
Authors answer to tc-2018-192 comments

February 14, 2019

Dear Editor,

You will find below our answers to the comments from the referees. We answered all
of them and modified the manuscript to accommodate their requests. The text of the
manuscript have considerably changed and an appendix have been added. Please note
that the title of the manuscript have been changed to de-emphasize the high-resolution
of our study following the comments from both reviewers. Note also that the order of the
authors have been changed.

Yours sincerely,

On behalf of all the authors,
Damien Ringeisen

Note:

• The referees comments are shown in black.

• The authors answers are shown in blue.

• The modifications brought to the manuscript are shown in bold typeface
and colored in gray.
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Answer to tc-2018-192-RC1 – Harry Heorton

R1#1, Modelling Sea Ice fracture at very high resolution with VP rheologies This paper
documents idealised very high resolution (25 m) numerical simulations of deformation in
sea ice using the viscous plastic VP rheology. The sea ice is predominantly put under
uniaxial compression from the top and bottom boundaries and the resulting deformation
features are documented. Simulations are performed with longer model run times, de-
creased spatial resolution, modified boundary conditions, biaxial compression, imposed
flaws within the sea ice and alternate rheologies by changing the yield curve shape. The
results are well documented, though further detail is required on the model setup. Partic-
ular emphasis is put on the resulting deformation or linear kinematic feature intersection
angle, as a means to provide a link between simulated and observed deformation features,
and thus provides insight into how to select an appropriate sea ice rheology for simulation
within climate models or for future studies. This method presents an exciting way to link
observations and simulations of sea ice deformation, but there are certain aspects of the
study that, in my opinion, need addressing.

We thank the reviewer for a thorough review and for highlighting grammatical mistakes
in the original manuscript

R1#2, Firstly is selection of model resolution, and consideration of whether to sim-
ulate a single floe or a continuum of many floes. The selected 25 m resolution makes this
a simulation of a single floe, and the paper describes the study as such, but there is little
discussion of whether the selected VP rheology is a valid representation of a single floe.
The VP rheology was developed to simulate a continuum of floes over ocean length scales,
and it is not immediately obvious to me, that the VP rheology is a valid representation
of the deformation of a single floe just by reducing the model resolution to that of single
floe, and setting the ice concentration to unity as performed in this study. I am unaware
of previous simulations of solid body deformation from other fields, and it may be the
case that VP like rheologies are well studied, but this needs to be discussed in this paper.
On the other hand this paper may be be a proof of concept that the VP rheology can be
used to simulate the deformation of a single floe, and if it is, then it needs to be worded
as such.

Typical floe size in the Arctic Ocean are of the order of 10 km, so that the continuum
assumption can only be valid for model spatial resolution of 100km (Overland et al., 1995).
Despite this, the use of VP rheologies with spatial resolution lower than 100km is now
common practice even in lower resolution Global Climate Models. This raises the valid
concern expressed by the reviewer. We argue that if the modes of failure in a single ice
floe are the same as those of an aggregate of floes, then the continuum assumption can be
used at spatial resolution higher than the 100km barrier. This is the implicit assumption
currently made in the community with the use of higher spatial resolutions even in lower
resolution Global Climate Models. We note that the mode of fracture in continuum
models is independent of the scale of the problem. For instance, the results presented
in the paper would not change if the domain and spatial resolution were increased by a
factor of 500 (i.e. dx = 125km).

We added on page 2 of the revised manuscript :”It can be argued that if
the mode of deformation of a single floe is similar to that of an aggregate
of floes, a given rheology developed for a continuum can still be applicable
at spatial resolutions of the order of the floe size (Overland et al., 1998),
but the validity of a given flow rule across scales is not clear.”
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R1#3, A further implication of simulating a single floe, rather than a continuum floes,
is the observations that the paper discusses when validating the results. The RADARSAT
and RGPS data is given as a means to validate the yield curve selected. But the RGPS
data is given on continuum length scales, so to validate a selected yield curve the com-
parison will need to be made with simulations over continuum length scales, not on the
floe length scales presented in this paper. To validate the simulations of this paper obser-
vations of individual floe shape, aspect ratio and floe-to-floe crack intersection angle from
aerial images of floes will be best suited. Secondly the presented results are often from
the order of 1-10 seconds into the simulations. This is in contrast to idealised deformation
experiments of Hutchings et al. (2004) and Heorton et al. (2018) where the results are
given at 1 - 24 hours of simulation, and explored over multiple days. Within these studies
the initial conditions and early stress/deformation states are explored and documented.
Also in both of these cases, the initial state of the ice over was seeded with noise (in
strength, or thickness and forcing) to allow for features to develop and stop an unrealistic
uniform sea ice cover. Were such considerations performed in this study? Are the initial
conditions uniform? What are the implications of using results from 1-10 seconds of model
run? I would like to see documentation of the time series of stress/strain state in order to
validate the idealised experiments and the initial conditions. I personally found the longer
documented run of 45 minutes interesting, with individual floe-like shapes appearing that
can be compared to images of floes.

• We did not use observations of angles of fracture from RADARSAT and/or RPGS
dataset to validate the model results. Instead, we use a comparison study by Hutter
et al. (2018b) between observed (RGPS) and simulated Linear Kinematic Features
as a motivation for the present work. As mentioned above, the results presented are
independent of spatial resolution, and the conclusions are applicable to continuum
scale observations. This shown in Section 3.2.1 and on Figure 5.

• The goal of the study is document the fracture angle as a function of mechanical
strength parameters, boundary conditions, and to compare the rheology-dependent
model of deformation from those induced by inhomogeneities in the initial thickness
field (Fig. 9) as in Heorton et al. (2018), and Hutchings et al. (2005). The fracture
angle provides, for the first time, a meaningful diagnostic (since it is related to
deformation and motion of sea ice) that allows a discrimination between di↵erent
rheologies (yield curve and flow rule). Note that prior attempts using sea ice drift
and PDF of sea ice deformation did not allow for this discrimination (Kreyscher
et al., 1997; Bouchat and Tremblay, 2017; Hutter et al., 2018a). For this reason,
we only integrate the model for a few seconds - until the fracture is apparent in the
thickness or deformation field. Results from longer simulations were also performed
to demonstrate that VP rheologies can simulate secondary fracture lines similar to
observations with lead opening and ridging (Fig 7).

• The initial conditions are uniform in ice concentration and ice thicknesses. This
has been clarified in Section 2.3 of the revised manuscript. Ice strength was not
modified.

• As it is now explained in section 3.1 on page 9 of the revised manuscript, the ice
floe fails starting from the first time step with stress states on the edge of the yield
curve.
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R1#4, Also there is little discussion of the implications and ‘robustness’ of the pre-
sented model results. The authors described the results as ‘robust’ on multiple occasions
but make little e↵ort to inform the reader why they are robust. Figure 5 is presented
as a domain/resolution study but only mentioned once in passing as an indication of the
models robustness. I’m assuming that the model domain/resolution/run time has been
investigated but there is no documentation or discussion of the models limitations. A
section describing this is required in order to allow the other results to be published.

As stated above, we are not interested in subsequent deformation after ice fracture. For
this reason, we do not present results on the sensitivity to time of integration. We changed
the organisation of the results section of the manuscript by regrouping all sensitivity
experiments in one section (3.2), including a short description on the sensitivity of the
results to spatial resolution and domain size on page 11, Section 3.2.1, of the revised
manuscript.

R1#5, Thirdly it is not obvious how the deformation or linear kinematic feature in-
tersection angle were calculated. I would like to see this information given in an appendix,
such a method is a very useful contribution to studies of sea-ice rheology and one that I
would like to use in the future. A citation to another study where this method was per-
formed and is described is another option. The given appendix showing the theory behind
internal friction and Mohr-Coloumb failure criterion, whilst interesting to see, does not
appear to be original theory for this paper and is not required and the dependencies can
be stated and cited.

• The angle of fracture is measured using a free image processing software (GNU
Image Manipulation Program, GIMP). The small number images to treat did not
call for a special program to measure angles as done in Linow and Dierking (2017),
Mohammadi-Aragh et al. (2018) and Hutter et al. (2018b) was not necessary be-
cause the number images to be processed was small. To clarify this issue, we
added the following text on page 7 of the revised manuscript: ”The an-
gle of fracture is measured with the angle measuring tool of the GNU
Image Manipulation Program (GIMP, https://www.gimp.org/). A spe-
cial automatic algorithm to measure angles is described in Linow and
Dierking (2017); Hutter et al. (2018b).”.

• We decided to keep the Mohr-Coulomb theory in Appendix A for the sake of com-
pleteness. We have added the following reference in Appendix A for readers who
want to see a related description of the theory (Hibler and Schulson (2000) Pritchard
(1988).

Specific comments:

R1#6, Page 1 Line 6-8 What are the dependencies of typical granular materials? The
sand castle analogy is not useful.

We decided to remove the sand castle analogy from the abstract but to keep it in the
discussion/conclusion because it is something that anyone within or outside the commu-
nity is familiar with; it was also well received at the future of Earth System Modeling
workshop at CalTech in November 2018. We rewrote the abstract.
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The new abstract is ”Recent high resolution pan-Arctic sea ice simula-
tions show fracture patterns (Linear Kinematic Features or LKFs) that are
typical of granular materials, but with wider fracture angles than those ob-
served in high-resolution satellite images. Motivated by this, ice fracture is
investigated in a simple uni-axial loading test using two di↵erent Viscous-
Plastic (VP) rheologies: one with an elliptical yield curve and a normal flow
rule, and one with a Coulombic yield curve and a normal flow rule that ap-
plies only to the elliptical cap. With the standard VP rheology, it is not
possible to simulate fracture angles smaller than 30�. Further, the standard
VP-model is not consistent with the behaviour of granular material such as
sea ice, because: (1) the fracture angle increases with ice shear strength;
(2) the divergence along the fracture lines (or LKFs) is uniquely defined by
the shear strength of the material with divergence for high shear strength
and convergent with low shear strength; (3) the angle of fracture depends
on the confining pressure with more convergence as the confining pressure
increases. This behavior of the VP model is connected to the convexity of
the yield curve together with use of a normal flow rule. In the Coulom-
bic model, the angle of fracture is smaller (✓ = 23�) and grossly consistent
with observations. The solution, however, is unstable when the compressive
stress is too large because of non-di↵erentiable corners between the straight
limbs of the Coulombic yield curve and the elliptical cap. The results suggest
that, although at first sight the large scale patterns of LKFs simulated with
a VP sea ice model appear to be realistic, the elliptical yield curve with a
normal flow rule is not consistent with the notion of sea ice as a pressure-
sensitive and dilatant granular material.”

R1#7, Page 1, Line 8 what model? this paper or previous?
We meant the mathematical description of the ice, the rheology, i.e. the elliptical

hibler Viscous-Plastic rheology implemented in MITgcm.
The abstract was changed (see R1#6 above), this sentence has been deleted.

R1#8, Page 1, Line 10-14 More description of ‘typical granular materials’ that are
not accurately described and all comparisons are di�cult to follow. I would avoid these
loose comparisons in the abstract and stick to definite results.

We wanted to give the reader a hint of the significance of our results by giving a
comparison to granular material properties. But it might lead to confusion. We will limit
the comparison to the discussion part of the paper.

We modified the abstract as specified above for comment R1#6

R1#9, Page 1, Line 24 are the two citations model studies or observations of sea
ice floes? Observational studies are required for this sentence.

Overland et al. (1998) is an observation study base on buoy data, while Tremblay and
Mysak (1997) is a modeling study. We remove this last reference and replace it by another
observational study (Rothrock and Thorndike, 1984).

R1#10, Page 2 Line 5 Leads plural, dangerous to use the word memory when
describing a computer model, ‘emergent anisotropy’ is more accurate.

Both have been corrected as suggested.

R1#11, Page 2, Line 8 The equations are di�cult to solve due to their non-linearity
and complexity not because of sea ice. It is however di�cult to represent sea ice with
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simple, easily solvable equations due to it’s non-continuous features.
We changed this sentence to express our thought more clearly.
The first sentence of the 2nd paragraph of the introduction is changed to :

”The sea ice dynamics are complicated because of sharp spatial changes in
material properties associated with discontinuities (e.g. along sea ice leads
or ridges) and heterogeneity (spatially varying ice thickness and concentra-
tion). The sea ice momentum equations are di�cult to solve numerically
because of the non-linear sea ice rheology.”

R1#12, Page 3 Line 24 argues - argued
Corrected as suggested.

R1#13, Page 3 Line 28 rheologies plural
Corrected as suggested.

R1#14, Page 3 Line 32 check citations and parenthesis
Corrected as suggested.

R1#15, Page 3 Line 33 check citations and parenthesis
Corrected as suggested.

R1#16, Page 3 Lines 34-35 ‘Based on these satellite observations, amongst others
(provide some examples), and in-situ. . . ’

The sentence was re-written as: ”Based on satellite observations (e.g.
RADARSAT Geophysical Processor System, RPGS, or Advanced Very-High-
Resolution Radiometer, AVHRR), and in-situ internal ice stress measure-
ments (e.g. from the Surface Heat Budget of the Arctic Ocean, SHEBA,
experiment),[. . . ]”

R1#17, Page 3 line 6 space before ‘Girard’
Corrected as suggested.

R1#18, Page 3 line 13 delete parenthesis
Corrected as suggested.

R1#19, Page 3 line 15 ‘are appear as line of’ - ‘appear as lines of’, deformation
singular, ‘with the deformation’ - ‘with shear deformation’, divergence - convergence

Corrected as suggested.

R1#20, Page 3 Line 18 leads - leading
Corrected as suggested.

R1#21, Page 3 line 19-20 check citation parenthesis
Corrected as suggested.

R1#22, Page 4 line 1 Wilchinsky et al. also deduced intersection angles between
floes that are relevant to this paper.

The reference to Wilchinsky et al. (2010) has been added to the list of
citation.
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R1#23, Page 5 Figure 1. What is ‘Mohr-Coloumb flat’ In general I found the figure
captions to be lacking in content. Can they all be expanded to directly describe what
simulation they are from, and the part of the figure that is of interest? A reference link to
where in the paper (section number) it is described and discussed is also required. I found
myself flipping back and forward trying to work out what simulation was illustrated in
which figure, please include more information to avoid this please.

We re-wrote the figure captions and made them self-su�cient as suggested by the
reviewer. Flat refers to the linear part of the yield curve. We replaced the word flat by
linear limb which is more accurate.

The captions of all figure have been extended to be self-su�cient. The
caption of figure 5 now reads ”Elliptical yield curve (black) with ellipse as-
pect ratio e = a/b = 2. Coulombic yield curve (red) and elliptical capping
with internal angle of friction (µ). Both e and µ are measures of the shear
strength of the material. The normal flow rule applies only to the elliptical
part of the yield curves. For the two straight limbs of the Coulombic yield
curve, the flow is normal to the truncated ellipse (dash-dot line) with the
same first stress invariant. Note that the axes �1, �2 and �I, �II do not have
the same scale.”

R1#24, page 5 Line 5 to 15. I am assuming that this paragraph describes the
physical phenomena that the viscous plastic rheology and associated yield curve are de-
signed to replicate. However this paragraph is worded such that it is an accepted and
proved fact that sea-ice is viscous plastic and has behaviour that follows all these rules.
Also the paragraph contains no citations. Rewriting this paragraph to emphasise that
the viscous plastic rheology is designed to simulate the stress/strain relationship of sea
ice over continuum length scales is required. It will also help to address the theoretical
implications of using a rheology designed for the continuum approximation of sea-ice to
simulate the deformation of a single floe.

This paragraph was reworded taking into account the comment from the reviewer.
Please see page 6 of the revised manuscript.

This paragraph now starts with ”The VP rheology was originally developed
to simulate ice motion on a basin scale (e.g., Arctic Ocean, Southern Ocean)
(Hibler, 1979). In this model, stochastic elastic deformation is parameter-
ized as highly viscous (creep) flow (Hibler, 1977). Ice is set in motion by
surface air and basal ocean stresses moderated by internal ice stress.”

Page 6 line 11 check parenthesis
The missing parenthesis have been added

R1#25, Page 6 line 15 Is this ‘theoretical angle’ the one used to retrieve the LKF
intersection angles from simulation results, and also with previous studies? If so can
you state it here. The paper has not informed me how this study, and previous studies
obtained the intersection angles widely discussed.

Yes it the theoretical angle of fraction derived form the Mohr’s circle and the Mohr-
Coulomb yield criterion. It is described in several paper, e.g. in Ip et al. (1991); Hibler
and Schulson (2000), and , as shown in appendix A and B, it is in agreement with the
characteristics lines described in Pritchard (1988)

The 3 references above have been added on page 8 of the revised manuscript
in the sentence : ”The theoretical angle of fracture ✓ can be calculated from
the Mohr’s circle of stress and yield curve written in the local (reference)
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coordinate system (Ip et al., 1991; Pritchard, 1988; Hibler and Schulson,
2000). Details are described in the appendix. For a Mohr-Coulomb yield
criterion, ✓ follows immediately from the internal angle of friction, that is
the available shear strength. An instructive analogue is the slope of a pile
of sand on a table. Wet sand can support more shear stress and hence the
slope angle can be steeper (smaller).”

R1#26, Page 8 line 6 is the model domain used in all experiments? If there are
exceptions please list them.

This model domain is used in all experiments, except for two experiments reported in
Section 3.2.1 (Figure 5 and Figure 7).

We inserted : ”The model domain is a rectangle of size 10 km ⇥ 25 km,except
for Sect. 3.2.1 and Sect. 3.2.2” on page 8 on revised manuscript

R1#27, Page 8 line 10 - 11 This statement about the robustness of the results is
not backed up. Please refer the reader to the results that back up this statement. The
proof of the robustness of this model needs to come first before any other results.

See Section 3.2 on page 10 of the revised manuscript for a discussion on the sensitivity
of the results to di↵erent boundary conditions. In our opinion, the demonstration that
VP rheologies can simulate realistic fracture lines that have angles in accord with theory
should be presented first. This is the reason why we present these results first, before the
sensitivity of the results to the boundary conditions. The boundary conditions in this
context can be seen as external forcing on the interior solution.

R1#28, Page 8 Lines 11 - 17 Please state how the model time step works? I am not
familiar with how the LSR solver for the VP rheology works. How does the model work in
time? I am familiar with models that have a constant time step with solution iterations
per time step. The model then continues time stepping for the required simulation period.
Does your model work in the same way? Or is there a selected simulation time, and then
the documented 1500/1500 iterations performed to cover the simulation time? If so then
can you describe why the simulation time was selected as you have done with the spatial
resolution. Is the simulation time and temporal resolution/number of iterations the same
for all simulations?

The non-linear momentum equation is solved iteratively until a converged solution is
obtained. Typically 1500 iterations are required to reach convergence. Then the external
forcing is then updated and a new solution calculated. This has been clarified on pages
7-8 of the revised manuscript.

We modified the text describing the numerical solver :”We solve the non-
linear sea-ice momentum equations with a Picard or fixed point iteration
with 1500 non-linear or outer-loop (OL) iterations. Within each non-linear
iteration, the non-linear coe�cients (drag coe�cients and viscosities) are
updated and a linearized system of equations is solved with a Line Successive
(over-)Relaxation (LSR) (Zhang and Hibler, 1997). The linear iteration is
stopped when the maximum increment is less than ✏LSR = 10�11 ms�1, but we
also limit the number iterations to 1500. Typically, 1500 non-linear itera-
tions are required to reach a converged solution. This is so because of slow
convergence due to the highly non-linear rheology term and the high spatial
resolution (Lemieux and Tremblay, 2009).”

R1#29, Results section A paragraph describing which simulations have been per-
formed will be useful here. This will save having to flip back and forward through the
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paper to match results discussion and figures. The simulation ‘robustness’ results need
to come first in order to validate the following results.

A paragraph have been added at the beginning of the Section 3 (Results) on page 9 of
the revised manuscript, stating the di↵erent part of the result section. A paragraph has
been added at the beginning of Section 3.2 on page 10 of the new manuscript to list the
sensitivity experiment that have been performed.

The first paragraph of Section 3.2 now reads ”We use simple uni-axial
loading experiments to investigate the creation of pair of conjugate faults
and their intersection angle. After presenting the results of simulations
with the default parameters (Section 3.1), we explore the e↵ects of experi-
mental choices: confining pressure, choice of boundary conditions (i.e. von
Neumann versus Dirichlet), domain size and spatial resolution and inhomo-
geneities (i.e. localized weakness) in the initial thickness and concentration
field (Section 3.2). Finally, we study the behaviour of two viscous plas-
tic rheologies with di↵erent yield curves and compare these dependencies to
what we can infer from smaller and larger scale measurements from labo-
ratory experiment and RGPS observations (Section 3.3).”

R1#30, Page 8 line 29 Figure - figure (no capital), ‘measured intersection angle’
how was this angle measured?

We modified the manuscript to comply with the journal standards, i.e. using Fig. or

Figure, Eq. or Equation , Table, and Sect. or Section.

The word measured is now replaced by simulated. We measured the angle
using the GIMP software. See response to comment R1#5 above for more
details.

R1#31, Page 8 line 27 quantify ‘right away’ and how can a fracture appear but
not in the deformation field? what field did it appear in? Can you comment on this time
scale compared to observations of floe fracture (Dempsey et al. 2011 Fracture of a ridged
multi-year Arctic sea ice floe )

After 1 timestep, the stress states reach the yield curve and deformation occurs. We
see this immediately in the strain rates (divergence and deformation). For the results
presented in the paper, we have iterated for 10 additional seconds in order for the signal
to also be seen in the thickness and concentration field. We do this to more clearly show
the fixed link between sea ice shear strength and divergence in the standard VP rheology
of Hibler. We removed the sloppy term “right away” from the text. The reference to
Dempsey et al. (2012) was also added in the discussion.

The new text on page 9 of the revised manuscript now reads: : ”After 1
timestep (or 0.1 s), the stress states already lie on the yield curve and the
fracture is readily seen in the deformation fields (divergence and shear). We
iterate for a total of 20 seconds in order for the signal to be apparent in the
thickness and concentration fields. We do this to more clearly show the link
between position of the stress states on the yield curve and the normal flow
rule in the standard VP rheology of Hibler (1979).”

On page 22 of the revised manuscript (discussion section), we added the
following sentence : ”Observed time scales of fracture are on the order of
10 seconds for 60 m floe diameters (Dempsey et al., 2012, Figure 6 top right
panel) and from typical elastic wave speeds of 200–2000ms�1, large cracks
of order 1000 km can form in minutes to hours (Marsan et al., 2012).”
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R1#32, Page 9 line 7 The ‘robustness’ results need to come first, then the model
resolution and time period choice can be validated against them.

Please see response to comment R1#27 above for a justification.
The angle of intersection between a pair of conjugate fault does not

change with domain size and spatial resolution (see Fig. 5).

R1#33, page 9 line 9 extended time period, what was the original time period?
The original time period of the simulation is 20 seconds with a 0.1 second time step.

The length of the simulations is not important here as we are showing only results from
the first timesteps.

We added a reference to Table 1 in the revised manuscript on page 9 sec-
tion 3.1. We also changed the sentence on page 7 (please see next comment
R1#34 below)

R1#34, Page 9 line 10 total iterations or iterations per time step? what is the time
step?

It is the number of sub-cycles used to solve the non-linear momentum equation. This
should be clearer in the new version of the manuscript (see response to comment R1#28
above)

The first two sentences now read: ”Continuing the integration to 2700 seconds
(45min), compared to 20 seconds in the reference simulation leads to the
creation of smaller diamond-shaped ice floes due to secondary and tertiary
fracture lines (Figure 6).”

R1#35, Page 10 Figure 3 Bottom left pane. Please use a bipolar colour scale for
bipolar data. As in a di↵erent colour for +/-, white for zero for example. These scales
are easily selectable.

The colorbar were changed as suggested.

R1#36, Page 10 Line 8 ‘similarly as’ - ‘similar to’
Corrected as suggested.

R1#37, Section 3.3 If this section addresses the robustness then it needs to go first
and also discuss the results in figure 5. Please also comment on the limitations of this
model.

Please see the new Section 3.2 and the answer to the comment R1#27 above.
The limitations of the VP model are discussed in the introduction on page

2 of the revised manuscript. All sensitivity experiments - including sensitivity
to spatial resolution and domain size - are now presented together in a new
section 3.2 entitled: Sensitivity experiments. The limitations of the this study
are discusses in the discussion section on page 22 of the revised manuscript.

We added in the discussion section on page 22 :”The simulations presented
in this study are not realistic and cannot be compared directly to observa-
tions of ice floe fracture. For instance, our idealized ice floe is homogeneous
while sea ice is known to feature some weaknesses like thermal cracks or melt
ponds.”

R1#38, Page 11 Figure 5 First change or rescale the colourscale to highlight
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features. The max deformation appears to be around 10�4, so limit the colour to this
point, Also please label the colour scale legend with units. Why have you selected only 2
seconds of model run. what happens later in the run? Is this on a similar time scale to
observations of floe fracture? Consider plotting a later time point if available or discuss
how the model proceeds.

We want to keep the same scale for every plot. Yes, the maximum value is approxi-
mately equal to 10�4. We added color bar legends with units. We limited the simulation
to 2 seconds because of computational constraints. After 2 sec, the fracture angle is al-
ready visible, and it is not necessary to run the simulation any longer time, because this
would simply make the signal stronger in the thickness and concentration fields. This was
tested using a smaller domain. We clarified this on page 11 of the revised manuscript.

We have re-written the captions of all figures including the reference to the
appropriate section as suggested by the reviewer. We justified our choice of
total integration of 2 sec for this experiment in the revised manuscript.

The caption was modified : ”Maximum shear strain rate (second strain
invariant) after 10 seconds of integration for the default domain size and
�x = 100m (a) and 500m (b), and for the default �x and a doubled domain
size of 20 km ⇥ 50 km (c). Note that for case of the double domain (c), the
southward velocity at the northern boundary was also doubled to keep the
deformation rate constant, and that this simulation is limited to 2 seconds
for numerical e�ciency.”

R1#39, Page 12 again bipolar colour scale for bipolar field would be appreciated.
All of your plotted fields so far have been for deformation, a plot of a stress field, if
available, will be nice to see. There are lots of crack intersections in this plot. Is it
possible to obtain all of these intersection angles? A distribution of angles could then be
presented.

While these simulations are indeed cool to look at (especially when you animate them!),
it does not seem useful to us to investigate the angles of all of these leads in detail. Most of
them were created after the initial fracture, therefore the direction of stress and magnitude
of stress have been modified by ensuing fractures and deformations so that the analysis
would be confounded. We can see that the fracture pattern is not absolutely symmetrical.
This means that the converged solution is not reached. In principle, this is possible, e.g.
with the software of Hutter et al. (2018b). We find the stress field not to be helpful in our
case, the deformation field showing the fracture lines is more important for us to explore
the e↵ects of the rheology.

The colorbar has been corrected as suggested.

R1#40, Page 13 Line 5 Comment on ice strength/thickness vs fracture angle. Is
this a result you have observed? Or is it a theory that you are testing? Is there a citation
for this theory?

Our statement is a little misleading and has been rephrased to express that because
ice strength in the model is a linear function of the ice thickness, see equation 4 on page
5, or (Coon et al., 1974; Hibler, 1979), and the fracture angle depends on ice strength, it
implicitly also depends on the ice thickness.

We included on page 13 of the revised manuscript the sentence :Note that
the ice strength is linearly related to the ice thickness (Eq. 4). Therefore the
normal stress at the edge of the floe is completely defined by the thickness
of the surrounding ice.
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R1#41, Page 13 Line 17 You start this paragraph with statements about the link
between initialised faults and deformation. Is this a theory you are testing? If so give a
citation. Is it your interpretation of the results? if so you need to state the results and
the reference the figure first.

This is a hypothesis that we can support by our simulations shown in Fig.9. The
hypothesis was formulated previously and also tested (Aksenov and Hibler, 2001) and
(Hibler and Schulson, 2000). It has not been tested using models whether the angle of
fracture is dictated by in-homogeneities in the sea ice cover or the yield curve and flow
rule (see appendix B1 and B2 for the elliptical and Coulombic yield curve in the VP
rheology).

We rewrote the text of this section on page 14 of the revised manuscript :
”So far, all initial conditions have been homogeneous in thickness and con-
centration within the ice floe. In practice, sea ice (in a numerical model, but
also in reality) is not homogeneous. A local weakness in the initial ice field is
likely the starting point of a crack within the ice field (e.g., Herman, 2016,
her Figure 5c). Local failures raise the stress level in adjacent grid cells
and a crack can propagate. Note that the crack propagation in an “ideal”
plastic model such as the VP model is instantaneous and this propagation
is not seen between time steps. As a consequence, lines of failure will likely
develop between local weaknesses. The location of weaknesses in the ice field
together with the ice rheology (yield curve and flow rule) both determine the
fracture angles (Hibler and Schulson, 2000; Aksenov and Hibler, 2001).

To illustrate this behavior, we start new simulations from an initial ice
field with two areas of zero ice thickness and zero ice concentration, hence
weaker ice (Figure 9a). After 5 s these simulations yield fracture patterns
that are dramatically di↵erent from those of the control run simulation (Sec-
tion 3.1): the fracture lines now start and terminate at the locations of the
weak ice areas. Still, changing the shear strength of the ice (by changing e)
changes the fracture pattern (Figure 9b and c). With e = 1, the angles are
much wider than with e = 2, which is consistent with the general dependence
of fracture angles on e (see Sect. 3.3.1). Our simulations cannot lead to
conclusive statements about the relative importance of heterogeneity of ini-
tial conditions and yield curve parameters for the fracture pattern, but we
can state that both a↵ect the simulations in a way that requires treating them
separately to avoid confounding e↵ects. Details are deferred to a dedicated
study.”

R1#42, Page 14 Figure 8 caption is lacking detail. Is this the figure for the lateral
confinement experiments, or ice thickness experiments? Please describe what is shown in
every pane.

All captions have been re-written. This is the lateral confinement experiment. Thanks
for pointing this out.

The caption of figure 8 have been modified to be : ”Maximum shear strain
rates (left) and stress state in stress invariant space (right) after 5 sec-
onds of integration for di↵erent confinement pressure: hc = 0.05m (a) and
hc = 0.3m (b). Note, how stress states with divergent strain rates (a) migrate
left towards convergent strain rates (b).”
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R1#43, Page 15 Figure 9 please label colour scale legends.
Corrected as suggested.
R1#44, Page 16 Figure 11, again please describe the simulation this figure corre-

sponds to? The colorscale are saturated so consider rescaling.
In the case of the top left panel (now panel a) ), the log-scale of the colorbar does

not allow me to use a non-saturated colormap. There is lot a simulated ice that deforms
really slowly (viscous creep) These areas are not interesting for us, so it is not necessary
to display them in the colormap. Additionally, logarithm of values close to zero are close
to �1, so impossible to display on a colormap. We use a logarithmic colormap to have
a better contrast of value of deformation, that have a really steep changes. We rewrote
the caption, see below.

The caption for this figure now read ”Maximum shear strain (a), ice thick-
ness anomaly (b), divergence (c) and stress state in stress invariant space
(d) after 5 sec of integration for a smaller ellipse aspect ration (e = 0.7
compared to e = 2 in the reference run in Sect. 3.1). Compared to the con-
trol run on Fig. 3, the angle of fracture is larger (✓ = (61 ± 1)�), the stress
states are in the second half of the ellipse (with strain rates pointing into
the convergent direction) and there is convergence along the fracture lines
(panel b) in agreement with the schematic in Fig. 4”

R1#45, Page 17 line 18 A lot of LKFs - how many? Or is it more than compared
to another simulation? rephrase or quantify.

We do not expect uniform piece of modelled ice to break in any other way than with
2 fractures. We rephrased this sentence to explain why the creation of more than 2
conjugate faults is problematic

We rephrased and changed the sentence by Sea ice shear strength is small
for small stresses, and ice deforms strongly along the ice edge. Many small
LKFs develop, but no large fractures spanning the entire floe, as expected
in a uni-axial compressive test with an homogeneous plastic material.

R1#46, Page 17 line 21 space before theta
Corrected as suggested.

R1#47, Page 18 Figure 12 are these Coulombic curve simulations? again this
caption needs more detail.

Corrected as suggested
The captions of all figure have been extended to be self-su�cient and the

suitable sections referenced.

We changed to caption to ”Maximum shear strain (top) and stress state
in stress invariant space (bottom) for di↵erent internal angles of friction.
(a) µ = 0.7 or � = 44�, (b) µ = 0.85 or � = 58� and (c) µ = 0.95 or � = 72�

after 5 s of integration. The angles of fracture are ✓ = 23�, (28± 2)� and 41�.
Fig. 10 illustrates how ✓ depends on µ for a Coulombic yield curve.”

R1#48, Page 18 line 4 ‘realistic manner’ how are they realistic? what simulations
are you comparing to what observations? A figure reference and a citation are both needed
for this statement.

We mean ”look realistic” when compared with observations from RGPS and reported
in Hutter et al. (2018b) or lab experiments reported in Schulson (2004). We wanted to
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express the way the model produces small floes that appear realistic, but may be not so.
Still, we can compare to small lab experiment from Schulson and Duval (2009) and see
several similarities, although at di↵erent scales.

We changed the sentence to: The fracturing of the ice floe creates smaller
floes in a realistic manner, for example, compared to to Landsat-7 images
(Schulson, 2004, Figure 2)

R1#49, Page 19 line 12 please refer to the section or figure or both that show the
resolution and scale non-dependance.

The section and figure is now referred to on page 20 of the revised manuscript.

R1#50, Page 19 line 15 ‘appear’ - ‘appears’
Corrected, as suggested

R1#51, Page 19 line 26 please give a citation for the statement on granular mate-
rial.

The citation Balendran and Nemat-Nasser (1993) was added

R1#52, Page 20 line 22 Citation required for ‘Arctic-wide simulation’
We added a citation to Hutter et al. (2018b)

R1#53, Page 20 line 28 why is it unsurprising? Do mean that your results fit with
previous theory and results? If so can you say this and cite them?

This is not surprising because it is the role of the yield and the flow rule to determine
the deformation of the solid. We modified the sentence to clarify our opinion:
”Unsurprisingly, the yield curve plays an important role in fracturing sea
ice in a numerical model as it governs the deformation of the ice as a func-
tion of the applied stress.”

R1#54, Page 20 line 33 ‘The ice open and create leads’ - The simulated sea ice
opens and creates leads

Corrected as suggested
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Answer to tc-2018-192-RC2 – Jenny Hutchings

R2#1, I am really pleased to see a paper that is making suggestions for idealised ex-
periments we can use to di↵erentiate between rheological models for sea ice. This in
itself is worth publishing. The main result of the paper is that the elliptical rheology
is inappropriate for representing observed cracking orientation in the ice pack, which is
interesting and helps motivate changing sea ice rheological models used in climate and
weather prediction.

We thank the reviewer for the numerous interesting comments about our work. We
tried below to answer and address all of them in this new manuscript.

R2#2, I do have some concerns that the interpretation of observational data needs
sharpening, and the results must not be overly interpreted given limitations of the use
of RGPS data. Identifying intersection angles for lead pairs actually requires more work
(and dedicated field data collection) than this paper warrants. You are motivated by the
fact that a simulation shows larger intersection angles than RGPS, and I agree that this
is something to address. I just do not think you can use RGPS to determine what the
intersection angle should be, just that it needs to be smaller. Note, there are others in
the community funded to do this work of identifying fracture patterns associated with
particular modes of failure. For example I have an NSF and NASA project that is looking
at identification of modes of failure from satellite imagery. There are also upcoming field
experiments that could provide case studies to constrain the actual behaviour of sea ice,
which should provide further guidance for use of your idealised cases to constrain rheo-
logical model design. I would be happy to talk to you in person about using this analysis
and data to support future model validation e↵orts. I would also caution you to be more
careful in your description of the di↵erences between VP and granular models. Some
clarification missing from the manuscript is provided in my comments. I also have sug-
gestions for why the VP model creates LKFs, which I feel is important for understanding
the validity of LKFs in the viscous plastic sea ice model representing nature.

We agree with you that determining the intersection angle of conjugate faults from
the RGPS LKF data-set has a few limitations (only large cracks, temporal resolution
of 3 days,...). Given the large variety of forcing conditions, the RGPS LKF data-set
includes LKFs originating from multiple modes of failure, but also shows conjugate fault
pairs. We, here, name two advantages of using the RGPS LKF data-set to evaluate
intersection angles in Pan-Arctic sea-ice simulation: (1) the data-set covers 65% of the
Arctic Ocean and spans over twelve years, which is a much higher coverage compared to
hand-picked studies in satellite imagery (Erlingsson, 1988; Walter and Overland, 1993).
(2) The data-set enables a consistent comparison with model output as it is based on
sea-ice deformation. As the intersection angles are consistent with other studies (e.g.
Walter and Overland, 1993) we are confident that this approach can be used to determine
whether a model is over- or underestimating the intersection angle. We, here, want to
stress that we only use the misfit of intersection angles in the RGPS LKF data-set and in
a Pan-Arctic sea ice simulation to motivate our work to further study the dependency of
the rheology and yield curve on the intersection angle. In our manuscript, the RGPS LKF
data-set is not used to evaluate our idealized experiments. We rewrote the corresponding
abstract accordingly to make this point clear.
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Specific comments:

R2#3, Check spelling throughout the manuscript. Also check for missing brackets
throughout. Grammar can be improved in places, and sometimes words are repeated.
Make sure you have someone very carefully proof read the manuscript. I did not correct
all the typos I saw because I am short on time and wanted to focus my attention on the
central messages in your paper.

We have carefully proofread the manuscript. We apologize for the many technical
problems.

R2#4, In the introduction be specific that you are considering conjugate fault pairs
that form under specific confining stresses, the orientation of which is controlled by the
yield curve shape and flow rule. In particular reference Pritchard in the introduction. It
is only when I got to the conclusion that I saw you were aware of this work and it was
motivating your study. It is wise to point out that not all applied stress will result in
intersecting fault pairs (for example tension and pure compression do not).

We included a citation of Pritchard (1988), and clarified that pure compression and
tensile cracks do not form pair of intersecting fault. Thanks for pointing this out.

We added this text in the introduction : ”Pritchard (1988) investigated
the yield curve’s mathematical characteristics and derived angles between
the principal stress directions and characteristics directions that depend on
the tangent to the yield curve. These results show that stress states exist in
plastic materials where no LKFs form and were later used to build a yield
curve (Wang, 2007).”. We also changed the first sentence of the last para-
graph of the introduction by : In this paper, we simulate the creation of a
pair of conjugate faults in an ice floe with two di↵erent VP rheologies in
an idealized experiment at an unprecedented resolution of 25m. We explore
the influence of various parameters of the rheologies and the model geome-
try (Scale, resolution, confinement, boundary conditions, and heterogeneous
initial conditions).

R2#5, Page 2 line 4. The appropriate references for e�cient solution is Hutchings
et al. 2004 or Jean-Francois Lemieux et al. 2010, I would not call LSOR or Hibler’s
method, which I used in the 2005 paper, as e�cient. This introduces the e�cient solution
method that correctly couples P and U, for a convergent plastic solution. This solution
method was not used in Hutchings et al. 2005. Hutchings et al. 2005 is the correct
reference for qualitatively reproducing LKFs in the viscous plastic model.

Thank you, we corrected the citations.

R2#6, Page 2 line 15: MEB? typo? I think you need to introduce the acronym for
the Maxwell-Elastic-Brittle model here.

Corrected as suggested. We replaced “Viscous” by “Maxwell (viscous)”

R2#7, Page 2, line 24: argues ! argued.
Corrected as suggested.

R2#8, Page 2, line 31: Flato and Hibler 1992 is not a mohr colomb relationship.
The cavitating fluid behaves very di↵erently and the first SIMIP (see work by Kreyscher
and Harder) indicated this was not a suitable stress-strain relationship for sea ice. Also
check that Ip et al. 1991 is not using a di↵erent flow rule to Tremblay’s. I am wondering
if you are missing text here, as these two references were left hanging
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The mohr-coulomb yield curve was presented in the appendix of the Flato and Hibler
(1992) paper as a possible extension to the cavitating fluid sea ice model. The way we
referenced it in the paper was mis-leading.

We replaced the last sentences of this paragraph by : ” Alternative VP rhe-
ologies were never widely used in the community. These include a Coulombic
yield curve with a normal flow rule (Hibler and Schulson, 2000), a parabolic
lens and a tear-drop (Pritchard, 1975), a diamond-shape yield curve with
normal flow rules (Zhang and Rothrock, 2005), a Mohr-Coulomb yield curve
with a double-sliding deformation law (Tremblay and Mysak, 1997) or a
curved diamond (Wang, 2007).”

Page 2, some important points that I do not think are clear in your introduction:
R2#9, The Elastic-Plastic model developed during AIDJEX was based on assump-

tions of a material with embedded cracks in all directions that are sub-grid scale. This is
closer to a ductile material than granular material.

Assuming that cracks are present in the pack ice in all direction was used to justify the
isotropic assumption in the Coon et al. (1974) - later corrected in Coon et al. (2007) where
the authors argued that an anisotropic assumption should be used instead. The coarse
resolution of sea ice models did nothing to motivate taking into account the granular
nature of sea ice in early works on sea ice models.

We have clarified this point in the revised introduction on page 2 of the
revised manuscript as ”Originally, Coon et al. (1974) assumed sea ice to
have cracks in all directions, justifying isotropic ice properties and isotropic
rheologies.”

R2#10, The Viscous-Plastic model is only considered valid on coarse resolution (Hi-
bler 1977). It is possible to consider this model with the ice always being in a state of
plastic failure, until you get to high resolutions that allow representation of ice areas be-
tween fractures, when the viscous creep, while numerically small, is unphysical. At small
scales an elastic model is appropriate for low stress states. The viscous behaviour inside
the yield curve is often treated as regularisation required for numerical solution.

It is true that VP rheologies are valid only at coarse resolution, but a lot of recent
works feature the use of high-resolution simulation with VP models that already break
this assumption (e.g. Wang et al., 2006; Hutter et al., 2018a) We also think that Viscous
behavior is a regularisation of small deformations for the numerics. However it looks to
us like a detail that may not need to included in the introduction. We propose to add
this in the description of the VP rheology in section 2.2

We added in page 2 of the revised manuscript: ”At any scale, the as-
sumption of viscous creep for small deformations is not physical and an
elastic model would be appropriate for low stress states. The long viscous
time scale, compared to the synoptic time scale of LKFs, of order 30 years
(Hibler, 1979), however, allows viscous deformation to be viewed as a small
numerical regularization with little implications for the dissipation of me-
chanical energy from the wind or ocean current (Bouchat and Tremblay,
2014), and the ice model can be considered as an ideal plastic material.”
We also added on page 6 of the revised manuscript the sentence ”Internal ice
stress below these thresholds leads to highly viscous (creep) flow that param-
eterizes the bulk e↵ect of many small reversible elastic deformation events.
The timescale of viscous deformation is so high (' 30years) that viscous
deformation can be seen as regularisation for better numerical convergence
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in the case of small deformation..”

R2#11, Personally I think it is still not clear that the failure mode of a single floe
is the same as an aggregate of floes. This has not been shown observationally or with
models, and statements of scale invariance based on observed qualitative correspondence
between failure modes in the lab (cm scale) and ice pack (10-100km scale) do not extend
to the floe scale.

By conception, sea ice models used today are scale independent and are being used at
resolution approaching the floe scale. We added a sentence to specify that the fracture
process at the floe scale as not been shown to have the same failure mode as at arctic and
lab scales.

We added a sentence on page 3 of the revised manuscript: ”The scale in-
variance of the fracture processes at the floe scale has not yet been shown,
especially due to the lack of observations at both high spatial and temporal
resolution.”
We also added on page 2 of the revised manuscript: ”It can be argued that if
the mode of deformation of a single floe is similar to that of an aggregate
of floes, a given rheology developed for a continuum can still be applicable
at spatial resolutions of the order of the floe size (Overland et al., 1998),
but the validity of a given flow rule across scales is not clear.”

R2#12, Page 3 Discussion regarding orientation of intersecting LKFs from RGPS:
I performed a similar analysis back in the early 2000’s and never published the result,
which was a wide spread in intersection angle. The reason I did not publish this is because
I realised that the RGPS product could potentially be capturing fracture zones that form
at di↵erent times, and therefore in the product appear to be a conjugate pair because they
intersect, but they are not because they were not formed under the same confining stress.
This is really obvious if you spend some time on the ice pack in winter and observe leads
forming and working. RGPS is not the right satellite product to use to identify conjugate
fault pairs in sea ice. Hence I disagree that you can state ”The wide range of intersection
angles is presumably due to previous deformation history and associated hetrogeneity in
the ice cover that dictates the strength locally”.

Thanks for pointing this out here and also in a recent conversation with co-author
Tremblay. It is correct that RGPS data represent a mean over 3 days and for this reason
we cannot be certain that intersecting fractures were formed simultaneously. In revising
the paper, we have downplayed the RGPS as a dataset used for validation/motivation as
per your suggestion and that of the other reviewer.

R2#13, page 3, line 32: Just want to clear up one very important point about
my 2005 paper. It is steep stress gradients in the model sea ice stress field that allow
LKFs to form. I suspect this opening is related to an instability in the model identified
by Nico Gray (Gray and Kilworth 1995). We seeded stress gradients though a random
number being added to P* (which defines compressive strength). At the time I wrote
this paper I was obsessed with plastic convergence of the VP solution, so made sure there
were no spurious stress values due to the numerical error. The pan-Arctic model of Heil’s
included in this paper, and other VP models, are able to show LFKs because of the noise
introduced by not converging fully to the yield curve. If you play around with a VP
model you can create divergence related instabilities along gradients in forcing (e.g. non-
smoothly interpolated wind fields), or even have the model blow up and crash due to one
localised discontinuity in thickness (e.g. I have seen this when using a nudging method to
assimilate data into the CICE model that created open water locally). The reason I bring
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this up is that I feel it is very important that people understand how the VP model can
create LKFs. The mechanism is quite di↵erent from what might actually be happening
in a granular or brittle material. I would be very happy to advise on experimental design,
repeating and following up on my investigations 15 years ago.

Simulation by Lemieux and Tremblay (2009) show LKFs in a fully converged solution
using the JFNK method (Lemieux et al., 2010) using a realistic but smooth thickness and
concentration field. In the response to reviewer document for the Lemieux and Tremblay
paper (not published), we also showed LKFs in idealized experiments with a constant
thickness and concentration field. In the present paper, we also show clear discontinuity
in the strain rate fields that becomes apparent in the thickness and concentration field
after some integration. We see the VP model as an ideal plastic model as opposed to a
viscous plastic model given that the time scale associated with the viscous term (for the
default ⌘max an ⇣max) is ⇠ 35 years and LKFs form over time scale of a few days. So,
for all practical purposes, the viscous term does not operate on time scale of interest to
LKFs formation. Ideal plastic material in turn can be viewed as an elastic-plastic material
with an infinite elastic wave speed (stresses adjusts instantaneously with the forcing in
in the “elastic” regime and can form linear kinematic features. For all these reasons, we
think that the instability described in Gray and Killworth (1995) is not responsible for the
formation of LKFs in a VP model. A formal comparison between elastic-viscous-plastic
(MEB) model and a viscous-plastic model is underway by one of the co-authors. This
will be studied in more details in that paper. Further discussion with the reviewer on this
topic will be very welcome.

R2#14, page 3, line 34: The original study on shape of yield curve and ice arches
is in Billy Ip’s thesis, that was published later by Hibler in Hibler et al. (2006).

This reference was added to the introduction on page 3 of the revised manuscript.
Thanks for pointing this out.

R2#15, page 8, line 14. A reader unfamiliar with numerical solution of the VP
model will need some guidance as to what non-linear and linear iterations are. I know you
are talking about the sub-cycling to reach plastic equilibrium (or close to it) and converge
the velocity solution at each time step. Perhaps use language that is more obvious to a
casual reader. Incidentally, did you check convergence properties? Just curious. I think
you point out somewhere that the modified coulombic rheology is slower to converge -
I found that solutions for yield curves with corners never converged fully. A frustrating
reality! If you follow my suggestions to delve into why the model creates LKFs you will
need a full description of the interative process and convergence characteristics.

Our theory of yield curve added in appendix B gives an explanation of why a yield
curve with corners gives poor convergence. We modified this paragraph to improve clarity
about the LSR solver scheme and the presence of sub-cycles (or outer-loops), as also asked
by the other referee.

We modified the text describing the numerical solver :We solve the non-
linear sea-ice momentum equations with a Picard or fixed point iteration
with 1500 non-linear or outer-loop (OL) iterations. Within each non-linear
iteration, the non-linear coe�cients (drag coe�cients and viscosities) are
updated and a linearized system of equations is solved with a Line Successive
(over-)Relaxation (LSR) (Zhang and Hibler, 1997). The linear iteration is
stopped when the maximum increment is less than ✏LSR = 10�11 ms�1, but we
also limit the number iterations to 1500. Typically, 1500 non-linear itera-
tions are required to reach a converged solution. This is so because of slow
convergence due to the highly non-linear rheology term and the high spatial
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resolution (Lemieux and Tremblay, 2009).

R2#16, page 8, results section: Describe what the applied strains are in the numer-
ical experiments (magnitude, not just direction).

The specified strains are described in equation 17 on page 8 of the original manuscript
(or page 8 of the revised paper), and their magnitude is documented in Table 1. We use
the same strains for all experiments, excepted for the up-scaled experiment where the
magnitude of the strain is up-scaled as well.

R2#17, Page 8 line 26: What are the default parameters? I think you forgot to
reference table 1.

We added the reference to Table 1 on page 9.

R2#18, page 9, line 4: Regarding your statement ”Fracture occurs when the stress
state intersects the yield curve”. Plastic failure occurs then. The fact that a ”fractures”
form is because the ice deforms at a stress discontinuity where the stress accumulates
and reaches yield. You are correct in pointing out that the strain-rate has characteristic
directions along which divergence will occur, defined by the shape of the yield curve and
flow rule. It is this divergence, relative to the confining stress, that defines the directions
of the linear deformation features in the model runs.

We agree on this, this paragraph have been modified to clarify this point.
This sentence has been rephrased as Fracture occurs after plastic failure

when the stress state reaches the yield curve and the ice starts to move in
divergence. for clarity.

R2#19, Comment on di↵erences between 3.1 and 3.2: The change in nature
of cracks when you decrease the number of internal iterations (linear iterations) is prob-
ably related to the fact that the ice stress field is more heterogeneous (further from the
converged solution) and the LSOR method tends to create noise in the stress field and
smoothes with increasing number of iterations (unlike the SIMON method I proposed,
Hutchings et al. 2004, that has a smoother convergence to the yield curve). Hence there
are more points where LKFs can nucleate when you reduce the number of internal itera-
tions. This is just a suggestion, with out looking at the stress fields in your experiments I
can not tell you if this is what is actually happening. Incidentally, another unpublished re-
sult that I presented at AGU in 2003: The VP model can create intersecting deformation
features across the entire Arctic Ocean is you do not converge to plastic equilibrium and
are not careful in smoothing the solution between time steps (which can be done numeri-
cally through the choice of advection scheme or Bill’s introduction of artificial di↵usion in
his 1979 paper). I never followed up this work. I suspect that this is a direct consequence
of Gray’s instability. This instability is damped by the addition of numerical di↵usion (or
artificial di↵usion) in the solution proceedure. We might think the resultant strain-rate
fields are more realistic, I just do not believe using the non-convergence and numerical
instability is an appropriate way to model the process because we are not controlling the
nature of the stress concentrators or stress propagation in the model appropriately. The
key point is that the ice pack strength is highly heterogeneous and while we do not know
the nature of the stress concentrators in the ice pack, they are likely to be more randomly
distributed (which non-convergence to the yield curve might be approximating, but is not
controlled for). There is a need to understand the nature and distribution of the stress
concentrators in sea ice, so we can appropriately model this. And it would really help
future sea ice modellers to point out this issue more clearly in papers that investigate
LKFs in the viscous-plastic model.
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We are afraid that there is a misunderstanding. The results of section 3.2 (3.2.1 in the
revised manuscript) do not critically depend on the number of non-linear iterations. The
section 3.2 uses less iterations because we wanted to run the idealized experiment for a
longer time, but we do not intend to compare the e↵ect of the number of iterations. If we
use the same low number of iterations for the experiments in section 3.1, we obtain almost
the same shear pattern although the shear lines are not so well defined. We improved the
description in the beginning of 3.2 to try to avoid any misunderstandings. We more than
agree with the last statement in this comment.

The description of this experiment is now in Section 3.2.1 of the revised
manuscript on page 12 and reads ”Continuing the integration to 2700 seconds
(45min), compared to 20 seconds in the reference simulation leads to the
creation of smaller diamond-shaped ice floes due to secondary and tertiary
fracture lines (Figure 5). The openings are visible in the thickness and con-
centration fields with thinner, less concentrated ice in the lead. In this longer
experiment, the sea ice also ridges, for instance at the center of the domain
where the apex of the diamonds fails in compression. There is also some
thicker ice at the northern boundary induced by the specified strain rate at
the northern boundary. The fracture pattern and presence of secondary and
tertiary fracture lines are in line with results from laboratory experiments
Schulson (2004) and with AVHRR and RGPS observations. ” .Figure 6 is
on page 14 of the revised manuscript

R2#20, Figure 7: Nice illustration of the role of boundary conditions on the stress
solution.

We thank the reviewer.

R2#21, Section 3.5: Good illustration. I would suggest you critically look at the
stress fields in your previous experiments to identify what the stress concentrators are
there. Did you forget to reference figure 9 in this section. Finally, Bill Hibler has shown
similar results where embedded fractures of di↵erent orientations would join together to
form larger scale fracture patterns. Not sure he published that, but I think he did. Look
at the papers he wrote with Aksenov and his first anisotropic paper with embedded leads
in grid cells. Unfortunately I am on an airplane right now and don’t have access to his
papers.

A reference to figure 9 is present on line 17 of the original manuscript. We added the
reference to Aksenov and Hibler (2001) In the revised manuscript on page 15. Thanks
for pointing this out. We do not have stress concentrators in the previous experiments,
except for Figure 7b where the no slip southern boundary forces the fracture to take angle
solely determined by geometry.

R2#22, page 16 line 1: Here and in other places you confuse the simulation with
reality. ”This is in contrast with other granular materials”. Remove ”other”, as this is
in contrast with granular materials. The VP model is not modelling a granular material.
While sea ice may be a granular material, the rheology is designed for di↵erent behaviour.

”Corrected as suggested. Thanks for picking this up. We do understand that model
and reality are di↵erent!.

R2#23, page 16 line 5: ”larger that what” ! ”larger than that”
Corrected as suggested.

R2#24, page 16, line 9: I would like to see the strain-rate field for the longer
simulation with e=0.7 where deformation is in convergence. Where in the field is the
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ridging occurring? What do the intersection angles look like?
Figure 11 shows the fracture for e = 0.7 after 5 seconds. We added a figure showing

the ice field with e=0.7 for 2700 seconds (45 minutes) o, similar to Figure 6.

Figure 1: Sea ice thickness (a), concentration (b), maximum shear strain rate (c) and
divergence (d) after 45 min of integration (2700 sec) in a uni-axial loading test with an
ellipse ratio e = 0.7. To make these longer simulations possible, both non-linear and
linear iterations are limited to 150 per timestep. Results show that no fracture lines are
created, but the ice is pilling close to the northern boundary and the ice got broader
without creating open-water.

R2#25, page 17 line 2: ”and individual floes form” could be clarified as ”4 separate
floes form”. Corrected as suggested.

R2#26, page 17 line 15: Please clarify the statement ”the fracture pattern is very
sensitive to coe�cient of internal friction. This makes measuring the fracture angle very
di�cult.” Surely the sensitivity will help you di↵erentiate fracture angles. Incidentally
mu was not defined in section 2 or here. What causes the spread in the stress state? Is
this related to the opening/ridging and subsequent ice strength changes? So the spread
in stress state is controlled by the strength parameterisation. I feel this is important to
point out, because it is another control we have on the spread of intersection angles you

22



might see under a particular confining stress.
We wanted to express that we observe di↵erent behavior depending on the value of µ.

We revised the text by rewording this part along a whole paragraph on page 20 of the
revised manuscript.

we also added a sentence in section 2.2 defining µ : ”[..] where µ is the
slope of the Mohr-Coulomb limbs (Fig. 1), c is the cohesion value (the value
of �II for �I = 0) defined relative to the tensile strength by c = µ · T ?.”

R2#27, page 17 line 25: Clumsy language: ”the stress state touches the yield
curve on both parts of the yield curve.” Very unclear that you mean the stress state falls
on the coulombic limb and the ellipse cap. rephrase.

We modified the whole section describing the Coulombic yield curve ex-
periments, on page 18-19 of the revised manuscript. We hope it clearer now.

R2#28, page 19 top paragraph: This is a matter of opinion. I disagree that the
ice pack is characterised by diamond shaped floes. Yes, diamond floes form under certain
confining stresses, but is this the most prevalent mode of failure in winter? That needs
to be proven. This point does not discount your use of your numerical experiments to
di↵erentiate between rheologies, but it does question if an anisotropic rheology based on
diamond shaped floes is appropriate for all space and time.

We clarified this point in the revised manuscript on page 21 of the revised manuscript.
We modified the text on page 20-21 of the revised manuscript to state

: ”The Elastic Anisotropic Plastic (EAP) rheology assumes predominately
diamond shaped floes in sea ice (Wilchinsky and Feltham, 2006). A sea
ice model with EAP creates sharper fractures than a model with the Elas-
tic Viscous Plastic (EVP, Hunke and Dukowicz, 1997) rheology (Heorton
et al., 2018). The authors concluded that the anisotropic model may improve
the fracturing process for sea ice, especially by creating areas of oriented
weaknesses, and particularly at coarse resolution where the fracture is not
resolved by the grid spacing. In the experiments presented here, the VP rhe-
ologies lead to sharp and anisotropic fracture lines without any additional
assumptions.”

R2#29, Also, did you calculate characteristic directions for the VP model to confirm
these are controlling the diamond structures in your simulations? I have a code somewhere
(from 15 years ago) that does this. If I can find it I can give it to you.

No we did not. But using the theory we described for the Coulombic yield curve in
the original manuscript, we can know predict the fracture angle for the elliptical yield
curve. This theory is presented in Appendix B of the revised manuscript.

R2#30, page 19 line 12: This sentence is miss-representative: ”Thus, the rheology
is shown to be scale independent ... in line with observations”. Your numerical experiment
is set up to ensure the behaviour is scale independent from the scale of the grid size to
the domain size. You would really hope your numerical experiment results do not depend
on resolution (good practice to check this) and there is no reason scale should change
intersection angles for the reasons you have stated previously. Rephrase this statement
so someone does not quote it as evidence supporting Schulson’s hypothesis.

We modified the sentence on page 21 of the new manuscript to be ”The
fracture angles do not depend on the spatial resolution and domain size as
expected in our idealized numerical experiment setup (Sect. 3.2.1, Fig. 5)”
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R2#31, page 19, line 20: Just to clarify, the reason the experiments with thin
ice change the fracture angle is because the presence of the thin ice modifies the stress
state across the domain. So with an ellipse this will change the intersection angle, with a
coulombic rheology it would not. I feel this part of the paragraph needs more clarification.

we modified the sentence on page 21 of the revised manuscript :
”The confining pressure (i.e. thin ice imposed on the side of the domain)

changes the distribution of stress within the domain. This results in dif-
ferent deformation patterns (shear and divergence) and di↵erent fracture
angles because the yield curve is convex and uses a normal flow rule.”

R2#32, page 19 line 22: Your interpretation of the RGPS data (if one believes the
intersection angles are at conjugate pairs and not leads formed at separate times) would
lead one to believe that there is not a constant fracture angle independent of confining
stress.

The macroscopic angle of friction in a granular material is not constant and depends
on the distribution of the contact normal between floes (Balendran and Nemat-Nasser,
1993). A consequence of a variable macroscopic angle of friction is fracture angle that is
not constant. This work is beyond the scope of the present paper.

R2#33, page 20 line 2: Perhaps clarify that the Miller et al. (2005) experiments
were using metrics of ice thickness, area and velocity to determine the optimal yield curve
shape. It is my memory they did not consider the form of the ice strength parameterisation
as an alternative to changing shear strength, or yield curve shape, just the eccentricity of
the ellipse.

We think that the metrics do not matter in this context. We would like to keep it
simple here, because we are only referring to change of e.

We added on page 21 of the revised manuscript ”Arctic-wide simulations
improve metrics of sea ice concentration, thickness and velocity by decreas-
ing the value of e of the standard elliptical yield curve, that is, by adding
shear and bi-axial tensile and compressive strength (Miller et al., 2005;
Ungermann et al., 2017).”

R2#34, page 20 line 5: Can you show that your numerical experiments are consis-
tent with Pritchard (1988).

Yes, we can. The fracture angle relative to principal stress corresponds to the angle
between the principal stress and characteristics directions given by Pritchard (1988) or
Wang (2007). We have added an appendix B with a theory explaining the fracture angle
of the yield curve using Mohr’s circle. Theory that gives the same relation between the
slope of the tangent to the yield curve and the fracture angle.

R2#35, page 20 line 8: questions ! questioned
Corrected as suggested.

R2#36, After reading your discussion I wondered if the tear drop yield curve (origi-
nally proposed by Pritchard) might be more appropriate that the Hibler modified ellipse
/ mohr coulomb.

We note that the kink in the MC yield curve of Hibler and Schulson (2000) cannot be
eliminated by choosing appropriate values of P* and e. Also, both tear drop and ellipical
yield curve use the normal flow rule and have a convex yield curve, which gives the
non-physical behavior of the fracture angle as a function of shear strength and confining
pressure. It is also known that a normal flow rule with ”straight limbs” gives too much
dilatation when the stress states are lying on the straight limbs (as stated in Flato and
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Hibler, 1992). For this reason we believe that a Mohr-Coulomb or a tear drop with a non-
associated (normal) flow rule (e.g. Tremblay and Mysak, 1997) would be more appropriate.
This is the subject of future work.

R2#37, Also, Hibler and others recognise that you must have a closed cap on a
coulombic rheology to allow ridging. Perhaps the ellipse is not the best choice for this.
In engineering it is more common to have a flatter closure to the yield curve.

The flatter closure actually would lead to other problems, if we look at the framework
we develop in the new version of the appendix ??, and also with the theory of the charac-
teristics of the yield in Pritchard (1988). A slope of yield curve higher than |b0| = 1 does
not have solution for fracture.

R2#38, page 20 line 26: sensible ! sensitive
Corrected as suggested.

R2#39, page 20 line 26: Another example where it is not so clear you are talking
about the VP rheology problem: ”The fracture angles is also sensitive to the surrounding
sea ice cover, in contradiction to the granular nature of sea ice”. Also, the stress field
is going to depend on surrounding ice even when the ice is modelled as granular, which
I am not sure is what you were meaning to imply is not true for granular materials. I
think you need to clarify the language, and I think I disagree with you that this test is
suggesting ice is granular - it would be something we could test in an ice tank to find out
what the actual behaviour is though. I feel you do not highlight a key result in the paper:
That fracture angles below 30o are not possible with the elliptical rheology, and that this
is in direct conflict with observational evidence for smaller fracture angles. Even in light
of errors of interpretation of the RGPS intersection angles this result still holds.

Thanks for pointing this out. We have made this result (fracture angle below 30deg
not possible with ellipse) more prominent on page 22 of the revised manuscript. If we
think of the nature of sea ice, it is a granular material composed of floes. At no or
small confinement, the ice dynamic is mainly governed by the floes lateral interaction.
The di↵erence with ”classic” granular material (sand, clay,. . . ) the ice is a 2D material
bounded to float on the ocean. So at high confinement the ice can ”escape” in 3D and ridge
or raft. We agree that sea ice should have di↵erent behavior for high and low confinement.
This is the conclusion also reached by Wang (2007) if we look at their Figure 5, even if
we disagree with the shape of their yield curve.

The first paragraph of the conclusion have been replace by the 4 following :

In our experimental configuration with uni-axial compression, fracture an-
gles below 30� are not possible in a VP-model with an elliptical yield curve.
Observations suggest much lower values. We find an empirical relationship
between the fracture angle and the ellipse ratio e of the elliptical yield curve
that can be fully explained by the convexity of the yield curve (Appendix B).
In contrast to expectations, increasing the maximum shear strength in the
sea ice model increases the fracture angle. Along a fracture line, there can
be both divergence and convergence depending on the shear strength of the
ice, linked to the flow rule. The simulated ice opens and creates leads with an
ellipse ratio e > 1 (shear strength is smaller than compressive strength), and
ridges for e < 1 (shear strength is larger than compressive strength).

With a modified Coulombic yield curve, the fracture angle can be decreased
to values expected from observations, but the non-di↵erentiable corner points
of this yield curve lead to numerical (convergence) issues and, for some values
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of the coe�cient of internal friction µ, to fracture patterns that are di�cult
to interpret. At these corner points, two di↵erent slopes meet and give two
non-unique solutions for fracture angles and deformation directions. We rec-
ommend to avoid non-di↵erentiable yield curves (with a normal flow rule) in
viscous-plastic sea ice models.

More generally, the model produces diamond-shaped fracture patterns.
Later the ice floe disintegrates into several smaller floes develop. The fractur-
ing process in the ice floe in our configuration is independent of the experiment
resolution and scale, but sensitive to boundary conditions (no-slip or free-slip).
The fracture angle in the VP-model is also sensitive to the immediate environ-
ment. This is not consistent with the notion of sea ice as a granular material.
Unsurprisingly, the yield curve plays an important role in fracturing sea ice
in a numerical model as it governs the deformation of the ice as a function of
the applied stress.

R2#40, page 21 line 3: Note that at cusps in a yield curve two possible solutions are
possible. I feel you can clarify your point about not using non-di↵erentiable yield curves.
They are also numerically unstable. The unclear fracture pattern is not something I have
issue with. Perhaps this exists in reality when the stress state can spread across opening
and closing modes.

Unclear (or chaotic) fracture pattern could happen in reality when there is an high
heterogeneity in ice strength, concentration and thickness, but it shall not happen in a
uni-axial compression experiment with uniform ice field.

We added the following sentence on page 22 of the manuscript : ”At these
corner points, two di↵erent slopes meet and give two non-unique solutions
for fracture angles and deformation directions.”

R2#41, page 21 line 10: I feel you can be stronger here in stating that the ellipse
with normal flow rule can be discounted as unphysical.

We added a sentence in the revised manuscript:
We modified the text on page 22 of the revised manuscript ”In our exper-

imental configuration with uni-axial compression, fracture angles below 30�

are not possible in a VP-model with an elliptical yield curve. Observations
suggest much lower values. We find an empirical relationship between the
fracture angle and the ellipse ratio e of the elliptical yield curve that can be
fully explained by the convexity of the yield curve (Appendix B).”

R2#42, page 21 line 11:
Scale is really unimportant in these experiments. You can perform them on any scale.
The more important question is what scale do these types of fracture events actually occur
on and can that be resolved in models?

As stated in comment R2#30, we agree on the fact that the scale of such idealized
experiment is not important. It appeared important to us to show this fact with simula-
tions. The standard VP model is used by the community at various scales and resolution
depending on the goal of each particular studies, i.e. paleoclimate studies and sea ice pre-
diction for ships operations, so the fact that the VP rheologies are scale-independent is
important to point out. The observations of spatial power-law scaling in sea-ice deforma-
tion down shows that the fracture does not have a preferred scale. The scaling behaviour
is seen at lengths ranging from basin scale in satellite observations (Marsan et al., 2004)
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down to 50m in ship radar observations (Oikkonen et al., 2017). At high resolution VP-
simulations are able to reproduce this spatial scaling behaviour while underestimating the
intermittency in temporal scaling (Hutter et al., 2018a). The resolution used in our study
is in between the one used in (Hutter et al., 2018a) and the lower limit of scales where we
observe power-law scaling.

We replaced the aforementioned sentence by ”If Arctic-wide sea ice simu-
lations with a resolution of 25m are not feasible today because of computa-
tional cost, we can still imagine small experiments to be useful for process
modeling on small scales when local and high-resolution observations (e.g.
wind, ice velocities) are available. For example, such process modeling stud-
ies could be used to constrain the rheology with data from the upcoming
MOSAiC campaign (Dethlo↵ et al., 2016) that will provide a full year of
sea ice observations in pack ice.”

R2#43, I see you did not reference work by K. Wang (2007) who used lead intersec-
tion angles to try to estimate the shape of a yield curve. He also has a paper were he
performed a similar study to you (Wang and Wang 2010), however for the pan-arctic and
perhaps with convergence issues that make his findings hard to interprete. While this
work su↵ered from problems of representativeness of the observational data (how can you
be sure fractures formed at the same time), as you do, I feel you should consider Wang’s
papers in light of your findings.

We now included a discussion of the results and findings of these the first references
On page 21 of the revised manuscript. We did not wish to include the second one because
of the strong convergence issues.

we added the text ”Based on the results of Pritchard (1988), Wang (2007)
used observed fracture patterns to design a Curved Diamond yield curve.
But this yield curve also contains a non-di↵erentiable point, which will be
problematic for numerical reasons.”

R2#44, Finally, I believe that the stress state between fractures in your numerical
experiments is inside the yield curve (viscous), and the motion close to zero. Is this
correct, it was what I found when I was working on this. Just a point to clarify that
the accumulation of stress along fractures is due to the yield curve discontinuity, and
the associated characteristic directions in the strain field that control the propagation
of fracture direction. This accumulation of stress needs to be nucleated at a location
with high stress gradient (such as a corner on the boundary or strength/stress di↵erence
between grid cells). Once the stress reaches the yield curve, the numerical instability is
probably put into play during the inner iterations. You do not see LKFs in VP models
that have smooth boundaries and strength fields. The formation of LKFs is grid resolution
dependent (as the linear instability identified by Gray is). You have speculated on why
LKFs form in the VP model only at higher resolutions in a previous paper and I would
suggest the place to look is in the convergence of the solver, and the splitting of velocity
solution from the ice strength (pressure). I do not think it is just the fact that divergence
(and strength reduction) can be greater at higher resolution. Clarifying this mechanism
will help readers understand why VP models show this behaviour. It will also hopefully
get people thinking about how to represent stress accumulators in the model, because
many people using the VP model and studying fractures are unaware of how the model
produces these.

Jenny
The stress states outside of the LKFs are e↵ectively inside the yield curve, at the

27



exception of the cells on the border of the ice floe, that move into open-water. We think
that the creation of fractures in the model VP is explained by the Mohr’s circle and failure
envelope theory and we create LKFs in our uniform ice strength field. We have added a
new appendix discussing this, Appendix B.
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Lemieux, J.-F., Tremblay, B., Sedláček, J., Tupper, P., Thomas, S., Huard, D., and Au-
clair, J.-P. (2010). Improving the numerical convergence of viscous-plastic sea ice mod-
els with the Jacobian-free Newton–Krylov method. Journal of Computational Physics,
229(8):2840–2852.

29



Linow, S. and Dierking, W. (2017). Object-Based Detection of Linear Kinematic Features
in Sea Ice. Remote Sensing, 9(5).

Marsan, D., Stern, H., Lindsay, R., and Weiss, J. (2004). Scale Dependence and Local-
ization of the Deformation of Arctic Sea Ice. Physical Review Letters, 93(17):178501.
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Abstract. Recent high resolution pan-Arctic sea ice simulations show fracture patterns (Linear Kinematic Features -
::
or

:
LKFs)

that are typical of granular materialsbut with intersection (fracture ) angles wider
:
,
:::
but

::::
with

:::::
wider

:::::::
fracture

::::::
angles than those

observed from
::
in high-resolution satellite images(with a modal value of ✓ = 20�). In thisarticle, We investigate the mechanism

of formation and parameter dependencies of ice fracture in simple numerical bi-axial test on a 8 x 25 ice floe at an unprecedented

resolution of 25 for two different yield curves: an elliptical
:
.
::::::::
Motivated

:::
by

::::
this,

::
ice

:::::::
fracture

::
is

::::::::::
investigated

::
in

:
a
::::::
simple

::::::::
uni-axial5

::::::
loading

:::
test

:::::
using

::::
two

::::::::
different

::::::::::::
Viscous-Plastic

:
(VP) and a

:::::::::
rheologies:

:::
one

::::
with

:::
an

::::::::
elliptical

::::
yield

:::::
curve

::::
and

:
a
:::::::
normal

::::
flow

::::
rule,

:::
and

::::
one

::::
with

:
a
:
Coulombic yield curve both with

:::
and

:
a
:
normal flow rule . In

:::
that

:::::::
applies

::::
only

::
to

:::
the

:::::::
elliptical

::::
cap.

:::::
With

the standard VP model, the simulated angle of fracture is ✓ = 33.9�, compared to 20� in observations. The dependence of the

angle of fracture on the ice shear strength is also contrary to that of typical granular materials with larger angle of fracture for

higher shear strength- think of a wet sand castle with steeper walls than a dry sand castle. In this model,
::::::::
rheology,

::
it

::
is

:::
not10

:::::::
possible

::
to

:::::::
simulate

:::::::
fracture

::::::
angles

::::::
smaller

::::
than

::::
30�.

:::::::
Further,

:::
the

:::::::
standard

:::::::::
VP-model

::
is

:::
not

:::::::::
consistent

::::
with

:::
the

::::::::
behaviour

:::
of

:::::::
granular

:::::::
material

::::
such

::
as
::::

sea
:::
ice,

::::::::
because:

:::
(1)

:::
the

:::::::
fracture

:::::
angle

::::::::
increases

::::
with

:::
ice

:::::
shear

:::::::
strength;

:::
(2)

:
the divergence along

the fracture lines (or LKFs) is entirely dictated by the ice shear strength used in the model with
:::::::
uniquely

::::::
defined

:::
by

:::
the

:::::
shear

::::::
strength

:::
of

:::
the

:::::::
material

::::
with

:::::::::
divergence

:::
for high shear strength resulting in convergence along LKFs and

::
and

::::::::::
convergent

::::
with

low shear strengthresulting in divergence along LKFs. This is again contrary to typical granular materials where divergence15

(or dilation) is linked with the orientation of contacts normals that oppose the flow with divergence present for larger shear

resistance and convergence for lower shear resistance. Moreover, the ;
:::

(3)
::::

the angle of fracture depends on the confining

pressure in the uni-axial test with more convergence as the confining pressure increases, again contrary to granular material

that have an angle of fracture that is independent of the confining pressure. We note that all three behaviors
:
.
::::
This

::::::::
behavior

of the VP model are linked with the use of an associative (normal )
::
is

::::::::
connected

::
to
:::
the

:::::::::
convexity

::
of

:::
the

:::::
yield

:::::
curve

:::::::
together20

::::
with

:::
use

::
of

:
a
::::::
normal

:
flow rule. In the Coulombic model, the angle of fracture is smaller (✓ = 23.5�) , but the solution

:::::::
✓ = 23�)

:::
and

::::::
grossly

:::::::::
consistent

::::
with

:::::::::::
observations.

::::
The

::::::::
solution,

::::::::
however, is unstable when the compressive stresses are

:::::
stress

::
is too

large because of the discontinuity
::::::::::::::
non-differentiable

::::::
corners

:
between the straight limbs of the

:::::::::
Coulombic yield curve and the

elliptical capping. Our results show thatwhile the VP model gives angles of fracture that are visually correct, the bias in the

magnitude of the angle of fracture and the physical dependencies of the angle of fracture on mechanical strength parameters25
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and stress fields couple the sea ice mechanical strength parameters, the sea-ice drift, sea-ice deformation (strain-rate) field in

an inconsistent way. We consider this evidence to move away from the
:::
cap.

::::
The

::::::
results

::::::
suggest

::::
that,

::::::::
although

::
at

:::
first

:::::
sight

:::
the

::::
large

::::
scale

:::::::
patterns

::
of

::::::
LKFs

::::::::
simulated

::::
with

:
a
:::
VP

:::
sea

:::
ice

::::::
model

::::::
appear

::
to

::
be

:::::::
realistic,

:::
the

:
elliptical yield curve and associative

(normal ) flow rule , a deformation law that is not applicable to
:::
with

::
a
::::::
normal

::::
flow

::::
rule

:
is
:::
not

:::::::::
consistent

::::
with

:::
the

::::::
notion

::
of

:::
sea

::
ice

::
as
::
a pressure-sensitive and dilatant granular materialsuch as sea ice.5

1 Introduction

Sea ice is a granular material; i.e.
:
,
:::
that

::
is,

:
a material that is composed of ice floes of different size and shape (Tremblay and Mysak, 1997; Overland et al., 1998)

::::
sizes

:::
and

::::::
shapes

::::::::::::::::::::::::::::::::::::::::::::
(Rothrock and Thorndike, 1984; Overland et al., 1998). In most large-scale modelsused in the community, sea ice

is treated as a continuum deforming
::::::::::::
viscous-plastic

:::::::::
continuum.

::
It

:::::::
deforms plastically when the internal stresses reaches critical

values
::::
stress

::::::::
becomes

:::::::
critical in compression, shearand tensionand deforming ,

:::
or

:::::::
tension;

::
it
:::::::
deforms

:
as a very viscous10

(creeping
::::
creep) flow when the internal stresses are relatively small (e. g. Hibler (1979); Zhang and Hibler (1997); Hunke and Dukowicz (1997).

Using modern numerical solvers, the
:::::
stress

::
is

:::::::
relatively

:::::
small

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Hibler, 1979; Zhang and Hibler, 1997; Hunke and Dukowicz, 1997).

:::
The

::::::::::::
corresponding

:
highly non-linear sea-ice momentum equations can be solved to convergence to reproducequalitatively

observed
:::
with

:::::::
modern

::::::::
numerical

::::::
solvers

::
to

:::::::::
reproduce,

::
in

:
a
:::::::::
qualitative

::::
way,

::::::::
observed

:::::
linear patterns of sea ice deformation with

:::::
within

:
reasonable computing time (Hutchings et al., 2005; Losch et al., 2010; Hutter et al., 2018a). These linear features where15

large shear and divergence are present are called
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hutchings et al., 2004; Lemieux et al., 2010; Losch et al., 2010; Hutter et al., 2018a).

:::::
These Linear Kinematic Features (LKFs) (Kwok, 2001). Lead opening

::
are

::::::
places

::
of

::::
large

:::::
shear

:::
and

::::::::::
divergence

::::::::::::
(Kwok, 2001).

:::::
Leads

::::
that

::::
open

:
along LKFs are the memory

:::::::::
responsible

:::
for

:::
an

::::::::
emergent

:::::::::
anisotropy

:
of such models, affecting the subse-

quent dynamics, mass balance, and the heat /salt
::
and

::::::
matter

:
exchanges between the ocean, ice and atmosphere. It is therefore

important to investigate whether the mode of sea-ice fracture is represented accurately in continuum sea ice models.20

The sea-ice momentum equations are difficult to solve numerically
:::
sea

:::
ice

::::::::
dynamics

::::
are

::::::::::
complicated

:
because of sharp

spatial changes in material properties associated with discontinuities (e.g. along sea ice leads or ridges) and heterogeneity

(different ice types)in the pack ice
:::::::
spatially

::::::
varying

:::
ice

::::::::
thickness

::::
and

:::::::::::::
concentration).

:::
The

::::
sea

:::
ice

:::::::::
momentum

:::::::::
equations

:::
are

::::::
difficult

:::
to

::::
solve

:::::::::::
numerically

:::::::
because

::
of

:::
the

:::::::::
non-linear

::::
sea

:::
ice

::::::::
rheology. Since the birth of modern

:::
first

:
sea ice dynamics

in the mid-seventies with the development of the
::::::
model,

:::
the

:
Elastic-Plastic sea ice model based on data collected during25

the Arctic Ice Dynamics Joint Experiment (Coon et al., 1974, (AIDJEX)), several other
::::::::::::::::::::::::
(AIDJEX Coon et al., 1974),

::::::
several

approaches to modeling sea ice were developed. In these models, sea ice was treated
::::
have

::::
been

::::::::::
developed.

:::
Sea

:::
ice

:::
has

:::::
been

:::::::
modeled

:
as an incompressible fluid (Rothrock, 1975), a Viscous-Plastic (VP) material (Hibler, 1979), an Elastic-Viscous-

Plastic (EVP) material (Hunke, 2001), a granular material (Tremblay and Mysak, 1997), an Elastic Anisotropic Plastic (EAP)

medium (Wilchinsky and Feltham, 2006), an elastic-decohesive medium (Schreyer et al., 2006), an Elasto-Brittle (EB) material30

(Rampal et al., 2016) and a Visco-Elastic-Brittle (
:::::::::::::::::::::::::::
Maxwell(viscous)-Elastic-Brittle

:
(MEB) material (Dansereau et al., 2016).

The actual diversity in
::::::
number

:::
of approaches to sea-ice modeling in the communityhowever

:
,
:::::::
however,

:
is much smaller; e. g.

:
.
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:::
For

:::::::
example,

:
30 out of 33 Global Climate Models

:::::
global

::::::
climate

:::::::
models

::
in

::::::
CMIP5 use some form of the standard VP rheology

Stroeve et al. (2014)
:::::::::::::::::
(Stroeve et al., 2014).

In spite of its success, the standard VP rheology is not undisputed. Coon et al. (2007) critically reviewed the assump-

tions behind current modeling practice since the original model of (Coon et al., 1974);
:::::::::::::::
Coon et al. (1974),

:
namely the zero-

tensile strength (ice is a highly fracture
::::::::
fractured material) and isotropy assumptions of the sea ice cover and

::
the

:
rheological5

model.
:::::::::
Originally,

::::::::::::::::::::::
Coon et al. (1974) assumed

::::
sea

::
ice

:::
to

::::
have

::::::
cracks

::
in

:::
all

:::::::::
directions,

::::::::
justifying

::::::::
isotropic

:::
ice

::::::::
properties

::::
and

:::::::
isotropic

:::::::::
rheologies.

:
The use of continuum models such as the standard VP model for high-resolution simulations (1-10km

:::
grid

:::::::
spacings

::
of

:::::
1–10 km) is also put in question

:::::::
debated since the grid size approaches a typical floe size and clearly violates

the continuum assumption. For instance, recent high-resolution simulations using the VP model used spatial resolution of

approximately 500m for a regional domain (Wang et al., 2006) and 1 km for a pan-Arctic domain (Hutter et al., 2018a).10

While it can be argues
:
It
::::
can

::
be

::::::
argued

:
that if the mode of deformation of a single floe is similar to that of an aggregate of

floes, a given rheology developed for a continuum can still be applicable at spatial resolutions of the order of the floe size

Overland et al. (1998),
::::::::::::::::::
(Overland et al., 1998),

:::
but

:
the validity of a given flow rule across scales is not clear.

::
At

::::
any

:::::
scale,

:::
the

:::::::::
assumption

::
of

:::::::
viscous

:::::
creep

:::
for

:::::
small

:::::::::::
deformations

::
is

:::
not

:::::::
physical

::::
and

::
an

::::::
elastic

:::::
model

::::::
would

:::
be

:::::::::
appropriate

:::
for

::::
low

:::::
stress

:::::
states.

::::
The

::::
long

::::::
viscous

::::
time

::::::
scale,

::::::::
compared

::
to

:::
the

:::::::
synoptic

:::::
time

::::
scale

::
of

::::::
LKFs,

::
of

:::::
order

:::
30

::::
years

:::::::::::::
(Hibler, 1979),

::::::::
however,15

:::::
allows

:::::::
viscous

::::::::::
deformation

:::
to

::
be

:::::::
viewed

::
as

::
a
:::::
small

:::::::::
numerical

:::::::::::
regularization

:::::
with

::::
little

:::::::::::
implications

:::
for

:::
the

:::::::::
dissipation

:::
of

:::::::::
mechanical

::::::
energy

:::::
from

:::
the

:::::
wind

::
or

:::::
ocean

:::::::
current

:::::::::::::::::::::::::
(Bouchat and Tremblay, 2014),

::::
and

:::
the

:::
ice

::::::
model

:::
can

:::
be

:::::::::
considered

:::
as

::
an

:::::
ideal

::::::
plastic

::::::::
material. Tsamados et al. (2013) included anisotropy explicitly in the a

:
VP model and show that it im-

proved the representation of ice thickness and ice drift compared to an EVP model. Other VP sea ice rheology were also

developed but were
:::::::::
Alternative

::::
VP

:::::::::
rheologies

::::
were

:
never widely used in the community. These include the coulombic20

:
a
::::::::::
Coulombic yield curve with

:
a normal flow rule of (Hibler and Schulson, 2000), the lens

:::::::::::::::::::::::
(Hibler and Schulson, 2000),

:
a

:::::::
parabolic

:::::
lens

:::
and

::
a
:
tear-drop , ice-cream cone,

:::::::::::::::
(Pritchard, 1975),

:
a
:

diamond-shape yield curve with normal flow rules

((Zhang and Rothrock, 2005), the
:::::::::::::::::::::::
(Zhang and Rothrock, 2005),

:
a
:

Mohr-Coulomb yield with
:::::
curve

::::
with

:
a
:
double-sliding de-

formation law Tremblay and Mysak (1997); Ip et al. (1991); Flato and Hibler (1992)
:::::::::::::::::::::::::
(Tremblay and Mysak, 1997) or

::
a
::::::
curved

:::::::
diamond

::::::::::::
(Wang, 2007).25

Early work by (Marko and Thomson, 1977) identified
:::::::::
Previously,

:
fracture lines (LKFs) in the pack ice and explained the

presence of the LKFs
::::
were

::::::::
explained

:
by brittle fracture

:::::::::::::::::::::::
(Marko and Thomson, 1977). Similar fracture patterns have also

been observed
::::
were

:::
also

:::::::::
observed,

:
from the centimeter scale in the lab , to hundreds of kilometers in satellite observations

(Schulson, 2004; Weiss et al., 2007). Based on these (and others) satellite observations
::::::::::::::::::::::::::::::
(Schulson, 2004; Weiss et al., 2007).

:::
The

:::::
scale

::::::::
invariance

::
of

:::
the

:::::::
fracture

::::::::
processes

::
at

:::
the

:::
floe

::::
scale

::::
has

:::
not

::
yet

:::::
been

::::::
shown,

::::::::
especially

::::
due

:
to
:::
the

::::
lack

::
of

:::::::::::
observations30

:
at
::::
both

:::::
high

:::::
spatial

::::
and

:::::::
temporal

:::::::::
resolution.

:::::
Based

:::
on

:::::::
satellite

::::::::::
observations

::::
(e.g.

:::::::::::
RADARSAT

:::::::::::
Geophysical

::::::::
Processor

:::::::
System,

::::::
RPGS,

::
or

:::::::::
Advanced

::::::::::::::::::
Very-High-Resolution

:::::::::::
Radiometer,

::::::::
AVHRR),

:
and in-situ internal ice stress measurements ,

:::
(e.g.

:::::
from

::
the

:::::::
Surface

:::::
Heat

::::::
Budget

:::
of

:::
the

:::::
Arctic

:::::::
Ocean,

:::::::
SHEBA,

:::::::::::
experiment),

:
Weiss et al. (2007) proposed to model winter sea ice

as a material that undergoes brittle failure with subsequent
:::::::
inelastic

::::::::::
deformation

:::
by sliding along LKFsgoverning inelastic

deformations. Girard et al. (2011); Rampal et al. (2016); Dansereau et al. (2016) formalized the idea with the development of35
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an Elastoc-Brittle (EB) and Maxwell-Elasto-Brittle (MEB) model with an
:
.
::::
This

::::
idea

::::
was

::::::::::
formalized

::::
with

:::
an

:
additional

parameterization to simulate damage associated with brittle fracture
::
in

::
an

::::::::::::
Elasto-Brittle

:::::
(EB)

:::
and

::::::::::::::::::::
Maxwell-Elasto-Brittle

::::::
(MEB)

:::::
model

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Girard et al., 2011; Rampal et al., 2016; Dansereau et al., 2016). We note that subsequent plastic deformations

::::::::::
deformation in this model are

:
is
:
considered as elastic deformation (EB) or visco-elastic deformation (MEB) instead of plastic.

I.e.
::::
That

::
is,

:
in the elastic approaches, the material does not weaken when fracture occurs, but rather the Young’s modulus5

is reduced, leading to larger elastic deformations
::::::::::
deformation for the same stresses. Girard et al. (2009) compared the

:::::
stress.

::::
From

:::
the

:::::::
scaling

:::::::
behavior

:::
of simulated sea-ice deformation fields from the EB and VP models with observations from the

RADARSAT Geophysical Processor System (RGPS)and showed
::
of

::::
EVP

:::::::
models

:::::
(with

:::::
12 km

::::
grid

:::::::::
spacing),

:
it
::::

was
::::::

found

that the heterogeneity and the intermittency of deformation in the VP model are not consistent with observations. These results

however could not be reproduced by other authors in the community. For instance, Spreen et al. (2017); Hutter et al. (2018a); Bouchat and Tremblay (2017) all10

show that VP models are
:::::
RGPS

::::
data

:::::::::::::::::
(Girard et al., 2009).

::
In

:::::::
contrast,

::::::::::
VP-models

::::
were

::::::
shown

::
to

::
be

::::::
indeed capable of simulat-

ing the PDFs of sea ice deformations
:::
and

::::
some

:::
of

:::
the

::::::
scaling

::::::::::::
characteristics over the whole Arctic in agreement with the same

observations, when using appropriate
::::
either

::::
with

::::::::
sufficient

:::::::::
resolution

::::::::::::::::::::::::::::::::::::
(Spreen et al., 2017; Hutter et al., 2018a) or

::::
with

:::::
tuned

shear and compressive strength of the material
:::::::::
parameters

:::::::::::::::::::::::::
(Bouchat and Tremblay, 2017).

Similar fracture angles between intersecting LKFs 30± 10�) were observed with different instruments (Landsat, Seasat/SAR,15

areal photographs,AVHRR) at different scales from 1 to 100 (Erlingsson, 1988; Walter and Overland, 1993). In the VP model,

LKFs are appear as line of high shear deformations.
:::::::::::::
High-resolution

::::::
sea-ice

::::::
models

:::::::
simulate

:::::
LKF

:::::::
patterns

::
in

::::
pack

:::
ice,

::::::
where

:::
they

::::::
appear

::
as

:::::
lines

::
of

::::
high

::::::::::
deformation

:::::::::::::::::::::::::::::::::::::
(Hutchings et al., 2005; Hutter et al., 2018a).

:::::::::
Previously

::::::::
fractured

::
ice

::::
will

::
be

:::::::
weaker

:::
and

::::
will

:::::
affect

:::::
future

::::
sea

:::
ice

::::::::::
deformation

::::::
fields.

:
The weakening associated with the

::::
shear

:
deformation results from diver-

gence and
:
a
:
reduction in ice concentration along the LKFs. This mechanism introduces

::
an

:
anisotropy in high resolution20

simulations as seen in observations of comparable spatial resolutions. Previously fractured ice will be weaker and will affect

future sea ice deformation fields. High-resolution sea-ice models simulate LKF patterns leads to anisotopy in the pack ice

(Hutter et al., 2018a). Previous studies that looked at lead
:::
that

::
is
:::::::

similar
::
to

:::::::::::
observations

::::
with

::::::::::
comparable

::::::
spatial

:::::::::
resolution.

::::
Lead characteristics, including intersection angle between LKFs include (Hutchings et al., 2005; Bröhan and Kaleschke, 2014; Lindsay and Rothrock, 1995; Wang et al., 2016; Hutter et al., 2018b).

Of particular interest, Hutter et al. (2018b) compare LKFs and their intersection angles between RGPS data and a 2
:::::
angles25

:::::::
between

:::::
LKFs

::::
were

::::::
studied

:
a
:::::::
number

::
of

:::::
times

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lindsay and Rothrock, 1995; Hutchings et al., 2005; Wilchinsky et al., 2010; Bröhan and Kaleschke, 2014; Wang et al., 2016; Hutter et al., 2018b).

:::::
These

::::::
studies

:::::
show

::::
that

:::
VP

:::::::
models

:::::::
produce

:::::
LKFs

:::::
with

::::::
various

::::::::::::
confinements,

::::::
scales,

::::::::::
resolutions,

::::
and

::::::::
forcings,

::::::::
although

::
the

::::::
LKFs

:::::::
creation

::::::::::
mechanism

::
is
::::

still
:::::::

unclear.
:::::

From
:::::::::::

observations
:::::

with
::::::::
different

::::::::::
instruments

::::::::
(Landsat,

:::::::::::
Seasat/SAR,

:::::
areal

::::::::::
photographs,

:::::::::
AVHRR),

::::::
typical

:::::::
fracture

::::::
angles

:::::::
between

::::::::::
intersecting

:::::
LKFs

:::
of

:::::::::
(15± 15)�

::::::
emerge

:::
at

:::::
scales

:::::
from

:
1 km-model

simulation similar to the one described in Hutter et al. (2018a). For the RGPS data, they find km
:
to
::::
100 km

::::::::::::::::::::::::::::::::::::::
(Erlingsson, 1988; Walter and Overland, 1993).30

:::::::::::::::::::::::
Hutter et al. (2018b) present

::
an

::::
LKF

:::::::
tracking

::::::::
algorithm

::::
and

::::
show

::::
that

:::::::
fracture

:::::
angles

::::
(half

:::
of

:::
the

:::::::::
intersection

:::::::
angles)

:::::::
between

:::::
LKFs

:
in
::::::
RGPS

::::
data

:::::
follow

:
a broad distribution of intersection angles between LKFs that peaks around 20�(in line with previous assessments, e.g. Walter and Overland, 1993).

The wide range of intersection angles is presumably due to previous deformation history and associated heterogeneity in the

ice cover that dictates the ice strength locally. Their results show a simulated distribution of intersection angles that is biased

high with a ,
::
in
::::
line

::::
with

::::::::
previous

::::::::::
assessments

:::::::::::::::::::::::::::
(e.g. Walter and Overland, 1993).

:::::::::::::::::::::
Hutter et al. (2018b) also

:::::
show

:::
that

::::
that

:::
the35
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:::::::::
distribution

::
of

:::::::
fracture

::::::
angles

::
in

::
a

:::
VP

:::::::::
simulation

::::
with

:::::
2-km

::::
grid

::::::
spacing

::
is
::::::
biased

::::
with

::
a

::::
high modal value of 45� and with

too few small intersection angles between 15
:::
15� and 25�. The fact that a VP model overestimates the angles of intersection

between LKFs is one motivation for the present thorough
:::::::
observed

::::
bias

:::::::::
motivates

:::
the

::::::
present

:
investigation of the fracture

angles at small scales and the dependencies of the fracture angle to
:::::::::
dependence

:::
of

::::::
fracture

::::::
angles

::
in

::::::::
different

:::
VP

:::::::::
rheologies

:::
and

:::::
model

:::::::
settings,

::::
that

::
is,

:::::
scale,

:::::::::
resolution, boundary conditions, model geometry, variability in sea in

:::
and

:::::::::
variability

::
in initial5

ice thickness fieldand mechanical strength parameters used in the model. .
:

The simulation of fractures in sea ice models have been the focus of several previous studies using
::
has

:::::
been

::::::
studied

:::
in

idealized model geometries
:::::
before. Hibler and Schulson (2000) investigated the effect of embedded flaws - that favors certain

angles of fractures - in idealized experiments using a Coulombic yield curve. Hutchings et al. (2005) showed that LKFs can

be simulated with an isotropic VP model using a
::
an

:
idealized model geometry. The shape of the elliptical yield curve (ratio of10

shear to compressive strength) in the standard VP model has an impact on the presence or absence of ice arches
:::::::::
determines

:
if
:::
ice

::::::
arches

::::
can

::::
form

:
in an idealized channel experiment (Dumont et al., 2009).

::::::::::::::::::::::::::::::::::
(Hibler et al., 2006; Dumont et al., 2009).

:::::::::::::::::::::::
Pritchard (1988) investigated

:::
the

:::::
yield

:::::::
curve’s

:::::::::::
mathematical

::::::::::::
characteristics

::::
and

::::::
derived

::::::
angles

::::::::
between

:::
the

::::::::
principal

:::::
stress

::::::::
directions

:::
and

::::::::::::
characteristics

::::::::
directions

::::
that

::::::
depend

:::
on

:::
the

::::::
tangent

::
to

:::
the

::::
yield

::::::
curve.

:::::
These

::::::
results

::::
show

::::
that

:::::
stress

:::::
states

::::
exist

::
in

:::::
plastic

::::::::
materials

::::::
where

::
no

:::::
LKFs

:::::
form

:::
and

::::
were

::::
later

:::::
used

::
to

::::
build

::
a

::::
yield

:::::
curve

::::::::::::
(Wang, 2007).

:
To build an anisotropic rhe-15

ology, Wilchinsky et al. (2010) used a Discrete Element Model (DEM) model in an idealized model domain and showed clear

diamond-shaped fracture patterns. Idealized experiment are also used to investigate new rheologies(e.g. Dansereau et al., 2016; Sulsky et al., 2007, with the Maxwell-Elastic-Brittle (MEB) rheology, or the Material-Point Method (MPM)),

or
:
,
:::
for

::::::::
example,

:::
the

:::::::::::::::::::
Maxwell-Elastic-Brittle

::::::
(MEB)

::::::::
rheology

::::::::::::::::::::::
(Dansereau et al., 2016) or

:::
the

::::::::::::
Material-Point

:::::::
Method

:::::::
(MPM)

:::::::::::::::::
(Sulsky et al., 2007),

::
or to study the theoretical framework explaining the fracture angles (e.g. Dansereau et al., 2017, with the Mohr-Coulomb yield curve in an MEB model)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Dansereau et al., 2017, with a Mohr-Coulomb yield criterion in an MEB model).

Recently, Heorton et al. (2018) compared simulated fractures by the EVP and EAP models using an idealized model geometry20

and wind forcing, and showed that the anisotropic model creates sharper deformation features. To the best of our knowledge,

the dependency of the fracture angles in sea ice on the shape of the yield curve using high resolution models has not yet been

investigated. This is another motivation of this study.

In this paper, we explore the details of fracture with two VP rheologies using
::::::
simulate

:::
the

::::::::
creation

::
of

:
a
::::
pair

::
of

:::::::::
conjugate

::::
faults

:::
in

::
an

:::
ice

::::
floe

::::
with

::::
two

::::::::
different

:::
VP

:::::::::
rheologies

::
in

:
an idealized experiment at an unprecedented resolution of 25 .

::
m.25

:::
We

::::::
explore

:::
the

::::::::
influence

:::
of

::::::
various

::::::::::
parameters

::
of

:::
the

:::::::::
rheologies

::::
and

:::
the

::::::
model

::::::::
geometry

::::::
(Scale,

::::::::::
resolution,

:::::::::::
confinement,

::::::::
boundary

:::::::::
conditions,

::::
and

::::::::::::
heterogeneous

:::::
initial

::::::::::
conditions).

:
The remainder of this paper is structured as follow : Section

:
2

presents the experimental setup: the VP framework (2.1), the definition of the yield curve (2.2), and the description of the

idealized experiment (2.3). Section
:
3 presents the results: from

::::
First

:
the reference simulation

:
is
::::::::
presented

:
(3.1), the effect of

boundary conditions (??), the effects of
::::
then

:::
we

:::::::
explore

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::
setup

::
in

:::::::
section

:::
3.2

::
to

:::::
scale,

:::::::::
resolution

::::
and30

:::::
longer

::::::::
run-time

::::::
(3.2.1),

::::::::
modified

::::::::
boundary

:::::::::
conditions

::::
and lateral confinement (??

::::
3.2.1), and the influence of heterogeneity

(??). Furthermore
::
to

::::::::::::
heterogeneity

::
in

:::::
initial

:::::::::
conditions

:::::::
(3.2.1).

::::::
Finally, we consider the effects of two different yield curves

with normal flow rule in subsection
:::::::
different

::::
flow

::::
rules

::
in
:::::::::

subsection
:

3.3: the elliptical (3.3.1) and the coulombic
:::::::::
Coulombic

yield curve (3.3.2). Discussion and conclusions follow in sections4 and
::
4
:::
and

:
5.
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2 Experimental Setup

2.1 Viscous-Plastic model

We use the Massachusetts Institute of Technology general circulation model (MITgcm, Marshall et al., 1997)
:::::::::::::::::::::::::::
(MITgcm, Marshall et al., 1997) with

its sea ice package
:::
that

::::::
allows

:::
for

:::
the

:::
use

::
of

:::::::
different

:::::::::
rheologies

:
(Losch et al., 2010). All thermodynamic processes have been

turned off for our experiments. The initial sea ice conditions– ,
:

mean (grid cell averaged) thickness h and fractional sea ice5

cover A– ,
:

are advected by ice drift velocities with a third order flux limiter advection scheme
:::::::::::::::::::::
(Hundsdorfer et al., 1995). Ice

drift is computed from the sea ice momentum equation
::::::::
equations

:

⇢h
@u

@t
=�⇢hf k⇥u+ ⌧ air + ⌧ ocean � ⇢hr�(0)+r ·�, (1)

where ⇢ is the ice density, h is the grid cell average
:::::::
averaged

:
sea ice thickness, u is the velocity field, f is the Coriolis parameter,

k is the vertical unit vector, ⌧ air is the surface air stress, ⌧ ocean is the ocean drag, r�(0) is the gradient of sea surface height,10

and � is the vertically integrated internal ice stress tensor. The form of � defines the rheology. In the case of the standard VP

model described in (Hibler, 1979),
:::
the

::::::::::
components

::
of � is

::
are

:
defined as

�ij = 2⌘ij "̇ij +(⇣ � ⌘) "̇kk�ij �
P

2
�ij , (2)

where �ij is the Kronecker delta and summation over equal indices is implied. ⌘ and ⇣ are the shear and bulk viscosities, ✏̇ij is

the strain rate tensor defined as15

✏̇ij =
1

2

0

@ dui

dxj

@ui

@xj
:::

+
duj

dxi

@uj

@xi
:::

1

A , (3)

and P is the maximum compressive stress defined as a function of the
::
ice

:::::::
strength

:::::::::
parameter

:::
P ?,

:
mean sea ice thickness h

::
h,

and the sea ice concentration A:
::
A:

P = P ⇤?he�C⇤(1�A). (4)

The values of parameters and constants in the model are given on Table 1. ,
::::::

where
:::
C?

::
is

:
a
::::
free

:::::::::
parameter.20

:::
The

:::::
stress

:::::
tensor

::
�
::
is

::::
often

:::::::::
expressed

::
in

:::::
terms

::
of

:::::::
principal

:::::::
stresses

::
�1::::

and
::
�2::::

and
:::::
stress

::::::::
invariants

::
�I::::

and
::::
�II .

:::
The

::::::::
principal

::::::
stresses

:::
�1 :::

and
:::
�2 :::

are
:::
the

:::::::
principal

:::::::::::
components

::
or

::::::::::
eigenvalues

::
of

:::
the

:::::
stress

:::::
tensor

:::
on

::
an

:::
sea

:::
ice

:::::::
element.

:::::::::::
Eigenvalues

::::::
always

::::
exist,

:::::::
because

:::
the

:::::
stress

::::::
tensor

:
is
:::

by
::::::::
definition

::::::::::
symmetric.

:::
The

::::::::
principal

:::::::
stresses

::
�1::::

and
::
�2::::

can
::
be

:::::::::
expressed

::
as

:
a
:::::::
function

:::
of

:::
�ij ::

as
:
:

�1
::

=
1

2

✓
�11 +�22 +

q
(�11 ��22)2 +4�2

12

◆
,

:::::::::::::::::::::::::::::::::::

(5)25

�2
::

=
1

2

✓
�11 +�22 �

q
(�11 ��22)2 +4�2

12

◆
,

:::::::::::::::::::::::::::::::::::

(6)
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Table 1.
:::::
Model

:::::::::
parameters

:
of
:::

the
:::::::
reference

::::::::
simulation

::::::
Symbol

::::::::
Definition

::::
Value

: :::
Unit

:
⇢
: ::::::

Density
::
of

::
ice

: ::
910

:
kgm�3

:::
P ?

::
Ice

:::::::
strength

:::
27.5

:
kNm�1

::
C

::::::
Strength

::::::::
reduction

:::::::
parameter

: :
20

: :

:::::
�min ::::::::

Maximum
:::::::
Viscosity

::::
10�10

: :::
s�1

:

:::
�x,

:::
�y

: :::
Grid

::::::
spacing

: :
25

:
m

:::
Cw : ::::

Water
::::

drag
::::::::
coefficient

: :::::::::
5.21⇥ 10�3

:

:::
Nx,

:::
Ny :::

Size
::
of

:::
the

::::::
domain

::::::::
400⇥ 1000

: :

:::
Lx,

::
Ly: :::

Size
::
of

:::::::::
experiment

:::::
10⇥ 25

:
km

::
lx,

::
ly ::

Ice
:::::
floe’s

:::
size

::::
8⇥ 25

:
km

::
A

:::::
Initial

::
ice

::::::::::
concentration

: ::
100

: ::
%

:
h
: :::::

Initial
::
ice

:::::::
thickness

: ::
1.0

:
m

::::
Nlin :::

Nbr.
:::::
linear

::::::
iteration

: :::
1500

: :

:::::
Nnlin :::

Nbr.
::::::::
non-linear

:::::::
iteration

:::
1500

: :

:::
✏err: ::::

Max.
::::
error

::
in

:::
LSR

: ::::
10�11

:
ms�1

::
dt

:::::::
Timestep

::
0.1

:
s

:
e
: :::::

Ellipse
::::
ratio

::::
(a/b)

: ::
2.0

: :

::
vi :::::

Initial
::::::
velocity

:
0
:

ms�1

::
av: :::::::::

Acceleration
: ::::::

5 · 10�4 ms�2

::::
This

::::::
change

::
of

:::::::::
coordinates

:::
can

::::
then

::
be

::::::::::
represented

::
as

:
a
:::::::
rotation

::
of

:::
the

:::::::::
coordinates

:::
by

::
 

::::
(Fig.

::::
A1).

::::
This

::::
angle

::
is
::::::::::::::::::::::::
(Tremblay and Mysak, 1997):

tan(2 ) =
2�12

�11 ��22
.

::::::::::::::::::

(7)

:::
Any

::::::
linear

::::::::::
combination

:::
of

:::
the

:::::::
principal

:::::::
stresses

:::
are

:::::
stress

:::::::::
invariants.

::::
One

::::::::
common

::::
sets

::
of

:::::
stress

:::::::::
invariants

:::
are

:::
the

:::::
mean

::::::
normal

:::::
stress

::::
(�I )

:::
and

:::
the

:::::::
maximal

:::::
shear

:::::
stress

:::::
(�II ).

:::::
They

:::
can

::
be

:::::::
written

::
as5

�I
::

=
1

2
(�1 +�2) =

1

2
(�11 +�22),

:::::::::::::::::::::::::

(8)

�II
::

=
1

2
(�1 ��2) =

1

2

q
(�11 ��22)2 +4�2

12.
::::::::::::::::::::::::::::::::::

(9)

2.2 Yield curve
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�1

�2 �I

�II

P

P

b

a

µ

Figure 1. Example of
:::::::
Elliptical yield curves used in VP models shown in : Ellipse with e= 2 in

::::
curve

:
(black, coulombic )

::::
with

:::::
ellipse

:::::
aspect

:::
ratio

::::::::::
e= a/b= 2.

:::::::::
Coulombic yield curve in (red)

:::
and

:::::::
elliptical

::::::
capping

::::
with

::::::
internal

::::
angle

::
of

::::::
friction

:::
(µ).

:::
Both

::
e

:::
and µ is

:::
are

:::::::
measures

::
of

the slope
::::
shear

::::::
strength of the Mohr-Coulomb flat on

::::::
material.

:::
The

::::::
normal

:::
flow

:::
rule

::::::
applies

::::
only

:
to
:

the coulombic
::::::
elliptical

:::
part

::
of

:::
the yield

:::::
curves.

:::
For

:::
the

:::
two

:::::
straight

:::::
limbs

::
of

::
the

:::::::::
Coulombic

::::
yield curveas defined in equation

:
,
::
the

::::
flow

:
is
::::::
normal

::
to

::
the

:::::::
truncated

:::::
ellipse

:
(A7

::::::
dash-dot

:::
line)

:::
with

:::
the

::::
same

:::
first

::::
stress

::::::::
invariant.

::::
Note

:::
that

::
the

::::
axes

:::
�1,

::
�2:::

and
:::
�I ,

:::
�II::

do
:::
not

::::
have

:::
the

::::
same

::::
scale.

When
:::
The

:::
VP

::::::::
rheology

::::
was

::::::::
originally

::::::::
developed

::
to
::::::::
simulate

:::
ice

::::::
motion

::
on

::
a

::::
basin

:::::
scale

::::
(e.g.,

::::::
Arctic

::::::
Ocean,

:::::::
Southern

:::::::
Ocean)

::::::::::::
(Hibler, 1979).

::
In

::::
this

::::::
model,

:::::::::
stochastic

:::::
elastic

:::::::::::
deformation

::
is

::::::::::::
parameterized

::
as

::::::
highly

:::::::
viscous

::::::
(creep)

::::
flow

:::::::::::::
(Hibler, 1977).

::
Ice

::
is
:::
set

::
in

::::::
motion

:::
by

::::::
surface

:::
air

:::
and

:::::
basal

:::::
ocean

:::::::
stresses

:::::::::
moderated

::
by

:::::::
internal

:::
ice

:::::
stress.

:::::
When

:::
the

:
internal sea-ice stresses

reach
::::
stress

:::::::
reaches a critical value in compression, tension or shear, sea ice fails and relatively large plastic deformations are

present. For internal ice stresses that are lower than the same thresholds ,
::::::::::
deformation

:::::
takes

:::::
place.

:::::::
Internal

:::
ice

:::::
stress

::::::
below5

::::
these

:::::::::
thresholds

::::
leads

:::
to highly viscous (creeping) flow is present mimicking

:::::
creep)

::::
flow

::::
that

::::::::::::
parameterizes

::
the

:::::
bulk

:::::
effect

::
of

::::
many

:
small reversible elastic deformations.

::::::::::
deformation

::::::
events.

::::
The

::::::::
timescale

::
of

:::::::
viscous

::::::::::
deformation

::
is

::
so

::::
high

:::::::::::
(' 30years)

:::
that

:::::::
viscous

::::::::::
deformation

::::
can

::
be

:::::
seen

::
as

::::::::::::
regularisation

:::
for

:::::
better

:::::::::
numerical

:::::::::::
convergence

::
in

:::
the

::::
case

:::
of

:::::
small

:::::::::::
deformation.

Plastic deformations are relatively large and non-reversible. Viscous deformation are negligibly smalland also
:
is

:::::::::
negligibly

:::::
small;

::
in

:::::::
contrast

::
to

::::::
elastic

::::::::::
deformation

::
it

::
is

::::
also non-reversiblecontrary to elastic reversible deformation in real sea ice. The10

yield criterion is expressed as a 2D envelope either in principal
:::::
stress

:::::
space or stress invariant space with a normal flow rule-

assuming that the principal stress and strain-rate axis .
::::
The

::::::
normal

::::
flow

::::
rule

:::::::
requires

:::
that

:::
the

::::::::
direction

::
of

:::::
stress

::::
and

:::::::
ensuing

::::::::::
deformation

:::::
(strain

:::::
rate) coincide. The stress state on the yield curve together with the normal flow rule therefore determines

the relative importance of divergence (positive or negative) and shear strain rate at a point
:
in

:::::
stress

:::::
space. The magnitude of

the deformation is such that the stress state remains on the yield cure during plastic deformation.15
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In this study, we use two different yield curves, the :
:::
an elliptical yield curve (Hibler, 1979) and coulombic

:
a
::::::::::
Coulombic

yield curve (Hibler and Schulson, 2000)both with the
:
.
:::
The

::::::::
elliptical

::::
yield

:::::
curve

::::
has

:
a
::::::
normal

::::
flow

::::
rule,

:::::
while

:::
the

::::::::::
Coulombic

::::
yield

:::::
curve

:::
has

::
a normal flow rule

::
on

::::
the

:::::::
elliptical

::::
cap

:::
and

::
a

::::
flow

:::
rule

::::::::::::
corresponding

:::
the

::::::::
truncated

::::::
ellipse

:::
for

:::
the

:::::
same

::::
first

:::::::
principal

:::::
stress

::::::::::::::::::::::::::::::::::
(Hibler and Schulson, 2000, Appendix A). For the elliptical yield curve (in black in Figure 1

:::
Fig.

::
1,

:::::
black

::::
line),

⌘ and ⇣ are given by :5

⇣ =
P

2�
, (10)

⌘ =
⇣

e2
, (11)

with the abbreviation

�=

r
(✏̇11 + ✏̇22)2 +

1

e2
((✏̇22 � ✏̇11)2 +4✏̇212)e=

a

b

r
✏̇2I +

1

e2
✏̇2II

::::::::::

. (12)

where
::
In

:::
this

:::::::::::
abbreviation,

:::
the

:::::
strain

:::
rate

::::::::
invariants

:::
are

:::
the

:::::::::
divergence

::::::::::::
✏̇I = ✏̇11 + ✏̇22 :::

and
:::
the

::::
shear

:::::::::::
deformation

:::
rate

:::::::::::::::::::::::::::
s= ✏̇II =

p
(✏̇22 � ✏̇11)2 +4✏̇212.10

:::::
e= a

b ::
is

::
the

::::::
ellipse

::::::
aspect

::::
ratio

::::
with

:::
the

:::::::::
semi-major

::::::::
half-axes

:
a and b are (shown in blue on figure 1.

:
in

::::
Fig.

:::
1). The ellipse as-

pect ratio e defines the shear strength S?
:::::::
S? = P?

2e :
of the material as a fraction of its compressive strength : S? = P?

2e (Bouchat

and Tremblay, 2017). For the Coulombic yield curve ,
::::
(Fig.

::
1,

:::
red

::::::
curve),

:
the shear viscosity ⌘ above is capped on the two

straight limbs(see appendix A for a detailed derivation.

⌘MC=min

⇢
⌘,

1

s


µ

✓
P

2
� ⇣ · ✏̇kk

◆
� c

��
(13)15

with

s=
q

(✏̇22 � ✏̇11)2 +4✏̇212 (14)

:
:

⌘MC
::::

=min

⇢
⌘,

1

✏̇II


µ

✓
P

2
� ⇣ · ✏̇kk

◆
� c

��

::::::::::::::::::::::::::::::::

(15)

:::::
where

::
µ

:
is
:::
the

:::::
slope

::
of

:::
the

:::::::::::::
Mohr-Coulomb

:::::
limbs

::::
(Fig.

:::
1),

:
c
::
is
:::
the

::::::::
cohesion

:::::
value

:::
(the

:::::
value

::
of

:::
�II:::

for
:::::::
�I = 0)

::::::
defined

:::::::
relative20

::
to

:::
the

::::::
tensile

:::::::
strength

:::
by

:::::::::
c= µ ·T ?.

The theoretical angle of fracture
:
✓
:
can be calculated from the generalized state of stress equations on a rotated frame of

referenceat an angle
::::::
Mohr’s

:::::
circle

::
of

:::::
stress

:::
and

::::
yield

:::::
curve

::::::
written

::
in

:::
the

::::
local

:::::::::
(reference)

:::::::::
coordinate

::::::
system

:::::::::::::::::::::::::::::::::::::::::::::::::
(Ip et al., 1991; Pritchard, 1988; Hibler and Schulson, 2000).

::::::
Details

:::
are

::::::::
described

::
in

:::
the

::::::::
appendix.

::::
For

:
a
:::::::::::::
Mohr-Coulomb

:::::
yield

:::::::
criterion,

:
✓ from a reference coordinate frame of reference.

The stress tensor � can be expressed in different sets of coordinates: in terms of principal stresses �1 ::::::
follows

::::::::::
immediately

:::::
from25

::
the

:::::::
internal

:::::
angle

::
of
::::::::

friction,
:::
that

::
is
:::
the

::::::::
available

:::::
shear

:::::::
strength.

::::
An

:::::::::
instructive

:::::::
analogue

::
is
::::

the
::::
slope

:::
of

:
a
::::
pile

::
of

:::::
sand

::
on

::
a

::::
table.

::::
Wet

::::
sand

:::
can

:::::::
support

:::::
more

::::
shear

:::::
stress

:
and �2 and stress invariants �I and �II . The principal stresses �1 and �2 are the

9



principal components or eigenvalues of the stress tensor on an sea ice element. Eigenvalues always exist, because the stress

tensor is by definition symmetric. The principal stresses �1 and �2 can be expressed as a function of �ij as :

�1 = 1
2

⇣
�11 +�22 +

p
(�11 ��22)2 +4�2

12

⌘
,

�2 = 1
2

⇣
�11 +�22 �

p
(�11 ��22)2 +4�2

12

⌘
,

This change of coordinates can then be represented as a rotation of the coordinates of value  as shown on Figure A1. This5

angle, from Tremblay and Mysak (1997), is :

tan(2 ) =
2�12

�11 ��22
.

Any linear combination of the principal stresses would be stress invariants. One commonly used definition called the stress

invariants are the mean normal stress (�I ) and the maximal shear stress (�II ). They are expressed as function of stresses �ij or

principal stresses �k as10

�I = 1
2 (�1 +�2) =

1
2 (�11 +�22),

�II = 1
2 (�2 ��1) =� 1

2

p
(�11 ��22)2 +4�2

12.

:::::
hence

:::
the

::::
slope

:::::
angle

:::
can

:::
be

::::::
steeper

::::::::
(smaller).

:

2.3 Idealized Experiment

An idealized uni-axial
::
An

::::::::
idealized

:
compressive test is used to investigate the modes of sea ice fracture (Figure 2). This15

experiment is standard in engineering (Schulson, 2004; Weiss et al., 2007)and also analogous to an experiment described in

Dansereau et al. (2016)and Herman (2016)
:
.
::::
The

::::::::
numerical

:::::::::::
configuration

::
is
:::::::
inspired

:::
by

::::::::::::::::
Herman (2016) and

::::::
similar

::
to

:::
the

::::
one

:::::
shown

::
in

:::::::::::::::::::
Dansereau et al. (2016). All experiments presented below use the same set-up unless specified otherwise. The values

of parameters and constants are presented in Table 1.

The model domain is a rectangle of size 10km⇥ 25km. ,
::::::

except
:::

for
:::::

Sect.
:::::

3.2.1
::::
and

:::::
Sect.

:::::
3.2.1.

:
An ice floe of size20

8km⇥ 25km, surrounded by 1 km of open water on the eastern and western sides, is compressed with a linearly (in time)

increasing strain rate from the North against a solid Southern
:::::::
southern boundary. The

:::::
eastern

::::
and

:::::::
western

:::::
strips

::
of

:
open-

water areas on the East and West boundary are used so that interesting dynamics are not influence
:::::
avoid

:::::::::
interesting

::::::::
dynamics

::
to

::
be

::::::::::
confounded

:
by the choice of boundary conditions

:::::
lateral

::::::::
boundary

:::::::::
conditions

::::::
along

:::
the

:::::
open

:::::::::
boundaries

::
to

::::
the

::::
East

:::
and

:::
the

:::::
West. We use a no-slip condition for the southern boundary, constraining the ice laterally

:::::
lateral

:::
ice

:::::::
motion. Note25

that the results presented below are robust of
::
not

::::::::
sensitive

::
to

:
the choice of boundary condition on the east, west and south

boundary
:::::
eastern

::::
and

:::::::
western

:::::::::
boundaries. Because the simulation time and ice velocity

::
the

:::
ice

::::::::
velocities

:
are small, the Cori-

olis force in the momentum equations are neglected. The ocean
:::::
Ocean

:
and sea ice are initially at rest. The

::::
only

::::
term

::::
left

::
in

::
the

::::::::::
momentum

::::::::
equation

::::::::
(Eguation

:::
(1)

::::
that

::
is
:::::::
relevant

:::
for

::::
our

:::::::::
experiment

::
is
::::

the
:::::
stress

:::::::::
divergence

:::::
term,

:::::
r ·�.

::::
The

:
ice floe

10



2✓

Shoreline

Open boundary

Prescribed Strain

Sea ice

Open water

Figure 2. Schematic of
:::::
Model

::::::
domain

::::
with

:
a
::::
solid

::::
wall

::
on

:
the experiment. The

::::::
southern

:
(redarea represent blocked grid cells)

::::::::
boundary

:::::::
(Dirichlet

:::::::
boundary

::::::::
conditions

::::
with

::::::
u= 0),

::
and

::::::::
prescribed

::::::::
southward

::::::::
velocities

::
on

:
the green area is open

::::::
northern

::::::
orange

:
boundary that

let ice leave
:::::
(u= 0,

::::::::::::
v = av · t+ vi, :::

Eq.
::
17)

::::
and

::::
open

::::::::
boundaries

::
to the domain

:::
East

:::
and

:::
the

::::
West

:::::
(green)

:
with von Neumann

::
von

::::::::
Neumann

boundary conditions. The orange area represent the prescribed area where the ice is forced with southward velocity. ✓ is the measured

fracture angle with the blue line representing an LKF.

has a uniform concentration of 100% and
:
a thickness of 1m. The spatial resolution of the model is 25m. We use the Line

Successive (over)Relaxation (LSR) solver to solve the sea ice
::::
The

:::::
angle

::
of

:::::::
fracture

::
is

::::::::
measured

:::::
with

:::
the

:::::
angle

:::::::::
measuring

:::
tool

:::
of

:::
the

:::::
GNU

:::::
Image

::::::::::::
Manipulation

::::::::
Program

::::::
(GIMP,

:
https://www.gimp.org/

:
).
:::
All

::::::
angles

:::::::::
measured

::
in

::::
this

:::::
study

::::
have

:::
an

::::
error

:::::
range

::::::
around

:::
1�.

::::
The

:::::
finite

:::
size

:::
of

:::
the

::::
grid

::::::
spacing

:::::::
widens

:::
the

::::::::::
deformation

::::
line,

::::
and

:::
the

:::::::
fracture

::::::
spreads

:::::
over

::::::
several

:::::
pixels

:::::::
because

::
of

:::
the

::::::::
obliquity

::
of

:::
the

:::::::
fracture.

:::::::::
Automatic

::::::::::
algorithms

::
for

:::::::::
measuring

:::::
LKF

::::::::::
intersection

:::::
angles

:::
are

:::::::::
described

::
in5

::::::::::::::::::::::::::::::::::::::::
Linow and Dierking (2017); Hutter et al. (2018b).
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:::
We

::::
solve

:::
the

:::::::::
non-linear

::::::
sea-ice momentum equations with

:
a
::::::
Picard

::
or

::::
fixed

:::::
point

:::::::
iteration

::::
with 1500 non-linear iterations and

1500 linear iterations within
:
or

:::::::::
outer-loop

::::
(OL)

:::::::::
iterations.

::::::
Within each non-linear iteration(Zhang and Hibler, 1997; Lemieux and Tremblay, 2009).

A high number of iterations is required ,
::::

the
:::::::::
non-linear

::::::::::
coefficients

:::::
(drag

::::::::::
coefficients

:::
and

::::::::::
viscosities)

:::
are

:::::::
updated

::::
and

::
a

::::::::
linearized

::::::
system

::
of

::::::::
equations

::
is

::::::
solved

::::
with

:
a
::::
Line

::::::::::
Successive

::::::::::::::
(over-)Relaxation

::::::
(LSR)

:::::::::::::::::::::
(Zhang and Hibler, 1997).

::::
The

:::::
linear

:::::::
iteration

::
is

::::::
stopped

:::::
when

:::
the

:::::::::
maximum

::::::::
increment

::
is

::::
less

::::
than

:::::::::::::::::
✏LSR = 10�11ms�1,

:::
but

:::
we

::::
also

::::
limit

:::
the

:::::::
number

::::::::
iterations

::
to5

:::::
1500.

::::::::
Typically,

::::
1500

:::::::::
non-linear

::::::::
iterations

:::
are

:::::::
required

::
to

:::::
reach

::
a

::::::::
converged

::::::::
solution.

::::
This

::
is

::
so because of slow convergence

of
:::
due

::
to

:
the highly non-linear nature of the rheology term and the high spatial resolution (Lemieux and Tremblay, 2009).

On the open eastern and western boundaries, we use von Neumann boundary conditions for velocity, thickness and concen-

tration and ice can escape the domain unrestricted
:::
with

::::
out

:::
any

:::::::::
restrictions:

@u

@x

����
E,W

=
@v

@x

����
E,W

=
@A

@x

����
E,W

=
@h

@x

����
E,W

= 0, (16)10

where E and W denote the Eastern and Western respectively. The ice is initially at rest.
:
E

:::
and

:::
W

::::::
denote

:::
the

::::::
eastern

:::
and

:::::::
western

:::::::::
boundaries,

:::::::::::
respectively. Strain is applied on

:
to
:
the ice at the northern boundary by prescribing a velocity that increases linearly

with time :

v|N (t) = av · t+ vi ; u|N = 0 ;
@A

@y

����
N

=
@h

@y

����
N

= 0, (17)

where av is the prescribed acceleration, and N denote
::::::
denotes

:
the northern boundary.15

Model parameters for the reference simulation Symbol Definition Value Unit⇢ Density of ice 910 P ? Ice strength 27.5 C

strength reduction parameter 20 dx, dy Grid Spacing 25 Cw Water drag coefficient 5.21⇥ 10�3 Nx, Ny Size of the Domain

400⇥ 1000 Lx, Ly Size of Experiment 10⇥ 25 lx, ly Ice floe’s size 8⇥ 25 A Ice Concentration 100 % h Ice Thickness 1.0

Nlin Nbr.Linear Iteration 1500 Nnlin Nbr.Non-linear Iteration 1500 ✏err Max.error in LSR 10�11 dt timestep 0.1 e ellipse

ratio (a/b)2.0 vi initial velocity 0 av acceleration 5 · 10�420

3 Results

3.1 Uni-axial compressive test

:::
We

:::
use

::::::
simple

:::::::
uni-axial

:::::::
loading

::::::::::
experiments

::
to

:::::::::
investigate

:::
the

:::::::
creation

::
of

::::
pair

::
of

::::::::
conjugate

:::::
faults

:::
and

:::::
their

:::::::::
intersection

::::::
angle.

::::
After

:::::::::
presenting

:::
the

::::::
results

::
of

::::::::::
simulations

:::::
with

:::
the

::::::
default

:::::::::
parameters

:::::::
(Section

:::::
3.1),

:::
we

::::::
explore

:::
the

::::::
effects

:::
of

:::::::::::
experimental

:::::::
choices:

::::::::
confining

::::::::
pressure,

::::::
choice

::
of

:::::::::
boundary

:::::::::
conditions

::::
(i.e.

::::
von

::::::::
Neumann

::::::
versus

:::::::::
Dirichlet),

:::::::
domain

::::
size

::::
and

::::::
spatial25

::::::::
resolution

:::
and

::::::::::::::
inhomogeneities

::::
(i.e.

::::::::
localized

::::::::
weakness)

:::
in

:::
the

:::::
initial

::::::::
thickness

:::
and

::::::::::::
concentration

::::
field

:::::::
(Section

::::
3.2).

:::::::
Finally,

::
we

:::::
study

:::
the

:::::::::
behaviour

::
of

:::
two

:::::::
viscous

::::::
plastic

:::::::::
rheologies

::::
with

:::::::
different

:::::
yield

:::::
curves

::::
and

:::::::
compare

:::::
these

:::::::::::
dependencies

::
to

:::::
what

::
we

::::
can

::::
infer

::::
from

:::::::
smaller

:::
and

:::::
larger

:::::
scale

::::::::::::
measurements

::::
from

:::::::::
laboratory

:::::::::
experiment

::::
and

:::::
RGPS

:::::::::::
observations

:::::::
(Section

::::
3.3).

3.1
:::::::
Uni-axial

:::::::::::
compressive

::::
test

:
-
:::::::
Default

::::::::::
parameters
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Figure 3. Results of the reference simulation after 10 seconds of simulation. Top left: Shear deformation inside the ice floe, showing

:
(adiamond shape fracture. Bottom left: Divergence deformation inside the ice floe)

::::
First

::::
and

:::
(b)

:::::
second

:::::
strain

::::::::
invariants, showing the

divergence in the fracture line that lead to an opening. Top right: Modification of the
::
(c)

::
ice

:
thickness compared to initial state of 1 , the

opening with a diamond shape is visible. Bottom right: Stress
::::::
anomaly

:::::::::::
(�h= h� 1)

:::
and

::
(d)

:::::
stress states in red,

::::::::
normalized

::::
stress

:::::::
invariant

::::
space

::::
along

:
with the elliptical yield curve in black

:::
after

:
5
::::::
seconds

::
of

::::::::
integration.

:::
The

:::
first

:::
and

:::::
second

:::::
strain

:::::::
invariants

:::::::
represent

:::
the

::::::::
divergence

:::
and

:::::::
maximum

:::::
shear

::::
strain

::::
rate,

:::::::::
respectively.

:::
The

:::::::
modeled

::::
angle

::
of

::::::
fracture

::
is

:::::::::::
✓ = (34± 1)�

In the reference experiment with default parameters
::::
With

::::::
default

:::::::::
parameters

::::::
(Table

::
1), a diamond shape fracture appears in

the shear strain rate and divergence fields after a few seconds of integration (Figure 3). The fracture appears right away but

is visible
::::
After

::
1
::::::::
timestep

:::
(or

:::
0.1 s

:
),
:::
the

::::::
stress

:::::
states

::::::
already

:::
lie

:::
on

:::
the

:::::
yield

:::::
curve

:::
and

::::
the

:::::::
fracture

::
is

::::::
readily

::::
seen

:
in the

13



deformation field only after a few seconds of integration
::::
fields

::::::::::
(divergence

:::
and

::::::
shear).

::::
We

:::::
iterate

:::
for

::
a

::::
total

::
of

:::
20

:::::::
seconds

::
in

::::
order

:::
for

:::
the

:::::
signal

::
to
:::
be

:::::::
apparent

::
in

:::
the

::::::::
thickness

::::
and

:::::::::::
concentration

:::::
fields.

::::
We

::
do

::::
this

::
to

::::
more

::::::
clearly

:::::
show

:::
the

::::
link

:::::::
between

::::::
position

:::
of

::
the

:::::
stress

:::::
states

:::
on

:::
the

::::
yield

:::::
curve

:::
and

:::
the

::::::
normal

::::
flow

::::
rule

::
in

:::
the

:::::::
standard

:::
VP

:::::::
rheology

:::
of

:::::::::::
Hibler (1979). The shear

deformation (✏̇II ) shows where the ice slides in friction and deforms plastically. From Figure
:::
Fig. 3, the measured

::::::::
simulated

intersection angle is ✓ = 33.8± 0.5�. All angles measured in this study have an error range around 1deg. Because we model5

an oblique fracture on a grid, the size of the grid spacing spread the deformation line, and the fracture spread on several pixels

because of the obliquity of the fracture.
::::::::::::
✓ = (34± 1)�.

Results after
::::
After

:
a few time stepsshow lower (or equal) ice thickness in the model domain, ,

::::
the

::
ice

::::::::
thickness

:::::::::
decreases

particularly along the LKFs (Fig. 3, middle panel
:
c) where divergence is present

:::::::
maximal. Note that the loading axis in our

simple 1D experiment is also the second principal axis and consequently the stress states are slowing migrating along the �110

::
�2:axis as the strain rate at the northern boundary increases. Fracture occurs

::::
after

:::::
plastic

::::::
failure when the stress state intersects

::::::
reaches the yield curve ; this

:::
and

:::
the

:::
ice

::::
starts

::
to
:::::
move

::
in
::::::::::
divergence.

::::
This

:
occurs in the first half of the ellipse (for e < 1

:::::
closer

::
to

:::
the

:::::
origin

::::
(for

:::::
e > 1) where the normal to the flow rule points in the

::::::::
direction

::
of

:
positive divergence (or first strain rate

invariant) direction (see Figure
:::
(see

:::
Fig. 4). This explains the simulated divergent flow field and lower ice thickness particularly

along LKFs.15

The results presented above are robust with respect to the spatial resolutionand model domain size (see Figure

3.2
::::::::

Sensitivity
:::::::::::
experiments

::
In

:::
this

:::::::
section,

:::
we

:::
test

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::::
standard

:::
VP

::::::
model

:::::::::
simulation

:::::
(Sect.

::::
3.1)

::
to

:::
the

::::::
choice

::
of

:::::::::
resolution,

:::::
scale,

::::
and

:::::::
run-time

::::::
(3.2.1),

:::::::::
boundary

:::::::::
conditions

:::
and

:::::::::::
confinement

::::::::
pressure

::::::
(3.2.1),

::::
and

:::::::::::
heterogeneity

:::
in

:::
the

:::::
initial

::::
sea

:::
ice

::::
mass

:::::
field

::::::
(3.2.1).20

3.2.1
:::::::
Domain

::::
size,

::::::
spatial

:::::::::
resolution

::::
and

::::::
length

::
of

::::::::::
integration

:::
The

:::::
angle

::
of

::::::::::
intersection

:::::::
between

:
a
::::
pair

::
of

:::::::::
conjugate

::::
faults

:::::
does

:::
not

::::::
change

::::
with

::::::
domain

::::
size

:::
and

::::::
spatial

:::::::::
resolution

::::
(Fig. 5).

::::
This

::
is

::::::::
expected,

:::::::
because

::::::::::::::::::
non-dimensionalizing

:::
the

:::::::::
divergence

:::
of

:::
the

::::::
internal

:::
ice

:::::
stress

:::::
term

::::
(the

::::
only

::::
term

::::
that

:::::::
remains

::
in

:::
this

::::::
simple

::::::::
uni-axial

:::
test

:::::::::::
experiment)

::
by

::::::
setting

:::::::::
u0 = u/U ,

:::::::::
x0 = x/L,

:::::
gives

:::
the

:::::
same

::::::::
equations

::
in

::::::::::::::
non-dimensional

:::::
form

:::::::::
irrespective

:::
of

:::
the

:::::
initial

:::
ice

::::::::
thickness

:::
or

:::::
spatial

::::::::::
resolution.

::::::::::::
Consequently,

:::
the

::::::
control

::::
and

:::::::::
sensitivity

::::::::::
experiments

:::
are

:::::
scale25

::::::::::
independent

:::
and

::::
the

::::::::
behaviour

:::
of

:::
the

::::::::
standard

:::
VP

::::::
model

:::
can

:::
be

::::::
readily

:::::::::
compared

::::
with

::::::
results

:::::
from

::::::
RGPS,

::::::::
AVHRR,

:::
or

::::::::
laboratory

:::::::::::
experiments.

3.3 Fracture and generation of smaller floes

Here, the reference simulation is extended for a longer time period (
:::::::::
Continuing

:::
the

::::::::::
integration

::
to

:
2700seconds or

:::::::
seconds

:
(45 min), using a smaller number of numerical iterations because of computational constraints (150 iterations instead of 150030

for both linear and non-linear iterations with the LSR solver, see
::::::::
compared

::
to

::
20

:::::::
seconds

:::
in

:::
the

::::::::
reference

:::::::::
simulation

:::::
leads

14
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Figure 4. Schematic of stress state migration during uni-axial
::::
states

:::
and

:::::
failure

::
in

:::::::
principal

:::::
stress

:::::
space.

::::
Black

::::::
arrows

::::
show

::::
how

::::::
stresses

::::
move

::::
from

::::
zero

:
at
:::
the

::::::::
beginning

::
of loading experiments

:::::
towards

:::
the

::::
yield

:::::
curve

:::
until

::::::
failure. Red arrows shows

:::::
points

::::
show the stress state

::::
states at fracture

:::::
failure –

:
– the intersection point between the second principal axis�1 :

2 (in red) and the elliptical yield curve –
:
– for different

ellipse ratio: e= 2, e= 1, and e= 0.7
::::
ratios

::::::::::
e= 2,1,0.7. The

::
red

::::::
arrows

::::
show

:::
the

:::::::
direction

::
of

:::::::::
deformation

::::
with

:
a
::::::
normal

::::
flow

:::
rule.

::::
The

blue
::::
points

:::
and

:
arrows show the case when the ice floe is confined . The

::
and

:::
the

::::::
loading

:::
will

:::
lead

::
to
::::
extra

:
stress states migrate from a point

with a higher compressive stress
::
in

::
the

:::::::
direction

::
of

:::
�1.

::
to

:::
the

:::::::
creation

::
of

:::::::
smaller

::::::::::::::
diamond-shaped

:::
ice

::::
floes

::::
due

::
to

:::::::::
secondary

::::
and

::::::
tertiary

:::::::
fracture

:::::
lines

:
(Figure 6). The ice floe is

broken into separated ice floes of smaller diamond-scale. The openings are visible in the thickness and concentration fields

with thinner,
::::
less

:::::::::::
concentrated ice in the lead. Contrary to the previous short

::
In

:::
this

::::::
longer experiment, the sea ice ridged at

several points and thickness increases, especially in
:::
also

::::::
ridges,

:::
for

:::::::
instance

::
at the center of the central diamond, where the tip

of the upper triangle is compressed
::::::
domain

:::::
where

:::
the

::::
apex

::
of
:::
the

:::::::::
diamonds

::::
fails

::
in

::::::::::
compression. There is also some thicker ice5

at the northern boundary because of the boundary condition
::::::
induced

:::
by

:::
the

::::::::
specified

:::::
strain

:::
rate

::
at

:::
the

:::::::
northern

:::::::::
boundary. The

fracture into several floes that move independently on open-water at this resolution appears realistic. Several fractures develop

in parallel similarly as the comb crack or secondary fault lines , described in Schulson (2004)
:::::
pattern

::::
and

:::::::
presence

::
of

:::::::::
secondary

:::
and

::::::
tertiary

:::::::
fracture

::::
lines

::::
are

::
in

:::
line

::::
with

::::::
results

:::::
from

:::::::::
laboratory

::::::::::
experiments

:::::::::::::::::
Schulson (2004) and

::::
with

::::::::
AVHRR

:::
and

::::::
RGPS

::::::::::
observations.10

::
In

:::
the

::::::::
following,

:::
we

:::::::
always

::::
show

::::::
results

::::
after

::
5
:::::::
seconds

::
of

:::::::::
integration

:::::::
because

:::
our

:::::
main

:::::
focus

::
is

::
on

:::
the

::::::
initial

::::::
fracture

:::
of

::
the

::::
ice,

:::
that

:::
is,

:::
the

:::::
instant

:::::
when

:::
the

:::
ice

::::::
breaks

:::
for

::
the

::::
first

::::
time

:::::
under

:::::::::::
compression.

:
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Figure 5. Shear deformation
::::::::
Maximum

::::
shear

::::
strain

::::
rate (or ✏̇II:::::

second
:::::
strain

::::::
invariant) after 2 with (left) a coarser resolution

::
10

::::::
seconds of

100 , (middle)
::::::::
integration

::
for

:::
the

:::::
default

::::::
domain

:::
size

::::
and

:::::::::
�x= 100m

:
(acoarser resolution of 500 )

:
and c) in

:::::
500m

:::
(b),

:::
and

:::
for

::
the

::::::
default

:::
�x

:::
and a experiment with a domain that has been doubled in both directions to a

:::::
domain

:
size of 20km⇥ 50km at resolution

:::
(c).

::::
Note

:::
that

::
for

::::
case of 25

:::
the

:::::
double

::::::
domain

::
(c), with a doubled prescribed

::
the

::::::::
southward

:
velocity

:
at
:::
the

:::::::
northern

:::::::
boundary

:::
was

::::
also

::::::
doubled to keep

::
the

:
deformation rate constant,

::::
and

:::
that

:::
this

::::::::
simulation

:
is
::::::
limited

::
to

:
2
::::::
seconds

:::
for

::::::::
numerical

:::::::
efficiency.

3.3 Effects of no-slip boundary condition and geometry

3.2.1
:::::::::
Boundary

:::::::::
conditions

::::
and

::::::::
geometry

The dynamics presented above are happening
:::::::::
responsible

:::
for

:::
the

:::
ice

:::::::
fracture

:::
and

:::::::
location

:::
of

:::
the

:::::::
fracture

:::::::::
(presented

::::::
above)

:::
take

:::::
place

:::
far away from the east/west boundaries

::::::
eastern

:::
and

:::::::
western

:::::::::
boundaries

:::
and

::::::::
therefore

::
do

:::
not

:::::::
depend

::
on

:::
the

::::::
choice

::
of

::
the

::::::::::::
corresponding

:::::::::
boundary

::::::::
conditions. We now investigate the robustness

::::::::
sensitivity

:
of the results to the choice of southern5

boundaries
:::::::
boundary

:::::::::
condition

::
at

:::
the

::::::::
southern

::::::::
boundary. To this end, we reduce the

::::
force

:::
the

:::::::
fracture

::::
line

::
to

::::::::
intersect

:::
the

:::::::
southern

::::::::
boundary

::
by

::::::::
reducing

:::
the domain size to 10km⇥10km with an ice floe of 8km⇥10km in the interior, in such a way

that the ice fracture ends on the southern boundary where a no-slip boundary condition is imposed - as opposed to the east/west

boundaries as presented above. In this case, the fracture develops from corner to corner and the angle is solely determined by

the geometry of the ice floe, that is, ✓ = arctan(lx/ly) (right hand side of Fig. 7shows an example
:
b). With

:
a free-slip boundary10

condition on the South
:
at
:::
the

::::::::
southern boundary, the fracture angle is similar to the one of the reference simulation (left hand

side of Figure 7). I.e.
::::
from

::::
the

::::::
control

:::::::::
simulation

:::::
(Fig.

:::
7a).

:::::
That

::
is,

:
the no-slip condition acts as a stress concentrator on

::::::::::
concentrates

:::
the

:::::
stress

::
to

:
the corner of ice floe

::
the

:::
ice

::::
floe

:::::::
touching

:::
the

::::::::
boundary

:
and pre-determines the fracture location. A

slip
:::::::
free-slip

:
boundary condition is therefore considered more physical in such idealized experiments .

:::::
where

:::::::
fractures

:::::
lines

:::
can

::::::
extend

::::
from

::::
one

::::::::
boundary

::
to

:::::::
another.

::::
This

:::::
result

::::
can

::::
have

::::::::::
implications

:::
for

:::::::::
simulation

:::
of

:::::
LKFs

::
in

:::
the

::::::
Arctic

:::
that

::::::
would15

:::::
extend

:::::
from

:::
one

::::::::
boundary

::
to

:::::::
another,

:::
for

:::::::
instance

::
in

:::
the

:::::::
Beaufort

::::
Sea.

:
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Figure 6. Uni-axial compressive test after 2700
:::
Sea

::
ice

:::::::
thickness (

::
a),

::::::::::
concentration

:::
(b),

::::::::
maximum

::::
shear

::::
strain

:::
rate

:::
(c)

::
and

:::::::::
divergence

::
(d)

::::
after

45 min
::
of

::::::::
integration

:::::
(2700

::
sec)

::
in

:
a
:::::::
uni-axial

::::::
loading

:::
test.

:
o
:::::
make

::::
these

:::::
longer

::::::::
simulations

:::::::
possible,

::::
both

::::::::
non-linear

:::
and

::::
linear

:::::::
iterations

:::
are

:::::
limited

::
to

:::
150

:::
per

:::::::
timestep. Results show the primary and

:::::::::
development

::
of
:

secondary fracture lines (top left): sea ice thickness; (top right):

sea ice concentration; (bottom left): shear strain rate ✏̇II ; bottom right: divergence ✏̇I::
in

::
all

::::
fields

::::
after

:::
the

:::
first

::::::
fracture

:::
line

:::
has

::::::
formed.

.

No-slip or free-slip boundary conditions have little impact on the fracture angle in the larger reference domain with longer

floe
::::::
domain

::::
used

:::
in

:::
the

::::::
control

::::
run

:::::::::
simulation, because the LKFs always end on the

:::
only

:::::
touch

::::
one

::::::::
boundary

::::
and

:::
end

:::
in

open-water boundaries of the floe (
::::::
(results not shown). With the free-slip boundary conditions, the stress and strain

::::::
stresses
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Figure 7. Snap shot of
::::::::
Maximum shear strain rate after 15 with a reduced-size ice floe 5

:::::::
seconds of 8km⇥ 10km

:::::::
integration

::
in

::
a

::::::
reduced

:::
size

::::::
domain

::
(8 km

:
⇥

:::
10 km) (left)) with

::::::
free-slip

:
(aslip

:
)
:::
and

:::::
no-slip

:::
(b) boundary condition on

::::::::
conditions.

::::
Note

:::
that the southern boundary,

✓ = 33.8� ± 0.5, and (right) with a no-slip boundary condition
::::

forces
:::
the

::::::
fracture

:
to
:::::
occur

:
at
:::
the

:::::
corner

::
of

::
the

::::::
domain, ✓ = 39� ± 0.5

::::::
leading

:
to
::

a
::::
larger

:::::
angle

::
of

:::::::
✓ = 39�

::
vs.

::::::
34± 1�

::
in
:::
the

::::::
control

:::::::::
experiment.

:::
This

:::::::
suggests

:::
that

:::
the

:::::
choice

::
of
::::::::
boundary

::::::::
conditions

::
in

:::::
current

:::
sea

:::
ice

:::::
model

:::::
needs

::
to

::
be

:::::::
revisited.

:::
and

::::::
strains are only different south of the diamond fracture pattern because ice can move along the southern boundary and the

second fracture cannot form.

3.3 Effects of lateral confinement

We
:::
The

:::::
angle

::
of

:::::::
fracture

::
in

:
a
:::::::
granular

:::::::
material

::
is

::::::::::
independent

::
of

::::::::
confining

:::::::
pressure

::
in

::::::::
uni-axial

::::::
loading

:::::::::
laboratory

::::::::::
experiment.

:::
We

::::
now explore the effect of confining pressure on the eastern and western boundaries on the angle of fracture

:::::
when

:::::
using5

:
a
::::::::
(convex)

:::::::
elliptical

:::::
yield

:::::
curve

:::::
with

:
a
:::::::

normal
::::
flow

::::
rule. To do so, we introduce solid walls on the eastern and western

boundaries of the domain (similar to the southern boundary) and fill the open water gap between the ice and wall
::::::
replace

:::
the

::::
open

:::::::::
boundaries

::
to

:::
the

::::
East

::::
and

:::
the

::::
West

::::
with

::::
solid

:::::
walls

::::
and

:::
the

::::
open

:::::
water

::::
gaps

:
with ice of different thicknesses hc. As the

strength of sea ice increases linearly with thickness , the fracture angle changes depending on the
::::
Note

::::
that

:::
the

:::
ice

:::::::
strength

:
is
:::::::
linearly

::::::
related

::
to

:::
the

:::
ice

::::::::
thickness

::::
(Eq.

:::
4).

::::::::
Therefore

:::
the

::::::
normal

:::::
stress

::
at
:::
the

:::::
edge

::
of

:::
the

:::
floe

::
is
::::::::::
completely

::::::
defined

:::
by

:::
the10

thickness of the surrounding ice.

With an increasing lateral confinement (
::::::
pressure

::::
(i.e.

::
an

:::::::::
increasing

:::
ice

::::::::
thickness

::
hc::::

next
::
to

:::
the

::::
main

:::::
floe),

::
all

:::::
stress

:::::
states

:::
are

:::::
moved

::
to
::::::
higher

::::::::::
compressive

:::::::
stresses

:
(blue curve in Figure

:::
Fig. 4)

::
and

:
the fracture angle increases (Figure 8). The deformation

points are migrating towards
::
In

:::
this

:::::
case,

:::
the

:::::
stress

:::::
states

:::
are

:::::
again

::::::::
migrating

:::
in

:
a
::::::::
direction

:::::::
parallel

::
to

:::
the

:::
�2 :::

axis
::::

but
::::
with

:
a
::::::::
non-zero

::
�1::::::

value.
::::
The

:::::
stress

:::::
states

::
of

::::
the

:::
ice

:::::
along

:::
the

:::::::
fracture

:::
are

::::::::
therefore

::::::
located

:::
in

:
a
::::::
region

::
of

:
higher compressive15

stresses on the yield curve . As the ice is under pressure on the eastern and western boundaries, it cannot move freely eastward

and westward so that it then enters the ridging phase more readily
:::::
where

:::
the

:::::::::
divergence

::
is

:::::::
reduced

::
or

::::
even

:::::::
changes

::::
sign. With

increasing confinement, the stress states of the ice floes
:::
floe

:
move to more negative values of �1 along a �2 = constant line
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Figure 8. Shear
:::::::
Maximum

:::::
shear strain

:::
rates

::::
(left)

:
and stress states for (Top) hc = 0.05m and (Bottom) hc = 0.3m

::::
state

::
in

::::
stress

:::::::
invariant

::::
space

:::::
(right)

:
after 5 seconds of simulation

::::::::
integration

:::
for

::::::
different

::::::::::
confinement

:::::::
pressure:

::::::::::
hc = 0.05m

::
(a)

::::
and

::::::::
hc = 0.3m

:::
(b).

::::
Note,

::::
how

::::
stress

::::
states

::::
with

:::::::
divergent

:::::
strain

::::
rates

::
(a)

::::::
migrate

:::
left

::::::
towards

::::::::
convergent

:::::
strain

:::
rates

:::
(b).

:::
line

::
of

:::::::
constant

:::
�2 (blue line in Figure

::::
Fig. 4) with deformation moving towards more convergent states. Between hc = 0.2 and

hc = 0.3, the regime changes from lead opening to ridging, as the fracture angle pass above 45
:::::::
increases

::
to

::::::
values

:::::
above

:::
45�.

3.3 Effects of the heterogeneity

3.2.1
::::::
Effects

::
of

:::
the

::::::::::::
heterogeneity

Local weaknesses in the initial ice field also has an effect on the fracture angle. When weaknesses are embedded
::
So

::::
far,5

::
all

:::::
initial

::::::::::
conditions

::::
have

:::::
been

:::::::::::
homogeneous

:::
in

::::::::
thickness

::::
and

:::::::::::
concentration

::::::
within

:::
the

:::
ice

:::::
floe.

::
In

::::::::
practice,

:::
sea

:::
ice

:::
(in

::
a
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Figure 9. (left) Initial
:::
Sea

:
ice thickness with two weak

:::::
ice-free

:
areas of lower ice thickness. Shear

:::
(a),

:::
and

::::::::
maximum

::::
shear

:
strain rate ✏̇II

:::
rates

:::
for

:::
two

:::::::
different

:::::
ellipse

:::::
aspect

:::::
ratios

::
(b

:::
and

::
c) after 5 seconds with (middle) e= 2

:
of

:::::::::
integration.

:::
The

:::::::
position

::
of

::
the

:::
ice

:::::::::
weaknesses

::::::::
determines

:::
the

::::::
location and (right) with e= 1

::::
angle

::
of

::
the

::::::
fracture

:::::
lines,

:::
and

:::
also

:::
the

:::::::
rheology

::::::::
parameter

:
e
:::
has

::
an

::::::
entirely

:::::::
different

::::
effect.

:::
The

::::
main

:::::::
fractures

:::
lines

:::
are

::
at

:::::
angles

::
of

::
25 �

::
and

:::
34 �

::
for

:::::::
e= 2.0,

:::
and

::::
57.6 �

::
for

::::::
e= 1.0.

::::::::
numerical

::::::
model,

::::
but

:::
also

:::
in

::::::
reality)

::
is
::::

not
::::::::::::
homogeneous.

::
A

:::::
local

::::::::
weakness

:
in the initial ice field , failure occurs first at

this points. This lead to a stress concentration which raises the stress level and causes failure. This in turn raises
:
is
::::::

likely

::
the

:::::::
starting

:::::
point

::
of

:
a
:::::
crack

::::::
within

:::
the

:::
ice

::::
field

:::::::::::::::::::::::::::::
(e.g., Herman, 2016, her Figure 5c).

:::::
Local

:::::::
failures

::::
raise

:
the stress level in the

adjacent grid cell and crack propagation proceeds in this manner. In this case, the fracture links stress concentrators together

to form a fracture and the angle of fracture is determined also by the distribution of initial ice weaknesses rather than only by5

the shape of the yield curve or mechanical stress parameters. Figure 9 shows
:::::::
adjacent

::::
grid

::::
cells

::::
and

:
a
:::::
crack

::::
can

:::::::::
propagate.

::::
Note

::::
that

:::
the

:::::
crack

::::::::::
propagation

::
in

:::
an

::::::
“ideal”

::::::
plastic

::::::
model

::::
such

:::
as

:::
the

:::
VP

::::::
model

::
is

:::::::::::
instantaneous

::::
and

:::
this

:::::::::::
propagation

::
is

:::
not

::::
seen

:::::::
between

::::
time

:::::
steps.

:::
As

::
a
:::::::::::
consequence,

:::::
lines

::
of

::::::
failure

:::
will

::::::
likely

:::::::
develop

:::::::
between

::::
local

:::::::::::
weaknesses.

::::
The

:::::::
location

::
of

::::::::::
weaknesses

::
in

:::
the

:::
ice

::::
field

:::::::
together

:::::
with

:::
the

:::
ice

::::::::
rheology

:::::
(yield

:::::
curve

:::
and

:::::
flow

::::
rule)

::::
both

:::::::::
determine

:::
the

:::::::
fracture

::::::
angles

:::::::::::::::::::::::::::::::::::::::::::::
(Hibler and Schulson, 2000; Aksenov and Hibler, 2001).

:
10

::
To

::::::::
illustrate

:::
this

::::::::
behavior,

:::
we

::::
start

::::
new

:::::::::
simulations

:::::
from an initial ice thickness field with two areas of lower ice thickness

:::
zero

:::
ice

::::::::
thickness

:::
and

::::
zero

:::
ice

:::::::::::
concentration, hence weaker ice (left hand side), and the results of two simulations after 50 , with

e= 2 (middle) and e= 1 (right hand side). The fracture patterns are very different from
::::::
Figure

:::
9a).

:::::
After

::
5s

:::::
these

::::::::::
simulations

::::
yield

:::::::
fracture

:::::::
patterns

:::
that

:::
are

:::::::::::
dramatically

:::::::
different

::::
from

:::::
those

::
of

:::
the

::::::
control

::::
run

::::::::
simulation

::::::::
(Section

::::
3.1): the reference case

as the fracture lines now start or
:::
and terminate at the corners

:::::::
locations

:
of the weak ice areas. Still, changing the yield curve15

by means of
::::
shear

:::::::
strength

::
of

:::
the

:::
ice

:::
(by

::::::::
changing

:
e
:
) changes the fracture pattern

::::::
(Figure

:::
9b

:::
and

:::
c).

::::
With

::::::
e= 1,

:::
the

::::::
angles

::
are

::::::
much

:::::
wider

::::
than

::::
with

::::::
e= 2,

:::::
which

::
is
:::::::::

consistent
::::
with

::::
the

::::::
general

::::::::::
dependence

:::
of

:::::::
fracture

:::::
angles

:::
on

::
e
::::
(see

::::
Sec.

::::::
3.3.1).

:::
Our

::::::::::
simulations

::::::
cannot

::::
lead

::
to

:::::::::
conclusive

:::::::::
statements

:::::
about

:::
the

:::::::
relative

:::::::::
importance

::
of

::::::::::::
heterogeneity

::
of

:::::
initial

:::::::::
conditions

::::
and
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Figure 10. Fracture angles as a function of ellipse aspect ratio e with constant P⇤
:
?
::::
(red,

::::::
bottom

::::
scale,

::::::
Section

:::::
3.3.1). The red

::::::::
theoretical

::::::::
relationship

:::::::::::::::::::::::::::
✓th,ell = 1

2 arccos�1
⇥
1
2

�
1
e2

� 1
�⇤

::::::
(dashed

::::
black

:
curve,

:::
Eq.

:::
B4

:
in
:::

the
::::::::
appendix) fits the data

::::::
modeled

::::::
angles

:::::
almost

:::::::
perfectly

with a= 15.1, b=�1.96,
::::::::::
R2 = 0.9995

:
and c= 29.9

::::::::::::

p
VAR= 0.089. The R-square value

:::::::
simulated

::::::
fracture

::::::
angles

::
for

:::
the

:::::::::
Coulombic

::::
yield

::::
curve

::
as

:
a
::::::
function

:
of the

::::
slope

::
of

::
the

::::::::::::
Mohr-Coulomb

::::
limbs

:::::
(blue,

::
top

:::::
scale,

::::::
Section

::::
3.3.2) fit is R2 = 0.9997 and the standard-deviation

value is
p
� = 0.0639

:::::::
theoretical

:::::::::
relationship

:::::::::::::::::::
✓th,c = 1

2 arccos�1(µ)
:::
only

:::
for

:::::::
µ 0.7

:::::
(black

::::
line,

::
Eq.Rounding

::
B5

:::
in the value to 2

significant numbers
::::::::
appendix).

:::
The

::::
errors

::::
bars

::::
mean

:::
that

::::
they

:::
were

::::
more

::::
than

:::
one

:::::
unique

::::::
fracture

::::
line:

::
For

::
a
::::
small

:
µ, we get the parameters

::
ice

:::::
breaks

::::
easily

:::::
along

::
the

:::::
lateral

:::::
edges

::
of

:::
the

:::
floe.

:::
For

::::::
µ > 0.7

::::::::
(�= 44�), a= 15, b=�2,

:::
the

:::::::
ambiguity

::::::
appears

::::::
because

:::
the

:::::
stress

::::
states

:::
are

:::
both

::
on

:::
the

:::::
linear

::::
limbs

:
and c= 30

:
on

:::
the

:::::::
elliptical

:::
cap. These rounded values still give an excellent fit with R2 = 0.9995 and

p
� = 0.089.

The simulated
::
For

::::::
µ� 0.9

::::
(blue

:::::
line),

::
the

:
fracture angle

:
is
:::
the

::::
same

:
as function of e becomes ✓ = ⇡

6 + ⇡
12e

�2 when expressed in radians
::
for

::
the

:::::
ellipse

:::
for

::::::
e= 1.4.

::::
yield

:::::
curve

:::::::::
parameters

:::
for

:::
the

:::::::
fracture

::::::
pattern,

:::
but

:::
we

::::
can

::::
state

:::
that

::::
both

:::::
affect

:::
the

::::::::::
simulations

::
in

::
a
::::
way

:::
that

:::::::
requires

:::::::
treating

::::
them

:::::::::
separately

::
to

:::::
avoid

::::::::::
confounding

::::::
effects.

:::::::
Details

:::
are

:::::::
deferred

::
to

:
a
::::::::
dedicated

:::::
study. The weakness influences the fractures

resulting in angles different than expected for these yield curve settings in both cases. Nevertheless, the two fractures are

different as the yield curve has an impact on the preferred fracture angle. With e= 1, the angles are much wider compared to

e= 2 (see section 3.3.1 below).5

3.3 Effects of the yield curve on the fracture
:::::
angle

3.3.1 Elliptical yield curve

The idealized experiment are repeated changing only the ellipse ratio e. Thus
:::::::
Keeping

:::::::::
P ? = 27.5 kNm�1

::
at

::
its

::::::
default

:::::
value,

the maximal shear strength S? increases or decreases while the maximal compressive strength P⇤ remains constant at 27.5
:::::::
S? = P?

2e
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:
is
::::::
varied

::
by

::::::::
changing

:::
the

::::::
ellipse

::::
ratio

::
e. Scaling the absolute values of P ? and S? while keeping e constant does not change

the fracturing pattern
:
as

:::
the

:::::::
tangent

::
to

:::
the

::::::
ellipse

:::::
stays

:::
the

::::
same

:
(not shown). Changing the ellipse aspect ratio e , however,

has a large effect on the fracture angle. The fracture angle decreases monotonically as the shear strength of the material (or e)

decreases, from 60.9�
:::
61�

:
for e= 0.7 to 32.3�

:::
32�

:
for e= 2.6. An empirical function ✓ = ⇡

6 + ⇡
12e

�2 can fit the data points

and is presented on Figure 10. This is in contrast
:::
This

::
is

::::::
clearly

::::::::::
inconsistent with the behaviour of other granular materials with5

an angle of fracture that decreases with increasing shear strength or cohesion.
:
a
:::::::
granular

::::::::
material;

::
in

:::
the

::::
sand

:::::
castle

::::::::
analogue

:::
this

:::::
would

::::::::::
correspond

::
to

::
a
:::
dry

::::
sand

:::::
castle

:::::
with

::::::
steeper

:::::
walls

::::
than

:
a
:::::
moist

:::::
sand

:::::
castle.

:::::
From

:::
the

::::::
simple

:::::::::
schematic

::
of

::::
Fig.

::
4

:
it
::::::::
becomes

::::
clear

::::
that

::::
with

:::::::::
increasing

::
e

:::
the

::::::::::
intersection

::
of

:::
the

:::
�2::::

axis
::::
with

:::
the

:::::
yield

:::::
curve

::::::::
gradually

::::::::
migrates

::::
from

:::
the

::::
left

:::
side

::
of

:::
the

::::::
ellipse

::
to

:::
the

:::::
right

:::::
where

:::
the

::::::
normal

::
to

:::
the

:::::
yield

:::::
curve

:::::
points

::::::::::
increasingly

:::::::
towards

::::::::::
convergent

::::::
motion.

:::
We

:::::::
present

:
a
:::::::::
theoretical

::::::::::
explanation

:::
for

:::
the

:::::::::
sensitivity

::
of
::::

the
:::::::
fracture

:::::
angle

::
to

:::
the

:::::
shear

:::::::
strength

::
of

::::
the

:::::::
material

:::
(e,

:::
for

:::
the

::::::
ellipse)

:::
in10

::::::::
Appendix

::
B

::
by

:::::::::
re-writing

:::
the

:::::::
elliptical

::::
yield

:::::
curve

::
in

:::::
local

:::::::::
coordinates

::
in
:::
the

:::::::
fracture

:::::
plane

:::
(�,

::
⌧ )

::::::
instead

::
of

::::::::
principal

::
or

:::::
stress

:::::::
invariant

::::::::::
coordinates.

::::
The

::::::
fracture

:::::
angle

::
is

::::
then

:::::::::
determined

:::::
from

::
the

:::::
slope

::
of

:::
the

:::::::
tangent

::
to

::
the

:::::
yield

:::::
curve

::
in

::::
local

::::::::::
coordinates

:::
and

:::
this

:::::
angle

:::::::
follows

::::
from

:::
the

::::::
Mohr’s

:::::
circle

:::::::::::::::::::::::::
(see for instance Popov, 1976).

:

Bouchat and Tremblay (2017) suggest the use of
:::::::::::::::::::::::::::::::
Bouchat and Tremblay (2017) suggest a smaller ellipse aspect ratio (e.g.

e= 0.7) to obtain a closer match with radarsat-derived
:::::::::::::::::
RADARSAT-derived

:
distribution of deformation rates in pan-Arctic15

simulations at 10 km resolution. From Figure
:::
Fig. 10 and 11, the corresponding fracture angle is ✓ = 60.9�; i.e. much larger that

what
::::::::::::
✓ = (61± 1)�,

:::
that

:::
is,

:::::
much

:::::
larger

::::
than

:::
that

:
is derived from radarsat

::::::::::
RADARSAT

:
images. e also changes the distribution

of the stress states on the yield curve. As the stress state migrates along the principal stress �1 ::
�2:until it reaches the yield

curve in
:::
our uni-axial compressive test, for e < 1, the stress state are in the second half of the ellipse

::
for

:::::
e < 1 and the resulting

deformation are
:
is
:
in convergence (or ridging). The ice thickness increases due to ridging along the shear lines (Figure 11). In a20

longer simulation with e= 0.7 (not shown) the ice does not open but only ridges, with thickness
::::::
thicker

:::
ice building up within

the ice floe. This is in strong contrast to the results with e= 2.0 presented in Section ?? above
::::
Sect.

:::::
3.2.1, where the initial floe

breaks up and individual ice
:::::::
separate floes form.

3.3.2 Coulombic yield curve

In this section, we report results from
::::::
replace

:::
the

::::::::
elliptical

::::
yield

:::::
curve

:::::
with a Coulombic yield curve with normal flow rule25

Hibler and Schulson (2000)
:::::::::::::::::::::::
(Hibler and Schulson, 2000). This yield curve consist

::::::
consists

:
of a Mohr-Coulomb failure envelope

(two straight lines
::
—

::::
two

::::::
straight

:::::
limbs

:
in principal or stress invariant space ),

:::
with

::
a

::::
slope

::
µ
:::
— capped by an elliptical yield

curve for high compressive stresses. For
::::
Note

::::
that

:::
the

::::
flow

:::
rule

::::::
applies

::::
only

::
to

:::
the

::::::::
elliptical

:::
cap

::
in

:::
this

:::::
yield

:::::
curve.

:::
For

:::
the

::::
two

::::::
straight

::::::
limbs,

:::
the

::::
yield

:::::
curve

::
is
::::::
normal

:::
to

:::
the

::::::::
truncated

:::::
ellipse

:::::
with

:::
the

:::
first

:::::
stress

::::::::
invariant

:::
�I .

::::
For a Mohr-Coulomb yield

curve, the fracture angle depends directly on the slope of the Mohr-Coulomb envelope. (AppendixA)
:::
limb

:::
of

:::
the

::::
yield

::::::
curve.30

::::::::
Appendix

::
A

:::::::
provides

::
a

:::::::::
theoretical

:::::::::
explanation

::
of
::::
how

:::
the

:::::
angle

::
of

:::::::
fracture

:::::::
depends

:::
on

:::
the

::::::
internal

:::::
angle

::
of

:::::::
friction.

The slope of the modified
::::::::::::
Mohr-Coulomb

:::::
limbs

::
of

:::
the

:::::::::
Coulombic

:
yield curve µ is varied between 0.3 and 1.0

::::::::::::
(corresponding

::
to

::
an

::::::
internal

:::::
angle

::
of

:::::::
friction

::::::::::::
�= arcsin(µ)

::
of

:::::
17.5� to study

:::
90�)

::
to
:::::
study

::::
how

:::
the

:::::::
fracture

::::
angle

:::::::
depends

:::
on the dependency

of the fracture angle to the shear strength of the material. In all experiments with the Coulombic yield curve, We
::
we

:
use a
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Figure 11. After
:::::::
Maximum

:::::
shear

::::
strain

:::
(a),

:::
ice

:::::::
thickness

:::::::
anomaly

:::
(b),

:::::::::
divergence

::
(c)

:::
and

:::::
stress

::::
state

::
in

::::
stress

:::::::
invariant

:::::
space

::
(d)

::::
after

:
5

seconds
:::
sec of simulation with

::::::::
integration

:::
for

:
a
::::::

smaller
::::::

ellipse
:::::
aspect

:::::
ration

:
(e= 0.7 . Top left: Shear deformation inside

:::::::
compared

::
to

::::
e= 2

::
in the ice floe, showing a diamond shape fracture. Bottom Left: Divergence deformation

:::::::
reference

:::
run in

:::
Sect.

::::
3.1).

::::::::
Compared

::
to

:
the

floe
:::::
control

:::
run

::
on

:::
Fig.

::
3, showing the convergence zone at the

::::
angle

::
of

:
fracture location

:
is

:::::
larger

::::::::::::
(✓ = (61± 1)�), leading a ridging event.

Top right: Modification of the thickness compared to initial state
::::
stress

:::::
states

::
are

::
in

:::
the

:::::
second

:::
half

:
of 1 , the ridging

:::::
ellipse

:
(with a diamond

shape
::::

strain
:::
rates

:::::::
pointing

:::
into

:::
the

::::::::
convergent

:::::::
direction)

:::
and

::::
there

:
is visible. Bottom right: Stress states

:::::::::
convergence

::::
along

:::
the

::::::
fracture

::::
lines

::::
(panel

::
b)
:
in red,

:::::::
agreement

:
with the elliptical yield curve

::::::::
schematic in black

::
Fig.

:
4.

tensile strength of 5% of P⇤ and an ellipse ratio e= 1.4, similar to
:::::::
following

:
Hibler and Schulson (2000). The tensile strength

is introduced mainly for numerical reasons. With zero tensile strength, the state of stress in a simple uni-axial compressive test
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Figure 12. Shear
::::::::
Maximum

::::
shear

:
strain ˙✏II :::

(top)
:
and stress states

::::
state in simulation with e=1.4 after 5 seconds

::::
stress

:::::::
invariant

:::::
space

::::::
(bottom)

:::
for

::::::
different

::::::
internal

::::::
angles of simulation : (top) µ= 0.7 and ✓ = 23.5�

:::::
friction.

:::
(a)

::::::
µ= 0.7

::
or

:::::::
�= 44�, (middle)

::
(b) µ= 0.85

::
or

::::::
�= 58�

:
and ✓ ' 28 in average

::
(c)

::::::::
µ= 0.95

::
or

::::::
�= 72�

::::
after

:
5 s

:
of

:::::::::
integration.

:::
The

:::::
angles

::
of

::::::
fracture

:::
are

::::::
✓ = 23�,

::::::::
(28± 2)� and (bottom)

µ= 0.95 and ✓ = 40.9�
:::
41�.

::::
Fig.

::
10

:::::::
illustrates

::::
how

:
✓
:::::::
depends

::
on

:
µ
:::
for

:
a
:::::::::
Coulombic

::::
yield

:::::
curve.

with no confinement pressure , is tangential to the yield curve at the origin (failure in tension) and on the two straight limbs

(failure in shear)
::::::::::::
simultaneously, resulting in instabilities

:
a
::::::::
numerical

:::::::::
instability. With tensile stress (or confinement pressure)

included, the state of stress reaches the yield only on the two limbs of the yield curve .
::::
(see

:::
Fig.

:::::
12a).

Figure 12 shows the shear field and stress states for µ= 0.7, µ= 0.85, and

:::
For

:::
the

:::::::::
Coulombic

:::::
yield

:::::
curve,

:::::
there

:::
are

:::
two

:::::::
distinct

::::::
regimes

:::
of

::::::
failure.

:::::
When

:::
the

:::
�2::::

axis
::::::::
intersects

:::
the

::::
yield

:::::
curve

:::
on

:::
the5

:::
two

:::::::
straight

:::::
limbs,

::::::
which

:::::::
happens

:::
for

:::
our

::::::::::::
configuration

:::
for

:::::
angles

:::
of

::::::
friction

::::::::
�< 45�

::::
(Fig.

::::
12a,

:::
left

:::::
hand

::::
side

:::
for

:::::::
µ= 0.7

::
or

::::::::
�= 44�),

:::
the

:::::
angle

::
of

:::::::
fracture

:::::::::::::
✓ = ⇡/4��/2

::
as

:::
per

:::::::
standard

::::::
theory

:::::::::
(Appendix

:::
A).

::::::
When

:::
the

::
�2::::

axis
::::::::
intersects

:::
the

:::::
yield

::::
curve

:::
on

:::
the

::::::::
elliptical

:::
cap,

::::::
which

:::::::
happens

:::
for

:::::::
�> 45�

::::
(Fig.

::::
12c,

:::
for

:
µ= 0.95 after 5 seconds of simulation. We observe that

the fracture pattern is very sensitive to µ. This makes a measuring the fracture angle difficult.We observe four different regimes

: Sea ice shear strength is small for small stresses, deformations appear at the border of the ice with high values of deformation.10

A lot of small LKFs develop but no large fractures appear through the ice floe. The deformation takes place almost exclusively

in the flat Mohr-Coulomb part of the yield curve . A distinct fracture patterns is present, similar to the elliptical case. For

µ= 0.7, ✓ = 23.5± 2� while the Mohr-Coulomb theoretical angle is✓MC(µ) = 22.6� from Eq. A. (Top of Figure 12) The
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fracture structure is chaotic. The fracture lines are broad and have an inner structure that seems to be composed of two different

angles. The deformation occurs on both parts of the yield curve, Mohr-Coulomb straight limbs and
::
or

::::::::
�= 72�),

:::
we

:::::::
observed

::
a

::::::::::
discontinuity

::
in
:::
the

:::::::
fracture

:::::
angle

:::::::::
associated

::::
with

:::
the

:::::::::::::::
non-differentiable

:::::
corner

::
in

:::
the

:::::
yield

:::::
curve.

::::
Note

::::
that

:::
this

::::::
corner

::::::
cannot

::
be

:::::::
removed

::::
(by

::::::::
changing

:::
the

:::
P ?

:::
and

:
e
:::

of the elliptical cap; presumably, the poor definition of the fracture lines is due to the

fact that the stress state touches
:
)
::
as

:::
the

:::
two

:::::::
straight

:::::::::::::
Mohr-Coulomb

::::
limbs

:::
are

:::::::
defined

::
as

:
a
::::::::
truncation

:::
of

::
the

:::::::
ellipse.

:::
For

:::::::
�⇡ 45�5

::
in

:::
our

:::::::::::
configuration,

:::
the

:::::::::
numerical

:::::
solver

:::
has

:::::::::
difficulties

::::::::
reaching

::::::::::
convergence

:::::::
because

::
of

:::
the

:::::::::::::::
non-differentiable

::::::
corner

::
in the

yield curve on both part of the yield curve. For µ= 0.85, fractures angles range around 28� ± 2.(Middle of Figure 12) The

fracture pattern corresponds to
::::::
between

:::
the

::::::::
elliptical

::::
cap

:::
and

:::
the

::::
two

:::::::
straight

:::::
limbs

::::
(Fig.

::::
12b,

:::::::
middle

:::::
panel

:::
for

::::::
µ= 0.8

:::
or

::::::::
�= 53�).

::::::
Finally

:::
for

::::
very

:::::
small

:::::
angles

::
�,

::
a

::::
large

:::::::
number

::
of

::::::::
fractures,

::
as

:::::::
opposed

::
to

:::::
single

::::
well

:::::::
defined

::::::
fracture

:::::
lines,

:::::::
appears

::::::
because

::
of

:::
the

::::::::
weakness

:::
of the elliptical yield curve of e= 1.4, slightly modified by the 5% tensile strength (not investigated in10

this paper). Deformation states are on the elliptical part of the modified yield curve. With µ= 0.95, the modeled fracture angle

is ✓ = 40.9�. (Bottom of figure 12)
:::::::
material

::
in

:::::
shear.

::::
This

:::::::::
behaviour

::
is

:::
not

:::::::::
something

:::
that

::
is
::::::::

typically
::::::::
observed

::
in

::::::::
uni-axial

::::::::::
compressive

:::
test

::
of

::
a

:::::::
granular

:::::::
material

::::
who

:::::::
generally

:::::
have

:::::
higher

:::::
shear

:::::::::
resistance.

::::
Note

:::
that

:::
the

:::::
value

::
of

::
�

:::
that

:::
are

::::::::::
charactistic

::
for

:::
the

:::::::::
individual

:::::::
regimes

:::::::
depends

::
on

:::
the

:::::::
amount

::
of

::::::
tensile

:::::::
strength.

4 Discussion15

Our idealized experiment
::::::::::
experiments

:
using the VP rheologies resolve LKFs

:::::::
fracture

::::
lines

:
as described by Hutchings et al.

(2005) and akin to observations (Kwok, 2001). The fracturing of the ice floe creates smaller floes in a realistic manner
:
,
:::
for

:::::::
example,

:::::::::
compared

::
to

::
to

::::::::
Landsat-7

:::::::
images

::::::::::::::::::::::
(Schulson, 2004, Figure 2). At the high resolution of 25 m the original interpreta-

tion of the continuity assumption, namely that that each grid cell should represent a distribution of floes (Coon et al., 1974), is

no longer valid
:
,
:::
but

:::
we

::::
show

::::
that

:::
the

:::::::
fracture

:::::
angle

:
is
:::::::::::
independent

::
of

:::::::::
resolution

:::
and

::::
scale

:::
as

:::::::
expected. Instead, the emerging20

discontinuities and the polygonal diamond shape of the structures
:::::::
fracture

::::
lines

:
that appear as floes spanning many grid cells

are a consequence of the mathematical characteristics of the VP model (Pritchard, 1988). Diamond shaped floes are observed in

the Arctic ocean (Erlingsson, 1988; Walter and Overland, 1993) and also modeled using a Discrete Element Model (DEM) in

an idealized experiment (Wilchinsky et al., 2010). Heorton et al. (2018) compared the Elastic Viscous Plastic (EVP) rheology

(Hunke and Dukowicz, 1997) to the Elastic
:::
The

::::::
Elastic

:
Anisotropic Plastic (EAP) rheology , based on the diamond shape25

property of
::::::
assumes

::::::::::::
predominately

::::::::
diamond

::::::
shaped

:::::
floes

::
in sea ice (Wilchinsky and Feltham, 2006). They found that

::
A

:::
sea

::
ice

::::::
model

::::
with EAP creates sharper fractures than the EVP model and find different regimes of fracture for different convergent

and divergent wind forcing. Therefore a
::::::

model
::::
with

:::
the

::::::
Elastic

:::::::
Viscous

::::::
Plastic

:::::::::::::::::::::::::::::::::::::
(EVP, Hunke and Dukowicz, 1997) rheology

::::::::::::::::::
(Heorton et al., 2018).

:::
The

:::::::
authors

:::::::::
concluded

:::
that

:
the anisotropic model may improve the fracturing process for sea ice, espe-

cially by creating areas of oriented weaknesses, and particularly at coarse resolution where the fracture is not resolve
:::::::
resolved30

by the grid spacing. In the high-resolution experiments presented here, the VP rheologies appear to model sharp fracture

lines
:::
lead

::
to

:::::
sharp

:::
and

::::::::::
anisotropic

::::::
fracture

:::::
lines

::::::
without

::::
any

::::::::
additional

:::::::::::
assumptions.
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Other experimental choices have been explored to separate the effects of various parameters on the rheology
::
We

::::::::
explored

::::
some

:::::::::::
experimental

:::::::
choices

::
to

:::::::
separate

:::::
their

::::::
effects

::::
from

:::::
those

::
of

:::
the

::::::::
rheology

::::::::::
parameters. The fracture lines

:::::
angles

:
do not

depend on ‘ the experiment’s resolution and scale.Thus, the rheology is shown to be scale independent, at least on the scales

explored here, in line with observations (Schulson, 2004). Our results show that
:::::
spatial

:::::::::
resolution

:::
and

::::::
domain

::::
size

::
as

::::::::
expected

::
in

:::
our

:::::::
idealized

:::::::::
numerical

:::::::::
experiment

:::::
setup

:::::
(Sect.

:::::
3.2.1,

::::
Fig.

:::
5).

:::
The

:::::::::
maximum

:::::::::
viscosities

::
in

:::
the

:::
VP

:::::
model

:::
are

::::
very

::::
high

::::
and5

:::::::::::
consequently,

:::
the

:::
VP

::::::
model

:::
can

::
be

:::::::::
considered

:::
as

::
an

:::::
ideal

:::::
plastic

:::::::
material

::::
(i.e.

:
a
::::::
model

::::
with

::
an

::::::
elastic

::::::::::
component

:::
that

:::
has

:::
an

::::::
infinite

:::::
elastic

:::::
wave

:::::::
speed).

:::
For

:::
this

:::::::
reason,

:::::::
fracture

::
in

:
a
::::

VP
:::::
model

::::::
occurs

::::::
almost

::::::::::::::
instantaneously.

::::::::
Observed

::::
time

:::::
scales

:::
of

::::::
fracture

:::
are

::
on

:::
the

:::::
order

::
of

::
10

:::::::
seconds

:::
for

::
60

::
m

::::
floe

::::::::
diameters

::::::::::::::::::::::::::::::::::::::::::
(Dempsey et al., 2012, Figure 6 top right panel) and

::::
from

::::::
typical

:::::
elastic

:::::
wave

::::::
speeds

::
of

:::::::::
200–2000ms�1,

::::
large

::::::
cracks

::
of

:::::
order

:::::
1000 km

:::
can

::::
form

::
in

:::::::
minutes

::
to

:::::
hours

::::::::::::::::::
(Marsan et al., 2012).

::
In

:::
our

:::::
setup,

:
the no-slip boundary condition has little effect on the fracture patternwithin our setup. However, the ,

:::
but

::::
our10

results suggest that in basin-wide simulations the choice of boundary conditions affect
:::::
affects

:
the fracture depending on the

geometry and stress direction. The no-slip condition appear
::::::
appears to be unphysicaland is acting on the stress concentrator on

the corner and forcing .
::
It
::::
acts

::
to

:::::::::
concentrate

:::
the

:::::
stress

::
on

:
the

::::::
corners

::
of

:::
the

:::
floe

:::
and

::::::
forces

:::
the fracture to occur at this location,

calling for an
:
.
::::
This

::::::
should

::::::::
motivate

:
a
:::::
more

::::::::
thorough investigation of the boundary conditions for the shorelines.

::::
LKFs

::::
that

::::
form

:::::::
between

:::
one

::::::::
shoreline

::::
and

:::::::
another. Similar results were obtained from analytical solutions in idealized geometry for the15

Morh-Coulomb yield curve with
:
a
:
double sliding deformation law (Sirven and Tremblay, 2014). Confining the ice floe by

thinner ice instead of open-water moves the stress states to higher compression and increases the fracture angle. Therefore, we

:::
The

::::::::
confining

:::::::
pressure

::::
(i.e.

:::
thin

:::
ice

:::::::
imposed

:::
on

:::
the

::::
side

::
of

:::
the

:::::::
domain)

:::::::
changes

:::
the

:::::::::
distribution

::
of

:::::
stress

::::::
within

:::
the

:::::::
domain.

::::
This

:::::
results

:::
in

:::::::
different

::::::::::
deformation

:::::::
patterns

::::::
(shear

:::
and

::::::::::
divergence)

::::
and

:::::::
different

:::::::
fracture

::::::
angles

:::::::
because

:::
the

:::::
yield

:::::
curve

::
is

::::::
convex

:::
and

::::
uses

:
a
:::::::
normal

::::
flow

::::
rule.

:::::
From

:::
this

:::
we

:::
can

:
conclude that by surrounding our floe with open-water, we get the most20

acute angles from the rheology in this uni-axial compression setup. This is contradiction
::
not

:::::::::
consistent with the behavior of

typical granular material that have
::
for

::::::
which an angle of fracture that is independent of the confining pressure (Hutter and

Rajagopal, 1994). A
::::::
Details

::
of

::
a
:
heterogeneous ice cover shows changes in

:::
also

::::::
affect the fracture pattern. LKFs link the

weaknesses in the ice cover, but the pattern still depends on the preferred fracture angles implied by the model rheology. In

summary, we are confident that the our choice of parameters allows us to isolate the effects of the rheology and the yield curve25

on the fracturing process.

In granular material, large shear resistance is linked with
:
to

:
contact normals between floes that oppose the shear motion and

leads to dilatation (or divergence). In contrast, our experiment show that adding
:::
lead

::
to

::::::::
dilatation

:::::::::::::::::::::::::::::::
(Balendran and Nemat-Nasser, 1993).

::
In

:::
our

:::::::::::
experiments,

::::::::
increasing

:
shear strength in the standard VP model (reducing the ellipse aspect ratio e)

::::
does

:::
not

::::::::
decrease,

:::
but increases the fracture angleinstead. This is contrast with

:
in

:::::::
contrast

::
to

:
the behavior of the granular material that show a30

decrease in fracture angle for
:::::::
granular

:::::::
material

:::::
where

:
larger shear strength (

::::
leads

::
to

:::::
lower

:::::::
fracture

:::::
angles

::
—

:
think of a wet sand

castle versus a dry sandcastle)
::::
sand

:::::
castle. In addition, high shear strength

::
in

:::
the

:::
VP

:::::
model

::::
with

:::
the

::::::::
elliptical

::::
yield

:::::
curve

:
leads

to convergence along the fracture plane whereas observations (e.g.radarsat deformations
::::::::::::

RADARSAT
::::::
derived

:::::::::::
deformation

::::
fields) show a range of positive and negative divergence along LKFs , again contrary to the results obtained with the standard

VP model
::
—

::
in

:::::::::
accordance

::::
with

:::::::::
laboratory

::::
tests

::
of

:::::::
granular

:::::::
material

::::
that

::::
show

::
a

:::::::
variable

::::::
internal

:::::
angle

::
of

::::::
friction

::::
that

:::::::
depends35
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::
on

:::
the

::::::::::
distribution

::
of

:::
the

::::::
contact

:::::::
normals

:::::::
between

::::::::
individual

:::::
floes

::::::::::::::::::::::::
(Hutter and Rajagopal, 1994). Inspection of the stress states

in the 2D
:

stress plane suggests that the intersection of the yield curve with the �1 ::
�2 axis has an important role in the fracture

process. This intersection point appears to determine the fracture angle, but the precise process that determines the fracture

angles is unclear. In spite of this, our experiments allow to determine an empirical
:
.
::
In

::::
fact,

:::
the

:::::
angle

::
is

:::::::::
determined

:::::
from

:::
the

:::::::::
intersection

::
of

:::
the

::::::
Mohr’s

:::::
circle

::
of

:::::
stress

::::
with

:::
the

::::
yield

:::::
curve

::
to

::::
give

:
a
:::::::::
theoretical relationship between the fracture angles

:::::
angle5

and the ellipse ratio e. Sea ice simulation have been improved
::::
With

:::
our

:::::::::::
experiments,

::
we

:::::
were

::::
able

::
to

::::::
confirm

::::
this

::::::::::
relationship

:::::::::
empirically.

:

::::::::::
Arctic-wide

::::::::::
simulations

:::::::
improve

::::::
metrics

:::
of

:::
sea

:::
ice

::::::::::::
concentration,

::::::::
thickness

::::
and

:::::::
velocity

:
by decreasing the value of e ,

thereby
::
of

:::
the

:::::::
standard

::::::::
elliptical

::::
yield

:::::
curve,

::::
that

::
is,

:::
by adding shear and bi-axial tensile and compressive strength (stress states

with �1 or �2 positive, but not both), in Arctic-wide simulations (Miller et al., 2005; Dumont et al., 2009; Bouchat and Tremblay, 2017)
:::::::::::::::::::::::::::::::::::::
(Miller et al., 2005; Ungermann et al., 2017).10

:::
The

::::::::::::
representation

::
of

:::
sea

:::
ice

:::::
arches

::::::::
improves

::::
with

::::::
smaller

:
e
::::::::::::::::::::
(Dumont et al., 2009) so

:::
do

::::
LKF

:::::::
statistics

:::::::::::::::::::::::::
(Bouchat and Tremblay, 2017).

Our results, however, show that this would make
:::::
makes

:::
the

:
fracture angles larger, which is in stark contrast to what we expect

to be necessary to improve the model
::::::
creation

::
of

:::::
LKFs

:::
in

:::
sea

::
ice

:::::::
models.

The
::::::
fracture

:::::
angle

:::
and

:::
the sea ice opening and ridging depending on the deformation states is

:::
are consistent with the theory

of the yield curve analysis developed in Pritchard (1988)
:::
and

:::
the

::::::
Mohr’s

:::::
circle

::::::::::
framework

:::
that

:::
we

::::::
present

:::
in

:::
the

::::::::
Appendix.15

Interestingly, a change of ice maximum compressive strength P ? with a constant e has no influence on the LKF creation,

although P ? is usually thought of as the principal parameter of sea ice models in climate simulations (e.g. Schmidt et al.,

2014). The effects of bi-axial tensile strength T ? on fracture processes require further investigation, especially given the fact

that the assumption of zero-tensile strength is being questions
:::::::::
challenged

:
(Coon et al., 2007). The ice strength parameter C?

(The
:::
the parameter governing the change of ice strength depending on ice concentration, equation

::::::::
Equation 4) was not studied20

here, although it appears to be an important tuning parameter and
:
it

:::
also

:
helps to improve basin-wide simulations (Ungermann

et al., 2017).
:::
The

::::::::::
simulations

::::::::
presented

::
in

:::
this

:::::
study

:::
are

:::
not

:::::::
realistic

:::
and

::::::
cannot

::
be

::::::::
compared

:::::::
directly

::
to

::::::::::
observations

:::
of

::
ice

::::
floe

:::::::
fracture.

:::
For

::::::::
instance,

:::
our

::::::::
idealized

:::
ice

:::
floe

::
is

::::::::::::
homogeneous

:::::
while

:::
sea

:::
ice

::
is

::::::
known

::
to

::::::
feature

:::::
some

::::::::::
weaknesses

:::
like

:::::::
thermal

:::::
cracks

::
or

::::
melt

::::::
ponds.

:

With the coulombic
:::::::::
Coulombic

:
yield curve, we can reduce the modeled fracture angle .

::
the

:::::::::
simulated

:::::::
fracture

:::::
angle

::
is25

::::::
smaller.

::::
For

:::::::
µ= 0.7

:::::::::
(�= 44�)

:::::
theory

::::::::
predicts

:::::::::::
✓MC = 22.8�

::::::::::
(Appendix

:::
B).

:
The observed fracture angle with µ= 0.7

::
of

::::::::
✓ = 23.5�

:
is close to the ' 20� described in Hibler and Schulson (2000), and corresponds to the theoretical framework

described in Appendix A. Erlingsson (1988) developed another
:
a

:::::::
different

:
Mohr-Coulomb theory linking internal angle of

friction and fracture angle. This complex theory take
::::
takes into account the fractal (or self-similar) nature of sea ice. It gives dif-

ferent results, but is inadequate for a single ice floe simulated as presented here. The yield curve use here features
:::::
Based

:::
on

:::
the30

:::::
results

::
of

::::::::::::::
Pritchard (1988),

:::::::::::::::
Wang (2007) used

::::::::
observed

::::::
fracture

:::::::
patterns

::
to

::::::
design

:
a
::::::
Curved

::::::::
Diamond

::::
yield

::::::
curve.

:::
But

:::
this

:::::
yield

::::
curve

::::
also

::::::::
contains

:
a
:::::::::::::::
non-differentiable

:::::
point,

::::::
which

:::
will

:::
be

::::::::::
problematic

:::
for

:::::::::
numerical

:::::::
reasons.

::::
The

:::::::::
Coulombic

:::::
yield

:::::
curve

::::
used

::::
here

:::::::
includes a normal flow, while Weiss et al. (2007) shows

:::
but

::::::
in-situ

::::::::::::
measurements

:::::
imply that the deformations have

an non-normal flow using in-situ measurements
:::::::::::::::
(Weiss et al., 2007). With the normal flow rule on a Mohr-Coulomb yield curve,

the ice only fracture
:::::::
fractures in opening, which is non-physical because sea ice also forms ridges during compressive defor-35
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mations. The effects of another flow rule may be investigated
::::
There

:::
are

::::::::::
alternatives

::::
flow

:::
rule

::::
still

::
to

::
be

::::::::
explored, for example a

double-sliding law (Balendran and Nemat-Nasser, 1993; Tremblay and Mysak, 1997)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ip et al., 1991; Balendran and Nemat-Nasser, 1993; Tremblay and Mysak, 1997).

5 Conclusions

Motivated by the observation that the intersection angles in a 2 km Arctic-wide simulation of sea ice are generally larger than

in the RGPS dataset
:::::::::::::::::
(Hutter et al., 2018b), the fracturing of ice under compression was studied with two VP rheologies in a5

highly idealized geometry and with very small grid spacing of 25m. The main conclusions are:

The fracturing process in a ice floe of 8 by 25 is independent of the experiment resolution and scale, but sensitive to lateral

boundary conditions (no-slip or free-slip). The fracture angle is also sensible to the surrounding sea ice cover, in contradiction

with the granular nature of sea ice. The model produces a fracture opening with a diamond shape, and several smaller ice

floes develop from the initial fracture. Unsurprisingly, the yield curveplays an important role in fracturing sea ice. Increasing10

the maximum shear strength in the sea ice model increases the fracture angle in contrast to expectations. Even if the fracture

process is not fully explained, we
::
In

:::
our

:::::::::::
experimental

::::::::::::
configuration

::::
with

::::::::
uni-axial

:::::::::::
compression,

:::::::
fracture

::::::
angles

:::::
below

:::
30�

::
are

::::
not

:::::::
possible

::
in

:
a
:::::::::
VP-model

::::
with

:::
an

:::::::
elliptical

:::::
yield

:::::
curve.

:::::::::::
Observations

:::::::
suggest

:::::
much

:::::
lower

::::::
values.

:::
We

:
find an empirical

relationship between
:::
the fracture angle and the ellipse ratio e of the elliptical yield curve : ✓ ' 15

e2 +30. Therefore, fracture

angles below 30are not possible with an elliptical yield curve . In this fully compressive setup,
:::
that

:::
can

:::
be

::::
fully

::::::::
explained

:::
by15

::
the

:::::::::
convexity

::
of

:::
the

:::::
yield

:::::
curve

:::::::::
(Appendix

:::
B).

::
In

:::::::
contrast

::
to

:::::::::::
expectations,

:::::::::
increasing

:::
the

:::::::::
maximum

::::
shear

:::::::
strength

:::
in

:::
the

:::
sea

::
ice

::::::
model

::::::::
increases

:::
the

:::::::
fracture

:::::
angle.

:::::
Along

::
a
:::::::
fracture

::::
line,

::::
there

::::
can

::
be

::::
both

:::::::::
divergence

::::
and

::::::::::
convergence

:::::::::
depending

:::
on the

divergence and convergence at the fracture line appear to be dependent in the shear strength of the ice, linked to the normal

flow rule. The ice open and create
:::::::
simulated

:::
ice

::::::
opens

:::
and

::::::
creates

:
leads with an ellipse ratio below e= 1, and ridge in the

inverse case. Using a modified coulombic
::::
e > 1

::::::
(shear

:::::::
strength

::
is

:::::::
smaller

::::
than

::::::::::
compressive

:::::::::
strength),

:::
and

::::::
ridges

:::
for

:::::
e < 120

:::::
(shear

:::::::
strength

::
is

:::::
larger

::::
than

::::::::::
compressive

::::::::
strength).

:

::::
With

:
a
::::::::
modified

::::::::::
Coulombic yield curve, the fracture angle can be decreased

::
to

:::::
values

::::::::
expected

::::
from

:::::::::::
observations, but the

non-differentiable shape
:::::
corner

::::::
points of this yield curve introduces numerical issues and an unclear fracture pattern in some

cases. Therefore,
:::
lead

::
to

:::::::::
numerical

:::::::::::
(convergence)

::::::
issues

:::
and,

:::
for

:::::
some

:::::
values

::
of

:::
the

:::::::::
coefficient

::
of

:::::::
internal

::::::
friction

::
µ,

::
to

:::::::
fracture

::::::
patterns

::::
that

:::
are

:::::::
difficult

::
to

::::::::
interpret.

::
At

:::::
these

::::::
corner

::::::
points,

:::
two

:::::::
different

::::::
slopes

::::
meet

::::
and

::::
give

:::
two

::::::::::
non-unique

::::::::
solutions

:::
for25

::::::
fracture

::::::
angles

:::
and

:::::::::::
deformation

:::::::::
directions.

:::
We

::::::::::
recommend

::
to

:::::
avoid non-differentiable yield curves (with a normal flow rule)

should be avoided in viscous-plastic sea ice models.

::::
More

:::::::::
generally,

:::
the

:::::
model

::::::::
produces

::::::::::::::
diamond-shaped

:::::::
fracture

:::::::
patterns.

:::::
Later

:::
the

:::
ice

::::
floe

::::::::::
disintegrates

::::
into

::::::
several

:::::::
smaller

::::
floes

:::::::
develop.

::::
The

::::::::
fracturing

:::::::
process

::
in

::
the

:::
ice

::::
floe

::
in

:::
our

:::::::::::
configuration

::
is

::::::::::
independent

::
of

:::
the

::::::::::
experiment

::::::::
resolution

::::
and

:::::
scale,

:::
but

:::::::
sensitive

::
to

::::::::
boundary

:::::::::
conditions

::::::
(no-slip

::
or

:::::::::
free-slip).

:::
The

:::::::
fracture

:::::
angle

::
in

:::
the

::::::::
VP-model

::
is

::::
also

:::::::
sensitive

::
to

:::
the

:::::::::
immediate30

:::::::::::
environment.

::::
This

::
is

:::
not

::::::::
consistent

::::
with

:::
the

::::::
notion

::
of

:::
sea

:::
ice

:::
as

:
a
:::::::
granular

::::::::
material.

:::::::::::::
Unsurprisingly,

:::
the

::::
yield

:::::
curve

:::::
plays

:::
an

::::::::
important

:::
role

:::
in

::::::::
fracturing

:::
sea

:::
ice

::
in

::
a

::::::::
numerical

::::::
model

::
as

::
it

:::::::
governs

:::
the

::::::::::
deformation

::
of

:::
the

:::
ice

::
as

::
a
:::::::
function

::
of

:::
the

:::::::
applied

:::::
stress.
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The idealized experiment of a uni-dimensional compression is useful to explore the effects of the yield curve because

all other parameters are controlled. Historically, the discrimination between the different yield curve couldn’t have been

done
:::::
curves

::::
was

:::
not

:::::::
possible

:
because of the scarcity of sea ice drift data. The

:::::
Model

:::::::::::
comparisons

::
to

:
recent sea ice de-

formation dataset from RADARSATalso, through LKFs statistics, indicated
:::::::
datasets,

::::
such

:::
as

::::
from

::::::::::::
RADARSAT,

:::::
imply

:
that

we would need to increase the shear strength with the ellipse in the standard VP rheology to match observations . This5

would increase
:::::::::::::::::::::::::
(Bouchat and Tremblay, 2017).

:::
We

::::
find

::::
that

::::
this

::::::::
increases

:
the fracture angles, in opposition to the needed

improvements
:::::::
creating

:
a
::::::::

dilemma. Therefore, the high-resolution idealized experiment presented in this work gives means

:::::::
provides

:
a
:::::::::
framework

:
to investigate and discriminate different rheologies –

::
—

:
yield curve and flow rule.

If Arctic-wide sea ice simulations with a resolution of 25
::
m are not feasible today because of computational cost, we can

still imagine such a model
::::
small

::::::::::
experiments

:
to be useful for process modeling on small scales , for example,

::::
when

:::::
local10

:::
and

:::::::::::::
high-resolution

::::::::::
observations

::::
(e.g.

:::::
wind,

:::
ice

:::::::::
velocities)

:::
are

::::::::
available.

:::
For

::::::::
example,

::::
such

::::::
process

::::::::
modeling

::::::
studies

:::::
could

:::
be

::::
used to constrain the rheology with data from the upcoming MOSAiC scientific cruise

::::::::
campaign (Dethloff et al., 2016) that

will provide a full year of sea ice observations in pack ice. Such simulations would also need to take into account the effects

of heterogeneous ice cover and wind patterns, with potentially convergent and divergent forces from the wind
::::
wind

::::::
forcing.

Most climate models use the standard VP rheology (Stroeve et al., 2014) or one of its variants (e.g.
:

EVP). Results presented15

herehowever points at the need for ,
::::::::
however,

:::::
imply

::::
that

:
a more physical yield curve and (

::::
with

:
a
::::::::
(possibly

:
non-associative)

flow rule . A better understanding of the link between the fracture process and the yield curve and the flow rule is necessary for

more confidence in the capacity of the rheology to model sea ice dynamic in a consistent way. Once the fracture process within

the VP framework is fully understood, the design of a new yield curve, including a different flow rule, that would take into

account the granular nature of sea ice and be adapted to high resolution modeling and LKFs creation appears to be necessary.20

:
is
::::::::
required.

::::
Such

::
a
::::
yield

:::::
curve

::::::
would

::::
have

::
to

::
be

::::::::::
continuous

::
in

::
all

:::::::::::::
representations,

:::::::::::
differentiable

:::::::
without

:::::::
corners,

::::
have

:::::
some

:::::::
cohesion

:::
and

:::
be

::::::::
consistent

::::
with

::::::::
available

:::::::::::
observations

::
of

:::::::
fracture

:::::
angles

::
in

:::::::::
convergent

::::
and

::::::::
divergent

::::
flow.

:

Appendix A: Fracture angle

We follow Hibler and Schulson (2000) and Tremblay and Mysak (1997) to
:::::
Below,

:::
we

:
derive a relationship between the frac-

ture angle and the internal angle of friction for the
:
a
:
Mohr-Coulomb curve. The stresses

::::
yield

::::::::
criterion

:::
for

::::::::::::
completeness.

:::
We25

:::::::
consider

::
an

::::::::
arbitrary

:::::
piece

::
of

::
a
:::
2D

:::::::
medium

:::::::
(Figure

::::
A1a)

::::
that

::
is

::::::
subject

:::
to

:::::::
stresses

::
in

:::::::
physical

:::::
stress

:::::
space

::::
�ij ::::::::

(i= 1,2)
:
.

:::::::::
Computing

:::
the

::::::
change

:::
of

::::::::::
coordinates

::
as

::::::::
described

::
in
::::

Eq.
:::
(7),

:::
we

::::
can

:::::::
consider

:::
the

::::::::
principal

:::::::
stresses

::::::
(�1,�2)

:::::::
applied

:::
on

:::
the

:::::::
medium

::::::
(Figure

:::::
A1b).

:::::
From

:::
the

:::::
force

:::::::
balance,

:::
the

:::::::
normal

:::::
stress

::
�

:::
and

:::
the

:::::
shear

:::::
stress

::
⌧ on a plane at an angle ✓ from the

principal stress axis (�1, �2) can be written as (see Figure A1and Popov (1976))
:::
Fig.

::::
A1b

:::
and

::::::
Popov,

:::::
1976)

:

�dA= �2 sin(✓)sin(✓)dA+�1 cos(✓)cos(✓)dA, (A1)30

⌧dA= �2 cos(✓)sin(✓)dA��1 cos(✓)sin(✓)dA, (A2)

29



a)

x

y

�22

�22

�11
�11

�12

�12

�12

�12

b)

x

y

 

x0

y0

dA

✓

�2

�2

�1

�1
⌧

⌧

�

�

Figure A1. Stress state on an ice element in the reference �ij a) or in principal
::::::
physical stress space (�1,�2:

a) and along
::
in an arbitrary

inclined plane
::::::::
coordinate

:::::
system

:::::::
oriented

:
at an angles ✓ b)

::::
angle

:::::
theta

::::
with

::::::
respect

::
to

:::
the

:::::::
principal

:::::
stress

:::
axes

:::
(b). The principal axis

:::::
stresses

:
are the eigenvalues of the stress tensor

::
in

::
an

:::::::
arbitrary

::::::::
coordinate

:::::
system

:
and the angle  comes

:
is

::::::
derived from the rotation matrix

composed of the
::
two

:
eigenvectors.

:::
Note

::::
that

::
in

::
the

:::::
study

:::::
above

::::
there

::
is

::
no

::::
shear

:::::
stress

::::::::
(�12 = 0,

::
so

:::::::
principal

::::
axes

:::
and

::::::
physical

::::
axes

:::
are

:::::
aligned

:::::::
( = 0).

where dA is the area of the friction plane . Simplifying using trigonometryrelationships
::
on

::::::
which

:::
the

::::::
stresses

:::
are

:::::::
applied

:::
(in

::
2D

::
it
::
is

:::
just

::
a
:::::
line).

:::
The

::::::
second

::::::::::::
trigonometric

::::
term

::::::
comes

::::
from

:::
the

::::
fact

:::
that

::::
this

::::::
surface

::
is

::::
tilted

:::::::::
compared

::
to

:::
the

::::::::
direction

::
of

::::::
stresses

:::
�1 :::

and
:::
�2.

:::::
Using

:::::
angle

::::
sum

:::
and

:::::::::
difference

::::::::
identities

::
of

:::::::::::
trigonometry, we can write the stress

::::::
stresses

:
� and ⌧ in terms
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of the
:::::::
principal

:::::::
stresses

::
�1::::

and
::
�2::

as
:

�
:
=

1

2
(�1 +�2)+

1

2
(�1 ��2)cos(2✓),

:::::::::::::::::::::::::::::

(A3)

⌧
:
=�1

2
(�1 ��2)sin(2✓).

:::::::::::::::::::

(A4)

::
In

:::::
terms

::
of

:::
the stress invariants �I and �II :::

this
::::
gives

:

� = �I +�II cos(2✓), (A5)5

⌧ =�
:
�II sin(2✓). (A6)

The Mohr-Coulomb failure criterion can be written in the reference
:::::::
fracture

::::
plane

:
stress space (see Figure ??)

::::
Fig.

:::
A2)

::
as

:

⌧ =�tan(�)�+ c, (A7)

where � is the internal angle of friction, and c the cohesion when no stress is applied . Substituting (??
::::::
stresses

:::
are

:::::::
applied

:::::::::::::
(Verruijt, 2018).10

::::::::::
Substituting

:::
(A5) and (??

:::
A6) in (A7) we get

��II sin(2✓) = tan(�)�I +tan(�)�II cos(2✓)+ c. (A8)

that we develop as
:
,

:::
and

::::
after

::::::::::
multiplying

::::
both

::::
sides

:::
by

::::::
cos(�)

�II [sin(2✓)cos(�)� cos(2✓)sin(�)] =��I sin(�)+ c cos(�).
::::::::::::::::::::::::::::::::::::::::::::::::::

(A9)

::
By

::::::::::
geometrical

:::::::::::
construction

:::
(see

::::
Fig.

::::
A2)

:::
the

:::
MC

:::::::
criterion

::
is
:::::::
satified

::::
when

::::::::::::::::::::::::::::::
(see also Verruijt, 2018, Sect. 20.4),15

�II =��I sin(�)+ c cos(�)
:::::::::::::::::::::::

(A10)

::
so

:::
that

:::
eq.

::::
(A9)

::::::::
becomes

sin(2✓)cos(�)+ cos(2✓)sin(�) = sin(2✓+�) = 1,
:::::::::::::::::::::::::::::::::::::::::

(A11)

:::
from

::::::
which

:::
we

:::
get

::
the

::::::::
classical

:::::
result

::
of

:::::::
material

::::::::::
deformation

:::::::
physics:

:

�IIsin(2✓)cos(�)+ cos(2✓)sin(�) =
⇡

2
) ✓ =

⇡

4
:::::::::

�µ�I + c
�

2
:

(A12)20

where we have used the fact that µ= tan(�) = sin(�) (see Figure ??) , where µ is the coefficient of internal friction. This then

imply that in invariant space
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Figure A2.
:::::
Mohr’s

:::::
circle

::
of

::::
stress

::::::
(black)

::::
with

:::::::::::
Mohr-Coulomb

:::::
yield

::::::
criterion

::::
(red)

::
of

:::::
angle

::
of

::::::
internal

::::::
friction

:
�
::::
(red)

:::
and

:::::::
cohesion

::
c
::
in

::::
(�,⌧ )

:::::
space.

::::
From

:::
Eq.

:::::
(A12,

::
the

:::::::::
deformation

::
is
::::::
created

:::
with

:::
an

::::
angle

:
✓
:::
that

:::
can

::
be

:::::::::
represented

::
in

::::::
Mohr’s

::::
circle

:::::
(blue).

Appendix B:
:::::::
Fracture

:::::
angle

::::
and

:::::
yield

:::::
curve

:
A
:::::
yield

:::::
curve

:::
can

::
be

:::::::
defined

:
in
:::
the

:::::
local

:::::
stress

::::
(�ij),

::::::::
principal

:::::
stress

:::::
(�1,2)

::
or

:::::
stress

:::::::
invariant

::::::
(�I,II )

::::::
spaces.

::::
The

::::
latter

:::::
gives

:::
the

:::::
center

:::
and

:::::
radius

:::
of

::
the

:::::::
Mohr’s

::::
circle

:::
of

::::
stress

:::::::
defining

:::
all

::::::::
equivalent

:::::
stress

:::::
states

:::::
(�,⌧ )

:::
for

::
all

::::::
angles

::::
with

::::::
respect

::
to

:
a
::::::::
reference

::::::::
coordinate

:::::::
system.

::::
This

::::::
allows

:::
the

:::::::::
translation

::
of

:::
the

:::::::
elliptical

:::::
yield

:::::
curve

::::
from

:::
the

:::::::
standard

::::::::
principal

::
or

:::::
stress

::::::::
invariant

:::::
space

::
to

:
a
::::
local

:::::
stress

:::::::::
coordinate

::::::
system

:::::
(�ij)

::
In

:::
this

::::::
sense,

:::
we

:::
can

::::
plot

:::
the

::::
yield

:::::
curve

::
in

:::::
(�,⌧ )

:::::
space

::
as

:::
the

::::::::
envelope

::
of

::
all

:::::::
Mohr’s5

:::::
circles

:::
for

::::
each

:::::
point

:::
on

:::
the

:::::::
elliptical

:::::
yield

:::::
curve

:::::::
defined

::
in

:::::
stress

:::::::
invariant

::::::::::
coordinates

::::
(see

::::
Fig.

:::
B1

:::
for

::
an

::::::::::
illustration

::::
with

::
the

::::::::
elliptical

::::
yield

::::::
curve).

:::
In

:::
the

::::::::
following,

:::
we

::::
refer

::
to
::::
this

:::::::
envelope

::
of
:::
all

::::::
Mohr’s

::::::
circles

::
as

:::
the

:::::::::::
reconstructed

:::::
yield

:::::
curve.

::::
The

::::::
tangent

::
to

:::
this

:::::
curve

::::
can

::
be

::::::::
expressed

::
as

:::::::
(Figure

::::
B2):

sin(�) = tan(�) = µ=
@�II
@�I

.
::::::::::::::::::::::::

(B1)

::
We

:::
can

::::
then

:::::::
express

:::
the

::::::
fracture

:::::
angle

:::
for

:::::
stress

:::::
states

:::
on

::
the

:::::
yield

:::::
curve

:::::::
envelope

:::
by

::::::
placing

::::
Eq.

::::
(B1)

::
in

:::
Eq.

:::::
(A12)

:
:
:

10

✓(�I) =
⇡

4
� 1

2
arcsin

✓
@�II
@�I

(�I)

◆
=

1

2
arccos

✓
@�II
@�I

(�I)

◆
.

::::::::::::::::::::::::::::::::::::::::::::::::::

(B2)

::::
This

::
is

:::
the

::::
same

:::::::
relation

:::::::::
presented

:::::::::::::::::
(Pritchard, 1988) and

:::::
used

:::::::::
previously

::::::::::::::::
(Wang et al., 2006),

:::
but

::::::::
obtained

::::::
within

:::
the

:::::
(�,⌧ )

::::
stress

::::::
space.

B1
::::::::
Elliptical

:::::
yield

:::::
curve

::::
From

:::
the

::::::::
previous

:::::::::
equations,

::::
some

:::::::::::
implications

:::::
about

:::
the

:::::::
elliptical

:::::
yield

:::::
curve

:::::::::::
immediately

::::::
follow.

::
As

::::::
shown

::
in

::::
Fig.

::
4,

::
in

::
a15

::::::::::::
uni-directional

::::::::::
compressive

:::::
setup

:::
the

:::::
slope

::
of

:
a
:::::::
tangent

::
to

:::
the

::::
yield

:::::
curve

:::::::
changes

::::
with

:::
the

::::::
ellipse

:::::
ratio.

:::
The

:::::::::
convexity

::
of

:::
the

32



�

⌧

Figure B1.
::::::::
Illustration

::
of

:::
the

::::::
Mohr’s

::::
circle

::::::
applied

::
to

::
the

:::::::
elliptical

::::
yield

::::
curve

:::::
(black

::::::
ellipse)

::
in

:::
�,⌧

:::::
space,

::::
some

:::::::
examples

::
of

::::::
Mohr’s

:::::
circles

::::
(blue)

:::
and

:::
the

::::::::::
reconstructed

::::
yield

:::::
curve

:::
(red)

::
in
:::
the

::::::
fracture

::::
plane

:::::
space.

:::
The

::::::
orange

:::::
Mohr’s

:::::
circle

:::::::
illustrate

::
the

::::
case

:::::
where

::
no

::::::
fracture

::::
lines

:::::
exists,

::
for

::::::
|µ|> 1.

:::::
ellipse

:::::::
implies

:::
that

:::
the

::::
ratio

:::::::::::

⌧
� = tan(�)

::
of

::::
shear

:::::::
strength

::
⌧
::
to

:::::::::::
compressive

:::::::
strength

:
�
::::::::

becomes
::::::
smaller

:::::
with

::::::
smaller

::
e.

::
If

:::
we

:::::::
compute

:::
the

:::::
slope

::
of

:::
the

::::::
tangent

::
to

:::
the

::::::::
elliptical

::::
yield

:::::
curve

::
at
:::
the

::::::::::
intersection

:::::
point

:::::::
between

:::
the

:::::
yield

::::
curve

::::
and

:::
the

::
�2:::::

axis,

::
we

:::
get

:

@�II
@�I

����
�1=0

=
1

2

✓
1

e2
� 1

◆
.

::::::::::::::::::::::

(B3)

::::::
Inserted

::::
this

::::::::::
relationship

:::
into

::::
Eq.

::::
(B2)

::::
gives

:::
the

:::::
angle

::
of

:::::::
fracture

:::
for

:::::::
uni-axial

:::::::::::
compressive

:::::::::
experiment

::::
with

::
an

::::::
ellipse

::::
ratio

::
e:

:
5

✓th,ell(e) =
1

2
arccos


1

2

✓
1

e2
� 1

◆�
.

::::::::::::::::::::::::::::::

(B4)

::::
Note

:::
that

::
a
::::
yield

:::::
curve

:::
in (

:::::
�I,II )

:::::
space

::::
with

:
a
:::::::
tangent

::::
slope

::::::
above

::::
unity

:::::
does

:::
not

::::
have

::
a

::::::
Mohr’s

:::::
circle

:::
that

::::
can

::
be

:::::::
tangent

::
to

:::
the

::::
yield

:::::
curve

::
in

:::::
(�,⌧ )

:::::
space

:::::::
(Orange

:::::
circle

:::
on

::
in

:::
Fig.

::::
B1).

:::::
This

::::::
implies

::::
that

::
no

:::::
angle

::
of

:::::::
fracture

:::
can

:::
be

::::::
derived

:::
for

:::::
these

::::
stress

::::::
states.

::::
This

::
is

:::
the

:::
case

:::
for

:::
the

::::::::
elliptical

::::
yield

:::::
curve

:::
for

:::
low

::::
and

::::
high

::::::::::
compressive

:::::::
stresses.

::
It

::
is

:::
still

::::::
unclear

:::::
what

:::::::
happens

::
in

::
the

:::
VP

::::::
model

:::
for

:::::
stress

::::
states

:::
on

:::
the

::::
yield

:::::
curve

::::
that

::::
have

:
a
::::::
tangent

::::
with

::
a

::::
slope

::::::
higher

::::
than

::::
unity

::::::::::::::::::::::
(see also Pritchard, 1988).10

::::
Note

::::
also

:::
that

:::
for

:::::
some

:
(�I ,�II )

sin(2✓)cos(�)+ cos(2✓)sin(�) = 1

:::::
states,

:::
the

:::
ice

:::
will

:::::::
actually

:::
fail

::
in

:::::::
tension,

::
as

:::
the

:::::::::::
reconstructed

:::::
yield

:::::
curve

::::::
having

:
a
::::
few

:::::
points

::
in

:::
the

:::
first

::::
and

:::::
fourth

::::::::
quadrant.

:

Therefore we get

✓ =
⇡

4
� �

2
=
⇡

4
� sin�1(µ)

2
15

:::
The

:::::
shear

:::
and

::::
bulk

:::::::::
viscosities

:::
are

:::::::::::
symmetrical

:::::
about

:::
the

:::::
center

::
of

:::
the

:::::::
ellipse.

::::
This

::::::
implies

::::
that

::::
they

:::
are

:::::
equal

:::
for

:::::::::
divergence

:::
and

:::::::::::
convergence.

::::::
Clearly

:::
this

::
is

:::
not

:::::::
physical

:::::
since

:::::::
divergent

::::
flow

::::::
should

::::
have

::::
less

:::::
ice-ice

::::::::::
interactions

:::
and

:::::
lower

:::::::::
viscosities

::::
than
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:::::::::
convergent

::::
flow.

:::::
While

::::
this

:
is
::::::::::::
non-physical,

:
it
::::
does

::::
lead

::
to

:::::
more

::::::::
numerical

:::::::
stability

:::::::
because

:::
the

::::
extra

:::::::
viscosity

:::
or

:::::::::
dissipation

::
of

:::::
energy

::::::::::
regularizes

:::
the

:::::::
problem.

:::
We

::::
also

::::
note

:::
that

::::::
tensile

:::::::
strength

::::
with

:
a
:::::
slope

::::::
smaller

::::
than

::::
one

:
is
::::::::::
unphysical,

:::::::
because

:
it
::::::
would

::::
make

:::
the

:::
ice

:::::
break

::::
with

:::
an

::::
angle

::
in
:::::::
tension.

:::
So

::::::
adding

::::::
tensile

:::::::
strength

::
to

:::
the

:::::::
elliptical

:::::
yield

::::
curve

::::::
would

:::
not

::
be

::::::::
physical.

::::
The

::::
slope

::
of

:::
the

:::::
yield

:::::
curve

::
in

:::
the

:::
first

::::
and

:::::
fourth

::::::::
quadrant

:::::::
(positive

:::
�I )

::::::
should

::
be

::::
�1

:::
and

::
1,

::::::::::
respectively.

:

�

⌧

��

�I

�II

Figure B2.
:::::
Mohr’s

::::
circle

::
of

:::::
stress

:::
with

:::
an

::::::
arbitrary

::::
yield

:::::
curve

:::::
(black

:::
line)

::
in
:::
the

::::::
fracture

::::
plane

::::::::
reference.

:::::::::
tan(�) = µ

::
is

::
the

::::::
tangent

::
to

:::
the

::::
yield

::::
curve,

::::
and

:
�
:::
the

::::::
internal

::::
angle

::
of

::::::
friction

::
as

:::::::
described

::
in

:::::::
Appendix

:::
A.

::
We

::::
note

:::
that

::::::::::::::::
sin(�) = tan(�) = µ

:
(
:::
for

:::::::
|µ| 1).

:::
For

:
a
::::::
slightly

::::::
different

::::::
Mohr’s

::::
circle

::::::
(grey),

::
the

::::
blue

:::
and

:::
and

:::
red

::::::
tangents

::::
meet

::
in

::
the

:::::
same

::::
point

::
on

:::
the

:
�
::::
axis.

B2
::::::::::
Coulombic

::::
yield

::::::::
envelope5

::::::::
Applying

::::::
Mohr’s

:::::
circle

::
to

:::
the

::::::::::
Coulombic

::::
yield

:::::
curve

::::::::
explains,

::::
why

:::
the

:::::::::::::::
non-differentiable

:::::::
corners

::
in

:::
the

:::::
yield

:::::
curve

::::
lead

::
to

::::::::
numerical

::::::::
problems

:::::::
(Figure

::::
B3).

::::
The

::::::
tangent

::::
does

::::
not

::::
vary

::::::::
smoothly

:::
and

:::
the

::::::::::::
reconstructed

:::::
yield

:::::
curve

::
in

:::
the

::::::
failure

:::::
plane

::::
(�,⌧ )

::::::::
becomes

:::::::::::
discontinuous

:::::::
(Figure

:::
B3,

:::
red

:::::
line).

:::
As

:::::
shown

:::
in

::::
Sect.

:::::
3.3.2,

:::::
when

:::
the

:::::
stress

:::::
states

:::
fall

:::
on

::::
only

:::
one

::
of

:::
the

::::
two

::::
parts

::::::
(ellipse

::
or
:::::

limb)
:::
the

:::::::::
conjugate

:::::
faults

:::::
forms

::
as

::::::::
expected.

:::::
Using

::::
Eq.

::::
(B4)

::::
with

::
µ

::
as

:::
the

:::::
slope

::
of

:::
the

:::::::::::::
Mohr-Coulomb

:::::
limbs

::
of

:::
the

:::::::::
Coulombic

::::
yield

::::::
curve,

:::
the

:::::::
fracture

::::
angle

::
is
:::::
given

:::
by10

✓th,c(µ) =
1

2
arccos(µ),

:::::::::::::::::::

(B5)

:::::
which

::
is

:::::::
identical

::
to

:::
Eq.

::::::
(A12).

:

:::
The

:::::::::
Truncated

::::::
Ellipse

::::::
Method

:::::::
(TEM)

::::
yield

:::::
curve

:::::::::::::::::::::::::::::::::::::::
(e.g., Hibler and Schulson, 1997, Appendix) can

:::
be

::::
seen

::
as

:
a
::::::::::
Coulombic

::::
yield

:::::
curve

::::
with

:::::
µ= 1

::::
and

:
a
::::::::
cohesion

:::::
c= 0.

::::
The

::::
slope

::::::
µ= 1

::::::
implies

:
a
::::::::

breaking
:::::
angle

::
of

::::
zero

:::
for

::
all

:::::::::::
confinement

:::::::::
conditions

:::
that

:::::
would

:::::
make

:::
the

:::::
stress

:::::
states

:::
fall

::
on

:::
the

::::::
limbs.

:::
The

::::
zero

::::::::
cohesion

::::::
implies

::::
that

:::
the

::
ice

::::
will

::::::
deform

:::
for

:::::
small

:::::::
stresses.

::
So

::::
this15

::::
yield

::::::
curve

::::
also

::::::
appears

::
to

:::
us

::
as

:::::::::
unphysical.

:
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Figure B3. Mohr-Coulomb
::::::
Mohr’s circle of stress in an arbitrary frame of reference at an angle ✓ with the respect

:::::
applied

:
to the principal

stress. tan(�) = µ
:::::::

coulombic
::::
yield

:::::
curve

::
(in

:::::
black)

::
in

::
�,

:
⌧
:::::
space,

:
the slope if

::::::
Mohr’s

::::
circle

:::
for the

::::
cusps

::::::
between

:::
the

:::::::
elliptical

:::
cap

:::
and

:::
the

:::::::::::
Mohr-Coulomb

:::::
linear

::::
limbs

:
(blue line

:::::
circle),

:::
and

:::
the

::::
yield

::::
curve

::
in

::::
(�,⌧ )

:::::
space

::::
(red).

::
We

:::
can

:::
see

:::
the

::::
effect

::
of

::::::::
combining

::::
two

::::::
regimes,

:::
for

::
the

::::
same

::::::
Mohr’s

:::::
circle,

:::
two

:::::::
different

:::::
angles

::::::
coexists

:::
(red

::::::
circles)

:::
and

:::
are

::::
apart

::::
from

:::
each

:::::
other.
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