approximate first-guess, we estimate that ​46% 
of the LKFs in the data-set are leads, 41% are pressure ridges, and 13% are unclassified (because the associated 
mean divergence rate along the LKF changes sign over the lifetime of the LKF)​. For the classified leads and pressure 
ridges the sign of divergence does not change over the lifetime. Please note, that these estimates especially for short 
LKFs are likely contaminated with grid-scale noise in the divergence data of RGPS (Lindsay & Stern, 2003; Bouillon 
& Rampal, 2015). Combining the LKF data-set with sea-ice thickness and concentration data would allow to clearly 
distinguish between leads and pressure ridges by using these additional constraints: (1) along a lead the sea-ice 
concentration decreases within the time step, and (2) along pressure ridges the sea-ice thickness increases.” 
 
===== 
 
Specific Comments (in page order) 
 
Page 3 Section 2.1 
(i) The RGPS data set needs a reference. Where does it come from? A NASA web site? The Alaska Satellite Facility? 
The RGPS is obtained from the Ron Kwok’s JPL homepage (​https://rkwok.jpl.nasa.gov/radarsat/index.html​). We 
added the link to the manuscript. 
 
(ii) It would be courteous to give credit for the creation of the RGPS, such as: 
Kwok R. (1998) The RADARSAT Geophysical Processor System. In: Analysis of SAR Data of the Polar Oceans. 
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 642-60282-5_11 
We added the suggested reference to the manuscript. 
 
Page 3 Section 2.2 
Again the source of the RGPS Lagrangian drift data should be cited. 
The RGPS Lagrangian drift data is obtained from the same site as the deformation data. We added the link and 
reference for the drift data to the manuscript. 
 
Page 3 line 24 
Please clarify that "px" = pixel and that 1 pixel = 1 grid cell = 12.5 x 12.5 km.  
We clarified this in the manuscript in the following way: 
“The intrinsic localization uncertainty of the visually detected features was shown to be 0.75 ​pixel ​(px) ​with 1 pixel 

corresponding to a grid cell of size 12.5 x 12.5 km ​ and the…” 
 
Page 4 line 14 
After the equation, say that eps_I is divergence and eps_II is shear. 
We added this information to the manuscript. 
 
Page 4 lines 15-16 
The LKFs are not "marked" by regions of high deformation, they are DEFINED by regions of high deformation. 
Consider writing: "LKFs are defined by regions of high deformation rates, which are located along the boundaries of 
ice floes..." 

https://rkwok.jpl.nasa.gov/radarsat/index.html


We change the text accordingly. 
 
Page 4 lines 25-26 
"radius r1 = 1" and "radius r2 = 5" – please include the UNITS – presumably "pixels" or "grid cells". 
Yes, the units are pixels here. We added the units in the remainder of the manuscript accordingly. 
 
Page 5 line 2 
"threshold of 15" – what units? Are the pixel values (grid cell values) scaled to the range [0,255] after the histogram 
equalization, with black=0 and white=255? "threshold of 15" is meaningless unless we know what the scale is. 
The threshold describes a difference between two versions of a histogram equalized image that have been smoothed 
with Gaussian kernels of different size. The values of the image range from 0 (lowest deformation rate) to 255 
(highest). Thus it does not have a unit that is directly linked to a length scale or deformation rate. We added the 
following sentence to the manuscript for clarification: 
“The threshold d_LKF does not have an unit as it describes the difference of two histogram equalized images, where 
the highest deformation rate corresponds to a pixel value 255 and the lowest to value of 0.” 
 
Page 6 line 15 
The sentence "All segments..." references Figure 3(a) but Figure 2 has not been referenced yet. Furthermore, this 
section (3.1.2) describes segment detection in general, whereas Figure 3(a) is one particular example of segment 
detection, which is not made clear in the sentence. I’d suggest either deleting this sentence or clarifying that it refers 
to a particular example. 
We changed the order of the figures and clarified that Figure 3(a) refers to the particular example of January 1st, 
2006. 
 
Page 7 Figure 2 
The diagram needs more labeling or the caption needs more explanation. It should be stated explicitly that the red 
and blue segments are LKFs. What is v? What is a_parallel? What is a_perpendicular? What are the black dotted 
lines? Etc. 
We label the two segments with A and B and explain all variables in the figure in the caption. The modified caption 
reads as follows: 
“Sketch of two segments ​A and B​ illustrating the principle behind the elliptical distance. In the distance computation 
the component pointing in the direction perpendicular to the segment is weighted by a factor of e. Within the shaded 
area the elliptical distance is below a threshold D_0. If the endpoints of both segments lie within the area where both 
shaded half-ellipse overlap, they are considered for reconnection. ​The dotted lines indicate the orientation of lines 

connecting the start and end points of both segments and the angle ΔO is the difference in orientation. v is 

the vector connecting the endpoints of both segments as defined in Eq.(2). a_parallel and a_perpendicular 

are basis vectors aligned in the direction of the segment A, respectively b_parallel and b_perpendicular for 

B.​” 
 
Page 7 Equation (2) 
What are alpha and beta? There is no explanation. 
alpha and beta are the coefficients of the vector decomposition into the different basis (a_parallel, a_perpendicular) 
and (b_parallel, b_perpendicular). We added this explanation to the description of Equation (2). 
 
Page 8 line 12 
What are the units of the deformation rate eps_0 = 0.75? What are the units of the minimum length l_min = 2? 
The minimum length l_min is given in pixels. The deformation rates eps_0 is log(1/day), because it is applied to the 
common logarithm of deformation fields with the unit 1/day. 
 
Page 8 end of Section 3.1.3 



It might be appropriate to reference Figure 3(a) here, instead of at the end of Section 3.1.2 
We changed the order of the figures and the references, please see answer above. 
 
Page 8 Section 3.1.4 
The title of this section is "Parameter optimization", but page 9 lines 9-12 says "finding a global minimum of the cost 
function is impossible" and "we use a set of parameters estimated with a simple brute-force algorithm" and "We do 
not regard this set of parameters as the global optimum, but rather as a useful working basis". Therefore this section 
should not be titled "Parameter optimization" but rather "Parameter selection" or "Parameter determination". There is 
no optimization taking place, as far as I can tell. 
We agree that we do not perform an optimization in a strict mathematical sense, because we choose the parameters 
that minimize the number of not-detected features from 5^6=15625 different sets of parameters. We renamed the 
section title to “Parameter selection”. 
 
Page 9 Table 1. 
The UNITS of the parameters in the table need to be given. I’d suggest adding a column to the table for the units. 
We added a column with all units to Table 1. 
 
Page 11 lines 18-19 
While it’s true that 18.54% is slightly smaller than 18.74%, it seems to me that the difference is negligible and that 
these errors are essentially the same. 
We agree and rephrased the sentence to: 
“For both algorithms, the distributions are similar with ​similar​ mean errors of ~18%.” 
 
Page 12 lines 13-14 
"The deformation rates in RGPS are known to be prone to grid scale noise" – and more fundamentally, the 
deformation rates are subject to uncertainty due to tracking and geolocation errors in the underlying SAR images, 
which have pixel size 100 meters. See: 
Lindsay, R.W., and H.L. Stern, 2003, The RADARSAT Geophysical Processor System: Quality of Sea Ice Trajectory 
and Deformation Estimates, J. Atmos. Ocean. Tech., 20, 1333-1347. 
We agree and added the reference to the text. 
In light of this, is it possible that some of the deforming cells identified in the present paper are actually "in the noise" 
compared to the background deformation level? 
We implemented two instances in the algorithm to prevent that features are detected due to their high noise level: (1) 
we use a threshold for the DoG filtered deformation field that is d_LKF=15. This guarantees that only pixels are 
marked as LKF if the local deformation rate is much higher than the local surrounding, which suppresses small scale 
noise. (2) Detected features need to have a minimum length of l_min=3px. So, for falsely detecting an LKF due to 
noise, a minimum of three neighbouring LKFs-marked cells are needed with comparable noise-induced high 
deformation rates. This case is unlikely to happen.  
 
Page 12 line 16 
Please give the units of d_LKF = 15 
All units are added to Table 1 and added in the text. 
 
Page 13 line 7 
Please give the units of DELTA_eps_0 = 1.25 Page 13 line 8 
"common logarithm" and "10ˆ1.25" implies log base 10, but page 4 line 21 says that the "natural logarithm" is used, 
i.e. log base e. Don’t these both refer to log(deformation rate)? If so, then which base is correct, 10 or e? If not, then 
what is the difference in usage of the log on page 4 vs. the log here on page 13? 
In the “Data preprocessing and filtering” section we apply the natural logarithm (shown in Fig.1b), i.e. log base e, as it 
was done in Linow & Dierking, 2017. In the segment reconnection, however, the threshold Δeps_0 is applied to the 



common logarithm of the total deformation, i.e. log base 10, so that Δeps_0 directly describes the difference in order 
of magnitude. Thus, we use logarithms with different bases on purpose and compute those in both cases from the 
original input total deformation fields. In the end, one could also use the common logarithm in the filtering without 
having any difference in the detected LKFs, because next the logarithmic deformation fields are histogram equalized. 
As logarithmic fields can be converted to a different base by multiplying with a constant, the histogram equalized 
version of two logarithmic fields with different base are identical. 
We added further information to the definition of Δeps_0 to clarify that we are using logarithms with different bases 
and explain why: 
“… and the difference of the logarithm of the total deformation rate Δlog_10(eps_0). We here use the common 
logarithm, i.e. log base 10, in contrast to the natural logarithm used in Section 3.1.1 to directly describe the difference 
in the order of magnitude in the total deformation of two segments.” 
 
Page 14 Figure 7 
I can’t tell the difference between the points labelled "rounded indices" and the points labelled "1-pixel uncertainty". 
Perhaps different symbols could be used in the figure. 
We changed the symbols in Figure 7 to filled and not-filled circles that are easy to distinguish. 
 
Page 16 Table 2 
The UNITS of the parameters in the table need to be given. I’d suggest adding a C5 
column to the table for the units. 
We added a new column to the table that provides the units of all parameters. 
 
Page 17 Figure 9 
It’s hard to distinguish the colors of the darker lines. I can see the yellow and green lines, but the other lines all look 
brown or black to me. Perhaps a different color scheme could be used. 
We changed the colormap of the plot: 

 
 
Page 20 lines 21-22 
Regarding the distribution of LKF lengths, "The PDF is described accurately by a power-law for LKF length between 
60 and 600 km." I strongly dispute that statement. Figure 11(c) shows the PDF. The authors are apparently basing 
their claim on a least- squares fit in log-log space using evenly spaced bins in LKF length. Such a method leads to a 
very biased estimate of the power-law exponent; see: 



White, EP, Enquist, BJ and Green, JL. 2008. On estimate ing the exponent of power-law frequency distributions. 
Ecology 89(4): 905–912. DOI: https://doi. org/10.1890/07-1288.1 
and 
Clauset, A, Shalizi, CR and Newman, MEJ. 2009. Power-law distributions in empirical data. SIAM Rev 51(4): 
661–703. DOI: https://doi.org/10.1137/070710111 
The proper way to fit a power law to data is to calculate the Maximum Likelihood Estimate (MLE) of the power-law 
exponent. After the exponent has been calculated, a goodness-of-fit test should be applied to determine whether or 
not a power law is in fact an accurate model of the data. It looks to me (Figure 11(c)) as if the PDF has concave- 
down curvature in log-log space throughout its range. If the authors hypothesize that LKF lengths follow a power-law 
distribution, they should use the MLE to calculate the exponent, and then apply a goodness-of-fit test to check 
whether a power-law model does in fact accurately describe the PDF. 
Thanks for catching this. We performed a new fit of a power law to the data using a Maximum Likelihood Estimator. 
We use the methodology described in Stern et al., 2018a in the context of floe size distributions, which is based on 
White et al., 2008 and Clauset et al., 2009. The goodness-of-fit test follows Stern et al., 2018b and is a bootstrap 
method of the Kolmogorov-Smirnov (KS) statistic evaluated for 1000 data sets that were randomly drawn from the 
fitted power-law distribution. The KS is the distance between the cumulative distributions function (CDF) of the data 
and the model. The KS is computed for the observed data as well as for all 1000 random data-sets that have the 
same number of samples. If the KS of the observed data is greater than the 95% percentile of the KS of the random 
data-sets, the observed data is not described by a power-law distribution. With this method, we find that the LKF 
length does not follow a power-law distribution over the whole range. Revisiting these calculations, we find that a 
stretched exponential distribution ( p(x) = C * x^(beta-1) *exp(-lambda*x^beta) , Clauset et al., 2009) describes the 
observed LKF length better. We determined the both parameters lambda and beta by maximizing the log-likelihood. 
The goodness-of-fit test described above finds that LKF length follows a stretched exponential distribution for in the 
range 100km to 1000km. Smaller scales needed to be neglected in the goodness-of-fit test because of the 
perturbations in the CDF due to the discrete length scales. As LKFs are described as a collection of pixels, their 
length is limited to (i+j*sqrt(2)) * resolution with i,j being integer values. The plot is changed accordingly and the text 
describing it reads as follows: 
“The distributions of LKF length of all single years are very similar and range from 50 km to 1000 km (Fig. 11c). For 
LKF lengths between 100 and 1000 km, a stretched exponential distribution, p(x) = C*x^(beta-1)*e^(-lambda*x^beta) 
with C=beta*lambda*e^(lambda*x_min^beta) (Clauset et al.,2009), accurately describes the PDF.  
The parameters beta=0.719 and lambda=0.0531 are determined by finding numerically the maximum likelihood 
estimate. We perform a goodness-of-fit test for power-law distributed data that is based on the Kolmogorov-Smirnov 
(KS) statistic, which is the maximum distance between the cumulative distribution functions (CDF) of two different 
distributions (Clauset et al., 2009). We draw random samples from the fitted distribution and compute the KS of the 
random samples and the fitted distribution. This simulation is repeated 1000 times. We find that the KS of the 
observed length scales is smaller than the 95% percentile of the random samples and thereby the observed LKF 
lengths are described by the fitted distribution. 
The stretched exponential distribution belongs to the family of heavy-tailed distributions, and is the transition of an 
exponential and a power-law distribution. It describes many natural phenomena that are dominated by extreme 
events but in contrast to power-law distribution have a natural upper limit scale (Laherrere & Sornette, 1998).  
We limit the range of the fit to 1000 km due to the varying coverage and especially smaller gaps in the RGPS data 
that may divide long features into multiple smaller segments. We set the lower bound to 100km to account for the 
discrete character of the LKF length that disturbs the distribution at lower LKF lengths. As LKFs here are collections 
of pixels, their length is set by a linear combination of (i+j*sqrt(2))*12.5km with i,j element N.” 
 
 
Page 21 Figure 11 (b) 
(i) Figure 11(b) is not described in the text. 
This was due to a wrong reference in the text that was corrected. 



(ii) In Figure 11(b) (upper panel), is the y-axis label on the left side of the figure supposed to be "Storm strength" or 
"Number of cyclones"? The label itself says "Storm stength" [misspelled] but the caption says "number of cyclones". 
This was a typo and is now corrected. 
(iii) In Figure 11(b) (lower panel), the y-axis label on the left side of the figure says "No. of LKFs (normalized)". How is 
the normalization done? Per unit area? Fraction of the total number of LKFs? The sum of the bars does not seem to 
be 1. 
The number of LKFs is normalized with the overall coverage of the RGPS time step. Thus the  “No. of LKFs 
(normalized)” provides the fraction of the RGPS cells that are LKFs showing a certain deformation (color-code). We 
changed the caption accordingly. 
(iv) In Figure 11(b) (lower panel), what’s the story with the gap in early April? 
For this date no regular RGPS data is available, and therefore no LKF data. We include this note in the text. 
(v) In Figure 11(b) (lower panel) the color (red-yellow) gives the total deformation rate (1/day) from January to May. 
That time series of deformation rate could be compared with Figure 6 of: 
Stern, H. L., and R. W. Lindsay (2009), Spatial scaling of Arctic sea ice deformation, J. Geophys. Res., 114, C10017, 
doi:10.1029/2009JC005380 
in which the total deformation rate (1/day) from January to July is plotted, based on RGPS data. 
We also commented now on the overall seasonal cycle of the deformation associated with each LKF and reference 
the mentioned paper: 
“The deformation rates associated with the LKFs co-varies with the seasonal cycle of the number of LKFs, which is in 
agreement with the seasonal cycle of the mean deformation rate (Stern & Lindsay, 2009)” 
Page 22 lines 13-14  
In reference to Figure 11(b), "This overall seasonal cycle is interrupted by a set of four strong cyclones...in March" – I 
don’t see how Figure 11(b) shows four strong cyclones in March. Please tell the reader what to look for in the figure. 
We clarified the caption of Figure 11(b) to make clear what is shown in the two panels: 
“(b) Time series of the number of LKFs separated by their deformation rates for winter 2002/03. The number of LKFs 
is normalized by the number of available pixels for each RGPS time records. For early April no RGPS data is 
available. For each time record all cyclones (Serreze et al., 2009) over the Arctic ocean are each shown as a dot in 
the upper panel. The y-axis and the color-code of the dots in the upper panel provide the local Laplacian of each 
cyclone as a proxy for its strength.” 
 
 
Page 22 lines 3-4 
"exponential distribution with an exponent of 0.34" An exponential distribution can be written in one of two ways: 
(1/b)*exp(-t/b) where b is a time scale (units: time), or c*exp(-c*t) where c is a rate (units: 1/time). 
(i) The authors have not said which form they are using, and therefore the reader does not know whether 0.34 is a 
time scale or a rate. No units are given. 
(ii) In the present case, 0.34 must be a rate with units 1/day. So the time scale is 1/0.34 = 3 days, which makes 
sense. 
(iii) The parameter in an exponential distribution is not called an exponent. It could be called a time scale (first form, 
b) or a rate (second form, c). In the first form, b is also the mean value. In Figure 11(e), the legend says "exponent 
0.34" which is not correct terminology. It could be written "rate 0.34 / day" or "mean value 3 days". 
Being more precise, the distribution of LKF lifetimes shows an exponential tail of rate 0.34 with the unit 1/day. We 
determine the rate of the tail by an least square fit of the PDF to the lifetime, as suggested in Sornette (2006) to get a 
first estimate of the rate. In doing so, we do not determine the rate of a exponential distribution in a strict sense. Using 
a Maximum Likelihood Estimator to determine the rate of a exponential distribution shows that the LKF lifetime does 
not follow an exponential distribution due to the overestimation of short-lived LKFs (lifetime of 0 to 3 days). We 
hypothesize that this overestimation originates from the changing coverage of RGPS that prevents some LKFs to be 
tracked. Therefore, we provide the rate of the exponential tail and changed the wording of the manuscript 
accordingly: we speak of exponential tail instead of distribution, and rate instead of exponent. Also the units are now 
provided. 



 
 
 
===== 
 
Technical Corrections 
 
We addressed all following corrections. Thank you for catching them! 
 
Page 1 line 14. "is derived" should be "are derived" 
Page 2 line 5 and following. Use capital "O" in "Arctic Ocean" 
Page 5 line 1 of figure caption. "final output OF the..." 
Page 5 line 10. "LKFs" should be "LKF" (singular) 
Page 6 line 6. "segments" should be "segment" (singular) 
Page 6 line 8. Better to end the sentence after the word "curvature" and start a new sentence: "As in the 2 pixel case, 
a 90-degree shift..." 
Page 7 line 1 of figure caption. "illustration" should be "illustrating" 
Page 7 line 3 of figure caption. "lay" should be "lie", and "half-ellipse" should be "half- ellipses" (plural) 
Page 7 line 15 and following. Do not abbreviate Table as "Tab." Use "Table"  
Page 8 line 15. "The choice of THE set of parameters..." 
Page 9 line 19. "to which degree" should be "to what degree" 
Page 10 line 3. "The principle idea" should be "The principal idea" C8 
Page 10 line 15. "overlap larger THAN 60%" and "overlap smaller THAN 60%"  
Page 10 line 19. "significant" should be "significantly" 
Page 12 line 2 of figure caption. "to to" (delete one of them) 
Page 12 line 9. Delete the word "also" 
Page 12 line 15. "sightly" should be "slightly" 
Page 13 line 2. "reconnect" should be "reconnected" 
Page 13 line 28. "an" should be "a" 
Page 14 line 17. "considered as *a* tracked feature..." 
Page 15 line 12. "advecting" should be "advect" 
Page 15 line 23. "false positive" should be "false positives" (plural) 
Page 15 line 31. "algorithms" should be "algorithm" (singular) 
Page 16 line 2 of figure caption. "color" should be "colored", and "shows" should be "show", and "that is" should be 
"that are" 
Page 16 line 5. "where" should be "were" 
Page 16 line 6. Delete the comma (,) 
Page 18 line 1 of figure caption. "tracks" should be "tracked features" 
Page 18 line 2 of figure caption. "tracks" should be "tracked features" and "in growth" should be "into growth" 
Page 18 line 4. Delete "for"  
Page 18 line 11. Should "in shape" be "as shape"? I’m not sure.  
Page 18 line 13. "their" should be "its" 
Page 19 line 2. "an lifetime" should be "a lifetime" 
Page 19 line 7. "where" should be "were" 
Page 20 line 2. "winter 2001/01" – should it be "2001/02"? 
Page 20 line 24. "47.5 km" should be "37.5 km" 
Page 20 line 34. "given in A" should be "given in Appendix A" 
Page 21 Figure 11 panel (b). In the title on the vertical axis, "stength" should be "strength". However, the entire title 
"Storm strength" might be incorrect – should it be "Number of cyclones"? 
Page 21 Figure 11 panel (d). The x-axis label should include the units, i.e. "Intersection angle (degrees)" 



Page 21 Figure 11 panel (e). The x-axis label should include the units, i.e. "LKF lifetime (days)" 
Page 21 line 4 of figure caption. "new" should be "newly"  
Page 21 line 6. "less" should be "fewer" 
Page 22 line 9. Capitalize "Hemisphere" 
Page 22 line 10. "Fig 11" should be "Fig 11(b)" 
Page 22 line 11. "general" should be "generally" 
Page 22 line 14. "pass the Arctic oceans" should be "pass through the Arctic Ocean"  
Page 23 line 17. "11 winters" – I think it’s 12 winters: 1996/97 through 2007/08.  
Page 23 line 22. "in Arctic ocean" should be "in the Arctic Ocean" 
Page 24 line 2. "grid spacing OF 2 km" 
Page 24 line 2. Delete "set of" 
Page 24 line 5. "for THE entire model domain" 
Page 24 line 7. "KOBAYASHI" should be "Kobayashi" 
Page 25 lines 23-24. Do not use all capital letters for the names. 
 
 
 
  



Answers to Anonymous Referee #2 
 
This paper improved and extended the lead and ridge detection method described in Linow and Dierking 2017, 
adding a new tracking algorithm. The LKF dataset derived in this study, therefore provides both spatial and temporal 
statistics of LKFs, which is of great advantage in evaluating sea ice model outputs. The manuscript can be published 
after minor revision. 
 
We thank the anonymous referee #2 for his review. 
 
======== 
 
General comments: 
1. It should be explained in the text why leads and ridges are bounded together to LKFs. If it is impossible to 
distinguish leads and ridges based on the current ice drift and deformation data, what kind of additional data is 
needed to get separate information of leads and ridges? 
 
This answer is the same as for referee #1 who had the same comment. 
 
We fully agree that this topic needs to be discussed in further detail. The idea to use divergence rates to distinguish 
leads and pressure ridges is obvious, but bears some pitfalls. In general, it is right that leads show divergence and 
pressure ridges convergence of ice motion and the converse of this relation can be used to label newly formed LKFs. 
For LKFs with longer lifetime, the converse does not necessarily hold true. Imagine a lead that formed in the previous 
RGPS image due to diverging ice motion and now starts to close due to convergence. Depending on how strong the 
converging ice motion is the lead might develop into a pressure ridge or stay a lead: for weak convergence, the lead 
is just partly closed but still be an opening in the ice cover. For strong convergence, the lead is fully closed and a 
pressure ridge builds up. Therefore, it is only possible to separate leads and pressure ridges using the divergence 
data for LKFs for which the sign of the divergence does not change within the lifetime of the LKF. In addition, the 
spurious noise in divergence rates for RGPS for strongly deformed cells (“Boundary-definition errors” in Lindsay & 
Stern, 2003, Bouillon & Rampal, 2015) introduces uncertainties in this classification. Combing the LKF data-set with 
sea-ice thickness and concentration data (that is not provided by RGPS but for model output) allows to clearly 
distinguish between leads and pressure ridges by using the additional constraints: (1) along a lead the sea-ice 
concentration decreases within the time step, and (2) along pressure ridges the sea-ice thickness increases. 
Given these limitations we refrain from classifying all LKFs in the data-set. Nevertheless, we already provide the 
deformation rates for each LKF in the data-set along with position data to leave the user the option to use this 
information for classification. An appropriate evaluation of this classification would need to be done by the users 
themselves. We estimate that the data-set contains 46% leads, 41% pressure ridges, and 13% not-classified LKFs. 
For this estimate all LKFs are assigned depending on the sign of the divergence rate. If the sign of the divergence 
changes for LKFs with lifetimes longer 3 days, we only use the divergence data before the sign change for labeling 
and mark LKF for the remaining lifetime as not-classified. We add a paragraph to Section 5.1 “Generation of LKF 
data-set” that provides these estimates and a summary of difficulties explained above: 
“The deformation, more precisely the divergence rate, which is saved for each LKF, can be used to distinguish leads 
from pressure ridges in the generation of an LKF. In general, leads form in divergent and pressure ridges in 
convergent ice motion and the converse of this relation can be used to label newly formed LKFs. Persistent LKFs can 
also be labeled in this way, as long as the sign of divergence does not change during the lifetime of an LKF. Consider 
an LKF, initially labelled as a lead in divergence, that encounters convergent motion. Depending on the magnitude of 
convergence, the lead may either only partly close and continue to be an open lead, or it may close completely and 
even evolve into a pressure ridge, making differentiating between leads and ridges difficult. Thus, we refrain from 
labeling all LKFs in the data-set into leads and pressure ridges, but provide the deformation rates for each LKF and 
leave this classification and its evaluation to the informed user. As an approximate first-guess, we estimate that ​46% 
of the LKFs in the data-set are leads, 41% are pressure ridges, and 13% are unclassified (because the associated 



mean divergence rate along the LKF changes sign over the lifetime of the LKF)​. For the classified leads and pressure 
ridges the sign of divergence does not change over the lifetime. Please note, that these estimates especially for short 
LKFs are likely contaminated with grid-scale noise in the divergence data of RGPS (Lindsay & Stern, 2003; Bouillon 
& Rampal, 2015). Combining the LKF data-set with sea-ice thickness and concentration data would allow to clearly 
distinguish between leads and pressure ridges by using these additional constraints: (1) along a lead the sea-ice 
concentration decreases within the time step, and (2) along pressure ridges the sea-ice thickness increases.” 
 
 
2. The parameter optimization part (section 3.1.4) is not quite convincing. It might be beneficial to separate the 
hand-picked validation datasets into several randomly selected groups and repeat the parameter optimization 
procedure, to confirm that the same optimized values can be achieved from different evaluations. 
We agree that we do not perform an optimization in a strict mathematical sense, because we choose the parameters 
that minimize the number of not-detected features from 5^6=15625 different sets of parameters. Therefore, we 
renamed the section title to “Parameter selection”. Nevertheless, we tested the robustness of our “optimal” set of 
parameters by repeating the parameter selection process for five random subsamples of the evaluation data set as 
suggested. For each subsample we randomly pick half of the features in the evaluation data-set. For two of those 
random subsamples the “optimal” set of parameters that was determined using all evaluation data also minimise the 
number of not-detected features of the subsampled features. For the other random subsamples we find 1, 2, and 44 
set of parameters showing a 0.24%, 0.48%, and 2.39% higher amount of detected features. The stronger deviations 
of one subsample can be explained by the too small amount of long LKFs by random subsampling given that the 
distribution of LKF length is heavy tailed. Because the deviations of different subsets are small, we conclude that the 
“optimal” set of parameters is the best estimate obtained for the limited amount of evaluation data. For a more robust 
optimization that aims to find a global minimum of the number of not-detected features would require a larger 
evaluation data set. We attempt to make this clear by our extensive discussion of this problem in the manuscript and 
by the renaming of the section. 
 
 
======== 
 
Specific comments: 
 
P1L7: based → based on 
We changed the manuscript accordingly. 
 
P2L6: CryosSat-2 → CryoSat2  
We changed the manuscript accordingly. 
 
P3 section 2.1: provide a short description how deformation rate is calculated or give a reference. Also uncertainties 
in the deformation data should be mentioned.  
We now cite Lindsay & Stern (2003) in the description of the deformation data to refer the interested reader to the 
equations of the line integral approximation. 
 
P3 section 2.2: As I understand, sea-ice deformation is calculated from ice drift information, and this same ice drift 
data is used to track the LKFs?  
In principle, yes. RGPS, however, provides drift information only as a Lagrangian data-set, whereas deformation is 
also available interpolated to an Eulerian grid. As the tracking algorithm works on regular meshes, we interpolate the 
Lagrangian drift data-set to the same Eulerian grid used for the deformation data-set. 
 
P3L23: visual → visually  
We changed the manuscript accordingly. 



 
P4L14: does this deformation rate include shear? It is known that shear is one of main factors to form leads.  
The total deformation rate that the algorithm uses is sqrt(divergence**2 + shear**2). Thus, it includes shear. We 
clarified this in the manuscript: 
“The standard input data of the LKF detection algorithm is the total deformation rate of sea ice 
epsilon_tot=sqrt(epsilon_I^2+epsilon_II^2), where epsilon_I is the divergence and epsilon_II the shear both of which 
can be derived from both satellite data and model output.” 
 
P6 section 3.1.3 Reconnection: It would be nice to illustrate some examples of pairs of segments which could be 
connected to one LKF and which could not be connected to one LKF according to the three criteria.  
We assume you had a figure similar to Fig. 5 in Linow & Dierking (2017) in mind that illustrates the simple(r) 
reconnection scheme of the original algorithm (minimising the difference in orientation for all segments that have 
elliptical distance below a certain threshold). In our case, the reconnection scheme is more complex by taking into 
account also the difference in deformation rate and by weighting the three contributions of the probability estimate 
(difference in elliptical distance, in orientation, and in deformation rate). The elliptical difference and difference of 
orientation are already illustrated in Figure 2 of the manuscript. We can not think of a more compact way of illustrating 
the additional weighting of the three terms than the mathematical description given in Eq. (1). As the manuscript 
already includes 11 figures, we refrain from adding a new figure because we are afraid that it would add more 
complexity and would not facilitate the understanding.  
 
P8L11: I suppose the unit of D0 and Lmin are pixels?  
Yes, both are given in pixels. Following the suggestions of reviewer #1 we extended Table 1 and 2 with a column 
including the units of all parameters used. 
 
P9L12: Can this strong non-linearity problem be solved if more reference data are available? 
A larger amount of reference data would dampen the non-linearity in the cost function. This is already explained in 
the conclusions of the manuscript (P22 L31-32). However, creating such a reference data set by hand-picking is time 
consuming and beyond the scope of this paper. 
 
 
 



Leads and ridges in Arctic sea ice from RGPS data and a new
tracking algorithm
Nils Hutter1, Lorenzo Zampieri1, and Martin Losch1

1Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.

Correspondence: Nils Hutter (nils.hutter@awi.de)

Abstract. Leads and pressure ridges are dominant features of the Arctic sea ice cover. Not only do they affect heat loss

and surface drag, but also provide insight into the underlying physics of sea ice deformation. Due to their elongated shape

they are referred as Linear Kinematic Features (LKFs). This paper introduces two methods that detect and track LKFs in sea

ice deformation data and establish an LKF data set for the entire observing period of the RADARSAT Geophysical Processor

System (RGPS). Both algorithms are available as open-source code and applicable to any gridded sea-ice drift and deformation5

data. The LKF detection algorithm classifies pixels with higher deformation rates compared to the immediate environment as

LKF pixels, divides the binary LKF map into small segments, and re-connects multiple segments into individual LKFs based

::
on

:
their distance and orientation relative to each other. The tracking algorithm uses sea-ice drift information to estimate a first

guess of LKF distribution and identifies tracked features by the degree of overlap between detected features and the first guess.

An optimization of the parameters of both algorithms is presented, as well as an extensive evaluation of both algorithms against10

hand-picked features in a reference data set. An LKF data set is derived from RGPS deformation data for the years from 1996

to 2008 that enables a comprehensive description of LKFs. LKF densities and LKF intersection angles derived from this data

set agree well with previous estimates. Further, a power-law
:::::::
stretched

::::::::::
exponential

:
distribution of LKF length, an exponential

:::
tail

::
in

:::
the

:
distribution of LKF lifetimes, and a strong link to atmospheric drivers, here Arctic cyclones, is

:::
are derived from

the data set. Both algorithms are applied to output of a numerical sea-ice model to compare the LKF intersection angles in a15

high-resolution Arctic sea-ice simulation with the LKF data set.

1 Introduction

The Arctic sea ice cover is an aggregation of ice floes of different size that changes continuously due to thermodynamic and

dynamic processes. Thermodynamic processes slowly modify the shape of floes by freezing and melting, but rapid changes in

floes shapes are caused by the deformation of the brittle ice. The drivers of these events are mainly wind, ocean currents, tides20

and interaction with coastal geometries.

When the ice cover breaks, leads form along floe boundaries as strips of open ocean. In such an opening of the ice cover

there is strong upward heat flux from the warm ocean to the cold atmosphere, causing new ice formation and changes of

the albedo. Colliding ice floes form pressure ridges and ice keels that change both the atmosphere-ice and the ice-ocean drag
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coefficient. Both leads and pressure ridges are usually elongated features with lengths ranging from a few meters up to hundreds

of kilometers.

Multiple studies used large amounts and and a great variety of satellite imagery of the Arctic ocean to describe the character-

istics of deformation features and gain insight into the underlying physics. Lead densities were derived from MODIS images

in the thermal infrared for cloud-free parts of the Arctic ocean
:::::
Ocean (Willmes and Heinemann, 2016), from AMSR-E passive5

microwave brightness temperatures (Röhrs and Kaleschke, 2012), and from CryosSat-2
::::::::
CryoSat2 altimeter data (Wernecke

and Kaleschke, 2015). Bröhan and Kaleschke (2014) extracted Pan-Arctic lead orientations from passive microwave data using

a Hough transform. Kwok (2001) provided a qualitative description of these deformation features based on drift observations

derived from SAR imagery, combining leads and pressure ridges under the term Linear Kinematic Features (LKFs) due to

their dynamic nature. All these studies avoid the problem of detecting individual LKFs by applying statistics over continuous10

fields such as sea ice deformation or concentration. Miles and Barry (1998) presented a 5-year climatology of lead density

and orientation based on manual detection in thermal- and visible-band imagery. Manual detection was also used to study the

intersection angles of LKFs and its inferences on the rheology describing sea-ice deformation (Erlingsson, 1988; Walter and

Overland, 1993).

All of these studies are limited either to specific information (density or orientation) or to a short time-series due to laborious15

manual detection. First attempts to automatically extract LKFs from satellite data were based on skeletons to describe LKFs

(Banfield, 1992; Van Dyne and Tsatsoulis, 1993; Van Dyne et al., 1998), but Van Dyne et al. (1998) suggested “knowledge-

based techniques” to further divide a skeleton into individual branches. This idea was picked up in an algorithm that automati-

cally detects LKFs as objects in sea-ice deformation data (Linow and Dierking, 2017). Only 10 RGPS snapshots were analyzed

in this way, but many more snapshots are necessary for a comprehensive description of LKFs. As the method of Linow and20

Dierking (2017) does not contain a tracking algorithm for LKFs, important temporal characteristics such as lifetimes cannot

be derived from their detected LKFs, but only spatial statistics.

With increasing resolution of classical (viscous-plastic) sea ice models (Hutter et al., 2018) or with new rheological frame-

works (e.g. Maxwell elasto-brittle, Rampal et al., 2016; Dansereau et al., 2016), sea-ice models start to resolve small-scale

deformation with larger floes and leads. Typical measures for evaluating the modeled LKFs include scaling properties of sea-25

ice deformation (Hutter et al., 2018) or lead area density (Wang et al., 2016). An evaluation of these simulations based on

individual features would be far more comprehensive and thorough and would help to improve model physics.

The objective of this study is to develop an open-source algorithm that automatically detects deformation features in regular

gridded sea-ice deformation data and then tracks them using drift data. For this purpose, we present a modified version of the

detection algorithm of Linow and Dierking (2017) and introduce an automatic tracking algorithm that takes into account the30

advection of deformation features with the overall sea-ice drift as well as growing and and shrinking features. Both algorithms

are applied to the entire RADARSAT Geophysical Processor System (RGPS) drift and deformation data set to produce a

multi-year LKF data-set that makes a comprehensive description of spatio-temporal characteristics of LKFs possible.
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2 Data

One main requirement of the LKF detection algorithm presented in this study is that it should be applicable to both satellite

observations and output of numerical sea-ice models. Thus, we use deformation data to detect LKFs rather than passive mi-

crowave data (Bröhan and Kaleschke, 2014) or thermal infrared imagery (Willmes and Heinemann, 2016), which is usually

not simulated in a sea ice model. Sea ice deformation, which is derived from sea-ice drift, can be observed by satellite, ship5

radar, and buoys and it is also simulated by numerical models.

2.1 Deformation data

In this study, we use deformation data provided by the RADARSAT Geophysical Processor System (RGPS)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwok, 1998, data obtained from https://rkwok.jpl.nasa.gov/radarsat/index.html).

This data set is based on sea ice drift derived by tracking ice motion in SAR images. In each freezing season points are initial-

ized on a regular 10-km grid that are tracked over the winter until the on-set of the melting season. A Lagrangian deformation10

data set is computed from these trajectories using line integral approximations
:::::::::::::::::::::::::
(e.g. Lindsay and Stern, 2003). Data is available

for the years 1997 to 2008 with varying spatial coverage of the Amerasian Basin. We use the gridded version of the RGPS

data-set for our analysis, which is interpolated on to a regular grid with 12.5 km grid spacing.

2.2 Drift data

To track features detected by the LKF detection algorithm in RGPS deformation data, the drift between two RGPS records is15

required for an a-priori guess of the temporal continuation of the individual feature. In the RGPS data set the derived defor-

mation data is published along with the original drift data that is used for the deformation rate computation. Since RGPS drift

is only provided as a Lagrangian data set
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwok, 1998, data obtained from https://rkwok.jpl.nasa.gov/radarsat/index.html), we

interpolate the drift to the same regular 12.5-km grid on which the deformation data is provided.

2.3 Evaluation data-set20

Automated object detection requires an evaluation against validation data. For this purpose, we use the data set of hand-picked

LKFs presented in Linow and Dierking (2017). This data set comprises 1411 LKFs detected by human eye for 12 RGPS

snapshots (December 29, 2005 to February 2, 2006). The intrinsic localization uncertainty of the visual
::::::
visually

:
detected

features was shown to be 0.75px
:::::
pixel

:::
(px)

:::::
with

:::::
1 pixel

::::::::::::
corresponding

::
to

::
a

:::
grid

::::
cell

::
of

:::
size

:::::::::::::
12.5⇥ 12.5km and the uncertainty

in the line length 8% (Linow and Dierking, 2017).25

Since this data set only provides LKFs for single snapshots but does not include information about the temporal evolution of

LKFs between different snapshots, we need to expand the data set in this regard. In doing so, we advect the hand-picked LKFs

of one snapshot using the RGPS drift to get an a priori guess of LKF position in the next snapshot. We visually compare the

advected LKFs from the previous snapshot to LKFs of the next snapshot. If two LKFs overlap and agree in the entire overlap-

ping area in position, shape, and orientation, they are marked as tracked LKF. Furthermore, each tracked LKF is described by30

probability, degree of overlap, and type of shape change (no change, growing, shrinking, and branching), which are all visually
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estimated. In total 392 LKFs were tracked within these 12 RGPS snapshots, which corresponds to ⇠ 28% of the LKFs in the

evaluation data set. For the remaining 1019 LKFs no matching LKF in the next record is found. Thus, these LKFs have a

lifetime that is shorter than the temporal resolution of 3 days if errors in the manual tracking are not considered.

3 LKF detection

3.1 Method description5

Our LKF detection algorithm consists of three parts: (1) a preprocessing step that transforms the input deformation data into

a binary map of pixels that mark LKFs by using different filter steps, (2) a detection routine that splits the network of LKF

pixels in the binary map into the smallest possible segments, and (3) a reconnection instance that estimates the probability of

different segments belonging to one feature and then connects all segments of a LKF. The general structure of the algorithm

follows Linow and Dierking (2017), although individual parts have been modified substantially. The main enhancements of the10

algorithm are a parallel detection of segments with a stronger constraint on the curvature and the introduction of a probability

based reconnection. Further, the entire algorithm was rewritten in Python (Python Software Foundation, http://www.python.

org) to avoid license issues with the previous code that was based on the commercial software IDL.

3.1.1 Data preprocessing and filtering

The standard input data of the LKF detection algorithm is the total deformation rate of sea ice ✏̇tot =
p

✏̇2
I
+ ✏̇2

II
,
::::::
where

::
✏̇I ::

is15

::
the

::::::::::
divergence

:::
and

:::
✏̇II:::::

shear that can be derived from both satellite data and model output (Fig. 1a). LKFs are marked
::::::
defined

by regions of high deformation rates, because they are located along the boundaries of ice floes where most deformation takes

place. The actual magnitude of deformation along an LKF, however, varies with the background deformation and the spatial

scale, because of its multi-fractal properties (Weiss, 2013). Thus a simple thresholding of deformation rates is not sufficient to

filter LKFs. Instead, we are interested in detecting deformation that is notably higher than the local environment. As LKFs are20

lines of high deformation, we need to detect edges in the deformation field.

Prior to the edge detection, we take the natural logarithm of the input field (Fig. 1b) and perform a histogram equalization

(Fig. 1c). Both highlight the local differences across different scales and enhance the contrast in regions of low deformation

rates.

We use a Difference of Gaussian filter (DoG) following Linow and Dierking (2017) for the edge detection (Fig. 1d). The25

DoG filter subtracts two filtered versions of the same input data: the first is smoothed with a Gaussian kernel of radius r1 = 1

:::::::
r1 = 1px

:
corresponding to a half-width �1 = 0.5, and the second is smoothed with a Gaussian kernel of radius r2 = 5

::::::::
r2 = 5px

(half-width �2 = 2.5), where r1 < r2. The smaller radius r1 corresponds to the smallest scale of features that will be detected

by the DoG and the second radius r2 provides the upper limit of the scales detected. Note that this scale limitation applies to the

width of the LKFs as well as to their lengths. For edges of scale r1 < L< r2, the DoG-filtered values are positive because the30

local deformation rate is higher than in the environment of radius r2. Pixels are marked as LKFs when the DoG-filtered pixels

4
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Figure 1. Filter sequence from (a) input field total deformation to (f) final output
:
of

:
the morphological thinned binary map of LKF pixels.

Intermediate steps are (b) logarithmic deformation, (c) histogram equalization, (d) Difference of Gaussian filter, and (e) the thresholded

output of the DoG filter. RGPS deformation data for January 1st, 2006 is used for this example.

are larger than a positive threshold dLKF. The result is a binary map where pixels with value 1 belong to LKFs (see Fig. 1e for

a threshold of 15).
:::
The

::::::::
threshold

:::::
dLKF:::::

does
:::
not

::::
have

:
a
::::
unit

::
as

::
it
::::::::
describes

:::
the

:::::::::
difference

::
of

:::
two

:::::::::
histogram

::::::::
equalized

:::::::
images,

:::::
where

:::
the

::::::
highest

::::::::::
deformation

::::
rate

::::::::::
corresponds

::
to

:
a
:::::
pixel

:::::
value

:::
255

::::
and

:::
the

:::::
lowest

::
to

:::::
value

::
of

::
0.

:

At this point, LKFs in the binary map are still represented in their original width. To detect which pixels belong to which

LKF we add a further level of abstraction and reduce the width of all LKFs to one pixel (Fig. 1f). To this end, a morphological5

thinning algorithm reduces the binary map to its skeleton. We use the skeletonize function of the open-source python

package scikit-image (van der Walt et al., 2014) based on Zhang and Suen (1984). Skeletonization was used before to

detect leads in original or classified, that is, preprocessed and charted, SAR images (Banfield, 1992; Van Dyne and Tsatsoulis,

1993; Van Dyne et al., 1998).

3.1.2 Segment detection10

We detect small segments of pixels that contain parts of one LKFs
::::
LKF in the binary map. Based on the morphological thinned

binary map, groups of pixels that form a line are detected. In this first detection step, we want to guarantee that all pixels of a

detected segment belong to the same LKF. Therefore, we detect the smallest segments possible that are in the simplest case the

points in between intersections of lines in the binary map (Fig. 1f).
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Figure 2.
::
(a)

:::::::
Detected

:::::::
segments

:::
and

:::
the

:::::
results

::
of

::
(b)

:::
the

:::
first

::::::::::
reconnection

:::
step

:::
and

:::
(c)

:::
the

:::::
second

::::::::::
reconnection

:::
step

:::
for

::::
RGPS

::::::::::
deformation

:::
data

::::
from

::::::
January

:::
1st,

:::::
2006.

::::
Each

::::
color

::::::
denotes

:
a
:::::::
different

::::::
segment

::
or

::::
LKF.

::::
Due

:
to
::

a
:::::
limited

::::::
amount

::
of

:::::
colors,

:::::::
different

:::::::
segments

::
or

:::::
LKFs

::
can

::::
have

:::
the

::::
same

:::::
color.

:::
The

:::::
output

::
of

::
the

::::::
second

::::::::::
reconnection

:::
step

::
is

::
the

::::
final

:::::
output

::
of

:::
the

:::
LKF

::::::::
detection

:::::::
algorithm.

As a starting point of the segment detection we use LKF pixels that have only one neighbouring cell also marked as LKF.

Within each iteration, the detection algorithm proceeds to the LKF neighbour and checks again the number of neighbouring

cells for LKFs. If the new cell has also only one neighbouring LKF cell (neglecting the cell from the prior iteration) the search

is continued. If the new cell has more than one neighbouring LKF cell, that is, it is a junction, the detection cycle is stopped

and these neighbouring points become the new starting points. Besides the number of neighbouring LKF cells, a change in5

direction compared to the orientation of the last 5 pixels can also terminate the detection cycle: if the angle between the line

connecting the centres of the potential new cell and the current cell and the linear fit to the previous 5 pixels of the segment

exceeds 45�, the detection cycle is interrupted and the new cell is marked as a new starting point. If the segments
:::::::
segment is

still shorter than 5 pixels, all available pixels are taken into account. We use 5 pixels in contrast to 2 pixels used by Linow and

Dierking (2017) to impose a stronger constraint on the curvature, as .
:::
As in the 2 pixel case,

:
a 90� shift of direction is possible10

within 2 steps of the detection. Within each cycle of the detection algorithm pixels that have been assigned to a segment are

removed from the input binary map to prevent double assignments. This procedure is repeated until no new starting cells are

found.

After removing all linear segments, the remaining binary map contains only non-LKF pixels or LKFs forming closed con-

tours with no starting points. The closed contours are opened by arbitrarily marking pairs of two neighbouring LKF-pixels15

(every (i · 100)-th and (i · 100+1)-th LKF-pixel for i= 1,2,3, . . . ) as starting points. Then the segment detection is repeated

until no new starting points are found. The initialization step to open closed contours is then repeated until all LKF-pixels in

the binary map are assigned to a linear segment. All segments that were detected are shown in Figure 2 (a) .
:::
for

::::::
January

::::
1st,

:::::
2006.
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3.1.3 Reconnection

The reconnection instance is designed to connect multiple detected segments that belong to the same LKF. Two segments

belonging to the same LKF should have a similar orientation and deformation magnitude and they should be in close proximity

to each other. Thus, we compute the probability for all possible pairs of segments to be part of the same LKF based on their

distance, their orientation, and their deformation rates. The two segments of the pair with the highest probability are connected5

and the probabilities of pairs containing one of the two are updated. These steps are iterated until no new matches are found.

This part of the algorithm represents a new feature compared to Linow and Dierking (2017).

The central element of the reconnection step is the probability matrix P 2 IRN⇥N that stores the probabilities for all pairs of

segments with N being the number of segments. The rows and columns correspond to single segments, where P (m,n) gives

the probability of segment m and n being part of the same LKF. The probability is given by ,10

P (m,n) =

vuut
 ✓

�D (m,n)

D0

◆2

+

✓
�O (m,n)

O0

◆2

+

✓
�✏̇(m,n)

✏̇0

◆2
!vuut

 ✓
�D (m,n)

D0

◆2

+

✓
�O (m,n)

O0

◆2

+

✓
� log10 ✏̇(m,n)

✏̇0

◆2
!

:::::::::::::::::::::::::::::::::::::::::::::::::::::

,

(1)

with the elliptical distance �D between the two segments, the difference in orientation �O, and the difference in
::
of

:::
the

::::::::
logarithm

::
of

:::
the

:
total deformation rate �✏̇.

::::::::
� log10 ✏̇.:::

We
::::
here

::::
use

:::
the

:::::::
common

:::::::::
logarithm,

:::
i.e.

:::
log

::::
base

:::
10,

:::
in

:::::::
contrast

::
to

:::
the

::::::
natural

::::::::
logarithm

::::
used

::
in

:::::::
Section

::::
3.1.1

::
to

:::::::
directly

:::::::
describe

:::
the

::::::::
difference

::
in
:::
the

:::::
order

::
of

:::::::::
magnitude

::
in

:::
the

::::
total

:::::::::::
deformation

::
of

:::
two

::::::::
segments.

:
The difference in orientation �O is determined by the angle between the two segments, which are represented15

in this computation by a line connecting the start and the end point. The elliptical distance describes the distance between both

segments, but takes also into account the alignment of the segments. In doing so, we decompose the vector connecting both

ends of the segments va!b into a orthonormal basis with one vector parallel to the first segment ak and one vector perpendicular

to it a? as shown in Fig. 3. In the same way, vb!a is decomposed in a basis for the second segment bk, b?: ,
:

va!b =
�
ak,a?

�
·↵ !

= vb!a =
�
bk, b?

�
·�., (2)20

:::::
where

::
↵

:::
and

::
�

:::
are

::
the

::::::::::
coefficients

::
of

:::
the

::::::
vector

::::::::::::
decomposition.

:
In the computation of the length of the connecting vector v, the

component perpendicular to the segment is weighted with an elliptical factor e > 1 and the distance computed by both bases is

averaged to obtain a symmetrical elliptical distance, that is, v = va!b = vb!a:

kvke=
1

2
(kva!bke+kvb!ake) =

1

2

0

B@

vuuut↵T ·

0

@ 1 0

0 e

1

A ·↵+

vuuut�T ·

0

@ 1 0

0 e

1

A ·�

1

CA=�D. (3)

We consider only pairs of segments where the starting point of one segment lies in the direction of the other segment, that is,25

↵(0)� 0 or � (0) 0. Thus points with same elliptical distance lie on a half ellipse centered at the endpoint of the segment

as denoted in Fig. 3. The computed probability for a generic pair of segments P (m,n) = P (n,m) is symmetric, because both
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aka?

bk

b?

A

B

Figure 3. Sketch of two segments illustration
:
A

:::
and

::
B

::::::::
illustrating

:
the principle behind the elliptical distance. In the distance computation the

component pointing in the direction perpendicular to the segment is weighted by a factor of e. Within the shaded area the elliptical distance

is below a threshold D0. If the endpoints of both segments lay
::
lie within the area where both shaded half-ellipse

:::::::::
half-ellipses overlap, they

are considered for reconnection.
:::
The

:::::
dotted

::::
lines

::::::
indicate

:::
the

::::::::
orientation

::
of

::::
lines

::::::::
connecting

:::
the

::::
start

:::
and

:::
end

:::::
points

::
of

:::
both

::::::::
segments

:::
and

::
the

:::::
angle

:::
�O

::
is

:::
the

:::::::
difference

::
in
:::::::::
orientation.

::
v

:
is
:::
the

:::::
vector

::::::::
connecting

:::
the

::::::::
endpoints

::
of

:::
both

::::::::
segments

::
as

:::::
defined

::
in
:::::

Eq.2.
::
ak:::

and
:::
a?:::

are

::::
basis

:::::
vectors

::::::
aligned

::
in

::
the

:::::::
direction

::
of

:::
the

::::::
segment

:::
A,

:::::::::
respectively

::
bk:::

and
::
b?:::

for
::
B.

the elliptical distance, the orientation difference and the deformation rate difference are symmetric. Thus, we only compute

P (m,n) with m< n, where P is simplified as an upper diagonal matrix.

The parameters D0, O0, and ✏̇0 not only normalize the individual components of Eq. (1) but also serve as an upper threshold

for these components. If for one pair the elliptical distance �D, the difference in orientation �O, or the deformation rate

�✏̇ exceed the threshold D0, O0, and ✏̇0 it is not considered for the reconnection. The threshold values will be determined in5

Section 3.1.4 and are given in Tab.
::::
Table 1.

After initializing the matrix P , the pair of segments with the highest probability P (m,n) is connected and the connected

segment (m! n) replaces the old segment m. Thereby the number of segments is reduced by one and the n-th row and n-th

column are removed from the probability matrix P . The elements of the probability matrix that correspond to the segments

m need to be updated and thus the m-th row and m-th column of P are reevaluated based on the new connected segment10

(m! n). This process is iterated, where in each iteration the pair of segments with highest probability is connected, until no

pair is left that satisfies the threshold values D0, O0, and ✏̇0.

In the final step of the LKF detection algorithm, features that fall below a minimum length lmin are removed, because most

small features are artifacts of the thinning algorithm and do not represent LKFs. With increasing minimum length, the number

of detected LKFs decreases and the field of the detected LKFs shows a higher degree of abstraction. The minimum resolution15

of the detected LKFs, however, is determined by the minimum length used for the DoG filtering. (a) Detected segments and

the results of (b) the first reconnection step and (c) the second reconnection step for RGPS deformation data from January 1st,

2006. Each color only denotes a different segment or LKF. Due to a limited amount of colors, different segments or LKFs can

have the same color. The output of the second reconnection step is the final output of the LKF detection algorithm.

The presented reconnection procedure shows better results for longer segments, because the orientation and mean deforma-20

tion is more sensitive for smaller segments. In theory, the best input would be segments containing all the points in the binary
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Table 1. List of parameters used in the LKF detection algorithm. For each parameter the lower and upper bound of the optimization is given

along with the final choice of the parameter value.

Parameter name Symbol Lower bound Upper bound Final choice
:::
Unit

DoG filtering threshold dLKF 0 30 15‡
:
�

max. elliptical distance D0 1 7 4†
::
px

elliptical factor e 1 5 2
:
�

max. difference in orientation O0 25 65 35
:
�

max. difference in deformation ✏̇0 0.5 1.25 1.25
::::::::::
log (1/(day))

min. length lmin 3 7 3
::
px

min. radius of DoG r1 1?†
::
px

max. radius of DoG r2 5?†
::
px

? parameters that have not been optimized but taken from Linow and Dierking (2017)
† parameters are related to length scales and need to be scaled with the spatial resolution of the input data
‡ parameters are used to suppress noise in the input data and need to be adapted individually to input data

map that lie in between "junctions" of the lines, assuming that all those points belong to the same LKF. The segment detection

instance, however, yields smaller segments due to the parallel detection that has been implemented to increase computational

efficiency. Thus, we apply the reconnection algorithm twice: the first instance is meant to compensate for the tendency of the

segment detection algorithm to divide segments into smaller pieces although they actually belong to the same inter-junction

segment. Thus, we use very a restrictive set of threshold values (maximum distance D0 = 1.5
::::::::::
D0 = 1.5px, maximum differ-5

ence in orientation O0 = 50�, maximum difference in deformation rate ✏̇0 = 0.75
:::::::::::::::::
✏̇0 = 0.75 log(1/day), elliptical factor e= 1,

and minimum length lmin = 2
:::::::::
lmin = 2px) to ensure that only segments are reconnected that are not separated by more than

one pixel and no segments are removed because they are short (Fig. 2b). The second reconnection instance with a different

set of parameters is then used to reconnect segments across junctions, and to generate the final LKFs shown in Fig.2 (c). The

choice of
::
the

:
set of parameters used in the second reconnection instance is discussed in Section 3.1.4.10

3.1.4 Parameter optimization
::::::::
selection

There are a number of parameters in the detection algorithm. For some of them the range of possible choices can be narrowed

down with information from field and satellite observations as well as theory of ice fracture, but none of them is strictly

constrained. Therefore, we attempted an optimization of the set of parameters, mainly of the reconnection step, given in

Tab.
:::::
Table 1.15

The main challenge of the optimization is the strong nonlinearity of the detection algorithm. The main source of non-linearity

is the fact that whether a feature is detected or not can depend sensitively on small changes of a parameter. Another source

of non-linearity is the small amount of reference data. The strong non-linearity of the problem constrains both the definition

9
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Figure 4. Illustration of overlap between two LKFs A and B.

of the cost function and the optimization method to make sure that the optimized solution is the global minimum of the cost

function.

We constructed different cost functions, ranging from simple counts of falsely undetected features by the algorithm to a

cumulative Modified Hausdorff Distance (MHD) between all detected and hand-picked features as a cost function, in an effort

to smooth the strong non-linearity. In addition, we used different non-linear optimization routines including basin-hopping5

(Wales and Doye, 1997) and a nested brute-force implementation. No combination of cost function and optimization method

lead to a satisfying result, because in all cases the cost function was very sensitive to smaller variations of the parameters. We

concluded that finding a global minimum of the cost function is impossible. Therefore, we use a set of parameters estimated

with a simple brute-force algorithm that minimizes the number of not-detected features for the range of parameters given

in Tab.
::::
Table 1, where for each parameter five equally spaced values within its range are used. We do not regard this set of10

parameters as the global optimum, but rather as a useful working basis given the strong non-linearity of the problem and the

limited amount of reference data. The performance of the detection algorithm with this set of parameters is evaluated in detail

in Section 3.2.

3.2 Evaluation

In the evaluation we use all data for January 2006 (11 snapshots) from the hand-picked LKF data set, the LKFs detected by15

the algorithm presented in this study, and LKFs detected by the original version of this algorithm (Linow and Dierking, 2017).

The reference data of the original algorithm is generated with the parameters used in the evaluation section of Linow and

Dierking (2017). In this way, we evaluate the overall ability of the method to properly detect LKFs but also check whether the

modifications and new additions improve the performance of the algorithm. We determine to which
::::
what

:
degree the algorithms

can detect the same features that were recognized by visual inspection and furthermore provide detailed information about the20

similarity and differences between automatically detected and hand-picked features in an element-wise comparison.

10



The principle
:::::::
principal

:
idea behind this evaluation is that we compare the features pairwise: one LKF from the hand-picked

data with the best-matching automated detected LKF. We find the best matching automatically detected feature for each hand-

picked feature by minimizing the Modified Hausdorff Distance (MHD) (Dubuisson and Jain, 1994) between the hand-picked

features and all automatically detected features. Next, we categorize all pairs by the degree of overlap of the hand-picked feature

with its closest matching detected feature. The overlap between two features is illustrated in Fig. 4. The number of pixels for5

which the distance to the closest pixel in the matching feature is smaller than dO = 3
::::::::
dO = 3px is defined as overlap, labeled

as OA and OB in Fig. 4. To distinguish between the overlap of feature pairs that have similar shape but are displaced and pairs

that overlap only due to intersection of both features, we compute the angle between overlapping parts of the matching pairs

✓O. If this angle is smaller than ✓O < 25�, the overlap of a matching pair is defined by the minimum of overlapping pixels of

both matching partners normalized by the maximum length of both matching partners:10

O =min(len(OA), len(OB))/max(len(A), len(B)), for ✓O < 25�. (4)

Given this definition of overlap, we distinguish between three different classes of pairs: (1) fully matching pairs that have an

overlap larger
:::
than

:
60%, (2) partly matching pairs that have an overlap smaller then

:::
than

:
60% but larger than 0%, and (3) not

matching pairs with overlap equal to 0%.

The overall performance of the algorithm with respect to the overlap of the detected features with the reference data-set is15

given in Fig. 5 along with the number of pairs within each class. We find that the features detected with our new algorithm

overlap significant
::::::::::
significantly

:
more with the hand-picked reference data than the features detected with the original version

of the algorithm (Fig. 5). The original version of algorithm is run with the same parameters used in the evaluation section of

Linow and Dierking (2017). Our modifications to the algorithm increase the number of fully matching LKFs by 66% (from

314 to 522), along with a similar amount of partly matching LKFs (from 635 to 657), and a clear decrease of 66% for the not20

matching LKFs (from 347 to 117). This indicates a significant improvement of the original algorithm.

We analyze the similarity of features of all pairs within each class to test whether these improvements are made at the expense

of the quality of the detected features. In doing so, we define three metrics to determine the similarity of the features: (1) the

mean endpoint distance, (2) the line length error, and (3) the MHD as metrics, where the first two were introduced by Linow

and Dierking (2017). The MHD is a measure of the general agreement of two shapes. It takes into account changes in both25

orientation and length, but also a complete change in shape. In the sea ice context, the MHD is applied, for example, to evaluate

the ice edge position in sea ice forecasts (Dukhovskoy et al., 2015) or to assess the predictability of LKFs (Mohammadi-Aragh

et al., 2018). We here only focus on the class of full matching pairs.

For the mean endpoint distance, we determine the distance between both endpoints of the detected and the hand-picked

feature for each pair and average them. For all full matching pairs with features detected by our new algorithm the endpoint30

distance tends to be smaller compared to features detected by the original version of the algorithm, which is indicated by

the shift in the distribution towards smaller errors (Fig. 6a). The improved match because of the modifications to the original

algorithm is also reflected in the smaller mean error (1.47 px as opposed to 1.96 px of the original algorithm). For 75% of the

11



Figure 5. Evaluation of detection algorithm presented in this study and original algorithm (Linow and Dierking, 2017) against hand-picked

LKFs. The cumulative frequency of occurrence of the overlap is given in the center plot. The amount of features is given in the bar plots for

each class (fully matching, partly matching, and not matching).

features detected with our algorithm, the mean endpoint distance is smaller than 2 px whereas this is only the case for 60% of

features detected by original version.

The line length error is determined by the difference in length of the two features in a pair normalized by length of the

smaller feature of the pair. For both algorithms, the distributions are similar with a slightly smaller mean error of 18.54
::::::
similar

::::
mean

:::::
errors

:::::
⇠ 18% as opposed to 18.74 % for the original algorithm (Fig. 6b). For half of the pairs the line length error is also5

lower than 15% in both cases.

We find that our modifications to the original algorithm also reduce the average MHD from 1.58 px to 1.17 px (Fig. 6c).

73 % of these pairs lie within the 5th to 95th percentile of the background MHD defined as the MHD of the reference data

and the morphological thinned binary LKF field (Fig. 1f). Since all LKFs consist of sets of pixels from this binary field, the

background MHD is an upper limit of how accurate a reconnection algorithm can get using this binary field as an input value.10

In conclusion our new version of the algorithm improves the original algorithm in that it detects more features and also

increases their agreement with the hand-picked reference data.

3.3 Discussion

Our adapted detection algorithm greatly improves the original version. The total number of hand-picked features that is re-

produced by the algorithm increased by 66 %. In addition, also the quality of the detected features with respect to their mean15

endpoint distance, the error in line length and the MHD is improved. We attribute these improvements to two changes that

stand out besides smaller adjustments in the code: (1) the introduction of a probability based reconnection and (2) the opti-

mization of the DoG threshold dLKF , which showed the highest sensitivity in the optimization. We use this threshold to filter

LKFs as regions that have high deformation rates compared to the local environment. The deformation rates in RGPS are

known to be prone to grid scale noise (Bouillon and Rampal, 2015)
::
and

:::::::::::
uncertainties

::::::
caused

::
by

:::::::
tracking

::::
and

::::::::::
geolocation

:::::
errors20
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Figure 6. Statistics of all full matching pairs computed for the algorithm presented here and the original version (Linow and Dierking, 2017):

(a) the mean endpoint distance, (b) the line length error, and (c) the Modified Hausdorff Distance (MHD). The background MHD refers to to

MHD calculated for the hand-picked features and the morphological thinned binary field (Fig. 1f).

::::::::::::::::::::::::::::::::::::::::::::
(Lindsay and Stern, 2003; Bouillon and Rampal, 2015), which can lead to a false classification of a pixel as LKF. Increasing

the threshold sightly
::::::
slightly suppresses this noise, albeit at the expense of loosing features with smaller deformation rate

differences. Thus the threshold needs to be optimized to balance both effects; we found dLKF = 15 to be the best parameter

choice for the RGPS data set.

In our algorithm we reconnect
:::::::::
reconnected

:
segments to LKFs based on a probability computed from the characteristics5

of the segments. Thereby those segments are reconnect that fit “the best” and in contrast to Linow and Dierking (2017) the

reconnection does not depend on the order in which the reconnection algorithm runs over the list of segments. In doing so, we

improve the quality of the detected features and obtain a unique and consistent solution. Both uniqueness and consistency are

necessary ingredients for the ensuing application of a tracking algorithm.

In this context, we found the elliptical distance �D and the orientation �O to be the important contributers to the probability10

function. The optimized threshold �✏̇0 = 1.25 for differences in deformation rates is very high (as it is applied to the differ-

ence of the common logarithm of the deformation rates, a difference between deformation rates of a factor 101.25 = 17.78 is

possible), so that differences in deformation rates are normalized by a large value and do not contribute much to the probability

function. Omitting the deformation related part in Eq.1 (equivalent to setting �✏̇0 =1) does not change the results of the

evaluation of the optimized solution very much (not shown here). The small influence of the threshold for deformation rates15

�✏̇0 on the performance of the algorithm may also be caused by the noise in the RPGS data along LKFs (Bouillon and Rampal,

2015). Especially smaller segments are affected by the noisy RGPS data so that segments that belong to the same LKF may

have different deformation rates.
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4 LKF tracking

The dynamic nature of the ice pack with spontaneous fracture, fast propagation of failure lines, and discontinuous drift fields

makes tracking of deformation features in the ice a challenge. Because most of these processes occur on time scales from

seconds to days, the temporal resolution of the RGPS data set of 3 days makes feature tracking even more challenging. In

this section, we present an algorithm that automatically tracks features and we compare the tracked features to hand-tracked5

features.

4.1 Method description

The tracking of deformation features, in fact any feature, between two time records is always a two-step problem: first, the

deformation features are detected for both records separately and second, the features of both time records are connected in

time by identifying features of the first record with those of the second record.10

Between two RGPS time records (3 days) a deformation feature will be advected and can undergo the following changes:

(1) it can become inactive, (2) it can grow, or (3) shrink, or it can undergo a combination of growing and shrinking. Thus, on

top of two time records, tracking requires drift information between these records. From the same drift fields that were used

to derive the deformation data we estimate an a
:

first-guess position of each feature from the first record in the second record

that neglects all effects but advection. We compute the drift first-guess position in pixel space (each feature in the first record15

is described by integer pixel indices) by normalizing the drift speed with the grid resolution. Thus, the computed first-guess

positions are given in floating point indices of the input field of the detection algorithm.

For the following description, a tracked feature is a feature from record two with an associated feature in record one; a

matching pair is a pair of associated features from records one and two; and all matching pairs are called the tracks.

A tracked feature in the second record is required to overlap at least in part with the first-guess position after growing and20

shrinking in between the time records is taken into account. We define a search window around the first-guess position of the

feature to test for an overlap of the features with the first-guess position. The search window consists primarily of pixels for

which the floating point indices of the first-guess position are rounded up and down by the python functions ceil and floor.

To take into account the position uncertainty caused by the morphological thinning algorithm, we also add all neighboring

pixels of the pixels with rounded indices using the mean background MHD of the morphological thinned field (Fig. 6c) of25

0.78 px as an estimate for this uncertainty. All features in the second record that include a minimum number of pixels omin = 4

of the search window are marked as potentially tracked features. If we consider a feature that changes shape only due to

advection without any growing or shrinking, the tracked feature from the subsequent time record should lie completely within

the search window.

During the course of three days, however, many features grow or an opening closes at one or both ends of the detected30

feature. Also, in rare cases, only parts of a feature close and a new branch is formed within the position of the old feature. This

will be referred to as branching. Our algorithm is designed to take into account only growing and shrinking, because to our

experience there are rather few branching LKFs (10 %) and because branching is very complex to track. Thus, a feature that
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Figure 7. Principle of the tracking algorithm showing the search area and search window. A is the original feature (dashed blue) and Ad

(blue) the first-guess position considering only drift. B and C are two features in the second record, where B is marked as a successfully

tracked feature.

is considered as a
:

tracked feature is allowed to grow at both ends compared to the first record or to shrink to only a part of

the original feature. To translate this into an algorithm, we define a search area that is the area enclosed by two lines through

the endpoints of the first-guess position. These lines are perpendicular to the orientation of the first-guess position (see grey

shaded area Fig. 7). For a tracked feature, all points of this feature that lie within the search area need also to lie within the

search window. Here, we implement a threshold value pw/a that defines the fraction of points within the search window and5

points within the search area for the feature to be considered as a tracked feature. Features, for which more pixels lie within

the search area but not in the search window, have likely undergone branching or just intersect with the first-guess position but

have a different orientation.

The last step of the tracking algorithm filters small features inside the search window that intersect with the first-guess

position. Due to their short length all of their points in the search area also lie in the search window. To exclude those we10

compute the overlap as defined in Sec. 3.2 between the first-guess position and the potentially tracked feature. We use a

maximum distance of pixels of dO = 1.5 and an angle threshold of ✓O = 25� for the computation of the overlap. All potentially

tracked features with a non-zero overlap are marked as tracked features.

For all features of the first record this procedure is repeated iteratively: (1) advecting
:::::
advect

:
the feature using the drift

information to obtain the first-guess position (2) check for features that share omin pixels with the search window, (3) compute15

the fraction of pixels in the search window and in the search area pw/a, and (4) test for non-zero overlap. The output of the

tracking algorithm is a list of matching pairs of always one feature from the first record and a tracked feature from the second

time record.
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Table 2. List of parameters used in the LKF tracking algorithm. For each parameter the lower and upper bound of the optimization is given

along with the final choice of the parameter value.

Parameter name Symbol Lower bound Upper bound Final choice
:::
Unit

min. overlap in search window omin 2 6 4
:
4
: ::

px

fraction of pixels in search window and in search area pw/a 0.5 1 0.75
::::
0.75

::
�

max. distance of pixels for overlap dO 0.75 2.25 1.5
::
px

max. angle for overlap ✓O 15 35 25
:
�

4.2 Parameter optimization

In the tracking algorithm the four parameters omin, pw/a, dO, and ✓O are not very well constrained, so we attempt to optimize

them within plausible bounds. As we want to optimize the tracking algorithm independently of the detection algorithm, we use

the hand-picked features as input for the tracking algorithm and compare the output to the hand-tracked features. We perform

the same very basic optimization as in Sec. 3.1.4 facing similar problems with limited amount of reference data and a non-linear5

cost function. We choose equally spaced values in the range given in Tab.
:::::
Table 2 for all four parameters and determine the

number of correctly tracked features, the missed tracks, and false positives. We find that decreasing omin and increasing pw/a,

dO, and ✓O leads to an increase in correctly tracked features along with a large increase of false positive
:::::::
positives. To balance

both effects, we define the cost function as the number of correctly tracked features subtracted by the number of missed tracks

and the number of false positives. The final parameter set that maximizes this difference is given in Tab.
::::
Table 2.10

4.3 Evaluation

To separate the two steps of feature tracking, and to enable an independent evaluation of the tracking algorithm, we apply

the tracking algorithm on two different LKF data-sets: the hand-picked features and the features extracted by the detection

algorithm for the same time span. Then, we compare both results to the hand-tracked features described in Sec. 2.3.

We evaluate the tracking algorithm independently by applying it to the hand-picked features and test whether the algorithm15

reproduces the hand-tracked features of the next time record, hereafter referred to as "only tracking". The algorithms
::::::::
algorithm

picks 336 (85.7%) of the overall 392 hand-picked tracked features correctly and only misses 56 (14.3%). Besides the missed

tracks, the algorithm detects 89 false positives. We use the information describing the type in change of shape (no change,

growing, shrinking, and branching) provided for the hand-picked tracks to test the performance of the algorithm for those

different types of change (Fig. 8a). The performance of the algorithm ranges from 85% to 88% for the different types with20

the branching type being an exception, for which only 56% of the features are tracked correctly. This is not surprising as the

algorithm is not designed to track this type of change.
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Figure 8. Evaluation of (a) only tracking algorithm on the hand-picked features and (b) combination of detection and tracking algorithm.

The color
:::::
colored

:
segments of each bar shows

::::
show the different combinations of changes in shape (no change, growing, shrinking, and

branching) that is
::
are labeled by the black lines next to the bar. The missed tracks in (b) are separated into not detected or not tracked

features. Above the bars the percentage compared to all hand-picked tracks is given for all types and for all types except branching, which is

given in brackets.

In the evaluation of both the detection and tracking algorithm, we distinguish between missed tracks that where
::::
were not

tracked by the tracking algorithm and missed tracks , for which
:::::
tracks

:::
that

:::::
were

:::::::
missed,

:::::::
because

:
the detection algorithm

was not able to detect the corresponding features in both time records. First, we test whether the detection algorithm picks

both features of a hand-picked matching pair. In doing so, we separate both features into the parts that both features share

and a non-overlapping part, to account for varying shapes in the non-overlapping part of detected and hand-picked feature.5

Then, we check whether detected features correspond to the hand-picked features using the overlap as in Sec. 3.2. If for one

of the two hand-picked features no corresponding detected feature is found, this hand-picked tracked feature is marked as a

missed tracked feature caused by the detection algorithm. Otherwise, we test whether the tracking algorithm tracks the detected

features appropriately. In total, 54.1 % of the hand-picked matching pairs are detected and tracked correctly, whereas 21.6 %

are not captured by the tracking algorithm, and for 24.4 % of the tracked features the corresponding features are not detected.10

Interestingly, these fractions do not change significantly if sub-sampled to individual types of change. Only for the branching

type of tracks, the rate of tracked features missed by the tracking algorithm exceeds the one for the detection algorithm, which is

in line with the low amount of matching pairs captured by the tracking algorithm for this type of change found in the evaluation

of the tracking algorithm alone.

Since not all hand-picked tracked features are tracked automatically by the presented algorithm, we need to make sure that15

this does not change the temporal characteristics of the automatically generated tracked features. In doing so, we compare the

distributions of lifetimes (Fig. 9) and growth rates (Fig. 10) of the hand-picked tracked features (hand-picked), the automatically

tracked features of the hand-picked features (only tracking), and the automatically tracked features of the automatically detected

features (tracking and detection). At the beginning of the evaluation period, all features are initialized with a lifetime in the

class of 0 to 3 days, where the range of the class is given by the temporal resolution of the input data. The following time steps,20

17



Figure 9. Distribution of lifetime of all features in the first 12 RGPS snapshots in 2006 in the hand-picked reference data (left column),

the automatically tracked features of the hand-picked features (middle column), and the automatically tracked features of the automatically

detected features (right column). The lower row shows the absolute number of features for a certain lifetime class, whereas the upper row is

normalized by the total number of features for this time record.

all features that are marked as tracked features are assigned to the next lifetime class compared to the class of their tracking

partner in the previous time record. All other features are initialized again in the lowest category 0 to 3 days. For all three

different data sets, more than 99% of features have a lifetime smaller than 12 days, which can be thought of as the average

spin-up time needed by the tracking algorithm. In the following, we consider only the period after those 12 days.

The distribution of lifetimes for the hand-picked tracks and automatically generated tracks of hand-picked features are very5

similar: (1) the number of features in the lowest lifetime category increases in absolute and relative numbers to the end of the

evaluation period in a equal manner (70 % to 81 % (hand-picked) and 67 % to 78 % (only tracking)
:
), (2) 17 % (hand-picked)

and 18 % (only tracking) of the features have a lifetime of 3 to 6 days, and (3) for both
::
in

::::
both

:::::
cases

:
the remaining 9 % of

the features have a lifetime over 6 days. In a feature-by-feature comparison for both data sets, only 10 % of the features vary

in their lifetime due to uncertainties in the tracking algorithm. The root mean square error of the lifetime is estimated to be10

1.55 days. For the automatically detected and tracked features the average lifetime reduces to 3.9 days compared to 4.2 days for

the hand-picked features, which is driven by an increase in the amount of features in the lifetime class 0 to 3 days to 81 %. The

fractions of the remaining classes are reduced accordingly, but do not change significantly relative to each other.

Besides the lifetime as the main temporal characteristic, we compute the growth rates of all tracked features, to check

whether those change
::
the

:::::
shape

:::
of

:::
the

::::::
tracked

:::::::
features

:::::::
changes in a similar mannerin shape. The growth rate is defined as the15
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Figure 10. Probability distribution function for growth rates in (a) the hand-picked reference data, (b) the automatically tracks
::::::
tracked

::::::
features of the hand-picked features, and (c) the automatically tracks

:::::
tracked

::::::
features of the automatically detected features separated in

:::
into

growth for positive growth rates and shrink for negative values.

difference of the number of pixels of the feature in the second record compared to the feature of the previous record. In our

analysis, we divide the growth rate into two regimes depending on their
::
its

:
sign: growth of the feature for positive values and

shrinking of the feature for negative values. The distributions of the growth rates for the “hand-picked”, “only tracking”, and

“tracking and detection” data sets all have an exponential distribution (Fig.10) with half of the features changing by less than

3 pixel per day. The high order of similarity of the distributions indicates that the usage of the detection and tracking algorithm5

does not distort the characteristics of tracked features, even though the total number of features detected and tracked increases

by a factor of 2.3 for the detection and tracking data-set.

4.4 Discussion

The large time difference of 3 days between records of the RGPS data set significantly complicates the tracking of deformation

features because they change shape and positions on shorter time-scales. With this background, the overall percentage of 85.7 %10

of hand-picked tracked features that were correctly identified by the algorithm is more than satisfying. The missed tracks and

the false positives of the algorithm lead to an
:
a
:
lifetime RMSE of 1.55 days, which is smaller than the uncertainty given by the

3 day temporal resolution of the input deformation data. The low percentage of correctly identified branching features is also

acceptable because they only make up 10 % of all hand-picked features. We hypothesize that relaxing the constraints in the

algorithm to also track branching features will most likely lead to a strong increase in false positives.15

Also the combination of tracking and detection algorithm reproduces more than half of the hand-picked tracks. This exceeds

the 40 % of features that where
::::
were fully detected by the detection algorithm and might hint at a better performance of the

algorithm for long-lived features. The hand-picking of features and tracks by only one individual also leads to a bias in the

reference data. To accurately separate the uncertainty caused by the subjectiveness of the reference data from the uncertainty

of the algorithm, more individuals would need to repeat the hand-picking procedure, which would exceed the scope of this20

manuscript. Especially, small LKFs and LKFs in regions of low deformation are harder to catch by eye (Linow and Dierking,
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2017), which explains that the automatic detection picks 2.3-times more features than in the reference and the number of

tracked features increases by 65 %. We assume that this bias towards small and therefore most probably short-lived features is

responsible for the slightly higher percentage of features in the class with the lowest lifetime (0 to 3 days). Besides this small

increase, the distributions of lifetimes for the automatically detected and tracked features are very similar, which suggests that

there is no significant cumulative bias caused by the application of both algorithms. This is backed by the similar growth rates5

observed for both data sets.

5 LKF data-set

5.1 Generation of LKF data-set

In this section, we introduce a data-set of LKFs generated by applying the detection and tracking algorithm to all available

RGPS data. The RGPS data covers the time from November 1996 to April 2008. Here, we use the available winter data from10

late freezing season (November/December) to the start of the melt onset (April/May). The Lagrangian drift information that is

also provided in the RPGS data set is interpolated to the regular grid used for the RGPS deformation data to be used as input

in the LKF tracking.

First, we apply the detection algorithm with the optimized parameters given in Tab.
::::
Table 1 to all deformation data. The

output of the detection algorithm is a list of LKFs for each time record that includes one array for each LKF. The array stores15

the position (as index in the RGPS grid and in lat/lon-coordinates) and deformation (divergence and shear rate) information

of all points of the LKF. Next, we feed the interpolated drift information and the detected LKFs of each year to the tracking

algorithm and determine the linkages between LKFs for successive time records. The tracking algorithm with the optimized

parameters given in Tab.
::::
Table 2 provides a list of tracked pairs. Each pair contains the indices of the LKFs in record one and

two.20

Overall 164 698 LKFs were detected and 35 855 tracked features were found. The yearly detection numbers range from

11 002 LKFs for the winter 2006/07, the year of a sea-ice minimum, to 16 774 LKFs in winter 2001/02. If the number of

detected features is normalized by the number of observations of sea-ice deformation, we find the maximum for winter 1996/97

and the minimum in 2002/03. The number of tracks vary from 2 012 tracks in winter 2003/04 to 4 017
:::
127

:
tracks in winter

2001/01.
::
02.

:
25

:::
The

:::::::::::
deformation,

:::::
more

::::::::
precisely

:::
the

:::::::::
divergence

::::
rate,

::::::
which

::
is

:::::
saved

:::
for

::::
each

:::::
LKF,

:::
can

:::
be

::::
used

::
to

:::::::::
distinguish

:::::
leads

:::::
from

:::::::
pressure

:::::
ridges

::
in

:::
the

:::::::::
generation

::
of
:::

an
:::::
LKF.

::
In

:::::::
general,

::::
leads

:::::
form

::
in

::::::::
divergent

:::
and

::::::::
pressure

:::::
ridges

::
in

::::::::::
convergent

::
ice

:::::::
motion

:::
and

:::
the

::::::::
converse

::
of

:::
this

:::::::
relation

::::
can

::
be

::::
used

:::
to

::::
label

::::::
newly

::::::
formed

::::::
LKFs.

::::::::
Persistent

:::::
LKFs

::::
can

::::
also

::
be

:::::::
labeled

::
in

:::
this

:::::
way,

::
as

::::
long

::
as

:::
the

::::
sign

::
of

:::::::::
divergence

::::
does

::::
not

::::::
change

::::::
during

:::
the

::::::
lifetime

:::
of

::
an

:::::
LKF.

:::::::
Consider

:::
an

:::::
LKF,

::::::
initially

:::::::
labelled

::
as

::
a
::::
lead

::
in

:::::::::
divergence,

::::
that

::::::::::
encounters

:::::::::
convergent

:::::::
motion.

::::::::::
Depending

::
on

::::
the

:::::::::
magnitude

::
of

::::::::::::
convergence,

:::
the

::::
lead

::::
may

:::::
either

:::::
only30

:::::
partly

:::::
close

:::
and

::::::::
continue

::
to

:::
be

:::
an

::::
open

:::::
lead,

::
or
::

it
:::::

may
:::::
close

:::::::::
completely

::::
and

::::
even

::::::
evolve

::::
into

::
a
::::::::
pressure

:::::
ridge,

:::::::
making

:::::::::::
differentiating

::::::::
between

:::::
leads

:::
and

::::::
ridges

::::::::
difficult.

:::::
Thus,

:::
we

::::::
refrain

:::::
from

:::::::
labeling

:::
all

::::::
LKFs

::
in

:::
the

:::::::
data-set

::::
into

:::::
leads

::::
and

:::::::
pressure

::::::
ridges,

:::
but

::::::
provide

:::
the

::::::::::
deformation

:::::
rates

:::
for

::::
each

::::
LKF

:::
and

:::::
leave

:::
this

:::::::::::
classification

::::
and

::
its

:::::::::
evaluation

::
to

:::
the

::::::::
informed
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::::
user.

:::
As

::
an

:::::::::::
approximate

:::::::::
first-guess,

:::
we

::::::::
estimate

::::
that

::::
46%

::
of

::::
the

:::::
LKFs

::
in

:::
the

:::::::
data-set

:::
are

::::::
leads,

::::
41%

:::
are

::::::::
pressure

::::::
ridges,

:::
and

::::
13%

:::
are

::::::::::
unclassified

::::::::
(because

:::
the

:::::::::
associated

:::::
mean

:::::::::
divergence

::::
rate

:::::
along

:::
the

::::
LKF

:::::::
changes

::::
sign

::::
over

::::
the

::::::
lifetime

:::
of

:::
the

:::::
LKF).

:::
For

::::
the

::::::::
classified

:::::
leads

:::
and

::::::::
pressure

::::::
ridges

:::
the

::::
sign

::
of

::::::::::
divergence

::::
does

::::
not

::::::
change

::::
over

::::
the

:::::::
lifetime.

::::::
Please

:::::
note,

:::
that

:::::
these

::::::::
estimates

::::::::
especially

:::
for

:::::
short

:::::
LKFs

:::
are

:::::
likely

::::::::::::
contaminated

::::
with

::::::::
grid-scale

:::::
noise

:::
in

:::
the

:::::::::
divergence

::::
data

::
of

::::::
RGPS

:::::::::::::::::::::::::::::::::::::::::::::
(Lindsay and Stern, 2003; Bouillon and Rampal, 2015).

:::::::::
Combining

:::
the

::::
LKF

:::::::
data-set

::::
with

::::::
sea-ice

::::::::
thickness

:::
and

::::::::::::
concentration5

:::
data

::::::
would

:::::
allow

::
to

:::::
clearly

::::::::::
distinguish

:::::::
between

::::
leads

::::
and

:::::::
pressure

:::::
ridges

:::
by

::::
using

:::::
these

::::::::
additional

::::::::::
constraints:

:::
(1)

:::::
along

:
a
::::
lead

::
the

::::::
sea-ice

::::::::::::
concentration

::::::::
decreases

::::::
within

:::
the

::::
time

::::
step,

:::
and

:::
(2)

:::::
along

:::::::
pressure

::::::
ridges

:::
the

::::::
sea-ice

::::::::
thickness

::::::::
increases.

5.2 Applications and Discussion

In this section, we present a few illustrative statistics of the LKF data-set. In doing so, we intend to demonstrate the usefulness of

the data-set but also to check it for consistency with other studies on leads and sea-ice deformation. The statistics (Fig. 11) range10

from spatial properties such as LKF length, LKF density and intersection angles, to temporal properties such as LKF lifetimes.

In case of the intersection angle, we give an example for a model-observation comparison with the presented algorithms by

comparing the RGPS LKF data-set to LKFs that were detected and tracked in a 2-km model simulation with a numerical sea-ice

ocean model. In addition, we link the number of deformation features and its corresponding deformation rates to atmospheric

drivers, in particular to Arctic cyclones.15

The density of LKFs is computed for the all years of the LKF data set as the incidences when a pixel is crossed by a LKF

normalized by the overall number of RGPS observations for this pixel. In Fig. 11 (a) only pixels that have more than 500 RGPS

observations are shown. We observe a fairly homogeneous LKF density throughout the entire Amerasian basin, with a slight

increase in the Beaufort Sea. The fast ice regions in the East Siberian Sea have the lowest densities with the fast ice edge

showing up as a sudden increase in LKF density. The highest LKF densities are found around the New Siberian Islands,20

Wrangel Island, and at the coastlines along the Beaufort Sea. This agrees very well with studies on lead densities derived from

MODIS thermal-infrared imagery (Willmes and Heinemann, 2016) and CyroSat-2 data (Wernecke and Kaleschke, 2015) that

show high densities in the Beaufort sea and highest values close to the coastline. A direct comparison of density values is not

possible as those studies are limited to leads that are identified as an opening in the ice cover, whereas our algorithm picks

regions of high deformation rates that can also include pressure ridges.25

The distributions of LKF length of all single years are very similar and range from ⇠ 50km to 1000 km (Fig. 11c). The

PDF is described accurately by a power-law for LKF length between 60 and 600
:::
For

::::
LKF

:::::::
lengths

:::::::
between

:::
100

::::
and

::::
1000

:::
km,

:
a
::::::::
stretched

::::::::::
exponential,

::::::::::::::::::
p(x) = Cx

��1e��x
�

::::
with

:::::::::::::
C = ��e�x

�
min

::::::::::::::::::
(Clauset et al., 2009),

:::::::::
accurately

::::::::
describes

:::
the

:::::
PDF.

::::
The

:::::::::
parameters

:::::::::
� = 0.719

:::
and

::::::::::
�= 0.0531

:::
are

:::::::::
determined

:::
by

::::::
finding

::::::::::
numerically

:::
the

:::::::::
maximum

:::::::::
likelihood

::::::::
estimate.

:::
We

:::::::
perform

:
a
:::::::::::::
goodness-of-fit

:::
test

:::
for

:::::::::
power-law

::::::::::
distributed

::::
data

:::
that

::
is
::::::

based
::
on

::::
the

::::::::::::::::::
Kolmogorov-Smirnov

:::::
(KS)

:::::::
statistic,

::::::
which

::
is

:::
the30

::::::::
maximum

:::::::
distance

::::::::
between

:::
the

:::::::::
cumulative

::::::::::
distribution

::::::::
functions

::::::
(CDF)

::
of

::::
two

:::::::
different

:::::::::::
distributions

::::::::::::::::::
(Clauset et al., 2009).

:::
We

::::
draw

:::::::
random

:::::::
samples

::::
from

:::
the

:::::
fitted

::::::::::
distribution

:::
and

::::::::
compute

:::
the

:::
KS

::
of

:::
the

:::::::
random

:::::::
samples

::::
and

:::
the

::::
fitted

:::::::::::
distribution.

::::
This

::::::::
simulation

::
is
::::::::
repeated

::::
1000

:::::
times.

:::
We

::::
find

::::
that

::
the

::::
KS

::
of

:::
the

:::::::
observed

::::::
length

:::::
scales

::
is

::::::
smaller

::::
than

:::
the

::::
95%

:::::::::
percentile

::
of

::
the

:::::::
random

:::::::
samples

::::
and

::::::
thereby

:::
the

::::::::
observed

::::
LKF

:::::::
lengths

:::
are

::::::::
described

::
by

:::
the

:::::
fitted

::::::::::
distribution.

::::
The

::::::::
stretched

::::::::::
exponential
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(a) (b)

(c) (e)(d)

Figure 11. Statistics on LKF data-set: (a) LKF density computed for the all years of the data-set. (b) Time series of the number of LKFs

separated by their deformation rates for winter 2002/03. For each time-step
:::
The

::::::
number

::
of

:::::
LKFs

:
is
:::::::::
normalized

::
by

:
the number of

:::::::
available

::::
pixels

:::
for

::::
each

:::::
RGPS

::::
time

:::::
record.

:::
For

:::::
early

::::
April

::
no

:::::
RGPS

::::
data

::
is

:::::::
available.

:::
For

::::
each

::::
time

:::::
record

:::
all cyclones (Serreze, 2009) over the

Arctic ocean is
::
are

::::
each shown

::
as

:
a
:::
dot in the upper panelalong with .

::::
The

::::
y-axis

:::
and

:
the

::::::::
color-code

::
of

:::
the

:::
dots

::
in

::
the

:::::
upper

::::
panel

::::::
provide

:::
the

local Laplacian
:
of

::::
each

::::::
cyclone

:
as a proxy for their

::
its strength. (c) PDF of LKF length along with power-law

:::::::::::::::
stretched-exponential

:
fit for

LKFs
::::
larger

:::::
100 km

::::
and smaller than 600

::::
1000 km. (d) Intersection angle of pairs of features that are new

:::::
newly formed (lifetime between 0

and 3 days) and have size of at least 10 pixels for the RGPS and a 2-km Arctic numerical model simulation. (e) Distribution of LKF lifetimes

for all years along with a fit to an exponential distribution
:::
tail.

:::::::::
distribution

:::::::
belongs

:::
to

:::
the

::::::
family

:::
of

::::::::::
heavy-tailed

::::::::::::
distributions,

:::
and

:::
is

:::
the

::::::::
transition

:::
of

:::
an

::::::::::
exponential

::::
and

:
a
::::::::::

power-law

::::::::::
distribution.

:
It
::::::::
describes

:::::
many

::::::
natural

:::::::::
phenomena

::::
that

:::
are

::::::::
dominated

:::
by

:::::::
extreme

:::::
events

:::
but

::
in

:::::::
contrast

::
to

::::::::
power-law

::::::::::
distribution

::::
have

:
a
::::::
natural

:::::
upper

:::::
limit

::::
scale

::::::::::::::::::::::::::
(Laherrère and Sornette, 1998).

:::
We

::::
limit

:::
the

:::::
range

::
of

:::
the

::
fit

::
to
:::::
1000 km . Due

:::
due

:
to the vary-

ing coverage and especially smaller gaps in the RGPS data , long features might have been divided
:::
that

:::::
might

:::::
divide

:::::
long

::::::
features

:
into multiple smaller segments, which explains why the power-law does not hold for large LKFs. The smallest5

feature detected by the algorithm is 3.
::::

We
:::
set

:::
the

:::::
lower

::::::
bound

:::
to

:::
100 px= 47.5km , leading to the deviations from the

power law at the smallest scales. The power-law scaling of LKF length fits into the picture of the distributions of lead width
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(Wernecke and Kaleschke, 2015) and deformation rates (Weiss, 2013) that also follow a power-law scaling
:::
km

::
to

:::::::
account

:::
for

::
the

:::::::
discrete

::::::::
character

::
of

:::
the

:::::
LKF

:::::
length

::::
that

:::::::
disturbs

:::
the

::::::::::
distribution

::
at

:::::
lower

::::
LKF

:::::::
lengths.

:::
As

:::::
LKFs

::::
here

:::
are

:::::::::
collections

:::
of

:::::
pixels,

::::
their

::::::
length

::
is

::
set

:::
by

:
a
:::::
linear

:::::::::::
combination

::
of

::::::::::::::::

�
i+

p
2j
�
· 12.5km

:::::
with

::::::
i, j 2 N.

The intersection angle between two deformation features formed at a similar time is related to the rheology describing the

deformation of sea-ice. From satellite imagery in the visible range for 14 days in 1991, the intersection angle was found to range5

between 20� and 40� (Walter and Overland, 1993), which can be linked to the angle of internal friction using a Mohr criterion

for failure (Erlingsson, 1988). The distribution of intersection angles of two LKFs that formed in the same time record is given

in Fig. 11 (d), where only LKFs larger than 10 px=125 km are taken into account to reduce the effect of a preferred direction

(45� and 90�) originating from the rectangular grid. We perform this analysis on the RPGS LKF data-set and LKFs that were

detected in a 2-km Arctic numerical model simulation, whose details are given in
::::::::
Appendix A. For the RGPS data, we find that10

the distribution peaks at an angle of 40��50�. Angles larger 50� occur more often than angles below 40�, and angles between

0� � 20� have the lowest occurrence. The broad distribution indicates that there is not only one specific fracturing angle, but

that heterogeneities in the ice cover and temperature variations (Schulson, 2004) as well as the dilatancy effect (Tremblay and

Mysak, 1997) may influence the deformation on an Arctic-wide scale. The LKFs in the model simulation intersect at larger

angles with local maxima in the range 60� to 90�. The difference in the sample size might cause these strong variations for15

larger angles, as we find five times less
::::
fewer

:
features in the model simulation than for RGPS within the same period of time.

In general, the model underestimates the probability of intersection angles smaller 55� and overestimates those of angles larger

than 55�. We attribute these differences to the usage of the elliptical yield curve with normal flow rule in the simulation, because

this yield curve does not have a “preferred” direction of fracture in contrast to yield curves with a Mohr-Coulomb criterion.

The intersection angle may be improved by an appropriate choice of model parameters (Ringeisen et al., 2018).20

The distribution of lifetimes determined by the tracking algorithm shows a clear exponential distribution with an exponent of

0.34
::
an

::::::::::
exponential

:::
tail

::::
with

:
a
::::
rate

::::::::
parameter

:::
of

:::::::::
0.34day�1

:
(Fig. 11e). Kwok (2001) described some LKF systems that were

persistent in the Arctic over a period of a month for the winter of 1996/97. We also find lifetimes as high as this, but show that

the majority of LKF are active in much shorter time intervals. We assume that the rapid changes in external forcing (mainly

wind stress) are the reason for the high amount of short-lived LKFs.25

Last, we study the link between the detected features and the wind forcing being the main driver of ice fracture. To do

so, we combine a data-set of cyclones in the Northern hemisphere
::::::::::
Hemisphere (Serreze, 2009) with the distribution of LKFs

in different deformation rate classes for, as an example, the winter of 2002/03 (Fig. 11
:::
(b)). In the freezing season, we find

more deformation features (with general
::::::::
generally higher deformation rates) caused by the thinner and therefore weaker ice

during this period. With thicker ice the number of deformation features decreases followed by an increase from April onwards30

which we attribute to the onset of melting and the resulting weakening of the ice. This overall seasonal cycle is interrupted by

a set of four strong cyclones that pass the Arctic oceans
:::::::
through

:::
the

:::::
Arctic

:::::::
Oceans

:
in March and lead to a sudden increase

of the number deformation features. This confirms that weather systems with high wind speeds are a main driver of sea-ice

deformation in the Arctic ocean.
:::::
Ocean.

::::
The

::::::::::
deformation

:::::
rates

::::::::
associated

::::
with

:::
the

::::::
LKFs

:::::::
co-varies

::::
with

:::
the

::::::::
seasonal

:::::
cycle

::
of

::
the

:::::::
number

::
of

::::::
LKFs,

:::::
which

::
is

::
in

:::::::::
agreement

::::
with

:::
the

:::::::
seasonal

:::::
cycle

::
of

:::
the

:::::
mean

::::::::::
deformation

::::
rate

:::::::::::::::::::::
(Stern and Lindsay, 2009).

:
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6 Conclusions

The new detection algorithm presented in this study follows the structure of the original algorithm (Linow and Dierking, 2017)

with classifying LKF pixels in the input deformation rates and then detecting single deformation features. In doing so, an

additional degree of abstraction is added compared to studies using only skeletons of leads (Banfield, 1992; Van Dyne and

Tsatsoulis, 1993; Van Dyne et al., 1998). This enables not only the extraction of feature-based information such as intersection5

angles and LKF length but also the tracking of the features. In addition, avoiding classified, that is, preprocessed and charted,

SAR imagery (Banfield, 1992; Van Dyne and Tsatsoulis, 1993; Van Dyne et al., 1998) provides the opportunity to apply the

algorithm to both model output and satellite observations. For instance, Koldunov et al. (2018) applies the algorithm directly to

sea ice thickness as an input field to study the impact of solver convergence on the cumulative effect of deformation features.

Still, the algorithm can also be applied to classified imagery, if the first filtering steps are skipped and the classified imagery is10

used as the binary LKF map (like Fig 1e).

The evaluation of the detected features shows that introducing a probability based reconnection instance improves both the

number of correctly detected features and their quality. Here, the input of distance and differences in orientation are the most

important contributions if we consider the high threshold for difference in deformation resulting from the parameter optimiza-

tion. We only performed a brute-force optimization of the parameters of the detection algorithm for a small parameter space15

limited by the strong non-linearity of the detection itself and the small amount of reference data. For a thorough optimization

a larger reference data-set is required.

The design of a new tracking algorithm is outlined. The tracking algorithm handles the dynamic nature of sea ice as well

as the low temporal resolution of satellite drift data. The algorithm takes advection as well as growth and shrinking of defor-

mation features appropriately into account (86 % of the hand-picked tracks are found correctly). The algorithm recognizes the20

opening of secondary leads (branching) at a lower rate (56 %), but one needs to bear in mind the higher uncertainty of those

features in the hand-picked data set and their generally smaller number. The performance of the combination of detection and

tracking algorithm is also satisfactory and does not bias the statistics of the features. Roughly 20-30 % of the detected features

are tracked. Consequently, the remaining 70–80% of the features persist for less than 3 days. Sea-ice deformation at higher

sampling rates, for example, derived from ship radar with a sampling rate of up to 10 minutes (Oikkonen et al., 2017), would25

be necessary to study LKF lifetimes at these shorter time scales.

We split the task of finding a deformation feature and following it with time in a spatio-temporal deformation data-set into

two subroutines: (1) detection features in the deformation field of one time step and (2) finding the temporal connection between

individual detected features of subsequent time steps. In doing so, both subroutines are independent of each other, although

we speculate that information of the temporal evolution of sea ice deformation could in turn improve also the detection of30

features. For this task, machine learning techniques, which have recently attracted attention in the climate science context (see

for instance Ashkezari et al., 2006, for oceanic eddy detection), are a promising tool to explore.

The LKF data-set generated by automated LKF detection and tracking from the RGPS sea-ice deformation data includes

⇠ 165000 LKFs from 11
::
12 winters. These are significantly more deformation features than can be found in previous, hand-
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picked lead data sets (e.g. Miles and Barry, 1998). Due to the use of drift observation derived from SAR-imagery, the data-set

is also not limited to clear-sky conditions. This object-based data set enables statistics of both the overall LKF field, like LKF

density, and of single LKFs, like length, intersection, curvature, etc. In addition, all of these statistics can be combined, linked

and used as filter criteria. Along with the age estimated by the tracking algorithm, the data-set makes a comprehensive and

quantitative description of deformation features in Arctic ocean
:::::
Ocean

:
possible and complements qualitative studies (Kwok,5

2001).

The algorithms are designed in a flexible way so that they can be applied to any sea-ice drift and deformation data, or

classified imagery. For example, the current RGPS LKF data-set could easily be extended until today with operational drift data

derived from Envisat and Sentinel-1 (Pedersen et al., 2015). Also, resolved leads in high-resolution Arctic model simulations

can be analyzed to compare LKF properties to the LKF data set. We have shown a first example of comparing intersection10

angles of LKFs. Comparing the characteristics of deformation features directly makes a thorough evaluation of lead-resolving

sea-ice models possible instead of focusing on only one property such as lead density (Wang et al., 2016) and also facilitates

the complicated interpretation of scaling analysis of sea-ice deformation that has been used for this purpose so far (Rampal

et al., 2016; Hutter et al., 2018).

Code and data availability. The LKF data set derived from RGPS data will be available on pangea and the code of the LKF detection and15

tracking algorithm on github once the manuscript is accepted for publication.

Appendix A: Details on the Arctic simulation

The Arctic simulation with a refined horizontal grid spacing
:
of

:
2 km using the MITgcm is based on a set of regional Arctic

configuration (Nguyen et al., 2012). The number of vertical layers is reduced to 16 with the first five layers covering the

uppermost 120 m to reduce computational cost as we are only interested in sea-ice processes. The Refined Topography data20

set 2 (RTopo-2) (Schaffer and Timmermann, 2016) is used as bathymetry for
::
the

:
entire model domain. The lateral boundary

conditions are taken from globally optimized ECCO-2 simulations (Menemenlis et al., 2008). We use the 3-hourly Japanese

55-year Reanalysis (JRA-55) (Kobayashi et al., 2015) with a spatial resolution of 0.5625� for surface boundary conditions. The

ocean temperature and salinity are initialized on January 1st, 1992 from the World Ocean Atlas 2005 (Locarnini et al., 2006;

Antonov et al., 2006). The initial conditions for sea-ice are taken from the Polar Science Center (Zhang et al., 2003). Ocean25

and sea ice parameterizations and parameters are from Nguyen et al. (2011) with the ice strength P
? = 2.264 · 104 Nm�2. The

momentum equations are solved by an iterative method and Line Successive Relaxation (LSR) of the linearized equations

following Zhang and Hibler (1997). In each time step (120 s), 10 non-linear steps are made and the linear problem is iterated

until an accuracy of 10�5 is reached, or 500 iterations are performed.
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