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Abstract. Recent high resolution pan-Arctic sea ice simulations show fracture patterns (Linear Kinematic Features or LKFs)
that are typical of granular materials, but with wider fracture angles than those observed in high-resolution satellite images.
Motivated by this, ice fracture is investigated in a simple uni-axial loading test using two different Viscous-Plastic (VP) rhe-
ologies: one with an elliptical yield curve and a normal flow rule, and one with a Coulombic yield curve and a normal flow rule
that applies only to the elliptical cap. With the standard VP rheology, it is not possible to simulate fracture angles smaller than
30°. Further, the standard VP-model is not consistent with the behaviour of granular material such as sea ice, because: (1) the
fracture angle increases with ice shear strength; (2) the divergence along the fracture lines (or LKFs) is uniquely defined by
the shear strength of the material with divergence for high shear strength and convergent with low shear strength; (3) the angle
of fracture depends on the confining pressure with more convergence as the confining pressure increases. This behavior of the
VP model is connected to the convexity of the yield curve together with use of a normal flow rule. In the Coulombic model,
the angle of fracture is smaller (6 = 23°) and grossly consistent with observations. The solution, however, is unstable when the
compressive stress is too large because of non-differentiable corners between the straight limbs of the Coulombic yield curve
and the elliptical cap. The results suggest that, although at first sight the large scale patterns of LKFs simulated with a VP sea
ice model appear to be realistic, the elliptical yield curve with a normal flow rule is not consistent with the notion of sea ice as

a pressure-sensitive and dilatant granular material.

1 Introduction

Sea ice is a granular material, that is, a material that is composed of ice floes of different sizes and shapes (Rothrock and
Thorndike, 1984; Overland et al., 1998). In most large-scale models, sea ice is treated as a viscous-plastic continuum. It
deforms plastically when the internal stress becomes critical in compression, shear, or tension; it deforms as a very viscous
(creep) flow when the internal stress is relatively small (e.g., Hibler, 1979; Zhang and Hibler, 1997; Hunke and Dukowicz,
1997). The corresponding highly non-linear sea-ice momentum equations can be solved with modern numerical solvers to
reproduce, in a qualitative way, observed linear patterns of sea ice deformation within reasonable computing time (Hutchings
et al., 2004; Lemieux et al., 2010; Losch et al., 2010; Hutter et al., 2018a). These Linear Kinematic Features (LKFs) are

places of large shear and divergence (Kwok, 2001). Leads that open along LKFs are responsible for an emergent anisotropy
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of such models, affecting the subsequent dynamics, mass balance, and the heat and matter exchanges between the ocean, ice
and atmosphere. It is therefore important to investigate whether sea-ice fracture is represented accurately in continuum sea ice
models.

The sea ice dynamics are complicated because of sharp spatial changes in material properties associated with discontinuities
(e.g. along sea ice leads or ridges) and heterogeneity (spatially varying ice thickness and concentration). The sea ice momen-
tum equations are difficult to solve numerically because of the non-linear sea ice rheology. Since the first sea ice dynamics
model, the Elastic-Plastic sea ice model based on data collected during the Arctic Ice Dynamics Joint Experiment (AIDJEX
Coon et al., 1974), several approaches to modeling sea ice have been developed. Sea ice has been modeled as an incom-
pressible fluid (Rothrock, 1975), a Viscous-Plastic (VP) material (Hibler, 1979), an Elastic-Viscous-Plastic (EVP) material
(Hunke, 2001), a granular material (Tremblay and Mysak, 1997), an Elastic Anisotropic Plastic (EAP) medium (Wilchinsky
and Feltham, 2006), an elastic-decohesive medium (Schreyer et al., 2006), an Elasto-Brittle (EB) material (Rampal et al., 2016)
and a Maxwell(viscous)-Elastic-Brittle (MEB) material (Dansereau et al., 2016). The actual number of approaches to sea-ice
modeling in the community, however, is much smaller. For example, 30 out of 33 global climate models in CMIP5 use some
form of the standard VP rheology (Stroeve et al., 2014).

In spite of its success, the standard VP rheology is not undisputed. Coon et al. (2007) critically reviewed the assumptions
behind current modeling practice since the original model of Coon et al. (1974), namely the zero-tensile strength (ice is a
highly fractured material) and isotropy assumptions of the sea ice cover and the rheological model. Originally, Coon et al.
(1974) assumed sea ice to have cracks in all directions, justifying isotropic ice properties and isotropic rheologies. The use of
continuum models such as the standard VP model for high-resolution simulations (grid spacings of 1-10km) is also debated
since the grid size approaches a typical floe size and clearly violates the continuum assumption. For instance, recent high-
resolution simulations using the VP model used spatial resolution of approximately 500 m for a regional domain (Wang et al.,
2006) and 1 km for a pan-Arctic domain (Hutter et al., 2018a). It can be argued that if the mode of deformation of a single
floe is similar to that of an aggregate of floes, a given rheology developed for a continuum can still be applicable at spatial
resolutions of the order of the floe size (Overland et al., 1998), but the validity of a given flow rule across scales is not clear. At
any scale, the assumption of viscous creep for small deformations is not physical and an elastic model would be appropriate
for low stress states. The long viscous time scale, compared to the synoptic time scale of LKFs, of order 30 years (Hibler,
1979), however, allows viscous deformation to be viewed as a small numerical regularization with little implications for the
dissipation of mechanical energy from the wind or ocean current (Bouchat and Tremblay, 2014), and the ice model can be
considered as an ideal plastic material. Tsamados et al. (2013) included anisotropy explicitly in a VP model and show that it
improved the representation of ice thickness and ice drift compared to an EVP model. Alternative VP rheologies were never
widely used in the community. These include a Coulombic yield curve with a normal flow rule (Hibler and Schulson, 2000),
a parabolic lens and a tear-drop (Pritchard, 1975), a diamond-shape yield curve with normal flow rules (Zhang and Rothrock,
2005), a Mohr-Coulomb yield curve with a double-sliding deformation law (Tremblay and Mysak, 1997) or a curved diamond
(Wang, 2007).
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Previously, fracture lines (LKFs) in the pack ice were explained by brittle fracture (Marko and Thomson, 1977). Similar
fracture patterns were also observed, from the centimeter scale in the lab to hundreds of kilometers in satellite observations
(Schulson, 2004; Weiss et al., 2007). The scale invariance of the fracture processes at the floe scale has not yet been shown,
especially due to the lack of observations at both high spatial and temporal resolution. Based on satellite observations (e.g.
RADARSAT Geophysical Processor System, RPGS, or Advanced Very-High-Resolution Radiometer, AVHRR), and in-situ
internal ice stress measurements (e.g. from the Surface Heat Budget of the Arctic Ocean, SHEBA, experiment), Weiss et al.
(2007) proposed to model winter sea ice as a material that undergoes brittle failure with subsequent inelastic deformation
by sliding along LKFs. This idea was formalized with an additional parameterization to simulate damage associated with
brittle fracture in an Elasto-Brittle (EB) and Maxwell-Elasto-Brittle (MEB) model (Girard et al., 2011; Rampal et al., 2016;
Dansereau et al., 2016). We note that subsequent deformation in this model is considered as elastic deformation (EB) or visco-
elastic deformation (MEB) instead of plastic. That is, in the elastic approaches, the material does not weaken when fracture
occurs, but rather the Young’s modulus is reduced, leading to larger elastic deformation for the same stress. From the scaling
behavior of simulated sea-ice deformation fields of EVP models (with 12 km grid spacing), it was found that the heterogeneity
and the intermittency of deformation in the VP model are not consistent with RGPS data (Girard et al., 2009). In contrast, VP-
models were shown to be indeed capable of simulating the PDFs of sea ice deformations and some of the scaling characteristics
over the whole Arctic in agreement with the same observations, either with sufficient resolution (Spreen et al., 2017; Hutter
et al., 2018a) or with tuned shear and compressive strength parameters (Bouchat and Tremblay, 2017).

High-resolution sea-ice models simulate LKF patterns in pack ice, where they appear as lines of high deformation (Hutchings
et al., 2005; Hutter et al., 2018a). Previously fractured ice will be weaker and will affect future sea ice deformation fields. The
weakening associated with shear deformation results from divergence and a reduction in ice concentration along the LKFs.
This mechanism introduces an anisotropy in high resolution simulations that is similar to observations with comparable spatial
resolution. Lead characteristics, including intersection angles between LKFs were studied a number of times (Lindsay and
Rothrock, 1995; Hutchings et al., 2005; Wilchinsky et al., 2010; Brohan and Kaleschke, 2014; Wang et al., 2016; Hutter
et al., 2018b). These studies show that VP models produce LKFs with various confinements, scales, resolutions, and forcings,
although the LKFs creation mechanism is still unclear. From observations with different instruments (Landsat, Seasat/SAR,
areal photographs, AVHRR), typical fracture angles between intersecting LKFs of (15 4 15)° emerge at scales from 1km to
100 km (Erlingsson, 1988; Walter and Overland, 1993). Hutter et al. (2018b) present an LKF tracking algorithm and show that
fracture angles (half of the intersection angles) between LKFs in RGPS data follow a broad distribution that peaks around 20°,
in line with previous assessments (e.g. Walter and Overland, 1993). Hutter et al. (2018b) also show that that the distribution
of fracture angles in a VP simulation with 2-km grid spacing is biased with a high modal value of 45° and with too few small
intersection angles between 15° and 25°. The observed bias motivates the present investigation of the dependence of fracture
angles in different VP rheologies and model settings, that is, scale, resolution, boundary conditions, model geometry, and
variability in initial ice thickness field.

The simulation of fractures in sea ice models has been studied in idealized model geometries before. Hibler and Schulson

(2000) investigated the effect of embedded flaws - that favors certain angles of fractures - in idealized experiments using a
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Coulombic yield curve. Hutchings et al. (2005) showed that LKFs can be simulated with an isotropic VP model using an
idealized model geometry. The shape of the elliptical yield curve (ratio of shear to compressive strength) in the standard
VP model determines if ice arches can form in an idealized channel experiment (Hibler et al., 2006; Dumont et al., 2009).
Pritchard (1988) investigated the yield curve’s mathematical characteristics and derived angles between the principal stress
directions and characteristics directions that depend on the tangent to the yield curve. These results show that stress states exist
in plastic materials where no LKFs form and were later used to build a yield curve (Wang, 2007). To build an anisotropic
rheology, Wilchinsky et al. (2010) used a Discrete Element Model (DEM) model in an idealized model domain and showed
clear diamond-shaped fracture patterns. Idealized experiment are also used to investigate new rheologies, for example, the
Maxwell-Elastic-Brittle (MEB) rheology (Dansereau et al., 2016) or the Material-Point Method (MPM) (Sulsky et al., 2007),
or to study the theoretical framework explaining the fracture angles (e.g. Dansereau et al., 2017, with a Mohr-Coulomb yield
criterion in an MEB model). Recently, Heorton et al. (2018) compared simulated fractures by the EVP and EAP models using
an idealized model geometry and wind forcing, and showed that the anisotropic model creates sharper deformation features. To
the best of our knowledge, the dependency of the fracture angles in sea ice on the shape of the yield curve using high resolution
models has not yet been investigated. This is another motivation of this study.

In this paper, we simulate the creation of a pair of conjugate faults in an ice floe with two different VP rheologies in an
idealized experiment at an unprecedented resolution of 25 m. We explore the influence of various parameters of the rheologies
and the model geometry (Scale, resolution, confinement, boundary conditions, and heterogeneous initial conditions). The re-
mainder of this paper is structured as follow : Section 2 presents the experimental setup: the VP framework (2.1), the definition
of the yield curve (2.2), and the description of the idealized experiment (2.3). Section 3 presents the results: First the reference
simulation is presented (3.1), then we explore the sensitivity of the setup in section 3.2 to scale, resolution and longer run-time
(3.2.1), modified boundary conditions and lateral confinement (3.2.2), and to heterogeneity in initial conditions (3.2.3). Finally,
we consider the effects of two different yield curves with different flow rules in subsection 3.3: the elliptical (3.3.1) and the

Coulombic yield curve (3.3.2). Discussion and conclusions follow in sections 4 and 5.

2 Experimental Setup
2.1 Viscous-Plastic model

We use the Massachusetts Institute of Technology general circulation model (MITgcm, Marshall et al., 1997) with its sea ice
package that allows for the use of different rheologies (Losch et al., 2010). All thermodynamic processes have been turned off
for our experiments. The initial sea ice conditions, mean (grid cell averaged) thickness h and fractional sea ice cover A, are
advected by ice drift velocities with a third order flux limiter advection scheme (Hundsdorfer et al., 1995). Ice drift is computed

from the sea ice momentum equations
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where p is the ice density, h is the grid cell averaged sea ice thickness, u is the velocity field, f is the Coriolis parameter, k is
the vertical unit vector, T, is the surface air stress, T occqn 1S the ocean drag, V¢(0) is the gradient of sea surface height, and
o is the vertically integrated internal ice stress tensor. The form of o defines the rheology. In the case of the standard VP model
described in (Hibler, 1979), the components of ¢ are defined as

. . P
03 = 2m35€45 + (C — 1) Eprij — 55@', )

where 0;; is the Kronecker delta and summation over equal indices is implied. 1 and ¢ are the shear and bulk viscosities, €;; is

the strain rate tensor defined as

. 1 6Ui (')uj
€i<7_2(axj+axi)’ ®)

and P is the maximum compressive stress defined as a function of the ice strength parameter P*, mean sea ice thickness h, and

the sea ice concentration A:
P=Phe” @0, “)

where C” is a free parameter.
The stress tensor o is often expressed in terms of principal stresses o1 and o9 and stress invariants o7 and o;. The principal
stresses o1 and o are the principal components or eigenvalues of the stress tensor on an sea ice element. Eigenvalues always

exist, because the stress tensor is by definition symmetric. The principal stresses oy and o5 can be expressed as a function of

045 aS :
1

0122<U11+022+\/(011—022)2+40%2), &)
1

02:2(011+022—\/(011—022)24-40%2), (6)

This change of coordinates can then be represented as a rotation of the coordinates by v (Fig. Al). This angle is (Tremblay

and Mysak, 1997):

2012

tan(20) = )

011 — 022
Any linear combination of the principal stresses are stress invariants. One common sets of stress invariants are the mean

normal stress (o;) and the maximal shear stress (o7;). They can be written as

1 1

0'125(0'1 +02):§(011 +0'22)a (8)
1 1

o= 5(01 —03) = 5\/(011 —022)? + 4o, ®
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Table 1. Model parameters of the reference simulation

Symbol  Definition Value  Unit

P Density of ice 910 kgm™3
P* Ice strength 27.5 kNm™*
C Strength reduction parameter 20

Apin Maximum Viscosity 10710 st
Az, Ay  Grid spacing 25 m

Cy Water drag coefficient 5.21 x 1073

Nz, Ny Size of the domain 400 x 1000

L..Ly Size of experiment 10x 25 km

Iz, 1y Ice floe’s size 8x25 km

A Initial ice concentration 100 %

h Initial ice thickness 1.0 m

Niin Nbr. linear iteration 1500

Nyiin Nbr. non-linear iteration 1500

€err Max. error in LSR 107 ms?
dt Timestep 0.1 s

e Ellipse ratio (a/b) 2.0

v Initial velocity 0 ms?
Qy Acceleration 5-100* ms?

2.2 Yield curve

The VP rheology was originally developed to simulate ice motion on a basin scale (e.g., Arctic Ocean, Southern Ocean) (Hibler,
1979). In this model, stochastic elastic deformation is parameterized as highly viscous (creep) flow (Hibler, 1977). Ice is set
in motion by surface air and basal ocean stresses moderated by internal ice stress. When the internal sea-ice stress reaches a
critical value in compression, tension or shear, sea ice fails and relatively large plastic deformation takes place. Internal ice
stress below these thresholds leads to highly viscous (creep) flow that parameterizes the bulk effect of many small reversible
elastic deformation events. The timescale of viscous deformation is so high (~ 30 years) that viscous deformation can be seen
as regularisation for better numerical convergence in the case of small deformation. Plastic deformations are relatively large
and non-reversible. Viscous deformation is negligibly small; in contrast to elastic deformation it is also non-reversible. The
yield criterion is expressed as a 2D envelope either in principal stress space or stress invariant space with a normal flow rule.
The normal flow rule requires that the direction of stress and ensuing deformation (strain rate) coincide. The stress state on the

yield curve together with the normal flow rule therefore determines the relative importance of divergence (positive or negative)
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Figure 1. Elliptical yield curve (black) with ellipse aspect ratio e = a/b = 2. Coulombic yield curve (red) and elliptical capping with internal
angle of friction (u). Both e and p are measures of the shear strength of the material. The normal flow rule applies only to the elliptical part
of the yield curves. For the two straight limbs of the Coulombic yield curve, the flow is normal to the truncated ellipse (dash-dot line) with

the same first stress invariant. Note that the axes o1, 02 and o7, o7 do not have the same scale.

and shear strain rate at a point in stress space. The magnitude of the deformation is such that the stress state remains on the
yield cure during plastic deformation.

In this study, we use two different yield curves: an elliptical yield curve (Hibler, 1979) and a Coulombic yield curve (Hibler
and Schulson, 2000). The elliptical yield curve has a normal flow rule, while the Coulombic yield curve has a normal flow rule
on the elliptical cap and a flow rule corresponding the truncated ellipse for the same first principal stress (Hibler and Schulson,

2000, Appendix A). For the elliptical yield curve (Fig. 1, black line), n and ( are given by :

P

¢= Ev (10)
¢

77:;2, (1T)

with the abbreviation

o 1.
A= 8+ 8, (12)

In this abbreviation, the strain rate invariants are the divergence é; = é11 + é22 and the shear deformation rate s =é;; =

\/ (€22 —€11)%2 +4¢%,. e = % is the ellipse aspect ratio with the semi-major half-axes a and b (shown in blue in Fig. 1). The

ellipse aspect ratio e defines the shear strength S* = 123—; of the material as a fraction of its compressive strength (Bouchat and
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Tremblay, 2017). For the Coulombic yield curve (Fig. 1, red curve), the shear viscosity 7 is capped on the two straight limbs:

1 P
ﬁMczmin{Tl,é” {M (2—C'ékk> —C}} (13)

where (i is the slope of the Mohr-Coulomb limbs (Fig. 1), c is the cohesion value (the value of o7 for o7 = 0) defined relative
to the tensile strength by ¢ = - T™*.

The theoretical angle of fracture 6 can be calculated from the Mohr’s circle of stress and yield curve written in the local
(reference) coordinate system (Ip et al., 1991; Pritchard, 1988; Hibler and Schulson, 2000). Details are described in the ap-
pendix. For a Mohr-Coulomb yield criterion, 6 follows immediately from the internal angle of friction, that is the available
shear strength. An instructive analogue is the slope of a pile of sand on a table. Wet sand can support more shear stress and

hence the slope angle can be steeper (smaller).
2.3 Idealized Experiment

An idealized compressive test is used to investigate the modes of sea ice fracture (Figure 2). This experiment is standard in
engineering (Schulson, 2004; Weiss et al., 2007). The numerical configuration is inspired by Herman (2016) and similar to the
one shown in Dansereau et al. (2016). All experiments presented below use the same set-up unless specified otherwise. The
values of parameters and constants are presented in Table 1.

The model domain is a rectangle of size 10 km x 25 km, except for Sect. 3.2.1 and Sect. 3.2.2. An ice floe of size 8 km x 25 km,
surrounded by 1 km of open water on the eastern and western sides, is compressed with a linearly (in time) increasing strain
rate from the North against a solid southern boundary. The eastern and western strips of open-water avoid interesting dynamics
to be confounded by the choice of lateral boundary conditions along the open boundaries to the East and the West. We use a no-
slip condition for the southern boundary, constraining lateral ice motion. Note that the results presented below are not sensitive
to the choice of boundary condition on the eastern and western boundaries. Because the simulation time and the ice velocities
are small, the Coriolis force in the momentum equations are neglected. Ocean and sea ice are initially at rest. The only term
left in the momentum equation (Eguation (1) that is relevant for our experiment is the stress divergence term, V - 0. The ice
floe has a uniform concentration of 100% and a thickness of 1 m. The spatial resolution of the model is 25 m. The angle of
fracture is measured with the angle measuring tool of the GNU Image Manipulation Program (GIMP, https://www.gimp.org/).
All angles measured in this study have an error range around 1°. The finite size of the grid spacing widens the deformation
line, and the fracture spreads over several pixels because of the obliquity of the fracture. Automatic algorithms for measuring
LKEF intersection angles are described in Linow and Dierking (2017); Hutter et al. (2018b).

We solve the non-linear sea-ice momentum equations with a Picard or fixed point iteration with 1500 non-linear or outer-
loop (OL) iterations. Within each non-linear iteration, the non-linear coefficients (drag coefficients and viscosities) are updated
and a linearized system of equations is solved with a Line Successive (over-)Relaxation (LSR) (Zhang and Hibler, 1997).
The linear iteration is stopped when the maximum increment is less than e sz = 10~ 'ms™!, but we also limit the number
iterations to 1500. Typically, 1500 non-linear iterations are required to reach a converged solution. This is so because of slow

convergence due to the highly non-linear rheology term and the high spatial resolution (Lemieux and Tremblay, 2009).


https://www.gimp.org/

Prescribed Strain

Sea ice

Open boundary

Open water

Shoreline

Figure 2. Model domain with a solid wall on the southern (red) boundary (Dirichlet boundary conditions with u = 0), and prescribed
southward velocities on the northern orange boundary (v = 0, v = a,, -t +v;, Eq. 15) and open boundaries to the East and the West (green)

with von Neumann boundary conditions. 6 is the measured fracture angle with the blue line representing an LKF.

On the open eastern and western boundaries, we use von Neumann boundary conditions for velocity, thickness and concen-
tration and ice can escape the domain with out any restrictions:

o _ o
B ox BW ox

Ju
ox

04

7 =0, (14)
BW ox

EW

where E and W denote the eastern and western boundaries, respectively. Strain is applied to the ice at the northern boundary

by prescribing a velocity that increases linearly with time :

0A oh
vy)=ay-t+v;; ulpy=0; —| = —| =0, (15)
|N() |N ay N (9y N

where a,, is the prescribed acceleration, and N denotes the northern boundary.
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3 Results

We use simple uni-axial loading experiments to investigate the creation of pair of conjugate faults and their intersection angle.
After presenting the results of simulations with the default parameters (Section 3.1), we explore the effects of experimental
choices: confining pressure, choice of boundary conditions (i.e. von Neumann versus Dirichlet), domain size and spatial reso-
lution and inhomogeneities (i.e. localized weakness) in the initial thickness and concentration field (Section 3.2). Finally, we
study the behaviour of two viscous plastic rheologies with different yield curves and compare these dependencies to what we

can infer from smaller and larger scale measurements from laboratory experiment and RGPS observations (Section 3.3).
3.1 Uni-axial compressive test - Default parameters

With default parameters (Table 1), a diamond shape fracture appears in the shear strain rate and divergence fields after a few
seconds of integration (Figure 3). After 1 timestep (or 0.1 s), the stress states already lie on the yield curve and the fracture is
readily seen in the deformation fields (divergence and shear). We iterate for a total of 20 seconds in order for the signal to be
apparent in the thickness and concentration fields. We do this to more clearly show the link between position of the stress states
on the yield curve and the normal flow rule in the standard VP rheology of Hibler (1979). The shear deformation (é;;) shows
where the ice slides in friction and deforms plastically. From Fig. 3, the simulated intersection angle is 6 = (34 +1)°.

After a few time steps, the ice thickness decreases particularly along the LKFs (Fig. 3c) where divergence is maximal.
Note that the loading axis in our simple 1D experiment is also the second principal axis and consequently the stress states are
migrating along the o9 axis as the strain rate at the northern boundary increases. Fracture occurs after plastic failure when the
stress state reaches the yield curve and the ice starts to move in divergence. This occurs in the half of the ellipse closer to the
origin (for e > 1) where the normal to the flow rule points in the direction of positive divergence (or first strain rate invariant)

(see Fig. 4). This explains the simulated divergent flow field and lower ice thickness particularly along LKFs.
3.2 Sensitivity experiments

In this section, we test the sensitivity of the standard VP model simulation (Sect. 3.1) to the choice of resolution, scale, and
run-time (3.2.1), boundary conditions and confinement pressure (3.2.2), and heterogeneity in the initial sea ice mass field
(3.2.3).

3.2.1 Domain size, spatial resolution and length of integration

The angle of intersection between a pair of conjugate faults does not change with domain size and spatial resolution (Fig. 5).
This is expected, because non-dimensionalizing the divergence of the internal ice stress term (the only term that remains
in this simple uni-axial test experiment) by setting ' = «/U, 2’ = z/L, gives the same equations in non-dimensional form
irrespective of the initial ice thickness or spatial resolution. Consequently, the control and sensitivity experiments are scale
independent and the behaviour of the standard VP model can be readily compared with results from RGPS, AVHRR, or

laboratory experiments.

10
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Figure 3. (a) First and (b) second strain invariants, (c) ice thickness anomaly (Ah = h — 1) and (d) stress states in normalized stress invariant
space along with the elliptical yield curve after 5 seconds of integration. The first and second strain invariants represent the divergence and

maximum shear strain rate, respectively. The modeled angle of fracture is § = (34 +1)°

Continuing the integration to 2700 seconds (45 min), compared to 20 seconds in the reference simulation leads to the creation
of smaller diamond-shaped ice floes due to secondary and tertiary fracture lines (Figure 6). The openings are visible in the
thickness and concentration fields with thinner, less concentrated ice in the lead. In this longer experiment, the sea ice also
ridges, for instance at the center of the domain where the apex of the diamonds fails in compression. There is also some thicker

5 ice at the northern boundary induced by the specified strain rate at the northern boundary. The fracture pattern and presence

11
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Figure 4. Schematic of stress states and failure in principal stress space. Black arrows show how stresses move from zero at the beginning of
loading towards the yield curve until failure. Red points show the stress states at failure — the intersection point between the second principal
axis 2 (in red) and the elliptical yield curve — for different ellipse ratios e = 2,1,0.7. The red arrows show the direction of deformation with
a normal flow rule. The blue points and arrows show the case when the ice floe is confined and the loading will lead to extra stress in the

direction of o1.

of secondary and tertiary fracture lines are in line with results from laboratory experiments Schulson (2004) and with AVHRR
and RGPS observations.
In the following, we always show results after 5 seconds of integration because our main focus is on the initial fracture of

the ice, that is, the instant when the ice breaks for the first time under compression.
3.2.2 Boundary conditions and geometry

The dynamics responsible for the ice fracture and location of the fracture (presented above) take place far away from the
eastern and western boundaries and therefore do not depend on the choice of the corresponding boundary conditions. We now
investigate the sensitivity of the results to the choice of boundary condition at the southern boundary. To this end, we force the
fracture line to intersect the southern boundary by reducing the domain size to 10km x 10km with an ice floe of 8km x 10km
in the interior. In this case, the fracture develops from corner to corner and the angle is solely determined by the geometry of the
ice floe, that is, § = arctan(l, /l,)) (Fig. 7b). With a free-slip boundary condition at the southern boundary, the fracture angle is
similar to the one from the control simulation (Fig. 7a). That is, the no-slip condition concentrates the stress to the corner of the
ice floe touching the boundary and pre-determines the fracture location. A free-slip boundary condition is therefore considered

more physical in such idealized experiments where fractures lines can extend from one boundary to another. This result can

12
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Figure 5. Maximum shear strain rate (second strain invariant) after 10 seconds of integration for the default domain size and Az = 100m
(a) and 500m (b), and for the default Ax and a doubled domain size of 20km x 50km (c). Note that for case of the double domain (c), the
southward velocity at the northern boundary was also doubled to keep the deformation rate constant, and that this simulation is limited to 2

seconds for numerical efficiency.

have implications for simulation of LKFs in the Arctic that would extend from one boundary to another, for instance in the
Beaufort Sea.

No-slip or free-slip boundary conditions have little impact on the fracture angle in the larger domain used in the control run
simulation, because the LKFs always only touch one boundary and end in open-water (results not shown). With the free-slip
boundary conditions, the stresses and strains are only different south of the diamond fracture pattern because ice can move
along the southern boundary and the second fracture cannot form.

The angle of fracture in a granular material is independent of confining pressure in uni-axial loading laboratory experiment.
We now explore the effect of confining pressure on the eastern and western boundaries on the angle of fracture when using a
(convex) elliptical yield curve with a normal flow rule. To do so, we replace the open boundaries to the East and the West with
solid walls and the open water gaps with ice of thicknesses h.. Note that the ice strength is linearly related to the ice thickness
(Eq. 4). Therefore the normal stress at the edge of the floe is completely defined by the thickness of the surrounding ice.

With an increasing lateral confinement pressure (i.e. an increasing ice thickness h. next to the main floe), all stress states
are moved to higher compressive stresses (blue curve in Fig. 4) and the fracture angle increases (Figure 8). In this case, the
stress states are again migrating in a direction parallel to the o2 axis but with a non-zero o value. The stress states of the ice
along the fracture are therefore located in a region of higher compressive stresses on the yield curve where the divergence is
reduced or even changes sign. With increasing confinement, the stress states of the ice floe move to more negative values of o
along a line of constant o (blue line in Fig. 4) with deformation moving towards more convergent states. Between h. = 0.2

and h. = 0.3, the regime changes from lead opening to ridging, as the fracture angle increases to values above 45°.
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Figure 6. Sea ice thickness (a), concentration (b), maximum shear strain rate (c) and divergence (d) after 45 min of integration (2700 sec)
in a uni-axial loading test. o make these longer simulations possible, both non-linear and linear iterations are limited to 150 per timestep.

Results show the development of secondary fracture lines in all fields after the first fracture line has formed.

3.2.3 Effects of the heterogeneity

So far, all initial conditions have been homogeneous in thickness and concentration within the ice floe. In practice, sea ice (in a

numerical model, but also in reality) is not homogeneous. A local weakness in the initial ice field is likely the starting point of
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Figure 7. Maximum shear strain rate after 5 seconds of integration in a reduced size domain (8§ km x 10 km) with free-slip (a) and no-slip
(b) boundary conditions. Note that the no-slip boundary condition forces the fracture to occur at the corner of the domain, leading to a larger
angle of = 39° vs. 34 + 1° in the control experiment. This suggests that the choice of boundary conditions in current sea ice model needs

to be revisited.

a crack within the ice field (e.g., Herman, 2016, her Figure 5¢). Local failures raise the stress level in adjacent grid cells and a
crack can propagate. Note that the crack propagation in an “ideal” plastic model such as the VP model is instantaneous and this
propagation is not seen between time steps. As a consequence, lines of failure will likely develop between local weaknesses.
The location of weaknesses in the ice field together with the ice rheology (yield curve and flow rule) both determine the fracture
angles (Hibler and Schulson, 2000; Aksenov and Hibler, 2001).

To illustrate this behavior, we start new simulations from an initial ice field with two areas of zero ice thickness and zero ice
concentration, hence weaker ice (Figure 9a). After 5s these simulations yield fracture patterns that are dramatically different
from those of the control run simulation (Section 3.1): the fracture lines now start and terminate at the locations of the weak
ice areas. Still, changing the shear strength of the ice (by changing e) changes the fracture pattern (Figure 9b and c). With
e =1, the angles are much wider than with e = 2, which is consistent with the general dependence of fracture angles on e
(see Sec. 3.3.1). Our simulations cannot lead to conclusive statements about the relative importance of heterogeneity of initial
conditions and yield curve parameters for the fracture pattern, but we can state that both affect the simulations in a way that

requires treating them separately to avoid confounding effects. Details are deferred to a dedicated study.
3.3 Effects of the yield curve on the fracture angle

3.3.1 CElliptical yield curve

Keeping P* =27.5kN m~! at its default value, the maximal shear strength S* = };—; is varied by changing the ellipse ratio
e. Scaling the absolute values of P* and S* while keeping e constant does not change the fracturing pattern as the tangent to
the ellipse stays the same (not shown). Changing the ellipse aspect ratio e has a large effect on the fracture angle. The fracture

angle decreases monotonically as the shear strength of the material (or e) decreases, from 61° for e = 0.7 to 32° for e = 2.6.
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Figure 8. Maximum shear strain rates (left) and stress state in stress invariant space (right) after 5 seconds of integration for different con-
finement pressure: h. = 0.05m (a) and h. = 0.3 m (b). Note, how stress states with divergent strain rates (a) migrate left towards convergent

strain rates (b).

This is clearly inconsistent with the behaviour of a granular material; in the sand castle analogue this would correspond to a
dry sand castle with steeper walls than a moist sand castle. From the simple schematic of Fig. 4 it becomes clear that with
increasing e the intersection of the oy axis with the yield curve gradually migrates from the left side of the ellipse to the right
where the normal to the yield curve points increasingly towards convergent motion. We present a theoretical explanation for
the sensitivity of the fracture angle to the shear strength of the material (e, for the ellipse) in Appendix B by re-writing the
elliptical yield curve in local coordinates in the fracture plane (o, 7) instead of principal or stress invariant coordinates. The
fracture angle is then determined from the slope of the tangent to the yield curve in local coordinates and this angle follows

from the Mohr’s circle (see for instance Popov, 1976).
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Figure 9. Sea ice thickness with two ice-free areas (a), and maximum shear strain rates for two different ellipse aspect ratios (b and c) after
5 seconds of integration. The position of the ice weaknesses determines the location and angle of the fracture lines, and also the rheology

parameter e has an entirely different effect. The main fractures lines are at angles of 25 ° and 34 ° for ¢ = 2.0, and 57.6 ° for e = 1.0.

Bouchat and Tremblay (2017) suggest a smaller ellipse aspect ratio (e.g. e = 0.7) to obtain a closer match with RADARSAT-
derived distribution of deformation rates in pan-Arctic simulations at 10 km resolution. From Fig. 10 and 11, the corresponding
fracture angle is § = (6141)°, that is, much larger than that is derived from RADARSAT images. e also changes the distribution
of the stress states on the yield curve. As the stress state migrates along the principal stress o5 until it reaches the yield curve
in our uni-axial compressive test, the stress state are in the second half of the ellipse for e < 1 and the resulting deformation is
in convergence (or ridging). The ice thickness increases due to ridging along the shear lines (Figure 11). In a longer simulation
with e = 0.7 (not shown) the ice does not open but only ridges, with thicker ice building up within the ice floe. This is in strong

contrast to the results with e = 2.0 presented in Sect. 3.2.1, where the initial floe breaks up and separate floes form.
3.3.2 Coulombic yield curve

In this section, we replace the elliptical yield curve with a Coulombic yield curve (Hibler and Schulson, 2000). This yield
curve consists of a Mohr-Coulomb failure envelope — two straight limbs in principal or stress invariant space with a slope u
— capped by an elliptical yield curve for high compressive stresses. Note that the flow rule applies only to the elliptical cap
in this yield curve. For the two straight limbs, the yield curve is normal to the truncated ellipse with the first stress invariant
o1. For a Mohr-Coulomb yield curve, the fracture angle depends directly on the slope of the Mohr-Coulomb limb of the yield
curve. Appendix A provides a theoretical explanation of how the angle of fracture depends on the internal angle of friction.
The slope of the Mohr-Coulomb limbs of the Coulombic yield curve p is varied between 0.3 and 1.0 (corresponding to
an internal angle of friction ¢ = arcsin(u) of 17.5° to 90°) to study how the fracture angle depends on the shear strength of

the material. In all experiments with the Coulombic yield curve, we use a tensile strength of 5% of P* and an ellipse ratio
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Figure 10. Fracture angles as a function of ellipse aspect ratio e with constant P* (red, bottom scale, Section 3.3.1). The theoretical re-

lationship 6¢,e11 = %arccos -1 [% (e% - 1)} (dashed black curve, Eq. B4 in the appendix) fits the modeled angles almost perfectly with

R? =0.9995 and v'VAR = 0.089. The simulated fracture angles for the Coulombic yield curve as a function of the slope of the Mohr-
Coulomb limbs (blue, top scale, Section 3.3.2) fit the theoretical relationship 05, = % arccos —1 (u) only for 11 < 0.7 (black line, Eq. B5 in
the appendix). The errors bars mean that they were more than one unique fracture line: For a small p, the ice breaks easily along the lateral
edges of the floe. For p1 > 0.7 (¢ = 44°), the ambiguity appears because the stress states are both on the linear limbs and on the elliptical
cap. For > 0.9 (blue line), the fracture angle is the same as for the ellipse for e = 1.4.

e = 1.4, following Hibler and Schulson (2000). The tensile strength is introduced mainly for numerical reasons. With zero
tensile strength, the state of stress in a simple uni-axial compressive test with no confinement pressure is tangential to the yield
curve at the origin (failure in tension) and on the two straight limbs (failure in shear) simultaneously, resulting in a numerical
instability. With tensile stress (or confinement pressure) included, the state of stress reaches the yield only on the two limbs of
the yield curve (see Fig. 12a).

For the Coulombic yield curve, there are two distinct regimes of failure. When the o5 axis intersects the yield curve on the
two straight limbs, which happens for our configuration for angles of friction ¢ < 45° (Fig. 12a, left hand side for = 0.7
or ¢ = 44°), the angle of fracture § = /4 — ¢/2 as per standard theory (Appendix A). When the o axis intersects the yield
curve on the elliptical cap, which happens for ¢ > 45° (Fig. 12¢, for 4 = 0.95 or ¢ = 72°), we observed a discontinuity in the
fracture angle associated with the non-differentiable corner in the yield curve. Note that this corner cannot be removed (by
changing the P* and e of the elliptical cap) as the two straight Mohr-Coulomb limbs are defined as a truncation of the ellipse.
For ¢ =~ 45° in our configuration, the numerical solver has difficulties reaching convergence because of the non-differentiable

corner in the yield curve between the elliptical cap and the two straight limbs (Fig. 12b, middle panel for ;x = 0.8 or ¢ = 53°).
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