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In the paper, Stokes’ equation was solved for a flowline model with only one horizontal
dimension and with the boundary conditions of a frozen glacier: no inflow at the upstream
boundary, u = 0, and no slip at the basal boundary, u = w = 0. The failure region and the
cliff calving law were determined for this setup.
The anonymous reviewer pointed out that in most scenarios where cliff calving might happen,
the glacier will probably be sliding and experiencing lateral drag, and asked what this means
for the derived cliff calving law and whether it could be applied in these cases.
We will investigate these two questions here and find that the derived cliff calving rate can
serve as a lower bound for cases with sliding and lateral drag.

1 Sliding glaciers

Let’s first consider sliding with a constant velocity v (i.e. vanishing strain rate). Then the
upstream boundary condition sees an influx with velocity v, so u = v. The basal boundary
conditions become u = v, w = 0. Solving the Stokes’ equations with these boundary condi-
tions numerically with FeniCS gives the exact same stress fields as in the frozen case (with
deviations on the order of magnitude of numerical error, see fig. 1) and the velocity field
is simply shifted by the sliding velocity v. This is not surprising: A simple Galilei trans-
formation takes this sliding glacier back to the frozen glacier previously considered without
changing any of the physics.
Thus, the assumption made in the paper can be generalized: The cliff calving law derived is
valid for glaciers sliding with a constant velocity v with a vanishing strain rate in the last few
kilometers before the terminus.
In general, sliding velocities increase towards the glacier terminus. The steepest possible
veloctiy gradient can be obtained with a free-slip basal boundary condition: we assume no
influx at the upstream boundary, u = 0, and at the bed we assume free slip in the horizontal
direction, which only leaves a boundary condition for the vertical velocity, w = 0. The basal
velocity is zero at the upstream boundary and takes its maximum at the calving front. Due
to this velocity gradient, the maximum shear stress is large throughout the whole numerical
domain (see fig. 2). For increasing ice thickness it becomes difficult to define a meaningful
failure region, because the critical shear stress is exceeded in the whole numerical domain -
one must assume that the whole numerical domain will fail.
Thus, in the case of a non-vanishing velocity gradient, the failure region is larger than in the
case of a vanishing velocity gradient. Hence, the derived cliff calving rate can serve as a lower
bound for this kind of calving fronts. In case the sliding velocity was decreasing towards the
calving front, the failure region and hence the calving rate would be smaller, but that is very
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Figure 1: Stresses for the no-slip case, equivalent to sliding with a constant velocity v with
vanishing velocity gradient, for three different relative water depths, w = [0, 0.5, 0.85].

unlikely to occur.
To summarize: The derived cliff calving law is valid for glaciers that are frozen to the bed or
sliding with a constant velocity and vanishing velocity gradient. It serves as a lower bound
on the calving rate for glaciers in which velocities increase towards the calving front.

2 Lateral drag

In order to investigate how lateral drag influences cliff calving, we will assume ice flow in
a channel with a flowline in the x-direction. Ice is assumed to flow only in the x-direction
with a flow maximum in the middle of the channel (see fig. 3). Since deviatoric stresses
are connected to the strain rate, τij = Bε̇eε̇ij , and the strain rate is given by the velocity
gradients, ε̇ij = 1

2 (∂iuj + ∂iuj), we get an additional deviatoric shear stress in the x-y-plane,
τxy. The other stress components in y vanish, τyz = τyy = 0, because the respective velocity
gradients vanish. The Cauchy stress tensor becomes

σ =

P + τxx τxy τxz
τxy P 0
τxz 0 P − τxx

 (1)

The principal stresses σi are defined as eigenvalues of σ, and the maximum shear stress τmax

as the the difference between the maximum and minimum principal stress. In 2D, there
is a simple analytical formula for τmax. In 3D, there is no simple analytical formula for the
eigenvalues of a matrix and therefore it is not feasible to get an analytical estimate on whether
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Figure 2: Stresses for the free-slip case for three different relative water depths, w =
[0, 0.5, 0.85].

Figure 3: Sketch of the velocity field for ice flow expierencing lateral drag.
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Figure 4: Maximum shear stress τmax in the vicinity of the calving front in the case without
lateral drag (left) and with a constant lateral drag of τxy = 1 MPa (right).

the introduction of non-zero τxy makes τmax smaller or larger.
Assuming P (x, z), τxx(x, z) and τxz(x, z) as given by the FeniCS simulation with a constant
τxy = 1 MPa, we calculate the principal stresses and the maximum shear stress numerically.
This shows that τmax increases with increasing absolute value of τxy (see fig. 4).
Hence, lateral shear increases the maximum shear, therefore increasing the size of the failure
region and the cliff calving rate. The derived cliff calving rate can serve as a lower bound if
lateral drag is present.
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