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Abstract. Broadband snow albedo can range from 0.3 to 0.9 depending on microphysical properties and light absorbing particle

(LAP) concentrations. Beyond the widely observed direct and visibly apparent effect of darkening snow, it is still unclear

how LAPs influence snow albedo feedbacks. To investigate LAPs’ indirect effect on snow albedo feedbacks, we developed

and calibrated the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD) and monitored bidirectional reflectance

factors (BRFs) hourly after depositing dust and black carbon (BC) particles onto experimental snow surfaces. After comparing5

snow infrared BRFs to snow SSA, we found that both measured and modeled snow infrared BRFs are correlated with snow

SSA. These results, however, demonstrate a considerable uncertainty of +/− 10 m2kg−1 in the determination of snow SSA

from our BRF measurements. The nondestructive technique for snow SSA retrieval presented here can be further developed for

science applications that require rapid in situ snow SSA measurements. After adding large amounts of dust and BC to snow,

we found more rapid decreasing of snow BRFs and SSA in snow with added LAPs compared to natural (clean) snow, but only10

during clear sky conditions. These results suggest that deposition of LAPs onto snow can accelerate snow metamorphism via

a net positive snow grain-size feedback.

1 Introduction

Snow cover modulates Earth’s surface energy budget by reflecting a large portion of the incident solar radiative energy flux.

As snow melts, more absorptive surfaces are uncovered resulting in a positive feedback mechanism known as the snow albedo15

feedback (SAF) (Qu and Hall, 2007; Hall, 2004). Light absorbing particles (LAPs) within the snowpack, including elemental

(black) carbon (BC), brown carbon, dust, and microbes, directly decrease snow albedo which can initiate the SAF and accelerate

snow melt (Bond et al., 2013; Qian et al., 2015; Skiles et al., 2018). Hadley and Kirchstetter (2012) experimentally verified that

the reduction of snow albedo due to BC is enhanced for larger snow grains, implying a possible positive “grain-size” feedback

induced by impurities in the snow. This positive feedback can also be inferred from the spectral snow albedo models presented20

by Warren and Wiscombe (1980) and from the Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner et al., 2007,

2009). Generally, two-layer models that represent snowpack as a collection of spheres can reproduce spectral hemispherical

reflectances that compare well with observations (Grenfell et al., 1994).
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Snow grain size is often quantified by its optically equivalent sphere effective radius, re, which is related to specific surface

area, SSA, such that SSA = 3/(ρicere), where ρice is the density of pure ice (917 kg/m3 at 0◦ C). Snow SSA is defined as the

total ice-air interfacial surface area S to ice mass m ratio, such that

SSA = S/m=
S

ρiceV
, (1)

expressed in terms of its total ice mass or volume V (Hagenmuller et al., 2016; Gallet et al., 2014). In snowpack with large5

temperature gradients, the diffusion of vapor causes snow SSA to decrease during the natural process of snow metamorphism

(Flanner and Zender, 2006; Wang and Baker, 2014). In the absence of a temperature gradient, an isothermal snowpack with

snow grains with low radii of curvature undergo coarsening in a process driven by the Kelvin effect. Ebner et al. (2015)

show that measurements of snow SSA evolution in isothermal snow agree with the isothermal snow metamorphism modeling

framework developed by Legagneux et al. (2004) and Legagneux and Domine (2005). These laboratory studies express snow10

SSA in isothermal metamorphism as a function of time t as follows,

SSA(t) = SSA0

(
τ

τ + t

)1/n

, (2)

for initial snow SSA0 at t= 0, growth rate parameter τ , and growth exponent n.

Snow SSA strongly affects absorption of infrared radiation. This relationship is evident from measurements of infrared re-

flectance that are highly correlated with snow SSA for various snow types (Domine et al., 2006). Among others, Gallet et al.15

(2009) and Gallet et al. (2014) exploit this correlation in the determination of dry snow SSA and wet snow SSA, respectively,

using 1.31 µm directional hemispherical reflectance measurements (1.55 µm for measurements of snow SSA > 60 m2kg−1).

Arnaud et al. (2011) present the Profiler Of snow SSA Using SWIR reflectance Measurement (POSSUM), which applies the

theoretical formulations from Kokhanovsky and Zege (2004) and Picard et al. (2009) to derive snow SSA from hemispheri-

cally averaged bidirectional reflectance measurements. Other studies establish techniques to obtain snow SSA using methane20

gas absorption (Legagneux et al., 2002) and X-ray micro-computed tomography (X-CT) in cold rooms (Pinzer and Schneebeli,

2009). Matzl and Schneebeli (2006) also derive snow SSA using infrared photography. Other techniques that are nondestructive

enable the rapid retrieval of snow effective radius re from field measurements. Gergely et al. (2014), for example, demonstrate

a technique to quickly determine the snow optically equivalent diameter from 0.95 µm bi-hemispherical reflectance measure-

ments. Painter et al. (2007) infer snow re from spectral hemispherical directional reflectance factor measurements using a25

contact probe and a spectrometer.

While previous studies monitor snow metamorphism in clean snow, in situ experimentation of how LAPs affect the snow

grain-size feedback diurnally in natural environments is challenging. These challenges can be partly attributed to the limited

availability of inexpensive snow SSA measurement devices that can operate quickly in the field, and to the numerous constraints

on being able to reproduce naturally occurring conditions for which LAPs in snow strongly influence the climate system. While30

the POSSUM is a suitable instrument for this study, here, our first objective is to demonstrate the utility of a new instrument we

use to quickly obtain approximate snow surface SSA (with LAPs). Our second objective is to investigate the effects of added

LAPs on the snow grain-size feedback.
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In the following sections, we first describe a numerical model that simulates multiple scattering in three dimensions to

aid the design and calibration of the Near-Infrared Emitting and Reflectance Monitoring Dome (NERD). Next, we describe

the NERD apparatus, which enables multiple 1.30 and 1.55 µm bidirectional reflectance factor (BRF) measurements in just

minutes while minimally altering the snow structure. To calibrate the NERD with respect to snow SSA, we then compare snow

BRFs with X-CT derived SSA and develop an empirical relationship between measured SSA and snow 1.30 µm BRFs. Finally,5

we discuss results from our LAP in snow experiments in which we monitored accelerated snow metamorphism. Overall, this

study demonstrates the NERD measurement technique and conditions for which the snow grain-size feedback can be enhanced

by the presence of LAPs.

2 Instrumentation and Methods

2.1 Monte Carlo Modeling of Multiple Scattering in Snowpack10

The Monte Carlo method is applied to numerically simulate three dimensional (3D) light scattering within an idealized snow-

pack. Gaussian distributions (with 0.085 and 0.130 µm full width at half-maximums) of photon wavelengths (centered around

1.30 and 1.55 µm) were selected to model light emission by narrow-band infrared light emitting diodes (LEDs). One by one,

photons are initiated downward into the snow medium, as demonstrated by Kaempfer et al. (2007), and propagated in optical

depth space. Extinction, absorption, and polarization are accounted for following the scattering approach for geometrical optics15

described by Malinka (2014). Accordingly, random numbers (RNi) in the interval (0, 1) are generated to determine the photon

optical path lengths, li, such that

li = ln(1/RNi) (3)

before the first scattering event (i= 0) and again after each scattering event i. Absorption (and termination) of a photon can

occur during a scattering event if an additionally generated random number (between 0 and 1) is greater than the particle’s20

single scattering albedo. When a photon is scattered, its new direction cosines are determined from an optimized “rejection

method” using the particles’ scattering matrices (Ramella-Roman et al., 2005).

To calculate snow BRFs, 1,000,000 photons are propagated and traced through modeled snowpack until they are absorbed

or exit the medium. The snowpack is modeled as two phase (air and ice) media containing a regular arrangement of suspended

homogenous ice particles. Aspherical particle single scattering properties, including the mass absorption cross sections, asym-25

metry parameters, single scattering albedos, projected areas, volumes, and scattering matrices were calculated by Yang et al.

(2013) for randomly oriented droxtals and solid hexagonal columns. For spheres, Mie Theory is applied, but with the analyt-

ical Henyey-Greenstein phase function (van de Hulst, 1968) to improve computational efficiency. The subset of shape habits

(smooth droxtals and hexagonal columns) from the large dataset provided by Yang et al. (2013) was selected because these

shape habits are purely convex solid ice. Because they are solid convex bodies, their SSAs can be computed from the their pro-30

jected areas and volumes (Vouk, 1948). Azimuthal mean BRFs are calculated according to the reflectance definitions presented

by Dumont et al. (2010) Hudson et al. (2006), and Nicodemus et al. (1977). Accordingly, photon exit angles are grouped into
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30 exit zenith angle (θr) bins at three degree resolution. Azimuthal (φ) mean BRFs are calculated by zenith angle, θr, from the

total incident photon flux, Φi (at a given θi), from

R(θi;θr) = (2Φi sinθr cosθr)
−1

2π∫
0

dΦrdφ, (4)

where dΦr represents the reflected photon flux through discrete solid angle bins. In the denominator, the cosθr factor satisfies

Lambert’s cosine law while sinθr accounts for the zenith angular dependence of the azimuthally integrated projected solid5

angle. Finally, the factor two is necessary to normalize the resulting weighting function w(θr) = sinθr cosθr, as

π/2∫
0

sinθr cosθrdθ =
1

2
. (5)

Statistical uncertainty was determined by computing BRFs from simulations of Lambertian surfaces and tested using differ-

ent numbers of photons. Azimuthal averaging reduces the BRFs’ dimensionality, so that fewer photons are needed to mitigate

Monte Carlo noise. Eq. 4 was initially applied to Monte Carlo simulations of 75 thousand photons reflected by various ideal10

Lambertian surfaces. At three degree (zenith angular) resolution, 30 and 60 degree BRFs of Lambertian surfaces were simulated

accurately to within +/- 2 %. This margin of uncertainty was determined by computing RMS differences between calculated

and specified Lambertian reflectances ranging from 0 to 1. Across this range, RMS differences at 30 and 60 degrees were

generally less than 0.01. In subsequent test cases, simulating snowpack BRFs with up to 10,000,000 photons did not signifi-

cantly change results when compared with simulations of 250,000 photons. Ultimately, it was determined that simulations with15

1,000,000 photons were appropriate for the remainder of this study.

2.2 Near-Infrared Bidirectional Reflectance Factor Measurements

The NERD is designed to measure 1.30 and 1.55 µm BRFs. These wavelengths are selected for snow SSA retrieval due to the

strong dependence of snow albedo on grain size in these parts of the spectrum. Snow spectral albedo is simulated here using

the SNICAR model to demonstrate this sensitivity (Fig. 1). While snow spectral albedo is sensitive to snow effective radius re20

(and thus snow SSA), it is not sensitive to small black carbon concentrations at these wavelengths. Snow SSA can therefore be

retrieved using 1.30 µm and 1.55 µm reflectance measurements for snow with small black carbon concentrations.

The design principle is similar to the DUal Frequency Integrating Sphere for Snow SSA measurements (DUFISSS) (Gallet

et al., 2009). The NERD also uses 1.30 (1.31 in DUFISSS) and 1.55 µm emitters to illuminate the snow surface from nadir (15

degrees off nadir for 1.55 µm in NERD). The main distinction between the DUFISSS and the NERD is the type of reflectance25

measured. Gallet et al. (2009) use an integrating sphere to measure hemispherical reflectance. In the NERD, however, photo-

diodes are directed toward the illuminated surface in a black dome to measure BRFs, as demonstrated by Arnaud et al. (2011).

The interior of the dome is painted with a flat black paint to increase absorptivity and minimize internal reflections between

the dome and snow surface. To test the near-infrared absorptivity of the black pigment, the NERD was used to measure BRFs

of a painted black surface. All measured BRFs of the black surface were less than 0.03.30
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Four infrared light emitting diodes (LEDs) are mounted into the 17 cm diameter black styrene half-sphere. Two LEDs

with peak emission wavelengths of 1.30 µm are mounted at nadir and ten degrees relative to zenith and two LEDs with peak

emission wavelengths of 1.55 µm are mounted at 15 degrees off nadir (see Fig. 2). The 1.30 µm LEDs have spectral line half

widths of 0.085 µm and half intensity beam angles of ten degrees, while the 1.55 µm LEDs have half-maximum bandwidths

of 0.130 µm and 20 degree beam angles. These high powered, narrow beam infrared LEDs were selected to illuminate a small5

oval (estimated major axes of 1.5 cm at 1.30 µm and 3.0 cm at 1.55 µm) of the experimental surface to maximize the reflected

radiance signal. The reflected radiance signal is measured using four InGaAs photodiodes mounted in two different azimuthal

planes (0 and 90 degrees relative to the illumination); two each at 30 and 60 degrees relative to zenith. Photodiodes highly

sensitive to light with wavelengths ranging from 0.80 to 1.75 µm and relatively large active areas (1 mm) were selected to

maximize sensitivity.10

Because the orientation of LEDs and photodiodes are fixed, reflectance factors of surfaces with negligible subsurface scat-

tering can be obtained after calibration using two diffuse reflectance targets (Gallet et al., 2009; Gergely et al., 2014; Dumont

et al., 2010). These Lambertian targets reflect incident light according to Lambert’s cosine law and appear equally bright at all

viewing angles. By comparing the measured voltage signal from the experimental (snow) surface to that measured from the

reflectance targets, two BRFs at both 30 and 60 degree viewing angles are obtained for each light source. While subsurface15

scattering of visible light in snow is pervasive (Smith et al., 2018), the light penetration in snow near 1.30 and 1.55 µm is at

most a couple centimeters due to the strong absorption features in the near-infrared (Kaempfer et al., 2007; Grenfell et al.,

1994; Brandt and Warren, 1993). Subsurface scattering is therefore assumed to be minimal and fully contained within each

photodiode’s field of view.

To validate NERD reflectance measurement accuracy, precision, and responsiveness, measured BRFs of reflectance stan-20

dards are recorded after calibration. BRFs (R) for each LED / photodiode viewing zenith angle (θi;θr) combination are mea-

sured in temperatures ranging from -20 ◦ to +2 ◦C. In general, NERD BRFs of the Lambertian reflectance standards are

accurate to within +/- 2 %. We quantify instrument precision (2 %) by computing root mean squared (RMS) differences from

repeated measurements (see Table 1). Linear regressions quantify the linear response (A) over the reflectance range of 0.41 to

0.95. Response uncertainty ranges from -2 % to +3 % and from +1 % to +3 % at 1.30 and 1.55 µm, respectively. These test25

results indicate the NERD’s ability to obtain BRFs on smooth reflectance standards with a measurement uncertainty of 1-2 %.

2.3 Snow Specific Surface Area Measurements

Surface snow (just the top few centimeters) samples were collected in nature over the span of three years (winters 2015-2017)

and transported in coolers to the nearby US Army’s Cold Regions Research Engineering Laboratory (CRREL) in Hanover,

New Hampshire. Depth hoar samples, however, were instead grown inside the CRREL at -20 ◦C using a forced temperature30

gradient. Snow samples are classified based on X-CT results according to Fierz et al. (2009) (Table 2). Snow SSA was derived

from X-CT analysis and contact spectroscopy, as described below.

To determine snow SSA, X-CT was conducted on a class of six snow samples according to Lieb-Lappen et al. (2017). X-ray

(40-45 kV, 177-200 micro-Amps) transmission through cylindrical snow samples was measured at rotation steps of 0.3-0.4
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degrees. To limit scan times to 15 minutes, exposure time was set to 340 ms at a cubic voxel resolution of 14.9 µm. Processing

software enables SSA calculations from 3D morphology results (Pinzer and Schneebeli, 2009).

In some cases, snow samples were scanned several hours or days after snow BRFs were measured. To correct for natural

isothermal snow SSA metamorphism while samples were being stored, eq. 2 was applied with time t set equal to the total time

elapsed between NERD measurements and X-CT scan times. The unitless growth rate parameters τ = 721.2 or 14400 and5

growth exponents n= 2.15 or 0.32, respectively, were inferred from Ebner et al. (2015) depending on the snow sample type.

Applying this correction yielded a SSA decrease between 3 and 5 m2 kg−1.

Snow SSA was also inferred from optical grain size measurements using contact spectroscopy (Painter et al., 2007). Snow

reflectance spectra were collected using an ASD FieldSpec4 and a high intensity contact probe with reference to a Spectralon

white reference panel. Snow effective radius re is determined from the normalized area of the absorption feature centered at10

approximately 1 µm using a look up table (Nolin and Dozier, 2000). These measurements were conducted inside the CRREL

in a cold lab only for the depth hoar (DH_2016) and rounded grains (RG_2015) samples.

2.4 Light Absorbing Particles in Snow Experiments

Snow BRFs and SSA were measured throughout the day in the following dust and BC in snow experiments. Sand particles

and hydrophobic BC were sifted multiple times with a salt shaker (with holes of roughly 1 mm diameter) to filter out larger15

particles. The filtered LAPs were then deposited onto experimental snow plots in an open field in Hanover, New Hampshire on

February 10 and February 16, 2017 shortly after fresh snowfall events. For each experiment, one square meter plots of snow

were designated as natural (control) or contaminated (experimental). Snow BRFs and SSA were obtained using the NERD and

from X-CT analysis, respectively. For each set of NERD measurements, 30 degree and 60 degree BRFs are both recorded four

times. BRFs were measured over two different locations within the experimental plot using two photodiodes at each viewing20

angle (30 and 60 degrees).

2.4.1 Cloudy Sky with Diffuse Ambient Lighting (February 10, 2017)

Early on February 10, experimental plots were loaded with BC until visible darkening was apparent. Snow BRFs were measured

shortly after 00:00, 03:00, 06:00 Eastern Standard Time (EST) (during the night), and then periodically throughout the day.

Because these plots were well shaded by tall trees, these measurements were used to monitor snow metamorphism without the25

influence of direct solar illumination. Furthermore, mostly cloudy conditions on February 10 obscured direct solar radiation so

that ambient lighting was diffuse.

2.4.2 Clear Sky with Direct Solar Irradiance (February 17, 2017)

On February 17, just a pinch (< 1 g) of BC and 30 g of sand were deposited (quasi-) uniformly over separate one square

meter plots. These experimental deposition fluxes were selected to mimic the most extreme LAP loading events observed by30

Skiles and Painter (2017) in the San Juan Mountains in Colorado. As in the previous experiment, snow BRFs were measured
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periodically throughout the day, however, all snow plots were in full view of the clear sky to maximize incident direct solar

irradiance.

3 Results and Discussion

3.1 Near-Infrared Reflectance Calculations for Regular Homogenous Ice Particles

To validate the Monte Carlo model for snow applications, we simulated 1.30 and 1.55 µm narrow band black-sky albedo for5

snow effective radius re ranging from 36 to 327 µm (SSA = 80 to 10 m2kg−1) and compared results with the SNICAR model

(Fig. 3). As expected, results from Monte Carlo simulations yield slightly higher hemispheric reflectances for droxtals (for all

SSA) and solid hexagonal columns (for SSA > 40 m2kg−1) than for spheres and from the SNICAR model (Dang et al., 2016).

For all particle sizes, Monte Carlo simulations using spherical ice particles generated nearly identical narrow-band albedo

values compared to those from Flanner et al. (2007). These results are also similar to the numerical modeling results from10

Picard et al. (2009) and the analytical solutions from Kokhanovsky and Zege (2004), though for different particle shapes.

To inform on our choice of a snow BRF to SSA calibration function, we calculated BRFs from eq. 4 for various particle

SSA ranging from 10 to 80 m2kg−1 (Fig. 4, line graphs). Generally, we found exponential (linear) relationships between 1.30

(1.55) µm BRFs and particle SSAs. Modeled 1.30 µm BRFs are slightly higher at 30 degrees than at 60 degrees for particle

SSA > 30 m2kg−1. For a given particle size, a different shape habit can yield a change in BRFs of as much as 0.1. Monte Carlo15

modeling results yield the highest reflectances for droxtals and the lowest reflectances for spheres.

3.2 Relating Snow Specific Surface Area to Near-Infrared Bidirectional Reflectance Factors

To calibrate the NERD for snow SSA retrieval, we compared X-CT derived snow SSA with NERD snow BRF measurements

(Fig. 4). In general, measured snow BRFs are directly related to snow SSA. At 1.30 µm BRFs range from just under 0.2 (for

low SSA) to as high as 0.7 (for high SSA) and are slightly higher at 60 degrees than at 30 degrees. We observed 1.55 µm snow20

BRFs close to 0 (for low SSA) and as high as 0.2 (for high SSA). We recorded the highest 1.55 µm snow BRFs at 60 degrees

for fresh snow (needles). At 1.30 µm, measured 30 degree snow BRFs for varying snow SSA fall within the envelope of Monte

Carlo modeled BRFs for all three shape habits (Fig. 4, top left). Modeling results are in closest agreement with measurements

at 30 degrees viewing for 1.30 µm. At 1.55 µm, measured BRFs are larger than predicted from modeling across all SSA.

These results demonstrate a considerable spread of BRFs in measurements, across snow samples, and in modeling, across25

shape habit, for both 1.30 and 1.55 µm and for both 30 and 60 degree viewing angles. The spread in measurements, in

particular, indicates a considerable uncertainty in the ability to retrieve snow SSA from measured BRFs. While the 1.30 µm,

30 degree viewing zenith angle BRF combination most closely agrees with modeled BRFs, the 60 degree viewing zenith angle

can provide a second estimate of snow SSA. Reporting two snow SSA values using both view angles can provide an estimate

of the variability in SSA retrieval resulting from the anisotropy of the snow bidirectional reflectance distribution function in30

the near-infrared (Dumont et al., 2010).
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Our finding of the exponential relationships between snow SSA and 1.30 µm BRFs is consistent with results from previ-

ous studies (Picard et al., 2009; Gallet et al., 2009). Gallet et al. (2009) also identify a linear relationship between 1.55 µm

reflectance and snow SSA and use the longer wavelength in their DUFISSS to obtain measurements of high snow SSA (> 60

m2kg−1). In this study, however, nearly all snow samples are lower than this threshold.

Measured snow BRFs at 1.55 µm are higher than both hemispherical reflectance measurements by Gallet et al. (2009) and5

Monte Carlo calculations. This discrepancy might be explained by the NERD LEDs, which have full width at half-maximums

(FWHM) of 0.130 µm and emit non-negligible light at shorter wavelengths. Supplementary SNICAR and albedo calculations

using a broadened FWHM of 0.260 µm support this hypothesis, where values closer to the measured 1.55 µm BRFs are

reproduced (Fig. 3, right).

In light of these empirical and numerical results, we propose the following general exponential form relating 1.30 µm snow10

BRFs to SSA, such that

SSA = αexp(R1.30) +β (6)

for 1.30 µm snow BRF R1.30. Using least squares regression analysis, we estimate “best fit” values for α and β for both 30

and 60 degree viewing zenith angles (see Fig. 5).

Ideally, an empirically derived calibration function would include SSA measurements from multiple methods to mitigate15

uncertainties associated with collection methods needed for X-CT analysis. Such collection methods can easily change the

snow microphysical characteristics and lead to biases in the X-CT derived SSA. As a preliminary validation of eq. 6, we

compare snow SSA results to SSA derived from snow effective radius re measurements conducted using contact spectroscopy

in Fig. 5. Encouragingly, two out of three measurements fall within the bounds of the standard error of the regression. Contact

spectroscopy snow SSA values are consistently higher than those calculated from X-CT analysis and are also higher than those20

determined by eq. 6. This comparison provides a preliminary assessment of the NERD snow BRF to SSA calibration function.

Hereafter, we apply eq. 6 in the following LAP in snow experiments to estimate hourly snow SSA from measured snow

BRFs. Because the remainder of this study is concerned with relatively large changes in SSA, approximate SSA retrieval using

the NERD is useful to quantitatively assess how added LAPs affect snow grain-size feedback and snow metamorphism.

3.3 Light Absorbing Particles’ Effect on Snow Metamorphism25

First, to monitor snow metamorphism without solar heating, during the early morning (night) hours on February 10, we de-

posited BC onto an experimental plot after the previous day’s snow fall. Surface temperatures ranged from -14 to -9 ◦C. We

observed low to moderate wind speeds from the early morning hours through the afternoon with partly to mostly cloudy condi-

tions during the day. The 1.30 µm snow BRF measurements conducted shortly after BC application indicate a direct darkening

of 0.03 at 30 degrees viewing and 0.05 at 60 degrees viewing. While these decreased BRF values are considerable, this ex-30

periment contained heavily contaminated snow with a high BC concentration unlikely to occur in nature. Despite the high

BC concentration, BRFs measured at 1.30 (1.55) µm remained within 0.5 and 0.6 (0.1 and 0.2) throughout the day in both

contaminated and natural snow (see Fig. 6). X-CT analysis showed small differences in morning (49 m2kg−1) and afternoon
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(48 m2kg−1) snow SSA. Our results indicate that heavy BC loading had little to no effect on snow metamorphism during the

16 hour experiment without direct solar irradiance.

Second, to monitor snow metamorphism occurring after forced large BC and dust deposition events under direct solar

illumination, on February 17, we set up a similar experiment in full view of the sun. Surface temperatures ranged from -4 to +2
◦C. We observed minimal wind speeds and cloud cover resulting in calm, clear sky conditions. BRF measurements conducted5

shortly after LAP application indicate minimal direct darkening at 1.30 µm and possibly a small brightening effect by dust

at 1.55 µm. In natural snow, 1.30 µm BRFs remained close to 0.5 throughout the day, with the lowest values (0.49) recorded

in the afternoon (13:00 EST) and the highest values (0.55) recorded in the morning (08:00 EST) and evening (17:00 EST).

1.55 µm BRFs remained just above 0.1. In the dust loaded plot, snow 1.30 (1.55) µm BRFs decreased rapidly from above

0.5 (0.1) before 10:00 to to below 0.3 (0.05) by 13:00 EST. We found less extreme metamorphism in the lightly contaminated10

snow with added BC, as BRF measurements decreased from above 0.5 (0.1) to below 0.45 (0.1). 1.30 µm snow BRFs slightly

increased thereafter (from 13:00 to 17:00 EST) in both natural and contaminated snow (see Fig. 7). Snow SSA also decreased

throughout the day. From X-CT analysis, we found morning snow SSA to be about 50 m2kg−1, which thereafter decreased

to 41, 23, and 18 m2kg−1 in natural, BC loaded, and dust loaded snow, respectively. NERD derived snow SSA appears to be

biased low in the afternoon dust loaded plot. This bias might be an indication of the presence of liquid water that was also15

visible to the naked eye. X-CT scans performed on this snow sample are representative of refrozen snow and do not conform

to the isothermal snow SSA correction (eq. 2) applied to snow samples scanned several hours after collection. In BC loaded

plots, we observed a large spatial heterogeneity in measurements, indicating that small BC deposition has a powerful localized

effect on snow metamorphism.

These results suggest that extreme LAP deposition can accelerate snow metamorphism. The primary cause of this accelerated20

process is enhanced absorption of solar radiation by LAP. Surprisingly, added BC had little to no effect on snow metamorphism

during cloudy conditions. In the clear sky experiments, LAP enhanced solar absorption at the surface which warmed the

snowpack. As the snow surface began to melt, near-infrared reflectance decreased rapidly. Rapidly decreasing near-infrared

reflectance is indicative of either the accumulation of liquid water from melting snow or decreasing snow surface SSA.

Accelerated snow metamorphism by dust loading is consistent with the findings of Skiles and Painter (2017). The indirect25

effect of LAP on snow is also demonstrated by Hadley and Kirchstetter (2012), where the albedo reduction due to the presence

of BC in snow is amplified in snow of lower SSA. This enhancement of snow albedo reduction is another source of instability

in the snowpack that increases the strength of the snow grain-size feedback. Typical BC deposition events are very small,

however, so it is difficult to reproduce natural BC concentrations when adding any BC to a one square meter plot.

4 Conclusions30

LAPs in snow accelerated snow metamorphism and enhanced positive grain-size feedback during cloud free, calm weather

conditions when surface air temperatures were near 0◦C. To observe this effect, we engineered an instrument (i.e., the NERD)

that measures 1.30 and 1.55 µm snow BRFs without destroying snow samples. We evaluated the NERD’s accuracy, precision,
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and responsiveness by testing with idealized Lambertian surfaces before obtaining snow BRFs. Notwithstanding the limitations

associated with retrieving precise snow SSA from BRFs, we proposed an analytical calibration function relating snow SSA to

1.30 µm BRFs. Our results lead to the conclusion that the NERD can provide estimates of snow SSA to within +/- 10 m2kg−1.

The NERD will serve to further study the effects of LAPs on snow metamorphism and to explore the spatial heterogeneity

of snow SSA. Because it can also operate quickly, NERD measurements can complement satellite borne observations during5

narrow sampling windows. To fulfill these pursuits, however, a more comprehensive snow SSA measurement uncertainty

assessment is needed to fully validate the NERD technique. Validation would also include additional independent measurement

methods on snow samples with a larger snow SSA span from a variety of environmental conditions and further experimentation

into the small scale effects on snow BRF measurements. Further investigation of the natural variability of snow near the surface

and the related quantitative uncertainties regarding the NERD snow SSA retrieval method will be the subject of a follow on10

study. Such a study will also include snow of higher SSA to determine the utility of 1.55 µm snow BRFs in measuring

fresh snow of extremely high SSA, as demonstrated by Gallet et al. (2009). This would help expand the utility of the NERD

measurement technique for future Arctic and Antarctic campaigns, building on the polar studies conducted by Legagneux et al.

(2002) and Libois et al. (2015).

Code and data availability. Plot data referenced in this manuscript and associated Python scripts used to generate figures are made available15

via the University of Michigan’s Deep Blue data repository (Schneider and Flanner, 2018).

Appendix A: NERD Photodiode Current Amplifiers

To detect reflected radiance signals, photodiodes are reverse biased to induce currents linearly related to the amount of light

incident on its active region. Because these light signals are reflected from the experimental surface, the currents induced

by the photodiodes are very small (nano- to micro-Amps). To measure the small currents, the photodiodes are connected20

to transimpedance amplifiers. The transimpedance amplifier circuits convert and amplify the small photodiode currents into

measurable voltage signals.

Two NERDs are engineered with different photodiode current amplifications. Photodiode current amplification is determined

by the feedback resistance in the transimpedance amplifier circuits. Active low pass filters are applied between the amplifier

and the analog-to-digital converter (ADC) to reduce noise. This filter is designed to have a time constant of less than 0.525

seconds to achieve balance between adequate noise reduction and speed.
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Figure 1. Black sky spectral snow albedo under nadir illumination. Snow albedo is simulated by the Snow, Ice, and Aerosol Radiation 

(SNICAR) model (Flanner et al., 2007). Dashed-dotted curves represent clean snow of medium-high SSA (60 m2 kg−1, gray) and medium-

low SSA (20 m2 kg−1, black) to show the dependence of snow albedo on snow SSA. Dotted curves represent contaminated snow with 

uncoated black carbon (BC) particulate concentrations of 100 ng g−1.
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The Near-Infrared Emitting and Reflectance-Monitoring Dome 
(NERD)

1300nm LED 
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Figure 2. Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD) schematic (top) and photographs (bottom). The photograph on 

the bottom right shows the (radial) placement of photodiodes and LEDs (toward the center) within the dome.
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Figure 3. Modeled 1.30 µm nadir (left) and 1.55 µm 15 degree (right) directional hemispherical reflectance for various snow SSA. Solid line 

segments connect albedo calculations from Monte Carlo simulations of light scattering in snow mediums comprised of droxtals (stars) and 

solid hexagonal columns (diamonds). Circles connected by dashed / dotted line segments connect snow albedo calculations modeled as 

spherical ice particles; from Monte Carlo modeling (black) and from the Snow, Ice, and Aerosol Radiation (SNICAR) online model (gray).
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Figure 4. NERD SSA Calibration. All panels contain NERD measured and Monte Carlo modeled (black) BRFs (1.30 µm, top; 1.55 µm, 

bottom; 30 degrees viewing, left; 60 degrees viewing, right) scattered against snow SSA. NERD BRFs are scattered against X-CT derived 

snow SSA. Line segments connect Monte Carlo modeled BRFs of snow mediums comprised of spheres (filled circles, dashed lines), droxtals 

(stars, solid lines), and solid hexagonal columns (diamonds, solid lines). Snow sample key codes, symbols, and colors conform with the 

physical snow classification standards defined by Fierz et al. (2009) (Table 2). Vertical error bars on NERD BRFs represent standard 

deviations calculated from multiple azimuthal samples. Horizontal error bars on X-CT derived SSA, where present, represent standard 

deviations from multiple scans on similar snow samples.
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Figure 5. Snow 1.3 µm BRF to SSA exponential regressions. Markers with standard error bars represent SSA, measured with X-CT∗, 
scattered against nadir 1.30 µm 30 (left) and 60 (right) degree BRFs, measured by the NERD. Solid curves represent exponential regression 
functions and dashed curves represent standard errors of the regressions, such that at 30 degrees viewing, α = 88.7 (+/- 9.50) m2kg−1 and β 
= -103 m2kg−1; and at 60 degrees viewing, α = 91.7 (+/- 10.13) m2kg−1 and β = -113 m2kg−1.
∗Hollow triangles (blue, depth hoar; pink, rounded grains) represent snow SSA measurements derived from contact spectroscopy.
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Figure 6. February 10 Control Results (mostly cloudy). All panels contain NERD measurement data collected from 00:00 through 17:00 

Eastern Standard Time (EST) on February 10, 2017. Filled circles connected by solid lines represent measurements on natural snow. Filled 

squares connected by dashed lines represent measurements on snow heavily contaminated by hydrophobic BC. In the top row, blue (green) 

curves represent 1.30µm (1.55µm) BRFs at 30 degrees viewing – on the left – and 60 degrees viewing – on the right. Error bars represent 

standard errors calculated from sample averages from as many as eight locations within each square meter plot. In the bottom figure, blue 

curves represent NERD calibrated SSA from 30, left, and 60, right, degree viewing BRFs. Red curves represent SSA derived from X-CT 

scans. Error bars represent NERD calibration uncertainty computed from regression analysis (standard errors of the gradients).
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Figure 7. February 17 Experimental Results (clear sky). All panels contain NERD measurement data collected from 07:00 through 17:00 

EST on February 17, 2017. Filled circles connected by solid lines represent measurements on natural snow. Filled squares connected by 

dashed lines represent measurements on snow lightly contaminated (< 1 gm−2) by hydrophobic BC. Triangles connected by dotted lines 

represent measurements on snow contaminated by dust (30 gm−2). In the top row, blue (green) curves represent 1.30µm (1.55µm) BRFs at 

30 degrees viewing – on the left – and 60 degrees viewing – on the right. Error bars represent standard errors calculated from sample averages 

from as many as eight locations within each square meter plot. In the bottom figure, blue curves represent NERD calibrated SSA from 30, left, 

and 60, right, degree viewing BRFs. Red curves represent SSA derived from X-CT scans. Error bars represent NERD calibration uncertainty 

computed from regression analysis (standard errors of the gradients).
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Table 1. NERD Lambertian Reflectance Measurements. Tabulated values represent median BRFs (R(θi; θr)) calculated for n samples of 

measurements from Lambertian Reflectance targets with nominal reflectances of ρL (RMS difference in parenthesis). Linear regressions for 

each wavelength (λ) are calculated from n1 + n2 = N samples.

λ = 1.30 µm

n ρL R(0◦; 30◦) R(0◦; 60◦) R(10◦; 30◦) R(10◦; 60◦)

10 0.422 0.399 (0.021) 0.422 (0.016) 0.415 (0.015) 0.434 (0.015)

10 0.951 0.939 (0.013) 0.944 (0.015) 0.958 (0.018) 0.952 (0.010)

N Linear regression; R̂(ρL) =AρL +B

20 R̂= {1.023ρL - 0.028, 0.987ρL + 0.007, 1.031ρL - 0.024, 0.980ρL - 0.018}

λ = 1.55 µm

n ρL R(15◦a;30
◦) R(15◦a;60

◦) R(15◦b ;30
◦) R(15◦b ;60

◦)

10 0.413 0.410 (0.009) 0.420 (0.017) 0.411 (0.008) 0.420 (0.021)

6 0.944 0.959 (0.012) 0.963 (0.019) 0.960 (0.013) 0.964 (0.020)

N Linear regression; R̂(ρL) =AρL +B

16 R̂= {1.028ρL - 0.016, 1.016ρL + 0.003, 1.026ρL - 0.014, 1.011ρL + 0.009}
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Table 2. Snow Sample Physical Classification (Fierz et al., 2009). Snow density, porosity, and specific surface area (SSA) are calculated 

from X-ray micro-computed tomography.

Grain shape Density (kg m−3) Porosity (%) SSA (m2kg−1) LAPs Figure key code

Needles 110 88 66 None PPnd_2017

Decomposing precip. particles 170 82 54 None or w/ dust or BC DC_2017

Melt-freeze crust 310 66 23 None or w/ dust or BC MFcr_2017

Clustered rounded grains 350 62 19 None MFcl_2016

Depth hoar 320 65 9 None DH_2016

Rounded grains 610 33 9 None RG_2015
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