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Abstract. Reliable projections of ice sheets future contribution to sea level rise require models able to accurately simulate

grounding line dynamics, starting from initial states consistent with observations. Here, we simulate the centennial evolution

of the Amundsen Sea Embayment in response to a prescribed perturbation in order to assess the sensitivity of mass loss

projections to the chosen friction law, depending on the initialisation strategy. To this end, three different model states are

constructed by inferring both the initial basal shear stress and viscosity fields with various relative weights. Then, starting5

from each of these model states, prognostic simulations are carried out using a Weertman, a Schoof and a Budd friction law,

with different parameter values. Although the sensitivity of projections to the chosen friction law tends to decrease when more

weight is put on viscosity during initialisation, it remains significant for the most physically acceptable of the constructed

model states. Independently of the considered model state, the Weertman law systematically predicts the lowest mass losses.

In addition, because of its particular dependence on effective pressure, the Budd friction law induces significantly different10

grounding line retreat patterns than the other laws and predicts significantly higher mass losses.

1 Introduction

The West Antarctic Ice Sheet mean annual contribution to global sea level rise (SLR) has tripled over the last 25 years as a

consequence of a growing imbalance between the mass it receives as snowfall and that which is discharged to the ocean by ice

streams (Shepherd et al., 2018). The most active basin of this region is the Amundsen Sea Embayment (ASE), where marine-15

terminating outlet glaciers draining ice to the oceans have shown sustained acceleration and thinning over the last decades, with

their grounding lines (GL), i.e. the limit between the grounded ice-sheet and the floating ice shelf, retreating at rates higher than

1 km a−1 since 1992 (Mouginot et al., 2014; Rignot et al., 2014). These observations raise concern regarding the near future

of the ASE as they suggest that this sector of West Antarctica is undergoing a marine ice-sheet instability (MISI), which would

imply a significant additional global SLR in the coming decades (Joughin et al., 2014; Favier et al., 2014; Cornford et al.,20

2015). Producing reliable estimates of this future contribution requires accurate modelling of GL dynamics on sub-centennial

timescales as well as the ability to produce model states as close as possible to observations.

Using a synthetic flowline geometry, Brondex et al. (2017) have shown that the GL dynamics depends critically on the

choice of the friction law, i.e. the mathematical relationship linking basal shear stress to other parameters including sliding

velocity. The ice/bed interface being usually out of reach, the formulation of a friction law has been a long-standing problem25
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in glaciology. Various laws intended to describe different physical processes at the roots of basal motion have been developed

over the years (Weertman, 1957; Budd et al., 1979; Schoof, 2005; Tsai et al., 2015). Most ice flow modelling studies published

so far use the Weertman friction law, which aims at describing the basal motion of ice over and around obstacles of a rigid

bedrock by a combination of viscous creep and regelation (Weertman, 1957). However, many rapid ice streams of Antarctica

are known to be lying on soft beds made of water-laden till, the deformation of which explains most of the motion observed5

at the surface (Blankenship et al., 1986; Alley et al., 1986; Kavanaugh and Clarke, 2006). Numerous laboratory studies on

till samples and in situ measurements have shown that, at large strain, the till rheology is plastic with a critical strength τ∗

depending on effective pressure N , i.e. the difference between ice overburden pressure and water pressure (Boulton and Jones,

1979; Blankenship et al., 1986; Alley et al., 1986). To account for both the cases of rigid and soft beds, Tsai et al. (2015)

proposed a law inducing a Coulomb friction regime at low N , which instantaneously switches to a Weertman friction regime10

at higher N . By construction, this law induces an upper bound, function of N , of the basal shear stress. Although it was

originally intended to describe the ice flowing over a rigid bed with the opening of water-filled cavities, the law proposed by

Schoof (2005) behaves similarly, except that the transition between the Coulomb and Weertman regimes is continuous, which

makes it easier to handle numerically (Brondex et al., 2017).

Although a growing number of information about the current state of the ice-sheet (e.g. surface velocities, surface elevation,15

surface elevation rates of change) are made available by the rapid development of satellite observations, several model param-

eters remain poorly constrained (e.g. bedrock elevation, ice viscosity, friction law coefficients). Gradient-based optimisation

methods are routinely used to estimate uncertain model parameter fields and boundary conditions so that the initial ice-sheet

geometry and surface velocity field are as close as possible to observations (e.g. Morlighem et al., 2010, 2013; Gillet-Chaulet

et al., 2012; Cornford et al., 2015). Although such methods enable to deduce the current basal shear stress field from observed20

surface velocities, the form of the friction law cannot be discriminated with a unique set of observations (Joughin et al., 2004;

Gillet-Chaulet et al., 2016). Furthermore, when several uncertain fields are simultaneously inferred, several different initial

states consistent with observations can potentially be constructed. Adhalgeirsdóttir et al. (2014) have shown that SLR pro-

jections on decadal timescales are sensitive to the initial state of the model, which can account for an important source of

uncertainty in the model response.25

In the present study, we aim at assessing the relative sensitivity of centennial mass loss projections of the ASE to the chosen

friction law and initialisation strategy. Our work being based on a prescribed perturbation scenario, the results presented here

should not be considered as actual projections of the future contribution of the ASE to SLR. The first step consists in building

three different model states of the ASE by inferring simultaneously the basal shear stress and the ice viscosity, with various

relative weights attributed to each one of these two fields during the inversion. Then, for each of these states, we follow the30

same procedure as in Brondex et al. (2017) to identify the distributions of the friction coefficients of three commonly used

friction laws that lead to the same model initial states. Finally, we apply a synthetic perturbation to the basal melting rate

under floating ice, to the different initial states and compare the dynamical responses obtained with the various friction laws. In

Sect. 2, we give a precise description of the model used to conduct this study and describe the experimental setup. The results

obtained at each step of the experiments are presented in Sect. 3 and discussed in the last section.35
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Figure 1. Amundsen Sea Embayment (ASE) and its ice shelves: Cosgrove (green), Pine Island (blue, fed by the Pine Island Glacier),

Thwaites (red, fed by the Thwaites and Haynes ice streams), Crosson and Dotson (yellow, fed by the Pope, Smith and Kohler ice streams).

The localisation of the ASE is reported on the map of Antarctica in the bottom left corner (purple).

2 Methods

2.1 Model description

The modeled domain is represented in Fig. 1. For the stress balance, we solve the two-dimensional Shelfy-Stream Approxima-

tion (SSA) equations (MacAyeal, 1989), for which the horizontal velocity field u = (u,v) is a solution of
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(1)5

where ρi is the ice density, g the gravity norm and H = zs − zb the ice thickness, with zs and zb the top and bottom surface

elevations, respectively. The vertically averaged effective viscosity η̄ reads:

η̄ = η̄0D
(1−n)/n
e , (2)

3



where De is the second invariant of the strain-rate tensor, n is the Glen’s law exponent and η̄0 is given by:

η̄0 =
1

H

zs∫
zb

1

2
A−1/ndz. (3)

In Eq. (3),A is the rate factor. It is related to the temperature relative to the pressure-melting point T ′ (◦C) through an Arrhenius

Law:

A=A0e
(−Q/[R(273.15+T ′]), (4)5

where A0 is the pre-exponential factor, Q is an activation energy and R is the gas constant (Cuffey and Paterson, 2010).

For the basal shear stress τ b in Eq. (1), we consider three different friction laws:

τ b +CW |ub|m−1ub = 0, (5)

τ b +CBN |ub|m−1ub = 0, (6)10

τ b +
CS |ub|m−1ub(

1 +
(

CS
CmaxN

)1/m

|ub|
)m = 0, (7)

where CW , CB and CS are friction parameters. Equation (5) corresponds to the widely used Weertman law (Weertman, 1957),

where m is a positive exponent, often related to the creep exponent n of the Glen’s law as m= 1/n. Equations (6) and (7)

correspond to the Budd and Schoof friction laws, respectively (Budd et al., 1979; Schoof, 2005). Note that, on the contrary to15

the two other laws, the Schoof law induces an upper bound of the ratio |τ b|/N known as Iken’s bound and equal to the value

of the parameter Cmax (Iken, 1981; Schoof, 2005; Gagliardini et al., 2007). Although it is not its original purpose, the use of

a Schoof law - which can be seen as the equivalent of the Tsai law (Brondex et al., 2017) - is more and more justified by its

ability to represent the deformation of till, as it induces a Coulomb friction regime at low N . In that case, the parameter Cmax

ought to be seen as a Coulomb friction parameter related to the rheological properties of the till. Laboratory measurements20

have shown that the values of Cmax should then range between 0.17 and 0.84 (Cuffey and Paterson, 2010).

Both the Budd and Schoof laws make an explicit use of the effective pressure N . Using an effective pressure-dependent

friction law when running transient simulations proves necessary in order to account for the enhancement of basal sliding due

to the presence of subglacial drainage systems connected to the ocean, which have been reported in several studies (Gray et al.,

2005; Fricker et al., 2007; Le Brocq et al., 2013). However, unlike the Schoof law for which the dependence of |τ b| on N is25

limited to the close vicinity of the GL, the Budd law induces a dependence of |τ b| on N over the whole grounded part of the

domain, even far in its interior where such a drainage system may not exist. Ideally, N should be computed by a subglacial

hydrology model but the few available models of that kind are usually relying on a multitude of poorly constrained parameters
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(Schoof, 2010; Hewitt et al., 2012; Werder et al., 2013; De Fleurian et al., 2014) and the attempts to couple these models to ice

flow models are relatively recent (Hewitt, 2013; Bougamont et al., 2014; Bueler and van Pelt, 2015; Gagliardini and Werder,

2018). Therefore, in the present study, N is calculated assuming a perfect hydrological connection between the subglacial

drainage system and the ocean, so that:

N =

 ρigH + ρwgzb if zb < 0 ,

ρigH if zb ≥ 0,
(8)5

where ρw is the water density. A systematic comparison of the dependence of τ b onN and ub implied by these various friction

laws is available in Brondex et al. (2017). Note that, since floating ice does not experience any friction, τ b is set to zero

wherever ice is afloat, independently of the chosen friction law.

The temporal evolution of ice thickness is governed by a two-dimensional mass transport equation:

∂H

∂t
+
∂(uH)

∂x
+
∂(vH)

∂y
= as− ab, (9)10

where as is the surface mass balance and ab the oceanic melt rate applied to the bottom surface of the ice shelves only, basal

melt at the ice/bed interface being neglected. Ice is assumed to be in hydrostatic equilibrium and the bottom surface elevation

can be deduced from the bedrock topography b(x,y) by applying the no-penetration condition and the floating condition. Here

we assume a constant sea level zsl = 0, so that: zb(x,y, t) = b(x,y) for grounded ice,

zb(x,y, t) =−H ρi
ρw

> b(x,y) for floating ice.
(10)15

The GL being the limit beyond which grounded ice starts floating, its position (xG,yG) can directly be deduced from Eq. (10)

by solving:

H(xG,yG) + b(xG,yG)
ρw
ρi

= 0. (11)

Therefore, the GL can be located at any point of the domain and its position is free to evolve over time as a result of evolving

geometry.20

The positions of the boundaries of the model domain are set based on the observations made by the satellite ICESat for the

IMBIE2 effort (Zwally et al., 2012). In the following, n = (nx,ny) is the normal unit vector to the considered boundary. At

the ice divides, there is no ice flux entering the domain so that the following Dirichlet condition applies:

(u.n)|id = 0, (12)
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and is completed by a free slip condition in the tangential direction. At the ice shelves and glaciers fronts, which remain fixed

in time, the following Neumann condition applies:
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(13)

where Hsub|f is the submerged height at the considered front, which is null in the very few places where glacier fronts are

grounded and relates to H|f through the floating condition at floating fronts.5

Similarly to Pollard and DeConto (2012), the oceanic melt rate ab (m a−1), prescribed on the bottom surface of ice shelves,

is parameterised as follows:

ab =
8KT ρwcw
ρiLf

|T0−Tf |(T0−Tf ), (14)

where T0 and Tf are, respectively, the ocean water temperature and freezing point at the considered depth, KT is a transfer

coefficient for sub-ice oceanic melting, cw the specific heat of ocean water and Lf the latent heat of fusion of ice. Following10

Pollard and DeConto (2012), the temperature difference T0−Tf is given by: T0−Tf = 0.5 ◦ C for 0> z >−170 m, 3.5 ◦ C

for z <−680 m and linearly interpolated for z between −680 and −170 m. Values of parameters prescribed in this study are

presented in Table 1.

For the surface mass balance as, we use outputs of simulations performed with the MAR model and averaged over the 1979-

2015 period (Agosta, personal communication). The bedrock topography is taken from Bedmap2 (Fretwell et al., 2013), except15

that we include two pinning points in contact with the bottom surface of Thwaites ice shelf using the bathymetry of Millan

et al. (2017). The mechanical role of these two pinning points has indeed been shown to be critical because of the buttressing

effect that they exert on the upstream ice stream (Fürst et al., 2016).

All the equations presented above are solved using the open source finite element code Elmer/Ice (Gagliardini et al., 2013).

The mesh is generated using the anisotropic mesh-adaptation technique described in Gillet-Chaulet et al. (2012) so that the20

distance between two nodes at the GL is of the order of∼ 50 m. Finally, we end up with a mesh made of 274678 nodes covering

the whole model domain, the total surface of which is about 4.5×105 km2. The same mesh is used for all the successive steps

of all the experiments presented in the following. In addition, we take advantage of the fact that the GL position is determined

at subelement precision through Eq. (11) to make use of the subelement parameterisation SEP3 as proposed by Seroussi et al.

(2014). In our case, the number of quadrature points is raised to 20 in the elements containing the GL.25

2.2 Experimental setup

In the present study, we aim at comparing the results in terms of GL dynamics and volume losses produced by the following

friction laws: (1) a linear Weertman law given by Eq. (5) with m= 1, (2) a non-linear Weertman law given by Eq. (5) with
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Table 1. List of parameter values used in this study.

Parameters Values Units

ρi 910 kg m−3

ρw 1028 kg m−3

A0(T ′ <−10 ◦C) 2.847× 10−13 Pa−3 s−1

A0(T ′ >−10 ◦C) 2.360× 10−2 Pa−3 s−1

cw 4.218 kJ kg−1 K−1

g 9.81 m s−2

KT 15.77 m a−1 K−1

Lf 335 kJ kg−1

n 3

Q(T ′ <−10 ◦C) 60 kJ mol−1

Q(T ′ >−10 ◦C) 115 kJ mol−1

R 8.314 J mol−1 K−1

m= 1/3, (3) a non-linear Schoof law given by Eq. (7) with m= 1/3 and Cmax = 0.4, (4) a non-linear Schoof law given by

Eq. (7) withm= 1/3 and Cmax = 0.6, (5) a linear Budd law given by Eq. (6) withm= 1, and (6) a non-linear Budd law given

by Eq. (6) withm= 1/3. To reach this goal, we start with an initialisation step in which three model states - hereinafter referred

to as inferred states - with different initial basal shear stress and viscosity fields are constructed from available observations,

before undergoing a 15-year relaxation period. Then, following the same procedure as the one described in Brondex et al.5

(2017), we identify the distributions of the friction coefficients of the aforementioned friction laws so that the basal shear

stress field computed with these laws is the same as the one obtained at the end of the 15-year relaxation period. For the two

Weertman laws and the two Schoof laws, this procedure is repeated for each of the three inferred states. In contrast, because

they imply a dependence of |τ b| on N over the whole grounded part of the domain, we consider the two Budd laws as being

less physically acceptable so that, for these laws, the identification procedure is performed for one of the inferred states only10

due to limited computational resources. Therefore, after the identification step, we are left with 14 new model states, hereinafter

referred to as initial states, corresponding to four friction laws - the linear and non-linear Weertman laws and the non-linear

Schoof laws with Cmax = 0.4 and Cmax = 0.6 - applied to the three inferred states as well as the linear and non-linear Budd

laws applied to one of the inferred states only. These 14 initial states constitute the starting points of a set of two 100 + 5 year

pronostic simulations, i.e. an unperturbed control run and a run for which the oceanic melt rate is perturbed. Given the size of15

the domain and the mesh refinement required to capture essential flow features, each pronostic simulation has a numerical cost

of around 11000 CPU hours. Figure 2 summarises all the consecutive steps of the experimental setup, which are described in

details below.
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Figure 2. Flowchart summarising the consecutive steps of the present study for a given inferred state. The simulations EXP_CONTROL and

EXP_ABMB are run for each of the five friction laws. The same procedure is repeated for each of the three inferred states IRγ,∞ , IRγ,100
and IRγ,1 , except that the non-linear and linear Budd friction laws are applied only to the inferred state IRγ,100 .

2.2.1 Initialisation

A number of observations are used in order to initialise the model. The initial ice thickness is taken from Bedmap2 (Fretwell

et al., 2013). A two-dimensional reference field of η̄0, denoted η̄0,ref , is computed using a three-dimensional ice temperature

field of Antarctica (Van Liefferinge, personal communication) obtained using a thermo-mechanical model forced with a mean

geothermal heat flux (Van Liefferinge and Pattyn, 2013). In addition, we use the observed surface velocities of Rignot et al.5

(2011) to invert for basal shear stress and ice rheology. These velocities are given on each node of a regular grid with a

450 m resolution, except in some regions, sometimes very wide, over which the information is missing. The estimated error

on the norm of observed velocities ranges, depending on regions, between 1 m a−1 and 17 m a−1. These observations have

been collected over periods spanning several years, which could potentially induce inconsistencies in regions where the flow

features are evolving rapidly.10

The flow solution u of the SSA equations (1) depends on both the basal shear stress field and the effective viscosity field.

For simplicity, the initial basal shear stress field is computed with a linear Weertman law of which we infer the friction

coefficient distribution ĈW . Although η̄0,ref enables to get a first approximation of the effective viscosity, there are significant

uncertainties regarding the temperature field used to derive this field as well as the parameters linking the rate factor of ice to

its temperature. In addition, ice viscosity does not depend only on temperature but also on several other parameters including15

damage, anisotropy, water content, density, grain size and impurity content (Cuffey and Paterson, 2010). Therefore, the question

8



is whether the local discrepancies between observed and modelled velocities at any given point of the domain should be

attributed to an inappropriate basal shear stress field or to errors on the reference field η̄0,ref . Indeed, several model states

consistent with observations can be constructed, for which the fit between modelled and observed velocities is obtained by

adjusting rather the basal shear stress or rather the viscosity. In order to assess the sensitivity of the results to the initialisation

strategy, we construct three inferred states - denoted IRγ,∞ , IRγ,100 and IRγ,1 - by means of the control method, building on5

the approach described in Fürst et al. (2015).

The total cost function Jtot to minimise includes two cost functions and two Tikhonov regularisation terms:

Jtot = Jv +λdivJdiv +λreg,αJreg,α +λreg,γJreg,γ . (15)

The misfit between modelled (u) and observed (uobs) velocities is comprised in the first cost term Jv . To avoid errors due to

interpolation of observed velocities at the model mesh nodes, Jv is a discrete sum evaluated directly at the observation points.10

It reads:

Jv =
1

2

Nobs∑
i=1

(|ui,obs−ui|)2, (16)

where Nobs is the total number of available observations, ui,obs the velocity observed at point i and ui the modelled velocity,

which is interpolated at the observation point i. The second cost function Jdiv is intended to penalise the large gaps between

ice flux divergence and mass balance, leading to inferred states closer to steady states. It reads:15

Jdiv =
1

2

∫
Γ

(
∂(uH)

∂x
+
∂(vH)

∂y
− (as− ab)

)2

dΓ, (17)

where Γ is the model domain. During the inversion, we actually optimise the variables α and γ, which are related to the linear

Weertman law coefficient and η̄0, respectively, as follows:

ĈW = 10α, (18)

and20

η̄0 =
γ2

Rγ
η̄0,ref , (19)

where Rγ is a constant. The variable changes (18) and (19) prevent non-physical negative values of basal shear stress and

viscosity, respectively. In addition, the variable change (19) enables to tune the relative weight that will be put on basal shear

stress and viscosity during inversion. Indeed, the minimisation of the cost functions relies on the calculation of their gradients

with respect to the variables to optimise (MacAyeal, 1993). As a consequence, the highest the value attributed to Rγ the lowest25

the gradients of Jv and Jdiv calculated with respect to γ relatively to the ones calculated with respect to α. In such a case, the

distribution of α - and thus of the basal shear stress - will be more affected (on the grounded part only as τ b is forced to zero

wherever ice is floating) than for lower values of Rγ . The two regularisation functions Jreg,α and Jreg,γ in turn penalise first

9



spatial derivatives of, respectively, α and γ. They are meant to avoid overfitting the velocity observations and thus, to improve

the conditioning of the problem.

Among the three inferred states considered in this study, the two states IRγ,100 and IRγ,1 are constructed by optimising both

α and γ with, respectively, Rγ = 100 and Rγ = 1 in Eq. (19). Hence, more weight is put on basal shear stress to the detriment

of viscosity for IRγ,100 than for IRγ,1 . In contrast, the inferred state IRγ,∞ is obtained by optimising α only, while η̄0 = η̄0,ref .5

The gradients of Jtot are derived following the adjoint method (MacAyeal, 1993), while the minisation itself is done using the

quasi-Newton routine M1QN3 (Gilbert and Lemaréchal, 1989). The minimisation method being an iterative method, we need

to provide initial guesses for the distributions of the variables to optimise. Following Morlighem et al. (2013), the initial guess

for α is found by considering that, as a first approximation, the driving stress is exactly compensated by the basal shear stress

at any given point of the ice/bed interface. Regarding the initial field of η̄0, it is simply set to η̄0,ref for both IRγ,100 and IRγ,1 .10

For each of the three inferred states, we follow a L-curve approach as described in Fürst et al. (2015) to retrieve the optimal

values of λdiv , λreg,α and λreg,γ (only for IRγ,100 and IRγ,1 ) leading to inferred states showing good compromise between

smooth distributions of α and γ, low differences between ice fluxes and mass balance and good fit between observed and

modelled velocities. We find, respectively, (5.1×10−5,7.1×105) for IRγ,∞ , (5.9×10−5,2.5×106,1.4×106) for IRγ,100 , and

(1.8× 10−5,5.4× 106,4.7× 105) for IRγ,1 .15

Although strong discrepancies between mass balance and ice flux are penalised through Jdiv in Eq. (15), the three inferred

states are not exactly steady states. Seroussi et al. (2011) and Gillet-Chaulet et al. (2012) have reported the occurrence of non-

physical ice thickness rates of change in the first years following inversion. These ice flux anomalies are due to uncertainties

on the model initial conditions, in particular regarding the prescribed topography and the values attributed to the various

parameters, and are usually dissipated within a few years. For this reason, each of the three inferred states undergoes a relaxation20

period, the duration of which is arbitrarily fixed to 15 years. These relaxations are performed with the direct model as described

in Sect. 2.1, the basal shear stress field being computed through the linear Weertman law (see Fig. 2).

2.2.2 Identification of friction laws coefficients

For each of the three inferred states, the 15-year relaxation period leads to a new state characterised by a new velocity field,

which we denote ûb, as well as a new basal shear stress field, denoted τ̂ b. These two fields relate to each other through the25

linear Weertman law, i.e. Eq (5) with the inferred friction coefficient ĈW (which depends on the considered inferred state) and

m= 1. As thoroughly described in Brondex et al. (2017), these two fields can be used to analytically identify the distribution of

the friction coefficient of other laws, which would lead to the same reference basal shear stress field τ̂ b. Thus, the distributions

of the friction coefficient of the non-linear Weertman law, the two Budd laws and the two Schoof laws can be identified by

solving, respectively:30

CW,nl = ĈW |ûb|1−m, (20)

CB = ĈW
|ûb|1−m

N̂
, (21)
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Figure 3. Percentage of grounded nodes where Iken’s bound is not satisfied as a function of the value attributed to the parameter Cmax, for

the inferred states IRγ,∞ (black solid line), IRγ,100 (blue dashed line) and IRγ,1 (brown dotted line).

and,

CS =
|τ̂ b|

|ûb|m
(

1−
(
|τ̂ b|

CmaxN̂

)1/m
)m . (22)

For the Budd and Schoof laws, the effective pressure field N̂ used for the identification is calculated through Eq. (8) from the

geometry obtained at the end of the relaxation period. Note that the fields ĈW , ûb, τ̂ b and N̂ being dependent of the inferred

state, these identifications are repeated for each one of the three inferred states, except for the linear and non-linear Budd laws5

for which the identifications have been done only for the case IRγ,100 (see Fig. 2). Equations (20) and (21) enable to identify

the friction coefficients of, respectively, the non-linear Weertman law and the two Budd laws at every grounded node covered

with ice. At floating nodes or in the very few places of the domain which are ice-free when identification is performed, these

coefficients are arbitrarily fixed to, respectively, CW,nl = 10−6 MPa m−1/3 a1/3 and CB = 10−6 m−1/3 a1/3. This choice

does not appear to be critical as all the following prognostic experiments lead exclusively to a GL retreat.10

In contrast, because the Schoof law was contructed so that Iken’s bound is satisfied (Schoof, 2005), Eq. (22) has a solution

only in places where |τ̂ b|/N̂ < Cmax. Figure 3 shows, for each of the three inferred states, the percentage of grounded nodes

where the value of CS cannot be identified directly from Eq. (22), depending on the value attributed to the parameter Cmax.

Although we do not expect the parameter Cmax to be uniform all over the model domain, there is currently no way to constrain

its spatial distribution. As a consequence, two different uniform values are considered: Cmax = 0.4 and Cmax = 0.6. Note15

that the identification of CS has then to be done for each of the two values of Cmax. Because the sensitivity of basal shear

stress to CS is very small in places close to flotation, the identification of CS from Eq. 22 is only done at nodes where

|τ̂ b|/N̂ ≤ 0.8Cmax. The values ofCS at nodes where |τ̂ b|/N̂ > 0.8Cmax are linearly interpolated from the closest neighboring

nodes. In addition, we arbitrarily set CS = 10−3 MPa m−1/3 a1/3 in places which are ice-free or where ice is afloat when the

11



identification is performed. Finally, we end up with six different distributions of CS corresponding to the two values of Cmax

applied to the three inferred states IRγ,∞ , IRγ,100 and IRγ,1. For these six distributions, the percentage of grounded nodes at

whichCS has to be interpolated is comprised between∼ 4% (for the initial state IRγ,∞ associated to the parameterCmax = 0.6)

and∼ 8% (for the initial state IRγ,1 associated to the parameter Cmax = 0.4). As expected, the nodes at which an interpolation

is required are the closest to flotation and, therefore, are mostly located right upstream the GL.5

As stated previously, the identification steps lead to 14 different initial states, which are used as the starting points of the

prognostic simulations (blue dots in Fig. 2).

2.2.3 Prognostic simulations

The 14 initial states are then run forward in time for 105 years under two different scenarios: (1) a control run (EXP_CONTROL)

and (2) a basal melt anomaly run (EXP_ABMB). The EXP_CONTROL run is an unforced forward experiment aiming at char-10

acterizing model drift, which depends both on the initial state and the friction law. Therefore, all model parameters and forcing

in EXP_CONTROL are the same as those used for initialisation and presented in Sect. 2.1.

The EXP_ABMB run consists in applying a synthetic anomaly of basal melting rate under floating ice, all other model

parameters and forcing being kept the same as in EXP_CONTROL: after a first 5-year period free of any perturbation, a

uniform basal melting rate anomaly abmb of 13.2 m a−1 is progressively added to the initial basal melting rate ab, given by15

Eq. (14), over the following 40 years of simulation. Thus, the basal melting rate ab,ABMB for this run is given by:
ab,ABMB = ab if 0≤ t < 5a

ab,ABMB = ab + abmbfloor(t)−5
40 if 5≤ t < 45a

ab,ABMB = ab + abmb if t≥ 45a.

(23)

The basal melting rate anomaly abmb corresponds to the one prescibed for the ASE within the InitMIP-Antarctica framework

(Nowicki et al., 2016).

3 Results20

3.1 Initialisation

The three inferred states IRγ,∞ , IRγ,100 and IRγ,1 are compared in Fig. 4. The absolute difference between modelled u and

observed uobs velocities turns out to get smaller when both basal shear stress and viscosity are inferred (Fig. 4a-c). This is

particularly true for the ice shelves, which do not feel any basal shear stress: although the basal shear stress right upstream the

GL do influence velocities within the downstream ice shelf, the most efficient way to get a better match between modelled and25

observed velocities in floating areas is through a local adjustment of viscosity. Thus, the inferred state IRγ,∞ shows important

errors on the Pine Island, Thwaites and, to a lesser extent, Crosson ice shelves (Fig. 4a). The root mean squared (RMS) errors

obtained for the inferred states IRγ,∞ , IRγ,100 and IRγ,1 are, respectively, 85.5 m a−1, 52.4 m a−1 and 37.5 m a−1.
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The ratio between the norm of the basal shear stress and the norm of the driving stress is shown in Fig. 4d-f. In addition,

plots of the norm of the basal shear stress obtained for the three inferred states are included in the supplementary material (Fig.

S1) to allow for comparison with previous work in which inversions of basal shear stress in the regions of PIG and Thwaites

were performed (Joughin et al., 2009; Morlighem et al., 2010). At the end of the inversions, there are several regions where

the local driving stress is not entirely compensated by the local basal shear stress (blue regions). As expected, these regions5

correspond to regions of rapid flow; in particular, Pine Island Ice Stream can be easily distinguished. The regions of low τ b

gets narrower as more weight is put on viscosity during inversion. Indeed, when the viscosity is inferred, another way for the

inversion algorithm to increase the modelled velocities in areas where they would be too low otherwise is to soften the ice

locally: this is the case, for example, in the higher part of PIG, in particular for the inferred state IRγ,1 for which the inversion

algorithm induces a local reduction of viscosity rather than of the basal stress to increase the modelled velocities (panels f and10

i of Fig. 4). It is also this same mechanism which is behind the low viscosity bands, easily distinguishable in Fig. 4h (note that

they are also present in Fig. 4i but less visible due to the wider color scale). These soft bands correspond to shear margins,

where high shear stresses induce a local reduction of ice viscosity through different physical processes, including damage,

strain heating and the development of crystalline fabric (e.g. Borstad et al., 2013; Bondzio et al., 2017; Minchew et al., 2018).

On the contrary, the inversion algorithm can render the ice locally stiffer in order to decrease the modelled velocities in areas15

where they are too high compared to observations, which is typically the case for ice shelves.

Because the model states obtained after the initialisation step are not steady states, they drift toward new states during the

following 15-year relaxation period. Overall, the three inferred states show similar evolution patterns with relatively moderate

ice thickness changes, except for the Pine Island and Thwaites ice shelves, where ice thickness increases of about 100 m

over the 15 years. In contrast, ice streams get slightly thinner, losing a few tens of m of ice in some places. At the end of20

the relaxation period, the thickness rates of change have decreased to physically acceptable values for all the inferred states,

with, at most, 30 m a−1 of absolute thickness rate of change, concentrated within very localised areas; elsewhere, ice thickness

is nearly at equilibrium with, at most, a few m a−1 of absolute thickness rate of change. Although the modelled velocity

structure remains similar to observations, the RMS errors between observed velocities and velocities computed at the end of

the relaxation period have risen to 124.8 m a−1, 119.4 m a−1 and 96.4 m a−1 for, respectively, IRγ,∞ , IRγ,100 and IRγ,1 .25

3.2 Identification of friction laws coefficients

For each of the three inferred states, the basal shear stress fields computed with the non-linear Weertman law and with the

two Budd laws using the friction coefficient distributions deduced through, respectively, Eqs. (20) and (21) are identical to the

basal shear stress field τ̂ b used for the identifications. In contrast, because the value of CS cannot be exactly identified through

Eq. (22) at every grounded node but need to be interpolated in some places, τ̂ b is not perfectly reproduced with the Schoof30

law. Figure 5a-c show an enlargement of regions within which the relative differences between the basal shear stress field

calculated with the non-linear Schoof law (7) associated to Cmax = 0.4 and to the CS distributions identified through Eq. (22)

or interpolated, which is denoted τ bS04, and the reference basal shear stress field τ̂ b are the highest. As expected, the highest

relative differences are obtained close to the ice shelves (shown in green in Fig. 5a-c), where the nodes are close to flotation
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and CS needs to be interpolated. Elsewhere, the fields of τ b produced by the two friction laws are numerically identical. The

relative difference between τ bS04 and τ̂ b at nodes where CS is interpolated rarely exceeds 10%; higher differences (up to

100%) occur very locally at some of the last grounded nodes. The results obtained with the parameter Cmax = 0.6 (not shown)

are similar except that the nodes where the interpolation of CS is required are fewer and, therefore, the regions within which

the relative difference between τ bS06 and τ̂ b is not null are less extended. Note that in places where the relative difference is5

not null, the Schoof law systematically produces the weakest basal shear stress.

Although moderate and very localised, the differences between the basal shear stress fields computed with the linear Weert-

man law and the Schoof law induce significant differences on the recomputed velocity fields (Fig. 5d-f). These differences

propagate from the regions showing the highest differences in terms of τ b to the floating areas located right downstream (par-

ticularly distinguishable on Thwaites Ice Shelf). Indeed, the decrease of the total basal shear stress due to the interpolation of10

CS close to the GL needs to be compensated elsewhere so that the global stress balance keeps being satisfied. Because the

floating areas do not support any basal shear stress, the perturbation is transmitted to the front of ice shelves, unless it can

be compensated by an increase of the buttressing effect through a contact on a pinning point or an increase of lateral stresses

at shear margins in the case of confined ice shelves. This latter mechanism is well-illustrated in Fig. 5d-f, which shows an

important increase of velocities at the shear margins of PIG when the linear Weertman law is replaced by the Schoof law.15

Furthermore, it turns out that the relative differences in the velocity field are more pronounced when more weight is put on

basal shear stress during the initialisations. Indeed, when the inversion focuses on the basal shear stress field only (inferred

state IRγ,∞ ), the ice flow is more sensitive to any perturbation of this field. Once again, the results obtained with the parameter

Cmax = 0.6 (not shown) are very similar with slightly lower relative differences between the velocity fields calculated with the

two laws.20

Finally, the identification (22) being performed at mesh nodes, the Gaussian integration on elements induces small numerical

errors on the recomputed velocity field. These numerical errors are concentrated in coarse mesh areas and correspond to the

discrepancies of, at most, a few tens of percents observed further inland, in places where the differences in terms of τ b are null

(Fig. 5d-f). Similar numerical errors are observed within the same areas when the velocity fields produced with the non-linear

Weertman law and the two Budd laws after the identification step are compared to ûb.25

3.3 Prognostic simulations

The evolution of the grounded ice area during the control run for the three inferred states and the various friction laws is shown

in Fig. 6. A decrease (resp. an increase) of the grounded ice area reflects a retreat (resp. an advance) of the GL. After relaxation,

the grounded ice area at t= 0 a differs depending on the considered inferred state: it ranges between 433400 km2 for IRγ,1
and 434000 km2 for IRγ,∞ .30

Irrespective of the chosen inferred state or friction law, the natural (i.e. unperturbed) evolution of the domain is toward a

reduction of its grounded ice area: the Schoof law with Cmax = 0.4 systematically gives the more pronounced GL retreat

with a reduction of grounded ice area over the 105 a of the control run ranging between 5000 km2 for IRγ,1 and 7700 km2 for

IRγ,∞ . In contrast, the reduction of the grounded ice area obtained with the non-linear Weertman law ranges between 2400 km2

14



for IRγ,100 and 4300 km2 for IRγ,∞ . Note that the evolutions of the grounded ice area obtained with the two Weertman laws

are very close to one another over the entire 105 a of the control run while the two Schoof laws produce noticeably different

evolutions from the beginning of the run, with the case Cmax = 0.6 showing less GL retreat than the case Cmax = 0.4. This

could be partly due to the differences between ûb and the velocity field recomputed with the Schoof law after initialisation,

which are lower for Cmax = 0.6 than for Cmax = 0.4 as reported in Sect. 3.2. For the inferred state IRγ,100 , the Budd laws5

produce intermediate results with a reduction of the grounded ice area of 3000 km2 for the non-linear Budd law and of

4200 km2 for the linear Budd law.

The results of the perturbation experiments EXP_ABMB are shown relative to the control simulation EXP_CONTROL

(Fig. 7). We consider both the relative reductions of grounded ice area as well as the relative losses of volume above flotation

(VAF), given in mm of sea level equivalent (SLE). For the inferred state IRγ,∞ , the grounded ice areas produced by the two10

Weertman laws at the end of EXP_ABMB are about 2000 km2 larger than the ones produced by the two Schoof laws. The

difference between the linear and non-linear Weertman laws or between the two Schoof laws (Cmax = 0.4 and Cmax = 0.6) is

about ten times smaller (∼ 200 km2). However, the differences in terms of VAF change are more significant with, respectively,

6 mm SLE of difference between the two Weertman laws and 3 mm SLE of difference between the two Schoof laws. For

comparison, the linear Weertman law and the Schoof law with Cmax = 0.4 show 24 mm SLE of difference in terms of VAF15

loss at the end of EXP_ABMB. When the viscosity is adjusted during inversion (cases IRγ,100 and IRγ,1 ), the GL shows less

retreat and the relative VAF losses are less important (Fig. 7b-c and Fig. 7e-f). In addition, the relative evolutions of VAF

obtained with the Weertman laws get closer to the ones obtained with the Schoof laws, except for the experiment associated to

the inferred state IRγ,1 and the linear Weertman law (Fig. 7e-f). Note that the Schoof laws produce more GL retreat and more

SLR contribution than the Weertman laws for the inferred states IRγ,∞ and IRγ,100 . On the contrary, for the inferred state IRγ,1 ,20

the grounded ice areas seem to stabilise around t= 60 a with the Schoof laws while they keep decreasing for a few more years

with the Weertman laws, so that the grounded ice areas obtained with the two latter at the end of EXP_ABMB are slightly less

than the ones obtained with the two former. Despite a very similar decrease in terms of grounded ice areas as the ones obtained

with the two Schoof laws, the linear Weertman law predicts 8 mm SLE less VAF loss (Fig. 7f). For the inferred state IRγ,100 ,

the two Budd friction laws show much stronger responses to the basal melting rate perturbation than the four other laws: at the25

end of EXP_ABMB, it results in a grounded ice area reduction comprised between 13000 km2 for the non-linear Budd law

and 16600 km2 for the linear Budd law relative to EXP_CONTROL, while the grounded ice area reduction ranges between

6300 km2 and 8900 km2 for the four other experiments. Likewise, the relative VAF loss obtained at the end of EXP_ABMB is

of 25 mm SLE for the linear Budd law and of 33 mm SLE for the non-linear Budd law, whereas it ranges between 6 mm SLE

and 15 mm SLE for the other experiments. This dramatic response of the GL dynamics to the perturbation when a Budd law30

is used is in line with the results reported in Brondex et al. (2017).

The GL positions obtained with the various initial states at the beginning and at the end of experiment EXP_ABMB are

represented in Fig. 8. The GL produced with the two Schoof laws are almost systematically more retreated than the ones

produced with the two Weertman laws. On the other hand, the GL final positions obtained with the Schoof law associated to

Cmax = 0.6 (brown solid lines) are generally very close to the ones obtained with the Schoof law associated to Cmax = 0.435
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(green solid lines). Likewise, the GL final positions obtained with the linear Weertman law (cyan solid lines) are often very

close to the ones obtained with the non-linear Weertman law (magenta solid lines), except for the inferred state IRγ,∞ , where

the former is sometimes more advanced and sometimes more retreated than the latter. Note that this does not contradict the

previously mentioned result regarding the similar evolution of grounded ice areas obtained with the two Weertman laws for

IRγ,∞ , as evolutions represented in Fig. 7 are relative to EXP_CONTROL while the GL positions reported in Fig. 8 are absolute.5

The spatial distribution of the GL retreat is primarily controlled by the bed topography, as already reported by Seroussi et al.

(2017). As a consequence, the Schoof and Weertman laws all give the same retreat patterns: the most pronounced retreats

are observed in regions of gentle slope (particularly visible upstream of the Thwaites Ice Shelf) while the GL tends to wrap

around prominences. However, for IRγ,100 , the patterns of GL retreat obtained with the Budd laws are significantly different

from the ones obtained with the four other laws. Indeed, the final GL position obtained with the non-linear Budd law is the10

most advanced in the Thwaites region, where the other laws (especially the Schoof laws and the linear Budd law) induce

important retreats. On the contrary, both the linear and non-linear Budd laws induce retreats of several tens of km in the

regions of Cosgrove and Dotson Ice Shelves, where the four other laws give very similar final GL positions with limited retreat

(especially in the Cosgrove Ice Shelf region).

The initial and final ice-sheet profiles obtained with the Schoof and non-linear Budd laws are represented in Fig. 9, along15

four selected flowlines (reported in white in Fig. 8b). By definition, wherever ice is grounded, the ice thickness comprised

between zs and the flotation altitude zf , given by zf = (1−ρw/ρi)b, constitutes the thickness above flotation. Because the GL

position is deduced from Eq. (11), it is located at the exact vertical of the point where zs = zf . Looking at the initial profiles, it

turns out that the initial ice thickness above flotation increases rapidly upstream of the GL for the PIG and Thwaites flowlines.

On the contrary, it increases very progressively as we go further upstream within the grounded part for the Dotson flowline,20

and even more so for the Cosgrove flowline. For all the considered flowlines, the bed profiles have sections of retrograde

slope susceptible of giving rise to a MISI, unless it can be prevented by sufficient lateral buttressing (Gudmundsson et al.,

2012). A MISI seems to occur for the Cosgrove and Dotson flowlines when the non-linear Budd law is used and for the

PIG and Thwaites flowlines when the Schoof law is used. Note that the ice shelves of Cosgrove and Dotson have completely

disappeared at the end of EXP_ABMB with both the Schoof and Budd laws. On the contrary, whatever the chosen law, PIG25

and Thwaites ice shelves are conserved until the end of the experiment, although they get thinner. A similar figure comparing

the profiles obtained with the linear and non-linear Budd laws is available in the supplementary material (Fig. S2).

4 Discussion

Among the three inferred states, IRγ,100 appears to be the most physically acceptable one, despite a RMS error slightly higher

than the one obtained for IRγ,1 . Indeed, for IRγ,100 , the inferred η̄0 has been reduced, at most, by 84% (at the shear margins) and30

increased, at most, by 144% (very locally in the higher part of the Kohler Glacier, which feeds the Dotson Ice Shelf) compared

to the reference field η̄0,ref . In contrast, for IRγ,1 , η̄0 is at least 3 times higher than η̄0,ref on large parts of the domain and more

than 15 times higher in some very localised areas close to the Kohler Glacier (regions in red in Fig. 4i). Without considering
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any of the other parameters affecting the ice viscosity, such an increase could only be explained by a reduction of the ice

temperature of several tens of degrees Celsius (up to 50 ◦C in some regions) compared to the reference temperature field. On

the other hand, even if ice was assumed to be at the melting point, the viscosity reduction observed in some other parts of the

domain (regions in blue in Fig. 4i) is non-physical. Note that for IRγ,100 , an increase of the ice temperature of a few degrees

only relative to the reference temperature field is sufficient to explain the local reduction of ice viscosity observed in some5

regions (much less extended than for IRγ,1 ) after the inversion, except at the shear margins where the low viscosity bands

can be attributed to the presence of damaged ice and/or to strain heating and/or to anisotropy. Finally, the difference between

modelled and observed velocities, especially on the ice shelves, are too high for the inferred state IRγ,∞ .

The basal melting rate increase prescribed for the perturbation experiments EXP_ABMB induces a thinning of the ice

shelves, which reduces their buttressing effect and causes a retreat of the GL. The amplitude of this retreat gets larger as10

more weight is put on basal shear stress to the detriment of viscosity during initialisation. Indeed, adjusting viscosity during

initialisation leads to low viscosity bands at shear margins, which hamper the transfer of lateral stresses toward the interior

of ice shelves and, from there, toward the ice streams which feed them. It follows that the model states for which viscosity

is inferred are less sensitive to a reduction of the buttressing effect as the contribution of this effect to the initial global stress

balance is less important than for IRγ,∞ .15

The different friction laws show different sensitivity to velocity and effective pressure - from no explicit dependence on N

for the Weertman laws to an explicit dependence over the whole domain for the Budd laws - which leads to different evolutions

of basal shear stress as the geometry of the domain evolves in response to the perturbation. Therefore, it is not surprising that,

overall, grounded ice area evolutions and VAF losses show more sensitivity to the chosen friction law when more weight is put

on basal shear stress to the detriment of viscosity during initialisation, i.e. for IRγ,∞ than for IRγ,100 or IRγ,1 . The choice of the20

friction law affects not only the grounded ice area evolution, but also the evolution of ice thickness. Thus, the grounded ice area

shrinkage is more pronounced when using the linear Budd law rather than the non-linear Budd law, whereas the latter induces

more VAF loss than the former. Similarly, although the linear and non-linear Weertman laws lead to similar evolutions of the

grounded ice area for IRγ,∞ , they produce significantly different VAF losses. The Weertman laws systematically predict the

lowest VAF losses. In addition, as for the Budd laws, the linear Weertman law always predicts less VAF loss than the non-linear25

Weertman law, which is in line with the results of Ritz et al. (2015) showing a higher contribution of the Antarctic ice sheet to

SLR as the Weertman law tend toward a perfectly plastic law, i.e. m→ 0 in Eq. (5). The two Schoof laws lead to significantly

higher VAF losses than the Weertman laws, with one exception: the non-linear Weertman law for the inferred state IRγ,1 , which

predicts a VAF loss very close to the ones obtained with the two Schoof laws. This is likely due to the fact that, for IRγ,1 , there

are several regions of unexpectedly high viscosity located a few tens of km upstream of the initial GL (Fig. 4i). Once the GL30

has reached these regions, ice is stiffer and hampers further retreat, which explains the stabilisation of grounded ice area seen

in Fig. 7c. As a consequence, the rate of VAF losses obtained with the two Schoof laws decreases, which also occurs with the

non-linear Weertman law but later on so that, at the end of EXP_ABMB, the relative VAF losses predicted by the three laws

are almost identical. On the other hand, for the Schoof law, the lower the value of Cmax the higher the predicted VAF losses.

This is not surprising as the regions over which friction is governed by a Coulomb regime when using a Schoof law gets wider35
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when the value of Cmax gets lower (Brondex et al., 2017). For IRγ,100 , the VAF losses obtained with the two Budd laws are

dramatically higher than the one obtained with the four other laws, which is in line with the results obtained in Brondex et al.

(2017).

The sensitivity of ice thickness rates of change to the chosen friction law explains why the Budd laws produce much larger

GL retreat than the four other laws in the regions of Cosgrove and Dotson and, in the case of the non-linear Budd law, less5

retreat in the Thwaites region. As shown in Brondex et al. (2017), because the Schoof law induces a Coulomb friction regime

(i.e. |τ b| ∼ CmaxN ) within a narrow region of a few km right upstream the GL, the buttressing loss due to basal melting

rate increase cannot be compensated within this region, despite an increase in ice velocities. Therefore, the perturbation is

transmitted upstream, in areas governed by a Weertman friction regime (i.e. |τ b| ∼ CS |ub|m), where a velocity increase enables

a rapid compensation of the buttressing loss. As a consequence, although the Schoof law induces an important peak of thinning,10

it stays very localised in the immediate vicinity of the GL. In contrast, for the Budd laws the basal shear stress depends on both

ub and N over the whole domain. In addition, N can be low on large distances upstream the GL, especially where the bed

profile is retrograde and induces a rapid increase of the water column height as we go further upstream, while the ice thickness

does not increase as fast. As a consequence, the peak of thinning obtained at the GL with a Budd law is less pronounced than the

one obtained with the Schoof law, but, depending on the bed profile, it can propagate much further upstream. This is particularly15

well-illustrated in Fig. 3 of Brondex et al. (2017). In addition, as for the Weertman law, perturbations are transmitted farther

and faster inland when using the non-linear Budd law rather than the linear Budd law. As a consequence, the peak of thinning

obtained with the linear Budd law in the immediate vicinity of the GL is slighlty more pronounced than the one obtained

with the non-linear Budd law, but it propagates over slightly shorter distances (Fig. S2 in the supplementary material). In the

regions of Cosgrove and Dotson, the initial surface profiles are close to the flotation altitudes over large distances upstream the20

GL (Fig. 9). In these two regions, both the linear and non-linear Budd laws induce a rapid purge of the VAF over these large

distances, leading to an important retreat of the GL. This retreat might be enhanced by a potential MISI as the GL ends up on

retrograde bed slopes. Note however that the Cosgrove and Dotson ice shelves being both well-confined, knowledge of the bed

slopes alone is not sufficient to predict the occurrence of a MISI (Gudmundsson et al., 2012; Haseloff and Sergienko, 2018).

In contrast, Thwaites ice shelf is mostly unconfined and, at the beginning of the experiment, the GL lies at the downstream25

bound of a section of retrograde bed slope (solid black line in the bottom left panel of Fig. 9). The initial thinning produced by

the Schoof law in the very close vicinity of the GL is sufficient to induce a retreat within the reverse slope area, where a MISI

likely initiates. The same goes for the linear Budd law (Fig. S2). On the contrary, the thinning peak produced by the non-linear

Budd law at the GL is not sufficient to induce a retreat of the latter over the 105 years of the experiment. Finally, the GL retreats

obtained with the Budd and Schoof laws for PIG are more similar. This could be a consequence of the fact that the GL already30

lies on a retrograde slope at t= 0 a.

Although the differences in terms of GL dynamics and VAF losses obtained with the different friction laws tend to decrease

as more weight is put on viscosity during inversion, they remain significant for the most physically acceptable inferred state,

IRγ,100 . In particular, the commonly used linear Weertman law predicts about 9 mm SLE less VAF losses at the end of the 105

years than the Schoof law.35
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In light of these results, using observations to constrain the form of the friction law which is best suited for a given application

would constitute a huge leap towards the production of reliable projections of future SLR. Studies reporting the presence of

soft sediments beneath PIG (e.g. Smith et al., 2013; Brisbourne et al., 2017) tend to support the use of a Schoof law in this

region, as such a law induces a Coulomb friction regime in the vicinity of the GL. However, this does not constitute a validation

of this law, neither does it provide any information regarding the spatial distributions of CS and Cmax. Because the basal stress5

must satisfy the global stress balance, constraining the form of the friction law would require observations at different times

with significant differences in basal velocities, basal stresses and water pressure at the ice/bed interface. Unfortunately, these

multiple sets of observations are not available or incomplete. In particular, the water pressure at the ice/bed interface is largely

unknown and the assumption of perfect hydrological connectivity to the ocean is too gross for the purpose of constraining the

form of the friction law.10

More generally, the lack of a physically-based subglacial hydrological model to compute effective pressure is the main

limitation of the work presented here. Indeed, the water pressure calculated based on the assumption of perfect hydrological

connectivity to the ocean might well be underestimated in some places as geothermal heat flux and frictional heating are

known to cause basal melting, which is susceptible to build up water pressure at the ice/bed interface, especially in regions

where the subglacial drainage system is inefficient (Colleoni et al., 2018). In addition, beside basal shear stress, ice viscosity is15

not the only poorly constrained field. In particular, there are important uncertainties regarding the bed elevation. Recently, Nias

et al. (2018) derived new bedrock elevation and ice thickness maps of the PIG using a method based on the principle of mass

conservation and compared these maps to the Bedmap2 data: they found substantial differences between the two, in particular

right upstream the 1996 GL where a topographic rise has been removed with their new method. In addition, they ran the two

obtained geometries forward in time to 50 years using four different friction laws, i.e. three Weertman laws with various values20

for the exponent m and a Tsai law with a Coulomb friction parameter set to 0.5, and showed that SLR projections are at least

as sensitive to the accuracy of the bedrock topography and initial ice thickness as to the choice of the friction law.

5 Conclusion

The present study constitutes an extension of the sensibility analysis of GL dynamics and VAF loss predictions to the choice

of a friction law presented in Brondex et al. (2017). Whereas the latter was based on a synthetic 2D flowline case, here we25

consider a real-world application, the Amundsen Sea Embayment, and therefore, have to address specific problems. First of

all, the basal shear stress is not known and has to be deduced from observations of ice flow surface velocities through inverse

methods. In addition, other model parameters are uncertain and can require to be adjusted based on observations. Thus, when

ice viscosity is not inferred but deduced from available ice temperature fields, discrepancies between modeled and observed

velocities are high, in particular within ice shelves. On the contrary, putting too much weight on viscosity to the detriment30

of basal shear stress during inversion lead to non-physical viscosity field. The inferred state IRγ,100 turns out to be the most

physically acceptable of the constructed model states as it allows a good fit between observed and modelled velocities while

showing a viscosity field closer to our expectations compared with IRγ,1 .
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Once the basal shear stress has been inferred, the friction coefficient distributions of the Weertman and Budd laws producing

the same basal shear stress field with these laws can easily be identified. In contrast, by construction the Schoof law induces

an upper bound on the computed basal shear stress equals to the value of the parameter Cmax. This latter parameter accounts

for till deformation and the values it can take are partly constrained by laboratory experiments. As a result, the value of CS

cannot be identified directly at nodes too close to flotation. This difficulty is overcome by interpolating (or extrapolating) the5

value of CS at these nodes from the values at nodes where it can be directly identified. This procedure induces significant but

very localised discrepancies between the recomputed velocity field and the reference velocity field used for the identification,

in particular within ice shelves.

The perturbation experiments carried out following the identification step demonstrate a significant influence of the chosen

friction law on GL dynamics and mass loss projections at a century timescale. In line with results obtained in our previous10

study, the VAF loss obtained with the commonly used Weertman law are systematically lower than the ones obtained with

the Schoof law, which themself are surpassed in the simulations carried out with the Budd laws (for IRγ,100 ). In addition, the

Budd laws being dependent on effective pressure over the whole grounded domain, they induce GL retreat in places where the

other tested laws do not. As for the Weertman laws, the non-linear Budd law induces more VAF loss than the linear Budd law.

Although the differences between the results produced with the various law tend to decrease as more weight is put on viscosity15

during inversion, they keep being significant for the most physically acceptable model state constructed, i.e. IRγ,100 .

In light of these results, we conclude that no reliable projection of future sea level rise can be obtained without the use of a

physically-based friction law. Therefore, significant efforts still need to be put on getting a better understanding of the physical

processes at play at the ice/bedrock interface in order to constrain the form of the friction law that needs to be used in models.

In particular, the recognized importance of water pressure for basal sliding must be explicitly accounted for through the use20

of an effective pressure-dependent law. Because it implies a Coulomb friction regime at low effective pressure, which is best

suited to model till deformation, we suggest to use the Schoof law rather than the Budd law. However, the use of such a law

adds the further difficulty of estimating the spatial distribution of water pressure at the ice/bed interface, which seems to be

satisfactorily overcome only through a coupling of the ice flow model to a physically-based subglacial hydrological model.

Code and data availability. Elmer/Ice code is publicly available through GitHub (https://github.com/ElmerCSC/elmerfem). All the simula-25

tions were performed with the version 8.2 (Rev: 997cb45) of Elmer/Ice. All scripts used for simulations and post-treatment as well as model

output are available upon request from authors. The data used are listed in the references, except the surface mass balance, which is available

upon request from authors.
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Figure 4. Comparison of inferred states IRγ,∞ (first column), IRγ,100 (second column) and IRγ,1 (third column). For each of the three

inferred states, the first row - panels (a), (b) and (c) - shows the absolute difference between modelled u and observed uobs velocities

(m a−1); the second row - panels (d), (e) and (f) - show the ratio of the norm of τ b relatively to the norm of τ d; the third row shows the

reference field η̄0,ref (MPa a1/3) for the inferred state IRγ,∞ - panel (g) - as well as the relative difference between η̄0 and η̄0,ref for the

inferred states IRγ,100 (second column) and IRγ,1 - panels (h) and (i), respectively. Note the different color scales for panels (h) and (i).
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Figure 5. Relative differences (%) between the fields of τ b (first row) and ub (second row) produced by the linear Weertman law and the

non-linear Schoof law associated toCmax = 0.4 and to theCS distributions identified through Eq. (22) or interpolated, for the inferred states

IRγ,∞ - panels (a) and (d) -, IRγ,100 - panels (b) and (e) - and IRγ,1 - panels (c) and (f). Figures of the first row zoom in the neighborings

of ice shelves (shown in green), where the relative differences in τ b are concentrated while figures of the second row show the whole ASE.

The zoom in area is highlighted with a black box on panel (d).
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Figure 6. Evolution of grounded ice area (×103 km2) as a function of time during EXP_CONTROL for the inferred states (a) IRγ,∞ ,

(b) IRγ,100 and (c) IRγ,1 and the friction laws linear Weertman (cyan), non-linear Weertman (magenta), Schoof with Cmax = 0.4 (green),

Schoof with Cmax = 0.6 (brown), linear Budd (orange, for the initial state IRγ,100 only) and non-linear Budd (blue, for the initial state

IRγ,100 only). The results obtained with the various friction laws for the inferred state IRγ,∞ are reported on (b) and (c) to ease comparison

(black dotted lines).
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Figure 7. Evolution of grounded ice area in ×103 km2 (first row), and of volume above flotation in mm sea level equivalent (second row) as

a function of time during EXP_ABMB (colored solid lines) relative to EXP_CONTROL for the inferred states IRγ,∞ - panels (a) and (d) -,

IRγ,100 - panels (b) and (e) - and IRγ,1 - panels (c) and (f) - with the friction laws linear Weertman (cyan), non-linear Weertman (magenta),

Schoof with Cmax = 0.4 (green), Schoof with Cmax = 0.6 (brown), linear Budd (orange, for the inferred state IRγ,100 only) and non-linear

Budd (blue, for the inferred state IRγ,100 only). The results obtained with the various friction laws for the inferred state IRγ,∞ are reported

on, respectively, (b)-(c) and (e)-(f) to ease comparison (black dotted lines). The vertical black dotted lines marks the introduction of the

perturbation at t= 5 a.
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Figure 8. Bed elevation (m) and GL positions at the end of the experiement EXP_ABMB for the inferred states (a) IRγ,∞ , (b) IRγ,100
and (c) IRγ,1 and the friction laws linear Weertman (cyan), non-linear Weertman (magenta), Schoof with Cmax = 0.4 (green), Schoof with

Cmax = 0.6 (brown), linear Budd (orange, for the inferred state IRγ,100 only) and non-linear Budd (blue, for the inferred state IRγ,100 only).

The GL position at t= 0 a is reported for each of the three inferred states (solid black lines). The solid white lines in (b) correspond to

flowlines at which ice-sheet profiles are represented in Fig. (9).
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Figure 9. Ice-sheet profiles obtained for the inferred state IRγ,100 at t= 0 a (black solid line), t= 55 a (colored dotted line) and t= 105 a

(colored solid line) of EXP_ABMB with the Schoof law associated to Cmax = 0.4 (green) and the non-linear Budd law (blue), along

the flowlines reported in Fig. 8. The solid light brown line is the bed elevation. The red solid line is the flotation altitude zf , given by

zf = (1− ρw/ρi)b.
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