
Dear Kenny Matsuoka,

We are very appreciative for the reviews of our manuscript “Antarctic Ice Shelf Thickness Change from

Multi-Mission Lidar Mapping.” In response to the reviewer comments, we have revised the manuscript

to clarify some essential points and add a comparative analyses with Pritchard et al. (2012) and Rignot

et al. (2013) for the ice shelves in the Amundsen Sea. The modifications did not change the overall

conclusions or results.

In the revision, we include:

1. A point-by-point response to the reviewer comments. Responses are italicized and gray.

2. An enumerated list of the modifications made to the manuscript.

3. A copy of the manuscript with the changes noted. (Highlighted with red struck-through text to

denote subtractions and
✿✿✿✿

blue
✿✿✿✿✿✿✿✿✿✿

underlined
✿✿✿✿

text to denote additions)

4. A final copy of the manuscript with those same changes incorporated.

Regards,

Tyler C. Sutterley



First Reviewer Comments:

In this second version of the manuscript, the Authors have added a substantial discussion to the

text, and have also included several new references. The text has been restructured, which does

improve the overall flow of the manuscript. There are, however, some pending issues that should be

addressed/clarified in the final version.

Thank you for your helpful review of our revised manuscript. We address your comments

point-by-point and update the manuscript accordingly.

• There is an issue that has been raised during the first round of review (Reviewer #2 pointed

this out very clearly): The distinction between Eulerian vs Lagrangian melt rates. There are two

(main) melt quantities when referring to ice shelf melting in the broad sense: (1) The background

melt; the melting that gives the ice shelf its configuration (i.e. thicker at the GL and thinning

towards the ice front). This means, there is a great deal of melting occurring in the steady state

for the ice shelf to acquire its stable geometry. (2) The excess melt; which reflects the ice shelf

loss or variability at the base. When equating this melt with the mass change at the surface

we obtain the iceshelf net mass loss or gain. Ultimately, we are interested in estimating #2. By

tracking a fixed point on the surface of a flowing ice shelf, and comparing this point at two different

epochs (this is a Lagrangian observation), we are detecting both melt signals: the thickness

gradient (1) and the temporal change (2). So one needs to deconvolve these two from a purely

Lagrangian observation. A Eulerian observation, on the other hand, is detecting #2. This is why

it is inconsistent to compare directly Lagrangian vs Eulerian observations.

These are good points and points towards the purpose of comparing multiple time periods.

By looking at more than span of time, we are able to compare snapshots around the baseline

melt. In the future with ICESat-2 and beyond, we can extend the time series and looking

at more sub-periods to help isolate both the modern-day background melt, and determine

deviations from the background due to climatic variations and possibly long-term change.

• The authors may have addressed this properly, but it is (still) not clear in the text when

referring to ”Lagrangian melt” what signal is being referred to: the total melt (#1 + #2) [Dh/Dt],
which is inherent to the Lagrangian observation; or the Lagrangian-derived melt in excess (#2)

[dh/dtLagrange], which requires posterior separation. For example, in Figure 4, are all the 3

upper panels referring specifically to the temporal change of surface lowering/melt in excess (i.e.

dh/dtEuler vs dh/dtLagrange. . . or it is dh/dtEuler vs. Dh/Dt)?

We update the text accordingly to clarify that we are looking at variations in DH/Dt. We are

not determining deflections from the background as we do not have a long enough (30 years)

baseline of observations to adequately determine the mean.

• I think this issue still needs to be clarified in the text. It is a complex, and some times nonintuitive,

matter. This is a good opportunity for a manuscript addressing both types of measurements to

shed some light into it.

This is a great point. We add some context to the discussion section.

• Please increase the dots/symbols on all your plots. Since your estimates are sparse (due to the

nature of OIB sampling), it is far more informative to identify the color/value and location of the

plotted estimates than trying to stay true to the spatial scale of the measurements (i.e. footprint

size of flight lines).

Fair point. The symbol size has been increased.



• “We find that our method is a significant improvement over Eulerian-derived estimates that require

substantial smoothing or spatial averaging of the data.” (Isn’t “smoothing or spatial averaging” the

same?) This broad statement is only true because you are dealing with very sparse along flight

data. In the presence of good spatial coverage (as that provided by satellites) and high-quality

velocity fields, a Eulerian approach might be preferred over a Lagrangian derivation since the

latter leads to massive data loss and potentially misses the GL.

Fair point. Intent was to differentiate between smoothing (e.g. Gaussian averaging) and

reducing the spatial resolution (i.e. increasing the grid step size). We modify the sentence

as the impact of either technique is the same. Yes, idealistically Eulerian-derived thickness

change would be preferred. We add more context to the discussion section.

Minor edits:

p1, l3: Operation IceBridge → NASA’s Operation IceBridge

References have been updated

p1, l3: oceanic and surface processes, using . . .

Changed to “oceanic processes from measurements and models, surface velocity

measurements from synthetic aperture radar, and high-resolution outputs from regional

climate models.”

p5, l3: “The absolute precision of the RACMO2.3p2 model outputs has been estimated. . . ”, and what’s

the precision?

Kuipers Munneke et al. (2017) list the SMB uncertainty as 15% uncertainty of the SMB rate.

p9, l5: “to test their coherence”. In the formal statistical sense, “coherence” is correlation as a function

of frequency, which I don’t think is what you are referring to.

Fair point. Changed to “correspondence”.



Second Reviewer Comments

SUMMARY

The authors use airborne laser altimetry (from airborne topographic mappers (ATM)) over Antarctic

Peninsula (AP) and Amundsen Sea (AS) ice shelves, plus models of surface mass balance and firn

compaction, to measure ice shelf thinning rates and assign these rates to individual terms in the mass

balance. The study is complementary to several previous studies that used satellite altimeters. The

coverage of ATM is poor prior to Operation Icebridge (OIB). However, it has some advantages in terms

of dedicated tracks, in particular allowing measurements to get close to grounding lines. It is therefore

a valuable study, and dataset, to provide to the community.

Thank you Dr. Padman for your helpful second review of our manuscript. We have further

revised the manuscript following your suggestions to clarify some essential points and to

improve the overall analysis.

RESPONSES TO ANONYMOUS REFEREE #1

• “We did not compare with Pritchard et al. (2012) as the data is not provided in a compiled form.

Rignot et al. (2013) do not provide publicly available data.”

This is true; however, data sets are available from these authors on request.

Good point. We updated the manuscript to include comparisons with Pritchard et al. (2012)

and Rignot et al. (2013) for the ice shelves in the Amundsen Sea.

• “However, laser altimetry datasets have more accurate surface determination and can more

accurately track over regions of abrupt topographical change. ICESat-2 should provide a valuable

extension to the laser altimetry record and help separate short term oscillations with longterm

change.”

It is true that lasers track the true surface better (much better!) than radar. However, if your firn

density model (providing the correction for firn air content) is wrong, it is possible that the radar

provides a *better* estimate of basal mass balance than you get from laser.

This is an excellent point. We expand upon this in the discussion to clarify the strengths and

weaknesses of each instrument.

GENERAL COMMENTS

The authors have carried out a major overhaul of their manuscript in response to the first round of

reviewer comments, including much better organization. However, I still have issues that I think need to

be addressed.

1. Figures are not ordered correctly. This made it hard to follow at some points.

We reworked the text to improve continuity for the figures.

2. As I think I now understand, *all* thickness change rates are cited in Lagrangian terms. Even

“Eulerian TINs” have been corrected for divergence. However, the authors need to appreciate

that at least some of their readers are going to default to “thickness change means Eulerian” (i.e.,

evidence that mass/volume of the ice shelf is changing). I still contend that the “standard” use of

Lagrangian methods is to smooth out the individual estimates of height change before *removing*

the divergence term to get back to thickness change in Eulerian terms, rather than reporting on



Lagrangian changes where all of it *might* be divergence with no SMB and BMB contributions.

Hence, I still argue for using the Lagrangian derivative symbol (DH/Dt) rather than the words

“thickness change”, so readers are constantly reminded what they are looking at.

These are good points. We update the passages accordingly.

3. Related to this: One way in which Lagrangian methodology “smooths” thickness change is when

changes due to divergence dominant over SMB and BMB variability. That is, even ignoring surface

topographic variability that is subsequently advected to create “noise” in the method. Lagrangian

processing might produce a smoother field just because the thickness change numbers are larger

and more coherent. I’m not arguing against Lagrangian processing, but the manuscript should

explain in more detail the effects of different processing options.

While it is true that there may be an inherent smoothing due to the dominance of the

flux divergence term, the Lagrangian processing does make a major difference. The plot

below is surface elevation from 2008-10-26 compared with a flight line from 2016-11-10

(not corrected for oceanic or surface processes and not corrected for strain). When using

Eulerian processing, the oscillations in ice thickness advect “out of phase” and can cause

large artificial anomalies when calculating elevation change (difference between Red and

Green). With Lagrangian processing, the effect of these gradients is minimized as the same

parcels of ice can be compared (difference between Red and Purple).

4. Minor general comment: consistent units (either m or meters, not changing), and space between

values and units (200 m, not 200m)

Done.



SPECIFIC

p.1/l.8–9: See general comments. The first part of this sentence sort of makes sense in terms of

Lagrangian DH/Dt, but is then violated by the second part which says that other processes also

play a role. Maybe it is “dominated by flux divergence” but certain times and places show other

important terms?

Fair point. We modified the sentence accordingly.

“We find that the Larsen-C Ice Shelf is close to steady state over our observation period

with spatial variations in ice thickness largely due to the flux divergence of the shelf. Firn

and surface processes are responsible for some short-term variability in ice thickness of the

Larsen-C Ice Shelf over the time period.”

p.1/l.21: I still don’t think Rignot et al. (2013) is a good citation for evidence of buttressing. There are

many others that focus more on the mechanics of this process rather than just asserting it. The

same goes for Shepherd et al. (2003) and Fricker and Padman (2012).

We edited these sentences and added more detail about the technical mechanics.

“Floating ice shelves can exert control on the grounded ice sheet’s overall stability by

buttressing the flow of the glaciers upstream (Dupont and Alley, 2005). The response of

inland glaciers to ice shelf variations is complicated, and is dependent on both the inland

bed topography and the ice shelf geometry (Goldberg et al., 2009; Gagliardini et al., 2010;

Gudmundsson, 2013).”

p.1/l.21–24: This would flow better if you started with something like “The mass budget of an ice shelf

is the sum of several mass gain and loss terms (Thomas, 1979). Mass is gained by, . . . Losses

are associated with . . . ”

Done.

p.2/l.1: Isn’t mass rather than volume the important term? I think Paolo et al. (2016) used volume

because of concerns over firn models, but the other two papers there are attempting *mass*

balance calcs.

Updated.

p.2/l.4: “at accelerated rates FOR SEVERAL years following the collapse”

Done.

p.2/l.7–9: I think I pointed this out last time: It’s the *increase* of CDW heat that would drive accelerated

thinning, not just the presence of CDW heat. Unless you think it wasn’t there at all, the last time

these glaciers were in balance, or you are referring to changes *after* the irreversible onset of

MISI (in which case you need more words.)

Fair points. Jacobs et al. (2011) note that it is likely due to both an increase in CDW heat

content and an increase in sub-shelf cavity circulation. We updated the passage accordingly.

“The dynamical change of these glaciers likely stems from increases in sub-shelf circulation

and heat content of warm Circumpolar Deep Water, which enhanced ocean-driven melt

causing thinning of the buttressing peripheral ice shelves (Jacobs et al., 2011).”

p.2/l.18: What is “Icessn” after “Atm”? If it’s important, it’ll need to stay with the “ATM” name later on.

Icessn is the name of the Level-2 ATM product. According to Michael Studinger (GSFC) the

meaning of Icessn has been lost over time.



p.2/l.28: delete “be in reference to”; okay just to say “converted to the 2014 solution . . . ”

Done.

p.3/l.22: Scambos et al. (2001) is a very early cite for delineation of ice shelf extent

NSIDC suggests this citation for the MODIS images of ice shelves dataset. The delineations

were done in this study.

p.3/l.27: “corrected for ice strain effects following. . . ”. Clearer, and more precise, might be to say

“have been corrected to Lagrangian thinning rates by adding in the effects of strain.” Also, I think

Moholdt et al. *removed* strain (to get to Lagrangian-processed, *Eulerian* dh/dt), rather than

adding in strain.

Done.

“Measurements compiled using the Eulerian TINs scheme have been made comparable to

the Lagrangian thinning rates by adding the effects of strain using the relation from Moholdt

et al. (2014).”

p.5/l.14–15: “firn-column heights” is a bit vague. Something like Fig. 3 would have been a good place

to outline what everything is. Is this height relative to “pore closeoff depth” (defined as some

density?), or the equivalent of “firn air content”, or ???

Good point. We update the text to note that we use the firn-column air content.

p.5/l.29: I’m assuming everything is Lagrangian, but saying “the change in ice thickness of” always

implies, to me, a change in the volume/mass of the ice shelf. But in fact you conclude that it’s

fairly close to steady state, and these ’changes’ are just because ice diverges.

Yes, of course. Modified to fit intent.

p.5/l.30: Cite to Figure 6 is wrong; or at least, Fig. 6 should be moved to Fig. 4, and this cite should be

to Fig. 4 (it is the first figure cite after Fig. 3).

We added an initial paragraph in the results section to improve the continuity.

p.6/l.3: Again “is thinning” means something different from what you want people to be thinking in your

Lagrangian FoR.

Updated.

p.6/l.10: wrong figure cite. (last one I’ll point out.)

Figure 7 was the correct cite for this sentence.

p.6/l.11: “Wilkens” → “Wilkins”

Fixed.

p.6/l.14: Not clear what other way it can “ablate” other than through basal melting. What other

explanation do you have in mind, that you are discounting?

Particularly in the Peninsula, there can be surface melt but how melt is routed is pretty

uncertain.



p.6/l.16: Many readers will not know whether 6000 km2 is a lot or not. Maybe add “, from xx,xxx to

yy,yyy km2”

Done. We also added the percent change

p.6/l.19–21: This is an interesting case where basal melt rate greatly exceeds Lagrangian thinning.

But I struggled to understand how it could be, since Lagrangian thinning includes the basal melt.

Since DH/Dt<BMB, flow is CONvergent, and/or SMB is quite large. But then you could tell us

that it isn’t large enough to prevent *Eulerian* rates from being negative (ice shelf thinning).

Fair points. Eulerian values are similar to the Lagrangian values as shown by the plot below.

In this case, the basal melt rates are largely due to surface mass balance effects except near

the Haydn Inlet (HI) and Schubert Inlet (SI). We expand the results section for WIlkins.

p.6/l.26–31: This discussion is convoluted. You need to tell us first about the existence of a “once

grounded (when?) but not any more (after ???)” region. Then explicitly discuss the “always

ungrounded” and the “sometimes ungrounded” parts separately.

Section has been reworked to improve continuity.



(same area): On l.31 you say “significantly weaker”, but I don’t know “than what”? Part of the trouble is

that you are jumping back and forth between basal melting and “ice shelf thinning rates”. Because

of this, I don’t know whether I’m meant to be comparing rates in regions, or rates in the same

region between epochs.

Fair point. We add “weaker than in the previously grounded area”. Section has also been

rearranged to improve continuity following your suggestions.

p.6/l.34-p.7/l.1: I really don’t think Rignot and Jacobs (2002) tell you that GL melt rates have the highest

impact on glacial flow dynamics; they just base their decision to analyze near-GL melt on that

assumption. They say “We focus on melt rates near the grounding lines of deep draft outlet

glaciers because continental ice discharge is principally controlled by the channeled flow of these

ice streams into the ocean (Fig. 1). If these regions are the locus of high basal melting, the

potential exists for substantial ocean control over ice shelf, if not ice sheet, mass balance (11213).

Indirect observations and computer models have suggested high basal melting in the proximity

of deep grounding lines and have shown that melting efficiency will decrease as buoyant plumes

lose heat and rise to shallower depths along ice ocean interfaces (14, 15).”

Fair point. They do not test this assumption using ice sheet models and thus are basing their

study off of this assumption. However, for our purposes, the next line in Rignot and Jacobs

(2002) says that “[. . . ] it is not the average ice shelf melt rate but the melt rate near the

grounding line that will have the greatest impact on ice flow dynamics”.

p.7/l.56: I don’t see how this is a “However, . . . ” statement, since it essentially repeats the content

of the previous sentence. Maybe it doesn’t matter, but it seems to point to your wanting to tell

us about *mean* conditions, *then* variability, but that isn’t the distinction I get from these two

sentences.

We modified this sentence and moved it to the end of the paragraph.

“In addition, isolated crossovers can be calculated with the airborne data using Lagrangian

tracking for some ice shelves using along-flow and cross-flow measurements from separate

years. These singular crossovers would likely not be representative of the large-scale

behavior of the ice shelf due to the spatial variability of ice thickness change, but may still

provide valuable metrics for evaluating outputs from ice sheet models.”

p.7/l.11–12: Rewrite sentence starting “Ice thickness . . . ”. You cannot cite figure panel IDs before the

reader even knows what figure to look at. This might be because I recommended *not* starting

sentences with “Fig. X shows that . . . ”, but there are other ways around it.

That was the reason. We modified the sentences accordingly.

p.7/l.19–21: “much less noise compared with . . . ”. I get what you’re saying, but it is dependent on the

content of the next sentence to remind us *why* this is true. It also assumes that the benefits

outweigh the “costs” of Lagrangian processing. These might include fewer data (depending on

flight path choice (and orbits, for satellite application), and dependence on velocities that might

not be well enough known to calculate divergence (think of a shear margin where spatial scales

of velocities are smaller than what you can comfortably get out of InSAR).



Very fair points. We add in these additional caveats throughout the discussion.

“Using a Lagrangian reference frame may result in fewer co-registered data points and less

spatial coverage of measurements compared with using an Eulerian reference frame (Figure

4).”

“Lagrangian-derived estimates also greatly depend on the quality of the velocity estimates

used for advecting the ice parcels in time.”

“In addition, for some locations, such as near shear margins, ice velocities can vary at smaller

spatial scales than what is presently available from SAR measurements and visible imagery

feature-tracking.”

p.8/l.25: Adusumilli et al. (2018) expanded on the Paolo et al. work by adding in CryoSat-2, but they

didn’t expand coverage; instead, they limited themselves to just the greater AP area.

Indeed. We rearranged this sentence to clarify this point.

“Adusumilli et al. (2018) expanded on this work by including radar altimetry data from

CryoSat-2 to estimate the basal melt rates in the Antarctic Peninsula over a 23 year period.”

p.9/l.11: I thought the data set used here is more than IceBridge: Figure 1 shows data going back to

2002, well before OIB.

Good point. We clarify that we use both NASA/CECS Antarctic ice mapping and NASA

Operation IceBridge data.



List of Changes

1. Added “NASA/CECS Antarctic ice mapping campaigns and NASA”

2. Deleted “and surface”

3. Added “from measurements and models”

4. Modified “We find that ice thickness variations of the Larsen-C Ice Shelf are due to the flux

divergence of the shelf with firn and surface processes controlling short-term variability over our

observation period.” to “We find that the Larsen-C Ice Shelf is close to steady state over our

observation period with spatial variations in ice thickness largely due to the flux divergence of the

shelf. Firn and surface processes are responsible for some short-term variability in ice thickness

of the Larsen-C Ice Shelf over the time period.”

5. Replaced “thinning” with “thickness change”

6. Replaced “thinning” with “decreasing in thickness”

7. Replaced “Operation IceBridge provides a validation dataset” with “NASA/CECS Antarctic ice

mapping and NASA Operation IceBridge campaigns provide validation datasets”

8. Deleted “Floating ice shelves exert control on the grounded ice sheet’s overall stability by

buttressing the flow of the glaciers upstream (Dupont and Alley, 2005; Rignot et al., 2013).”

9. Added “modern-day”

10. Deleted “reduces their ability to buttress the glaciers that flow into them and makes”

11. Added “may make”

12. Added “The mass budget of an ice shelf is the sum of several mass gain and loss terms

(Thomas, 1979).”

13. Modified “ice shelves gain mass” to “Mass is gained”

14. Modified “They lose mass through runoff, wind scour and sublimation at the surface of the shelf,

melting at the base of the shelf and through calving (Thomas, 1979).” to “Mass is lost by the

runoff of surface meltwater, the erosion and sublimation of snow by wind, the sublimation of snow

at the surface of the shelf, the melting of ice at the base of the shelf, and the calving of icebergs

(Thomas, 1979).”

15. Added “Floating ice shelves can exert control on the grounded ice sheet’s overall stability by

buttressing the flow of the glaciers upstream (Dupont and Alley, 2005).”

16. Added “The response of inland glaciers to ice shelf variations is complicated, and is dependent

on both the inland bed topography and the ice shelf geometry (Goldberg et al., 2009; Gagliardini

et al., 2010; Gudmundsson, 2013).”

17. Added “Presently,”

18. Modified “volume, which has” to “mass, which may have”

19. Added “several”



20. Modified “the advection” to “increases in sub-shelf circulation and head content”

21. Modified “(ATM Icessn)” to “(ATM) Icessn”

22. Deleted “which has flown in Antarctica since 2002 and was”

23. Added “ATM instruments have flown in Antarctica since 2002 as part of both NASA/Centro de

Estudios Cientı́ficos (CECS) Antarctic ice mapping and NASA Operation IceBridge campaigns.”

24. Added “The Level-2 ATM Icessn data is calculated by fitting planar surfaces to the original ATM

point clouds at approximately 40 m spacing along track (Studinger, 2014).”

25. Deleted “be in reference to”

26. Modified “meters” to “m”

27. Modified “meters” to “m”

28. Modified “100–200m” to “100–200 m”

29. Modified “Measurements compiled using the Eulerian TINs scheme have been corrected for ice

strain effects following Moholdt et al. (2014).” to “Measurements compiled using the Eulerian TINs

scheme have been made comparable to the Lagrangian thinning rates by adding the effects of

strain using the relation from Moholdt et al. (2014).”

30. Added “Dh
Dt

= ∂h
∂t

+ ρw−ρice
ρwρice

V · ∇M ”

31. Added “where ρw and ρice are the densities of sea water and meteoric ice, respectively, and

(V · ∇M ) is the ice shelf thickness gradient advection.”

32. Added “For calculating the mass divergence for comparing Eulerian and Lagrangian-derived ice

thickness change rates, we use ice thickness data and uncertainties from Bedmap2, which are

primarily derived from Griggs and Bamber (2011) for ice shelves (Fretwell et al., 2013).”

33. Added “The ice thickness data from Griggs and Bamber (2011) are calculated assuming

hydrostatic equilibrium, which should be valid for most areas downstream of the 1–8 km wide

grounding zones (Brunt et al., 2010, 2011).”

34. Modified “100m” to “100 m”

35. Added “NASA”

36. Added “air content”

37. Added “air content”

38. Deleted “ρw and ρice are the densities of sea water and meteoric ice respectively”

39. Added “air content”

40. Deleted “We use ice thickness data and uncertainties from Bedmap2, which are primarily

derived from Griggs and Bamber (2011) for ice shelves (Fretwell et al., 2013).”

41. Deleted “The ice thickness estimates are calculated assuming hydrostatic equilibrium, which

should be valid for most areas downstream of the 1–8 km wide grounding zones (Brunt et al.,

2010, 2011).”



42. Added “Ice shelf masses were calculated by converting the altimetry-derived ice shelf freeboard

heights to ice thickness by assuming hydrostatic equilibrium (Fricker et al., 2001; Griggs and

Bamber, 2011).”

43. Added “We co-register 134 days of ATM data and 32 days of LVIS data for the years 2002–

2016.”

44. Added “We compare elevation change measurements between Eulerian and Lagrangian

approaches derived using Triangulated Irregular Networks (TINs) (Sutterley et al., 2018, Figure

4).”

45. Added “Using a Lagrangian reference frame can produce estimates of ice shelf elevation

change with much less noise compared with a Eulerian reference frame (Moholdt et al., 2014,

Figure 4).”

46. Added “This is because the advection of ice thickness gradients, such as that from cracks and

crevasses in the ice, can saturate the Eulerian-derived estimates (Moholdt et al., 2014; Shean

et al., 2018).”

47. Deleted “Figure 6 (a-b) shows the change in ice thickness of the Larsen-B Remnant and Larsen-

C Ice Shelves for two periods, 2002–2008 and 2008–2016, from Pre-IceBridge and Operation

IceBridge airborne data.”

48. Deleted “Figure 6 (c-d) shows the estimated basal melt rate of the ice shelves over the same

periods.”

49. Deleted “The average thickness change rate between 2008 and 2016 from the flight line data

over the Larsen-C Ice Shelf is –1.2±0.9 m/yr.”

50. Deleted “From 2008–2016, the strongest thinning occurs near the grounding zone, particularly

for the flight lines starting near Cabinet and Mill Inlets.”

51. Added “We estimate the impact of surface processes, ice divergence, and basal melt using data

from a flight line starting near the Whirlwind Inlet of the Larsen-C Ice Shelf (Figure 5a).”

52. Modified “Scatter in the ice thickness change rate across the flight line is typically 30–50 cm/yr,

or a 4–6 cm/yr error in the measured elevation change rate (Figure 5a).” to “Scatter in the

Lagrangian-derived ice thickness change, DH/Dt, across the flight line is typically 30–50 cm/yr,

or a 4–6 cm/yr error in the measured elevation change rate (Figure 5a).”

53. Added “, DH/Dt,”

54. Added “, indicating the shelf along this line is nearly in steady-state during this period.”

55. Modified “observed thinning” to “estimated DH/Dt”

56. Added “The average DH/Dt rate between 2008 and 2016 from the flight line data over the

Larsen-C Ice Shelf is –1.4±0.9 m/yr.”

57. Added “From 2008–2016, the strongest DH/Dt rates occur near the grounding zone,

particularly for the flight lines starting near Cabinet and Mill Inlets.”



58. Added “However, due to the sensitivity of the laser altimetry estimate to the SMB model (Figure

5a), measurements from radar altimetry may be more accurate determinations of basal melt rate

for the ice shelf.”

59. Modified “Wilkens” to “Wilkins”

60. Modified “Figure 8 shows the change in ice thickness (a-b) and estimated basal melt rates (c-d)

of the Wilkins Ice Shelf for two 3-year periods from 2008–2011 and 2011–2014.” to “DH/Dt
(a-b) and estimated basal melt rates (c-d) of the Wilkins Ice Shelf for two 3-year periods from

2008–2011 and 2011–2014 is shown in Figure 8.” Modified “by over 6000 km2” to “from 16000

to 10000 km2 (38%)”

61. Modified “thinning” to “DH/Dt”

62. Added “The average DH/Dt rates from the flight lines were insignificantly different at –35±9

m/yr over 2009–2011 and –33±5 m/yr over 2011–2015.”

63. Added “Basal melt rates near the grounding zone have the highest impact on the glacial flow

dynamics (Rignot and Jacobs, 2002).”

64. Modified “thinning” to “DH/Dt”

65. Modified “Ice thickness change” to “DH/Dt”

66. Added “between the 1996 and 2011 grounding lines”

67. Added “than in the previously grounded area”

68. Deleted “The average ice thinning rates from the flight lines were insignificantly different at 36±9

m/yr over 2009–2011 and 35±5 m/yr over 2011–2015.”

69. Deleted “Basal melt rates near the grounding zone have the highest impact on the glacial flow

dynamics (Rignot and Jacobs, 2002).”

70. Modified “ice thickness change” to “DH/Dt rate”

71. Modified “thinning” to “melt”

72. Added “We compare our estimates of Pine Island Ice Shelf change from airborne laser altimetry

with ICESat-derived surface elevation change from Pritchard et al. (2012) and basal melt rate from

Rignot et al. (2013) (Figures 10 and 13a-b).”

73. Added “While there are few data points for comparison and the time periods are not

contemporaneous (2002–2009 for the airborne data and 2003–2009 for the ICESat data),

we find some significant differences between our airborne altimetry-derived estimates and the

satellite derived estimates (Figure 10c,f).”

74. Added “The RMS difference between the airborne-derived estimate and the satellite-derived

estimates are 31 m/yr in terms of basal melt rate (Rignot et al., 2013) and 8 m/yr in terms of

surface elevation change (Pritchard et al., 2012).”

75. Added “For the coincident data, the airborne altimetry data showed more variability in basal

melt rate and surface elevation change than the satellite-derived methods (Figure 13b).”



76. Added “The differences in variability are likely due to the different spatial resolutions of

the datasets, the different geophysical corrections applied for each estimate, and the spatial

smoothing applied to the Pritchard et al. (2012) and Rignot et al. (2013) estimates.”

77. Modified “Ice thickness change” to “DH/Dt”

78. Modified “thinning” to “decreasing in thickness”

79. Modified “thinning” to “DH/Dt”

80. Added “We compare our airborne laser altimetry data of the Dotson and Crosson Ice Shelves

with satellite laser altimetry estimates of surface elevation change from Pritchard et al. (2012) and

basal melt rate from Rignot et al. (2013) (Figures 12 and 13c-d).”

81. Added “The RMS difference between the airborne-derived estimate and the satellite-derived

estimates are 5 m/yr in terms of basal melt rate (Rignot et al., 2013) and 4 m/yr in terms of

surface elevation change (Pritchard et al., 2012).”

82. Added “For the coincident data, the airborne altimetry data aligns well with the satellite-derived

estimate of basal melt rate from Rignot et al. (2013) (Figure 13c).”

83. Added “However, the surface elevation estimates from Pritchard et al. (2012) do not align well

with our the airborne altimetry-derived estimate (Figure 13d).”

84. Added “The difference is likely due to the lack of spatial coverage with the airborne estimate,

which may not be representative at the 10 km horizontal spatial scale of the Pritchard et al. (2012)

estimate, particularly closer to the grounding line (Figure 12f).”

85. Deleted “Using a Lagrangian reference frame produces estimates of ice shelf elevation change

with much less noise compared with a Eulerian reference frame (Moholdt et al., 2014, Figure 4).”

86. Added “Using a Lagrangian reference frame may result in fewer co-registered data points and

less spatial coverage of measurements compared with using an Eulerian reference frame (Figure

4).”

87. Modified “Operation IceBridge” to “airborne”

88. Added “NASA”

89. Deleted “Isolated crossovers can be calculated using Lagrangian tracking for some ice shelves

using along-flow and cross-flow measurements from separate years.”

90. Modified “ICESat-2” to “the NASA ICESat-2 mission”

91. Added “In addition, isolated crossovers can be calculated with the airborne data using

Lagrangian tracking for some ice shelves using along-flow and cross-flow measurements from

separate years.”

92. Added “These singular crossovers would likely not be representative of the large-scale behavior

of the ice shelf due to the spatial variability of ice thickness change, but may still provide valuable

metrics for evaluating outputs from ice sheet models (Figures 10 and 12).”

93. Added “Lagrangian-derived estimates also greatly depend on the quality of the velocity

estimates used for advecting the ice parcels in time.”



94. Added “For some locations, such as near shear margins, ice velocities can vary at smaller

spatial scales than what is presently available from SAR measurements and visible imagery

feature-tracking.”

95. Modified “Adusumilli et al. (2018) expanded on this work to estimate the basal melt rates over

23 years and including radar altimetry data from CryoSat-2.” to “Adusumilli et al. (2018) expanded

on this work by including radar altimetry data from CryoSat-2 to estimate the basal melt rates in

the Antarctic Peninsula over a 23 year period.”

96. Deleted “Our study provides a validation dataset for floating ice shelves using high-resolution

airborne laser altimetry data (Figure 7).”

97. Added “In addition, in regions of uncertain surface mass balance and firn change, inter-

comparisons with radar altimetry estimates may help provide important metrics for improving

SMB and firn models.”

98. Added “In these regions, radar altimetry estimates of ice thickness change may be more

accurate than from laser altimetry due to the SMB uncertainty.”

99. Added “NASA/CECS Antarctic ice mapping and NASA”

100. Modified “is” to “can be”

101. Modified “require substantial smoothing or” to “may require substantial”

102. Added “to reduce the impact of noise”

103. Added “Figure 10”

104. Replaced “Figure 11” with “Figure 10 (previous)”

105. Added “Figure 12”

106. Added “Figure 13”
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Abstract.

We calculate rates of ice thickness change and bottom melt for ice shelves in West Antarctica and the Antarctic Peninsula

from a combination of elevation measurements from
✿✿✿✿✿✿✿✿✿✿✿

NASA/CECS
✿✿✿✿✿✿✿✿

Antarctic
✿✿✿

ice
✿✿✿✿✿✿✿

mapping
✿✿✿✿✿✿✿✿✿

campaigns
✿✿✿✿

and
✿✿✿✿✿✿

NASA
✿

Operation

IceBridge corrected for oceanic and surface processes
✿✿✿✿✿✿✿

processes
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

and
✿✿✿✿✿✿✿

models, surface velocity measure-

ments from synthetic aperture radar, and high-resolution outputs from regional climate models. The ice thickness change rates5

are calculated in a Lagrangian reference frame to reduce the effects from advection of sharp vertical features, such as cracks

and crevasses, that can saturate Eulerian-derived estimates. We use our method over different ice shelves in Antarctica, which

vary in terms of size, repeat coverage from airborne altimetry and dominant processes governing their recent changes. We

find that ice thickness variations of the Larsen-C Ice Shelf are
✿✿

is
✿✿✿✿

close
✿✿

to
✿✿✿✿✿✿

steady
✿✿✿✿

state
✿✿✿✿

over
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

period
✿✿✿✿

with
✿✿✿✿✿✿

spatial

✿✿✿✿✿✿✿✿

variations
✿✿

in
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿

largely
✿

due to the flux divergence of the shelfwith firn .
✿✿✿✿

Firn
✿

and surface processes controlling
✿✿✿

are10

✿✿✿✿✿✿✿✿✿

responsible
✿✿✿

for
✿✿✿✿✿

some short-term variability over our observation
✿✿

in
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

Larsen-C
✿✿✿

Ice
✿✿✿✿✿

Shelf
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

time pe-

riod. The Wilkins Ice Shelf is sensitive to short time-scale coastal and upper-ocean processes, and basal melt is the dominate

contributor to the ice thickness change over the period. At the Pine Island Ice Shelf in the critical region near in the grounding

zone, we find that ice shelf thinning
✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿

change rates exceed 40 m/yr with the change dominated by strong submarine

melting. Regions near the grounding zones of the Dotson and Crosson Ice Shelves are thinning
✿✿✿✿✿✿✿✿✿

decreasing
✿✿

in
✿✿✿✿✿✿✿✿

thickness at rates15

greater than 40 m/yr, also due to intense basal melt. Operation IceBridge provides a validation dataset
✿✿✿✿✿✿✿✿✿✿✿

NASA/CECS
✿✿✿✿✿✿✿✿

Antarctic

✿✿

ice
✿✿✿✿✿✿✿✿

mapping
✿✿✿

and
✿✿✿✿✿✿

NASA
✿✿✿✿✿✿✿✿✿

Operation
✿✿✿✿✿✿✿✿

IceBridge
✿✿✿✿✿✿✿✿✿

campaigns
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿

datasets for floating ice shelves at moderately high

resolution when co-registered using Lagrangian methods.

1 Introduction

Most of the drainage from the Antarctic ice sheet is through its peripheral ice shelves, floating extensions of the land ice that20

cover 75% of the Antarctic coastline and represent 10% of the total ice covered area (Cuffey and Paterson, 2010; Rignot et al.,

2013). Floating ice shelves exert control on the grounded ice sheet’s overall stability by buttressing the flow of the glaciers

upstream (Dupont and Alley, 2005; Rignot et al., 2013). The
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

modern-day thinning of Antarctic ice shelves reduces their

1



ability to buttress the glaciers that flow into them and makes
✿✿✿

may
✿✿✿✿✿

make
✿

the shelves more susceptible to fracture and overall

collapse (Shepherd et al., 2003; Fricker and Padman, 2012). Ice shelves gain mass
✿✿✿

The
✿✿✿✿

mass
✿✿✿✿✿✿

budget
✿✿

of
✿✿✿

an
✿✿✿

ice
✿✿✿✿

shelf
✿✿

is
✿✿✿

the
✿✿✿✿

sum

✿✿

of
✿✿✿✿✿✿

several
✿✿✿✿

mass
✿✿✿✿

gain
✿✿✿✿

and
✿✿✿✿

loss
✿✿✿✿✿

terms
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Thomas, 1979)
✿

.
✿✿✿✿

Mass
✿✿

is
✿✿✿✿✿✿

gained
✿

by the advection of ice from the land, the accumulation

of snow at the surface, and the freezing of seawater at the ice shelf base (Thomas, 1979). They lose mass through runoff ,

wind scour and sublimation
✿✿✿✿

Mass
✿✿

is
✿✿✿

lost
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

runoff
✿✿

of
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

meltwater,
✿✿✿

the
✿✿✿✿✿✿

erosion
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

sublimation
✿✿✿

of
✿✿✿✿

snow
✿✿✿

by
✿✿✿✿✿

wind,
✿✿✿

the5

✿✿✿✿✿✿✿✿✿

sublimation
✿✿✿

of
✿✿✿✿

snow
✿

at the surface of the shelf, melting
✿✿

the
✿✿✿✿✿✿✿

melting
✿✿

of
✿✿✿

ice at the base of the shelfand through calving ,
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿

calving
✿✿

of
✿✿✿✿✿✿✿

icebergs
✿

(Thomas, 1979).

✿✿✿✿✿✿✿

Floating
✿✿✿

ice
✿✿✿✿✿✿

shelves
✿✿✿✿

can
✿✿✿✿

exert
✿✿✿✿✿✿✿

control
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

grounded
✿✿✿

ice
✿✿✿✿✿✿

sheet’s
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿

stability
✿✿✿

by
✿✿✿✿✿✿✿✿✿

buttressing
✿✿✿

the
✿✿✿✿

flow
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

glaciers

✿✿✿✿✿✿✿

upstream
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dupont and Alley, 2005)
✿

.
✿✿✿✿

The
✿✿✿✿✿✿✿

response
✿✿

of
✿✿✿✿✿✿

inland
✿✿✿✿✿✿

glaciers
✿✿

to
✿✿✿

ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

variations
✿✿

is
✿✿✿✿✿✿✿✿✿✿

complicated,
✿✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿

dependent
✿✿✿

on

✿✿✿✿

both
✿✿

the
✿✿✿✿✿✿

inland
✿✿✿

bed
✿✿✿✿✿✿✿✿✿✿

topography
✿✿✿

and
✿✿✿

the
✿✿

ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

geometry
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Goldberg et al., 2009; Gagliardini et al., 2010; Gudmundsson, 2013)10

✿

. Currently
✿✿✿✿✿✿✿

Presently, several ice shelves across Antarctica are losing volume, which has
✿✿✿✿✿

mass,
✿✿✿✿✿

which
✿✿✿✿

may
✿✿✿✿

have led to the accel-

eration and intensified discharge of inland ice (Pritchard et al., 2012; Depoorter et al., 2013; Paolo et al., 2016). In 2003, a year

after the collapse of the Larsen-B Ice Shelf, some tributary glaciers draining into the Weddell Sea from the Antarctic Peninsula

flowed at rates 2–8 times their 1996 flow rates (Rignot et al., 2004). These glaciers continued flowing at the accelerated rates

✿✿✿✿✿✿

several years after the collapse (Rignot et al., 2008; Berthier et al., 2012). Glaciers of the Amundsen Sea Embayment (ASE) in15

West Antarctica have experienced significant increases in surface velocity, dynamic thinning, and grounding line retreat since

the 1990’s (Rignot et al., 2002, 2014; Pritchard et al., 2009; Flament and Rémy, 2012). The dynamical change of these glaciers

likely stems from the advection
✿✿✿✿✿✿✿

increases
✿✿✿

in
✿✿✿✿✿✿✿✿

sub-shelf
✿✿✿✿✿✿✿✿✿

circulation
✿✿✿

and
✿✿✿✿

heat
✿✿✿✿✿✿✿

content of warm Circumpolar Deep Water, which

enhanced ocean-driven melt causing thinning of the buttressing peripheral ice shelves (Jacobs et al., 2011).

Here, we compile ice shelf thickness change rates calculated using a suite of airborne altimetry datasets, which have been20

consistently processed and co-registered. We provide a set of co-registered laser altimetry datasets for evaluating estimates from

satellite altimetry, photogrammetry and model outputs. The main objectives of this study are to (i) calculate ice shelf thickness

change rates, (ii) investigate processes driving the changes in the shelf, (iii) investigate the sensitivity of spatial and temporal

sampling to overall estimates and (iv) evaluate different methods of calculating elevation change rates over ice shelves. In the

following sections, we discuss the co-registration method, the geophysical corrections applied, the results for a sample set of25

ice shelves and the overall implications of the results for ice shelf studies.

2 Materials and Methods

Our airborne lidar measurements are Level-2 Airborne Topographic Mapper (ATMIcessn)
✿

)
✿✿✿✿✿

Icessn
✿

and Land, Vegetation and Ice

Sensor (LVIS) datasets provided by the National Snow and Ice Data Center (NSIDC) (Thomas and Studinger, 2010; Studinger,

2014; Blair and Hofton, 2010). ATM is a conically scanning lidar which has flown in Antarctica since 2002 and was developed30

at the NASA Wallops Flight Facility (Thomas and Studinger, 2010).
✿✿✿✿

ATM
✿✿✿✿✿✿✿✿✿✿

instruments
✿✿✿✿

have
✿✿✿✿✿

flown
✿✿✿

in
✿✿✿✿✿✿✿✿

Antarctica
✿✿✿✿✿

since
✿✿✿✿✿

2002
✿✿

as

✿✿✿

part
✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿✿✿

NASA/Centro
✿✿✿

de
✿✿✿✿✿✿✿

Estudios
✿✿✿✿✿

Cientí
✿✿✿✿

ficos
✿✿✿✿✿✿✿

(CECS)
✿✿✿✿✿✿✿✿

Antarctic
✿✿✿

ice
✿✿✿✿✿✿✿

mapping
✿✿✿

and
✿✿✿✿✿✿

NASA
✿✿✿✿✿✿✿✿✿

Operation
✿✿✿✿✿✿✿✿

IceBridge
✿✿✿✿✿✿✿✿✿✿

campaigns.

✿✿✿

The
✿✿✿✿✿✿✿

Level-2
✿✿✿✿✿

ATM
✿✿✿✿✿

Icessn
✿✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿

by
✿✿✿✿✿

fitting
✿✿✿✿✿✿

planar
✿✿✿✿✿✿✿

surfaces
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿

ATM
✿✿✿✿

point
✿✿✿✿✿✿

clouds
✿✿

at
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿

40
✿✿

m
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✿✿✿✿✿✿

spacing
✿✿✿✿✿

along
✿✿✿✿✿

track
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Studinger, 2014)
✿

. LVIS is a large-swath scanning lidar which flew in Antarctica in 2009, 2010, 2011 and

2015 and was developed at NASA Goddard Space Flight Center (Blair et al., 1999; Hofton et al., 2008). For the data release

available for Antarctica (LDSv1), the Level-2 LVIS data provides 3 different elevation surfaces computed from the Level-

1B waveforms: the highest and lowest returning surfaces from Gaussian decomposition, and the centroidal surface (Blair and

Hofton, 2010). Here, we use the lowest returning surface when the waveform resembles a single-peak gaussian and the centroid5

surface when the waveform is multi-peak. The spatial coverages of each instrument in Antarctica for the campaigns prior to and

during NASA Operation IceBridge are shown in Figure 1. The elevation datasets from each instrument are converted to be in

reference to the 2014 solution of the International Terrestrial Reference Frame (ITRF) (Altamimi et al., 2016). In order to track

changes in ice shelf freeboard, the ellipsoid heights for each instrument were converted to be in reference to the GGM05 geoid

using gravity model coefficients provided by the Center for Space Research (Ries et al., 2016). Changes in ice shelf freeboard10

are converted into changes in ice thickness by assuming hydrostatic equilibrium following Fricker et al. (2001). Uncertainties

for each instrument were calculated following Sutterley et al. (2018).

2.1 Integrated analysis of altimetry

We calculate rates of elevation change by comparing a set of measured elevation values with a set of interpolated elevation

values from a different time period after allowing for the advection of the ice (Sutterley et al., 2018; Moholdt et al., 2014; Shean15

et al., 2018). Each point in a flight line is advected from its original location by integrating the Rignot et al. (2017) MEaSUREs

static velocity data derived from synthetic aperture radar (SAR) using a fourth-order Runge-Kutta algorithm. For each data

point in a flight line, a set of Delaunay triangles is constructed from a separate flight line using all data points within 300

meters
✿

m
✿

from the final location of the advected point (Pritchard et al., 2009, 2012; Rignot et al., 2013). If the advected point

lies within the confines of the Delaunay triangulation convex hull, the triangular facet housing the advected point is determined20

using a winding number algorithm (Sutterley et al., 2018). The new elevation value is calculated using barycentric interpolation

with the elevation measurements at the three triangle vertices (Figure 2). The elevation at each vertex point is weighted in the

interpolation by the area of the triangle created by the enclosed point and the two opposing vertices (Sutterley et al., 2018).

Assuming that the ice shelf surfaces are not curved over the scale of the individual triangular facet (∼10–100 meters
✿✿

m),

interpolating to the advected coordinates will compensate for minor slopes in the ice shelf surface so that the elevations of25

equivalent parcels of ice can be compared in time (Pritchard et al., 2009). At this scale (below 100–200m
✿✿✿✿✿✿✿

100–200
✿✿

m), the

topographic relief of uncrevassed ice is primarily due to slopes in the ice surface and a planar assumption should be largely

valid (Markus et al., 2017). Rough terrain, snow drifts and low-lying clouds will contaminate the lidar elevation values for

the interpolation. In order to limit the effect of contaminated points, the elevation measurements are filtered using the Robust

Dispersion Estimator (RDE) algorithm described in Smith et al. (2017). In order to minimize the possibility of co-registering30

measurements over ice shelves with measurements over grounded ice near the grounding zone or measurements over the ocean,

sea ice floes and icebergs, we only include points that are on the ice shelf for the compared time periods using grounded ice

delineations from Rignot et al. (2016) and Mouginot et al. (2017b) and ice shelf extent delineations manually digitized from

Landsat imagery courtesy of the U.S. Geological Survey and MODIS imagery from Scambos et al. (2001).
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For comparison, we compile elevation change measurements using an Eulerian approach with the Triangulated Irregular

Networks (TINs) technique outlined in Sutterley et al. (2018) and a Lagrangian overlapping footprint approach following

Slobbe et al. (2008) and Moholdt et al. (2014). The Eulerian TINs scheme follows the methods of Pritchard et al. (2012) and

Rignot et al. (2013) that used data from the NASA ICESat mission. Measurements compiled using the Eulerian TINs scheme

have been corrected for ice strain effects following Moholdt et al. (2014).
✿✿✿✿

made
✿✿✿✿✿✿✿✿✿✿

comparable
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿

thinning
✿✿✿✿✿

rates5

✿✿

by
✿✿✿✿✿✿

adding
✿✿✿

the
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿✿✿

strain
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿

relation
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Moholdt et al. (2014)
✿

.

Dh

Dt
=

∂h

∂t
+

ρw − ρice
ρwρice

V · ∇M
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(1)

✿✿✿✿✿

where
✿✿✿

ρw
✿✿✿

and
✿✿✿✿

ρice
✿✿✿

are
✿✿

the
✿✿✿✿✿✿✿✿

densities
✿✿

of
✿✿✿

sea
✿✿✿✿✿

water
✿✿✿

and
✿✿✿✿✿✿✿✿

meteoric
✿✿✿

ice,
✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿

and
✿✿✿✿✿✿✿✿

(V · ∇M )
✿✿

is
✿✿✿

the
✿✿

ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿

gradient

✿✿✿✿✿✿✿✿

advection.
✿✿✿✿

For
✿✿✿✿✿✿✿✿✿

calculating
✿✿✿

the
✿✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿

divergence
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

comparing
✿✿✿✿✿✿✿

Eulerian
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lagrangian-derived
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿

change
✿✿✿✿✿

rates,

✿✿

we
✿✿✿✿

use
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿

data
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

Bedmap2,
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿

primarily
✿✿✿✿✿✿

derived
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Griggs and Bamber (2011)
✿✿✿

for10

✿✿

ice
✿✿✿✿✿✿✿

shelves
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Fretwell et al., 2013).
✿✿✿✿

The
✿✿✿

ice
✿✿✿✿✿✿✿

thickness
✿✿✿✿

data
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Griggs and Bamber (2011)
✿✿✿

are
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿✿✿

assuming
✿✿✿✿✿✿✿✿✿✿

hydrostatic

✿✿✿✿✿✿✿✿✿✿

equilibrium,
✿✿✿✿✿

which
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿

valid
✿✿✿

for
✿✿✿✿

most
✿✿✿✿✿

areas
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿

of
✿✿✿

the
✿✿✿✿

1–8
✿✿✿

km
✿✿✿✿

wide
✿✿✿✿✿✿✿✿✿

grounding
✿✿✿✿✿

zones
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Brunt et al., 2010, 2011)

✿

. The Lagrangian overlapping footprint approach uses the same fourth-order Runge-Kutta algorithm to advect the coordinates

of the original elevation measurement to a predicted parcel location at a separate time. If any measurements from the separate

flight line lie within 100m
✿✿✿

100
✿✿

m of the advected point, the elevation measurement closest in Euclidean distance to the advected15

point is compared against the original measurement.

2.2 Geophysical Corrections

We correct the elevation measurements for geophysical processes following most of the procedures that will be used with the

initial release of ICESat-2 data (Markus et al., 2017; Neumann et al., 2018). The processes are described in the following

sections and represented as a schematic in Figure 3.20

2.2.1 Tidal and Non-Tidal Ocean Variation

Surface elevation changes due to variations in ocean and load tides are calculated using outputs from the Circum-Antarctic

Tidal Simulation (CATS2008) model (Padman et al., 2008), a high-resolution inverse model updated from Padman et al. (2002).

Surface heights were predicted for the M2, S2, N2, K2, K1, O1, P1, Q1, Mf and Mm harmonic constituents and then inferred

for 16 minor constituents following the PERTH3 algorithm developed by Richard Ray at NASA Goddard Space Flight Center25

(Ray, 1999). Uncertainties in tidal oscillations were estimated using constituent uncertainties from King et al. (2011). We

correct for changes in load and ocean pole tides due to changes in the Earth’s rotation vector following Desai (2002) and IERS

conventions (Petit and Luzum, 2010). We correct for changes in sea surface height due to changes in atmospheric pressure and

wind stress using a dynamic atmosphere correction (DAC) provided by AVISO. The 6-hour DAC product combines outputs

of the MOD2D-g ocean model, a 2-D ocean model forced by pressure and wind fields from ECMWF based on Lynch and30

Gray (1979), with an inverse barometer (IB) response (Carrère and Lyard, 2003). Regional sea levels fluctuate due to changes
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in ocean dynamics, ocean mass, and ocean heat content (Church et al., 2011; Armitage et al., 2018). Non-tidal sea surface

anomalies are removed from the ice shelf data using multi-mission altimetry products computed by AVISO and provided by

Copernicus (Le Traon et al., 1998). The non-tidal sea surface anomalies are added to estimates of mean dynamic topography,

which is the mean deviation of the sea surface from the Earth’s geoid due to ocean circulation. The sea surface anomalies are

extrapolated from the valid ice-free ocean values to the ice shelf points following Paolo et al. (2016).5

2.2.2 Surface Mass Balance and Firn Compaction

After correcting for the effects of oceanic variation and advection, changes in surface height are due to a combination of ac-

cumulation, ablation and firn densification processes. To account for variations in surface elevation due to changes in surface

processes, we use monthly mean surface mass balance (SMB) outputs calculated from climate simulations of the Regional

Atmospheric Climate Model (RACMO2.3p2) computed by the Ice and Climate group at the Institute for Marine and Atmo-10

spheric Research of Utrecht University (Ligtenberg et al., 2013; van Wessem et al., 2014, 2018). We use 5.5km horizontal

resolution outputs from a 1979–2016 climate simulation of the Antarctic Peninsula (XPEN055, van Wessem et al., 2016) and a

1979–2015 climate simulation of West Antarctica (ASE055, Lenaerts et al., 2018). The high-resolution outputs better represent

the surface mass balance state than outputs from the 27km ice sheet wide model, particularly in the highly complex topography

of mountains and glacial valleys in the Antarctic peninsula (van Wessem et al., 2016). The higher spatial resolution topography15

improves the modeling of wind-driven downstream effects over ice shelves (Datta et al., 2018). SMB is the quantified differ-

ence between mass inputs from the precipitation of snow and rain, and mass losses by sublimation, runoff, and wind scour

(Lenaerts et al., 2012; van den Broeke et al., 2009). Runoff is the portion of total snowmelt not retained or refrozen within

the ice sheet. Wind scour is the erosion and sublimation of wind-blown snow from the ice sheet surface (Das et al., 2013).

The absolute precision of the RACMO2.3p2 model outputs has been estimated using
✿✿✿✿✿

NASA
✿

Operation IceBridge snow radar20

observations, satellite observations of surface melt, and and in-situ observations, such as ice cores and surface stake measure-

ments, following Kuipers Munneke et al. (2017) and Lenaerts et al. (2018). To correct for variations in the firn layer thickness,

we use
✿✿

air
✿✿✿✿✿✿✿

content
✿

outputs from a semi-empirical firn densification model that simulates the steady-state firn density profile

(Ligtenberg et al., 2011, 2012). The firn densification model is forced with surface mass balance outputs, surface temperatures

fields and near-surface wind speed fields computed by RACMO2.3p2 (Ligtenberg et al., 2011). We assume a 15% uncertainty25

in surface mass balance and firn
✿✿

air
✿✿✿✿✿✿✿

content height change following estimates from Kuipers Munneke et al. (2017).

2.3 Ice Shelf Bottom Melt

Changes in ice shelf mass in a Lagrangian reference frame are due to changes in surface mass balance (SMB) processes (Ms),

basal melt (Mb) and the divergence of the ice shelf flow field (M∇ ·V ) (Moholdt et al., 2014).

dMs

dt
+

dMb

dt
−M∇ ·V =

ρwρice
ρw − ρice

(

Dh

Dt
−

∂hoc

∂t
−

∂hfc

∂t

)

(2)30

where ρw and ρice are the densities of sea water and meteoric ice respectively, hoc are ocean heights, and hfc are firn-column

✿✿

air
✿✿✿✿✿✿✿

content heights. We estimate ice shelf bottom melt rates along flight lines by using mass conservation and estimates of
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the mass flux divergence (Rignot and Jacobs, 2002; Moholdt et al., 2014; Rignot et al., 2013). Ice flow divergence fields

are calculated from ice velocities from Rignot et al. (2017) differentiated using a Savitzky-Golay filter with an 11 km half-

width window (Savitzky and Golay, 1964). The Savitzky-Golay algorithm smooths the velocity field, and reduces the impact

of ionospheric noise and other sources of uncertainty on the differentials. Deviations from mean ice flow were calculated

using annually resolved ice velocity maps derived from synthetic aperture radar and optical imagery (Mouginot et al., 2017a).5

We use ice thickness data and uncertainties from Bedmap2, which are primarily derived from Griggs and Bamber (2011) for

ice shelves (Fretwell et al., 2013). The ice thickness estimates are calculated assuming hydrostatic equilibrium, which should

be valid for most areas downstream of the 1–8 km wide grounding zones (Brunt et al., 2010, 2011).
✿✿

Ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿

masses
✿✿✿✿✿

were

✿✿✿✿✿✿✿✿

calculated
✿✿✿

by
✿✿✿✿✿✿✿✿✿

converting
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

altimetry-derived
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

freeboard
✿✿✿✿✿✿

heights
✿✿

to
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿

by
✿✿✿✿✿✿✿✿

assuming
✿✿✿✿✿✿✿✿✿

hydrostatic
✿✿✿✿✿✿✿✿✿✿

equilibrium

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Fricker et al., 2001; Griggs and Bamber, 2011)
✿

.10

3 Results

✿✿✿

We
✿✿✿✿✿✿✿✿✿

co-register
✿✿✿✿

134
✿✿✿✿

days
✿✿

of
✿✿✿✿✿

ATM
✿✿✿✿✿

data
✿✿✿

and
✿✿✿

32
✿✿✿✿

days
✿✿✿

of
✿✿✿✿✿

LVIS
✿✿✿✿

data
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

years
✿✿✿✿✿✿✿✿✿✿

2002–2016.
✿✿✿✿

We
✿✿✿✿✿✿✿

compare
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿

change

✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

Eulerian
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿✿✿✿

derived
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

Triangulated
✿✿✿✿✿✿✿✿

Irregular
✿✿✿✿✿✿✿✿

Networks
✿✿✿✿✿✿

(TINs)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sutterley et al., 2018, Figure 4).
✿✿✿✿✿

Using
✿✿

a
✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

frame
✿✿✿✿

can
✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿

ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

change
✿✿✿✿

with

✿✿✿✿

much
✿✿✿✿

less
✿✿✿✿✿

noise
✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿

Eulerian
✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

frame
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Moholdt et al., 2014, Figure 4)
✿

.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿✿✿✿✿

advection15

✿✿

of
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿✿✿

gradients,
✿✿✿✿

such
✿✿✿

as
✿✿✿✿

that
✿✿✿✿

from
✿✿✿✿✿✿

cracks
✿✿✿✿

and
✿✿✿✿✿✿✿✿

crevasses
✿✿

in
✿✿✿✿

the
✿✿✿

ice,
✿✿✿✿

can
✿✿✿✿✿✿✿

saturate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Eulerian-derived
✿✿✿✿✿✿✿✿✿

estimates

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Moholdt et al., 2014; Shean et al., 2018).
✿

3.1 Larsen Ice Shelves

The ice shelves draining from the Antarctic Peninsula into the Weddell Sea have undergone some significant changes over

the past three decades. The Larsen-A Ice Shelf collapsed in 1995, and the Larsen-B Ice Shelf partially collapsed in 200220

(Rott et al., 2002, 2011)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rott et al., 2002, 2011). The tributary glaciers once flowing into these shelves accelerated with the

loss of the ice shelf abutment (Rignot et al., 2008). shows the change in ice thickness of the Larsen-B Remnant and Larsen-C

Ice Shelves for two periods, 2002–2008
✿✿✿

We
✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

processes,
✿✿✿

ice
✿✿✿✿✿✿✿✿✿

divergence,
✿

and 2008–2016,
✿✿✿✿

basal

✿✿✿✿

melt
✿✿✿✿✿

using
✿✿✿✿

data from Pre-IceBridge and Operation IceBridge airborne data. shows the estimated basal melt rate of the ice

shelves over the same periods. The average thickness change rate between 2008 and 2016 from the flight line data over the25

Larsen-C Ice Shelf is –1.4±0.9 m/yr. From 2008–2016, the strongest thinning occurs near the grounding zone, particularly for

the flight lines starting near Cabinet and Mill Inlets. For a flight line starting near the Whirlwind Inlet , the ice shelf is thinning

near the grounding zone at 2 m/yr
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

Larsen-C
✿✿✿✿

Ice
✿✿✿✿✿

Shelf (Figure 5a). Scatter in the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lagrangian-derived
✿

ice thickness

changerate
✿

,
✿✿✿✿✿✿✿✿

DH/Dt, across the flight line is typically 30–50 cm/yr, or a 4–6 cm/yr error in the measured elevation change

rate (Figure 5a). Most of the thickness change,
✿✿✿✿✿✿✿✿

DH/Dt,
✿

along this line is due to the flux divergence of the shelf,
✿✿✿✿✿✿✿✿✿

indicating30

✿✿

the
✿✿✿✿✿

shelf
✿✿✿✿✿

along
✿✿✿

this
✿✿✿✿

line
✿✿

is
✿✿✿✿✿

nearly
✿✿

in
✿✿✿✿✿✿✿✿✿✿

steady-state
✿✿✿✿✿✿

during
✿✿✿✿

this
✿✿✿✿✿

period. As the basal melt rate is calculated via mass conservation

and the observed thinning
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿

DH/Dt rate largely matches the flux divergence, estimates of the basal melt rate of the
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Larsen-C Ice Shelf are highly dependent on the SMB flux estimate. Any uncertainties in reconstructing the regional SMB will

significantly impact the resultant basal melt rate estimate.
✿✿✿

The
✿✿✿✿✿✿✿

DH/Dt
✿✿✿✿

rate
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

Larsen-B
✿✿✿✿✿✿✿✿

Remnant
✿✿✿

and
✿✿✿✿✿✿✿✿

Larsen-C
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves

✿✿

for
✿✿✿✿

two
✿✿✿✿✿✿✿

periods,
✿✿✿✿✿✿✿✿✿

2002–2008
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

2008–2016,
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿

NASA/CECS
✿✿✿✿✿✿✿✿✿✿✿

Pre-IceBridge
✿✿✿✿

and
✿✿✿✿✿✿

NASA
✿✿✿✿✿✿✿✿

Operation
✿✿✿✿✿✿✿✿✿

IceBridge
✿✿✿✿✿✿✿

airborne
✿✿✿✿

data

✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿

Figure 6 (a-b)
✿

.
✿✿✿

The
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rate
✿✿

of
✿✿✿

the
✿✿✿

ice
✿✿✿✿✿✿

shelves
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

periods
✿✿

is
✿✿✿✿✿

shown
✿✿

in
✿

Figure 6 (c-d)
✿

.

✿✿✿

The
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

DH/Dt
✿✿✿✿

rate
✿✿✿✿✿✿✿

between
✿✿✿✿

2008
✿✿✿

and
✿✿✿✿✿

2016
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

flight
✿✿✿

line
✿✿✿✿

data
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿✿

Larsen-C
✿✿✿

Ice
✿✿✿✿

Shelf
✿✿

is
✿✿✿✿✿✿✿✿

–1.2±0.9
✿✿✿✿✿

m/yr.
✿✿✿✿✿

From5

✿✿✿✿✿✿✿✿✿✿

2008–2016,
✿✿✿

the
✿✿✿✿✿✿✿

strongest
✿✿✿✿✿✿✿✿

DH/Dt
✿✿✿✿

rates
✿✿✿✿✿

occur
✿✿✿✿

near
✿✿✿

the
✿✿✿✿✿✿✿✿✿

grounding
✿✿✿✿✿

zone,
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

flight
✿✿✿✿

lines
✿✿✿✿✿✿✿

starting
✿✿✿✿

near
✿✿✿✿✿✿✿

Cabinet

✿✿✿

and
✿✿✿✿

Mill
✿✿✿✿✿

Inlets.
✿

We compare our airborne laser altimetry estimate of basal melt rates with a long-term record derived from radar

altimetry (Adusumilli et al., 2018). We find that the radar-derived estimate is comparable with the laser-derived estimate within

uncertainties for most points outside of the grounding zone (Figure 7).
✿✿✿✿✿✿✿✿

However,
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

of
✿✿✿

the
✿✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry

✿✿✿✿✿✿✿

estimate
✿✿

to
✿✿✿

the
✿✿✿✿

SMB
✿✿✿✿✿✿

model (Figure 5a),
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿

from
✿✿✿✿

radar
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿

may
✿✿

be
✿✿✿✿✿

more
✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿✿✿✿✿✿

determinations
✿✿

of
✿✿✿✿✿

basal
✿✿✿✿

melt10

✿✿✿

rate
✿✿✿

for
✿✿✿

the
✿✿✿

ice
✿✿✿✿

shelf.
✿

3.2 Wilkens
✿✿✿✿✿✿✿

Wilkins Ice Shelf

The Wilkins Ice Shelf is fed by glaciers on Alexander Island, which is located near the west coast of the Antarctic Peninsula

and is the largest of the Antarctic islands. Wilkins Ice Shelf is sensitive to short time-scale coastal and upper-ocean processes

(Padman et al., 2012) and ablates largely through basal melting (Rignot et al., 2013). shows the change in ice thickness
✿✿✿✿✿✿✿

DH/Dt15

(a-b) and estimated basal melt rates (c-d) of the Wilkins Ice Shelf for two 3-year periods from 2008–2011 and 2011–2014
✿✿

is

✿✿✿✿✿

shown
✿✿

in
✿

Figure 8. The extent of the ice shelf reduced by over 6000
✿✿✿✿

from
✿✿✿✿✿

16000
✿✿

to
✿✿✿✿✿✿

10000 km2

✿✿✿✿✿

(38%)
✿

between 1990 and 2017

(Scambos et al., 2009). The partial collapse occurred once the shelf started decoupling from Charcot Island (Vaughan et al.,

1993) and likely occurred due to hydro-fracturing (Scambos et al., 2009). Meltwater ponds covered areas of 300–600 km2

in Landsat imagery in 1986 and 1990 (Vaughan et al., 1993). The ponds existed largely in the now-collapsed portions of the20

shelf near Rothschild Island. Average thinning
✿✿✿✿✿✿✿

DH/Dt rates of the Wilkins Ice Shelf from the flight lines were 1.2
✿✿✿✿

–1.3±0.7

m/yr from 2008–2011 and 0.7
✿✿✿✿

–0.7±0.5 m/yr from 2011–2014. Average estimated basal melt rates from the flight lines were

2.8
✿✿

2.5±1.3 m/yr in the earlier period and 2.0
✿✿

1.8±0.9 m/yr in the latter period. Basal accretion could have occurred in some

regions during the 2011–2014 period.

3.3 Pine Island Ice Shelf25

The Pine Island Ice Shelf abuts one of the most rapidly changing glaciers in Antarctica (Pritchard et al., 2009; Flament and

Rémy, 2012). Figure 9 shows the change in ice thickness (a-b) and estimated basal melt rates (c-d) of the Pine Island Ice Shelf

for two periods from 2009–2011 and 2011–2015. These periods were chosen to include repeat measurements from LVIS of the

ice shelf near the grounding zone and to use the high-resolution outputs of RACMO2.3p2 ASE055. In the previously grounded

region
✿✿✿✿

The
✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

DH/Dt
✿✿✿✿✿

rates
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

flight
✿✿✿✿✿

lines
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿✿✿

insignificantly
✿✿✿✿✿✿✿

different
✿✿

at
✿✿✿✿✿✿

–35±9
✿✿✿✿

m/yr
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿

2009–2011
✿✿✿✿

and
✿✿✿✿✿✿

–33±530

✿✿✿✿

m/yr
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

2011–2015.
✿✿✿✿✿✿✿

Because
✿✿✿✿

basal
✿✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿

near
✿✿✿

the
✿✿✿✿✿✿✿✿

grounding
✿✿✿✿✿

zone
✿✿✿✿

have
✿✿✿

the
✿✿✿✿✿✿

highest
✿✿✿✿✿✿

impact
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

glacial
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

dynamics,

✿✿

we
✿✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rate
✿

between the 1996 and 2011 grounding lines
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot and Jacobs, 2002).
✿✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

previously

✿✿✿✿✿✿✿✿

grounded
✿✿✿✿✿

region, the ice shelf thinning rates were 97
✿✿✿✿✿✿

DH/Dt
✿✿✿✿✿

rates
✿✿✿✿

were
✿✿✿✿

–96±15 m/yr during 2009–2011 and 81
✿✿✿

–79±7 m/yr

7



during 2011–2015. In this area that was previously grounded, the average estimated basal melt rates from the flight lines were

70
✿✿

77±20
✿✿

18
✿

m/yr over 2009–2011 and 54
✿✿

61±15
✿✿

12
✿

m/yr over 2011–2015. Ice thickness change
✿✿✿✿✿✿

DH/Dt
✿

rates outside of

the previously grounded area
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

1996
✿✿✿✿

and
✿✿✿✿

2011
✿✿✿✿✿✿✿✿✿

grounding
✿✿✿✿

lines
✿

are significantly weaker , averaging –21
✿✿✿✿

than
✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿✿

grounded
✿✿✿✿

area,
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿

–20±7 m/yr for 2009–2011 and –15±3 m/yr for 2011–2015. The average ice thinning

rates from the flight lines were insignificantly different at 36±9 m/yr over 2009–2011 and 35±5 m/yr over 2011–2015. Basal5

melt rates near the grounding zone have the highest impact on the glacial flow dynamics (Rignot and Jacobs, 2002). The differ-

ence in melt rates near the grounding zone between 2009–2011 and 2011–2015 could possibly explain some of the moderation

in thinning of the grounded ice and stability in ice discharge from Pine Island Glacier after 2010 (McMillan et al., 2014; Medley

et al., 2014). As shown in Figure 9c-d, the ice thickness change
✿✿✿✿✿✿✿

DH/Dt
✿✿✿✿

rate is dominated by strong submarine thinning
✿✿✿

melt,

which is further evidence of the dominant oceanic controls on the ice shelf mass balance in this region (Rignot, 2002; Shean10

et al., 2018). However, some of the changes in basal melt rate over the period could be due to large regional interannual-to-

decadal variability (Dutrieux et al., 2014; Paolo et al., 2015; Jenkins et al., 2018).
✿✿✿

We
✿✿✿✿✿✿✿

compare
✿✿✿✿

our
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿

Pine
✿✿✿✿✿✿

Island

✿✿

Ice
✿✿✿✿✿

Shelf
✿✿✿✿✿✿

change
✿✿✿✿✿

from
✿✿✿✿✿✿✿

airborne
✿✿✿✿✿

laser
✿✿✿✿✿✿✿

altimetry
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

ICESat-derived
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

change
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pritchard et al. (2012)
✿✿✿

and

✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rate
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2013)
✿✿✿✿✿✿

(Figures
✿✿✿

10
✿✿✿✿

and
✿✿✿✿✿✿

13a-b).
✿✿✿✿✿✿

While
✿✿✿✿✿

there
✿✿✿

are
✿✿✿✿

few
✿✿✿✿

data
✿✿✿✿✿✿

points
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿

and
✿✿✿

the

✿✿✿✿

time
✿✿✿✿✿✿

periods
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

contemporaneous
✿✿✿✿✿✿✿✿✿✿

(2002–2009
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

airborne
✿✿✿✿

data
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

2003–2009
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

ICESat
✿✿✿✿✿

data),
✿✿✿

we
✿✿✿✿

find
✿✿✿✿✿

some15

✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿✿

our
✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

altimetry-derived
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿

derived
✿✿✿✿✿✿✿✿

estimates
✿

(Figure 10c,f
✿

).

✿✿✿

The
✿✿✿✿✿

RMS
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

airborne-derived
✿✿✿✿✿✿✿

estimate
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

satellite-derived
✿✿✿✿✿✿✿✿

estimates
✿✿✿

are
✿✿✿

31
✿✿✿✿

m/yr
✿✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿

basal

✿✿✿✿

melt
✿✿✿

rate
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot et al., 2013)
✿✿✿

and
✿✿

8
✿✿✿✿

m/yr
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pritchard et al., 2012).
✿✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿

coincident
✿✿✿✿✿

data,

✿✿

the
✿✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿✿

altimetry
✿✿✿

data
✿✿✿✿✿✿✿

showed
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿

rate
✿✿✿✿

and
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

change
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

satellite-derived

✿✿✿✿✿✿✿

methods
✿

(Figure 13a-b
✿

).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿✿✿✿✿✿✿

variability
✿✿✿

are
✿✿✿✿✿✿

likely
✿✿✿

due
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

resolutions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

datasets,
✿✿✿

the20

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

geophysical
✿✿✿✿✿✿✿✿✿

corrections
✿✿✿✿✿✿✿

applied
✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿

estimate,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

smoothing
✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pritchard et al. (2012)
✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2013)
✿✿✿✿✿✿✿✿

estimates.
✿

3.4 Dotson and Crosson Ice Shelves

The glaciers flowing into the Dotson and Crosson Ice Shelves have rapidly thinned, increased in speed and experienced signif-

icant retreats of grounding line positions over the past 20 years (Mouginot et al., 2014; Scheuchl et al., 2016). Flow speeds of25

the Crosson Ice Shelf have doubled in some regions over 1996 to 2014, while the flow speed of Dotson has remained largely

steady (Lilien et al., 2018). Ice thickness change
✿✿✿✿✿✿✿

DH/Dt
✿

rates (a-b) and estimated basal melt rates (c-d) of the Dotson and

Crosson Ice Shelves are shown in Figure 11 for two periods, 2002–2010 and 2010–2015. Regions near the grounding lines of

the input glaciers are thinning
✿✿✿✿✿✿✿✿✿

decreasing
✿✿

in
✿✿✿✿✿✿✿✿

thickness rapidly for both shelves driven by strong basal melt. Basal melt rates av-

eraged 45–71
✿✿✿✿✿

47–81
✿

m/yr near the grounding zone of Smith glacier over the two periods. Khazendar et al. (2016) documented30

rapid submarine ice melt and the loss of 300–490 m of floating ice between 2002 and 2009. Our work here provides inde-

pendent evidence of this large-scale melt using a separate method and more years of data. We find that the ice mass wastage

continued unabated between 2010 and 2015 with thinning
✿✿✿✿✿✿✿

DH/Dt
✿

rates over the flight lines averaging 22
✿✿✿

–21±1 m/yr.
✿✿✿

We

✿✿✿✿✿✿✿

compare
✿✿✿

our
✿✿✿✿✿✿✿✿

airborne
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿

data
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

Dotson
✿✿✿

and
✿✿✿✿✿✿✿✿

Crosson
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves
✿✿✿✿

with
✿✿✿✿✿✿✿

satellite
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿✿✿✿✿

estimates
✿✿✿

of

8



✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿

change
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pritchard et al. (2012)
✿✿✿

and
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿

rate
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2013)
✿✿✿✿✿✿✿

(Figures
✿✿✿

12
✿✿✿

and
✿✿✿✿✿✿

13c-d).
✿✿✿✿

The

✿✿✿✿

RMS
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

airborne-derived
✿✿✿✿✿✿✿✿

estimate
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

satellite-derived
✿✿✿✿✿✿✿✿

estimates
✿✿✿

are
✿✿

5
✿✿✿✿

m/yr
✿✿

in
✿✿✿✿✿

terms
✿✿✿

of
✿✿✿✿✿

basal
✿✿✿✿

melt

✿✿✿

rate
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot et al., 2013)
✿✿✿

and
✿✿

4
✿✿✿✿

m/yr
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pritchard et al., 2012).
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿

coincident
✿✿✿✿✿

data,
✿✿✿

the

✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿

altimetry
✿✿✿✿

data
✿✿✿✿✿

aligns
✿✿✿✿

well
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

satellite-derived
✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿

rate
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2013)
✿

(Figure 13c
✿

).

✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pritchard et al. (2012)
✿✿

do
✿✿✿✿

not
✿✿✿✿

align
✿✿✿✿

well
✿✿✿✿

with
✿✿✿

our
✿✿✿

the
✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

altimetry-derived5

✿✿✿✿✿✿✿

estimate
✿

(Figure 13d
✿

).
✿✿✿

The
✿✿✿✿✿✿✿✿✿

difference
✿✿

is
✿✿✿✿✿

likely
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

coverage
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿✿

estimate,
✿✿✿✿✿

which
✿✿✿✿

may
✿✿✿

not
✿✿✿

be

✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿

at
✿✿✿

the
✿✿✿

10
✿✿✿

km
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿

spatial
✿✿✿✿✿

scale
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pritchard et al. (2012)
✿✿✿✿✿✿✿

estimate,
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿✿

closer
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

grounding

✿✿✿

line
✿

(Figure 12f
✿

).

4 Discussion

Using a Lagrangian reference frame produces estimates of ice shelf elevation change with much less noise compared with a10

Eulerian reference frame (Moholdt et al., 2014, Figure 4). The advection of ice thickness gradients, such as that from cracks

and crevasses in the ice, can saturate the Eulerian-derived estimates (Moholdt et al., 2014; Shean et al., 2018). Moholdt et al. (2014)

showed similar improvements in estimating basal melt rates between Eulerian and Lagrangian processing methods for the Ross

and Filchner-Ronne Ice Shelves. In their study, Moholdt et al. (2014) used data from the ICESat mission that were integrated

using an overlapping footprints scheme.15

✿✿✿✿✿

Using
✿

a
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

frame
✿✿✿✿

may
✿✿✿✿✿

result
✿✿

in
✿✿✿✿✿

fewer
✿✿✿✿✿✿✿✿✿✿

co-registered
✿✿✿✿

data
✿✿✿✿✿✿

points
✿✿✿

and
✿✿✿

less
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

coverage
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

measurements

✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿✿✿

using
✿✿

an
✿✿✿✿✿✿✿✿

Eulerian
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

frame
✿

(Figure 4).
✿

Lagrangian tracking of airborne data requires 1) accurate flow-

line flight planning, 2) a sufficiently wide scanning swath, or 3) dense grid measurements. Flight lines along-flow need to be

accurately planned to ensure upstream measurements can be paired with future downstream measurements. With the current

Operation IceBridge
✿✿✿✿✿✿

airborne
✿

data at most locations, cross-flow flight lines advected outside of the swath width over multi-year20

repeat times. This limited our dataset to regions with flow-line measurements, such as the Larsen-C Ice Shelf (Figure 6), or

frequent measurements, such as the Dotson and Crosson Ice Shelves (Figure 11). For most ice shelves, repeated airborne data

is too sparse to extract large-scale spatial trends, particularly in the era before
✿✿✿✿✿✿

NASA Operation IceBridge. Isolated crossovers

can be calculated using Lagrangian tracking for some ice shelves using along-flow and cross-flow measurements from separate

years. However, these singular crossovers would likely not be representative of the large-scale behavior of the ice shelf due25

to the spatial variability of ice thickness change. Satellite altimetry measurements from
✿✿✿

the
✿✿✿✿✿✿

NASA ICESat-2
✿✿✿✿✿✿

mission
✿

(Markus

et al., 2017) should help rectify the data limitation problem by providing dense and repeated point clouds. ICESat-2 data could

be combined with photogrammetric digital elevation models (DEMs) to create high-resolution ice shelf-wide thickness change

maps (Berger et al., 2017; Shean et al., 2018). Combining ICESat-2 with DEMs would help improve the use of the laser

altimetry data in a Lagrangian reference frame as ice parcels could be accurately tracked between separate satellite tracks.
✿✿

In30

✿✿✿✿✿✿✿

addition,
✿✿✿✿✿✿✿

isolated
✿✿✿✿✿✿✿✿✿

crossovers
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

airborne
✿✿✿✿

data
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿

tracking
✿✿✿

for
✿✿✿✿✿

some
✿✿✿

ice
✿✿✿✿✿✿✿

shelves
✿✿✿✿✿

using

✿✿✿✿✿✿✿✿✿

along-flow
✿✿✿

and
✿✿✿✿✿✿✿✿✿

cross-flow
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

from
✿✿✿✿✿✿✿

separate
✿✿✿✿✿✿

years.
✿✿✿✿✿

These
✿✿✿✿✿✿✿

singular
✿✿✿✿✿✿✿✿✿

crossovers
✿✿✿✿✿

would
✿✿✿✿✿

likely
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿

of
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✿✿

the
✿✿✿✿✿✿✿✿✿✿

large-scale
✿✿✿✿✿✿✿

behavior
✿✿✿

of
✿✿✿

the
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿

change,
✿✿✿

but
✿✿✿✿

may
✿✿✿✿

still
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿

valuable

✿✿✿✿✿✿

metrics
✿✿✿

for
✿✿✿✿✿✿✿✿

evaluating
✿✿✿✿✿✿✿

outputs
✿✿✿✿

from
✿✿✿

ice
✿✿✿✿✿

sheet
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿

(Figures
✿✿✿

10
✿✿✿

and
✿✿✿✿

12).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lagrangian-derived
✿✿✿✿✿✿✿✿

estimates
✿✿✿

also
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿

depend
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿✿

used
✿✿

for
✿✿✿✿✿✿✿✿✿

advecting
✿✿✿

the
✿✿✿

ice
✿✿✿✿✿✿

parcels

✿✿

in
✿✿✿✿

time.
✿

Here, the airborne data are co-registered in a Lagrangian reference frame using a static velocity map provided by

NSIDC through the MEaSUREs program (Rignot et al., 2017). However, there are cases that do not fit the assumption of5

temporally-invariant velocities. Prior to the calving event of the 40,000 km2 A-68 iceberg from the Larsen-C Ice Shelf on

July 11, 2017, the ice was rifting from the south and the regions downstream of the crack were rotating outward (Hogg and

Gudmundsson, 2017, Figure 6). In the Amundsen Sea Embayment, the ice velocity structure has changed year-to-year since the

1990’s (Rignot et al., 2008; Mouginot et al., 2014). The floating ice shelves in the Amundsen Sea are also rifting concurrently

with the acceleration of the instreaming glaciers (Macgregor et al., 2012). For both of these cases, it would be more appropriate10

to predict the advected parcel location using time-variable velocity maps. However, the spatial coverage of annual velocity

maps is lacking for some time periods, which will complicate the advection calculation.
✿✿

For
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿

locations,
✿✿✿✿

such
✿✿✿

as
✿✿✿✿

near

✿✿✿✿

shear
✿✿✿✿✿✿✿✿

margins,
✿✿✿

ice
✿✿✿✿✿✿✿✿

velocities
✿✿✿

can
✿✿✿✿

vary
✿✿

at
✿✿✿✿✿✿✿

smaller
✿✿✿✿✿✿

spatial
✿✿✿✿✿

scales
✿✿✿✿

than
✿✿✿✿✿

what
✿✿

is
✿✿✿✿✿✿✿

presently
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿

from
✿✿✿✿

SAR
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

and

✿✿✿✿✿

visible
✿✿✿✿✿✿✿✿

imagery
✿✿✿✿✿✿✿✿✿✿✿✿✿

feature-tracking.
✿

With the high-temporal resolution data from the ESA Sentinel mission, the Landsat-based

goLIVE project and the future NASA-ISRO SAR mission (NISAR), the advected parcel locations could be predicted with15

much greater accuracy for recent
✿✿✿✿✿

NASA
✿

Operation IceBridge campaigns and future altimetry missions (Fahnestock et al.,

2016; Gardner et al., 2018; Mouginot et al., 2017a). Improvements in ice thickness and ice velocity estimates will also greatly

improve estimates of flux divergence and as a consequence estimates of basal melt rates calculated using mass conservation

(Berger et al., 2017; Adusumilli et al., 2018).

This work builds off of the work of Paolo et al. (2015) and Adusumilli et al. (2018) that used radar altimetry data to analyze20

the recent thinning and basal melt rates of ice shelves. Paolo et al. (2015) calculated changes in the ice thickness time series

over an 18-year time period using a suite of satellite radar altimetry data compiled in an Eulerian frame of reference. They

found that the overall volume loss of ice shelves accelerated over the period 1994–2012, particularly for the ice shelves of West

Antarctica. Adusumilli et al. (2018) expanded on this work
✿✿

by
✿✿✿✿✿✿✿✿✿

including
✿✿✿✿

radar
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿

data
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

CryoSat-2
✿

to estimate the

basal melt rates over
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿

Antarctic
✿✿✿✿✿✿✿✿✿

Peninsula
✿✿✿✿

over
✿

a
✿

23 years and including radar altimetry data from CryoSat-2
✿✿✿✿

year
✿✿✿✿✿

period.25

Laser altimeters and radar altimeters can measure different surfaces over snow-covered ice surfaces (Rémy and Parouty, 2009).

Idealistically, the laser altimeter will detect the snow surface and the radar altimeter will detect the snow-ice interface. Because

laser altimeters ideally detect the snow surface, an estimate of the total column snow/firn height change is needed to calculate

the ice shelf freeboard change (Pritchard et al., 2012). For radar altimeters, the radar penetration depth is affected by variations

in the dielectric properties of the surface layer due to variations in temperature, snow grain size, snow density and moisture30

content (Partington et al., 1989; Rémy and Parouty, 2009). Due to the variations in penetration depth, estimates of the firn

height change below the detected surface are necessary in order to calculate the freeboard change. Determining the sensitivity

of radar estimates to surface penetration over different surface types could help reconcile differences between the various

estimates . Our study provides a validation dataset for floating ice shelves using high-resolution airborne laser altimetry data

((Figure 7).
✿✿

In
✿✿✿✿✿✿✿

addition,
✿✿

in
✿✿✿✿✿✿✿

regions
✿✿

of
✿✿✿✿✿✿✿✿

uncertain
✿✿✿✿✿✿

surface
✿✿✿✿✿

mass
✿✿✿✿✿✿✿

balance
✿✿✿

and
✿✿✿

firn
✿✿✿✿✿✿✿

change,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

inter-comparisons
✿✿✿✿

with
✿✿✿✿✿

radar
✿✿✿✿✿✿✿✿

altimetry35
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✿✿✿✿✿✿✿

estimates
✿✿✿✿

may
✿✿✿✿

help
✿✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

metrics
✿✿✿

for
✿✿✿✿✿✿✿✿

improving
✿✿✿✿✿

SMB
✿✿✿✿

and
✿✿✿

firn
✿✿✿✿✿✿✿

models.
✿✿

In
✿✿✿✿

these
✿✿✿✿✿✿✿

regions,
✿✿✿✿✿

radar
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿✿✿✿✿

estimates

✿✿

of
✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿

change
✿✿✿✿

may
✿✿

be
✿✿✿✿✿

more
✿✿✿✿✿✿✿

accurate
✿✿✿✿

than
✿✿✿✿

from
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

SMB
✿✿✿✿✿✿✿✿✿✿

uncertainty.
✿

Compiling estimates of elevation change from laser altimetry is non-trivial and different processing methods can produce

differing results. Felikson et al. (2017) compared four different processing schemes (crossover differencing, along-track surface

fits, overlapping footprints and triangulated irregular networks) using ICESat data in an Eulerian sense over grounded ice in5

Greenland. They found discernible and irreconcilable differences between methods when deriving elevation change over the

grounded ice sheet. We compare results from overlapping footprints and triangulated irregular networks to test their coherence

✿✿✿✿✿✿✿✿✿✿✿✿✿

correspondence over ice shelf surfaces. As the surface slopes on ice shelves are small, we find that overlapping footprints and

TINs approaches produce similar estimates of elevation change with scanning lidars in Lagrangian frames of reference (Figure

4). The overlapping footprints approach produces a slightly noisier but statistically similar estimate compared with the TINs10

approach, and is a significantly simpler algorithm to implement.

5 Conclusions

We present a method for measuring ice shelf thickness change through the co-registration of
✿✿✿✿✿✿✿✿✿✿✿

NASA/CECS
✿✿✿✿✿✿✿✿✿

Antarctic
✿✿✿

ice

✿✿✿✿✿✿✿

mapping
✿✿✿

and
✿✿✿✿✿✿

NASA
✿

Operation IceBridge laser altimetry data in a Lagrangian reference frame. We use our method to detect

changes in ice shelves in West Antarctica and the Antarctic Peninsula where the airborne data are available. We find that our15

method is
✿✿✿

can
✿✿✿

be a significant improvement over Eulerian-derived estimates that require substantial smoothing or
✿✿✿✿

may
✿✿✿✿✿✿

require

✿✿✿✿✿✿✿✿✿

substantial spatial averaging of the data
✿

to
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿✿

of
✿✿✿✿

noise. However, there are significant limitations when using

airborne data for detecting ice shelf thickness change with Lagrangian tracking, particularly the lower spatial coverage and

typical lack of repeat tracks over ice shelves. Data from the recently launched NASA ICESat-2 mission will help rectify these

problems, particularly if combined with high-resolution photogrammetric digital elevation models.20

Code and data availability. NASA Operation IceBridge data are freely available from the National Snow and Ice Data Center (NSIDC) at

http://nsidc.org/data/ILATM2/ for the Level-2 ATM data and http://nsidc.org/data/ILVIS2/ for the Level-2 LVIS data. NASA MEaSUREs

INSAR-derived velocity maps are provided by NSIDC at https://nsidc.org/data/nsidc-0484. Bedmap2 ice thicknesses are provided by the

British Antarctic Survey at https://www.bas.ac.uk/project/bedmap-2/. CATS2008 tidal constituents are available from the Earth & Space Re-

search institute at https://www.esr.org/research/polar-tide-models/. Dynamic atmospheric Corrections are produced by CLS Space Oceanog-25

raphy Division using the Mog2D model from Legos distributed by Aviso, with support from CNES. Ssalto/Duacs non-tidal sea surface

products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS). Landsat imagery is

provided courtesy of the U.S. Geological Survey EarthExplorer service. MODIS images of ice shelves are freely available from NSIDC.

Altimetry data from this project are available on Figshare under a CC BY 4.0 license (doi:10.6084/m9.figshare.8159852). The following pro-

grams are provided by this project for processing the NASA Operation IceBridge data: nsidc-earthdata retrieves NASA data from NSIDC30

(doi:10.6084/m9.figshare.7355063), read-ATM1b-QFIT-binary reads Level-1b Airborne Topographic Mapper (ATM) QFIT binary data prod-
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ucts (doi:10.6084/m9.figshare.7355060), read-ATM2-icessn reads Level-2 ATM Icessn data products (doi:10.6084/m9.figshare.7355066),

and read-LVIS2-elevation reads Level-2 Land Vegetation and Ice Sensor (LVIS) data products (doi:10.6084/m9.figshare.7355057).
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Figure 1.
✿✿✿✿✿✿✿✿✿✿

NASA/CECS
✿

Pre-IceBridge and
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NASA
✿

Operation IceBridge campaign flight lines over a) Antarctica b) the Antarctic Peninsula

and c) the Amundsen Sea Embayment from 2002 to 2016 colored by year of acquisition and laser ranging instrument. Antarctic grounded

ice delineation provided by Mouginot et al. (2017b). Flight lines overlaid on a 2008–2009 MODIS mosaic of Antarctica (Haran et al., 2014).
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Figure 2. Triangulated mesh formulated around an advected 2008 ATM flight line point using points from a 2009 ATM flight line (orange

dots). The red star denotes the location of the original point, the green star denotes the parcel location after advection, and the dashed green

line is the path of advection. P1, P2 and P3 represent the three vertices of the triangle housing the advected ATM point. Elevation values at

each vertex point are weighted in the interpolation by their respective areas, A1, A2 and A3. Inset map shows the location of the main figure.
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Figure 3. Representation of processes contributing to surface elevation changes for a) ice shelves and b) grounded ice. Modified from

Ligtenberg et al. (2011) and Zwally and Li (2002). Processes represented in schematic: accumulation (vacc), dynamic atmosphere (vdac),

snowmelt (vme), sublimation (vsu), wind scour (vws), firn compaction (vfc), ice dynamics (vdyn), meltwater refreeze and retainment (vrfz),

solid Earth uplift (vse), sea level (vsl), ocean tides (vot), load tides (vlt), load pole tides (vpt), ocean pole tides (vopt), and basal melt (vb).
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Figure 4. Surface elevation change of the Larsen-B remnant and Larsen-C Ice Shelf derived using a) Eulerian TINs corrected for strain, b)

Lagrangian TINs and c) Lagrangian overlapping footprint schemes for the period 2009–2016. RMS differences in elevation change from a

measurement point for all points within 1 km for the d) Eulerian TINs corrected for strain, e) Lagrangian TINs and f) Lagrangian overlapping

footprint methods. The elevation change rates shown here are not RDE filtered (Smith et al., 2017). Antarctic grounded ice boundaries are

provided by Mouginot et al. (2017b). Plots are overlaid on a 2008–2009 MODIS mosaic of Antarctica (Haran et al., 2014). Inset map denotes

the location of the maps.
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Figure 5. Measured and estimated ice thickness change rates from 2008 to 2016 for a flight line over the Larsen-C Ice Shelf (a) starting near

the Whirlwind inlet
✿✿✿

Inlet
✿

with the total measured ice thickness change rate denoted in black, the surface mass balance (SMB) fluxes from

RACMO2.3p2 (XPEN055) denoted in red (van Wessem et al., 2016), the flux divergence terms combining ice thicknesses from Bedmap2

(Fretwell et al., 2013) and ice velocities from MEaSUREs (Rignot et al., 2017)
✿✿✿

and
✿✿✿

ice
✿✿✿✿✿✿✿✿

thicknesses
✿

denoted in green,
✿

and the residual basal

thickness change rates denoted in purple. Index denotes the ATM Icessn record number for October 10, 2008. Locations of co-registered

records from the flight line are shown in b). MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted in gray (Mouginot

et al., 2017b). 2016 and 2017 ice shelf extents delineated from MODIS imagery are denoted in green and light gray,
✿

respectively (Scambos

et al., 2001). Map is overlaid on a 2008–2009 MODIS mosaic of Antarctica (Haran et al., 2014). Inset map denotes the location of the map.
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Figure 6. Ice thickness change (a-b) and estimated basal melt rates (c-d) of the Larsen-B remnant and Larsen-C Ice Shelf for two periods,

2002–2008 and 2008–2016. AI, CI, MI, WI and MOI denote the Adie, Cabinet, Mill, Whirlwind and Mobiloil inlets
✿✿✿✿

Inlets,
✿

respectively.

MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted in gray (Mouginot et al., 2017b). 2016 and 2017 ice shelf extents

delineated from MODIS imagery are denoted in green and light gray
✿

, respectively (Scambos et al., 2001). Plots are overlaid on a 2008–2009

MODIS mosaic of Antarctica (Haran et al., 2014). Inset map denotes the location of the maps.
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Figure 7. Estimated basal melt rates (a-b) from Adusumilli et al. (2018) and differences from melt rates derived from
✿✿✿✿✿✿✿✿✿✿

NASA/CECS

✿✿✿✿✿✿✿✿✿✿

Pre-IceBridge
✿✿✿

and
✿✿✿✿✿✿

NASA Operation IceBridge (c-d) of the Larsen-C Ice Shelf for two periods, 2002–2008 and 2008–2016. Stipples in-

dicate locations with valid radar altimetry data (a-b) and coincident airborne laser altimetry data (c-d). MEaSUREs InSAR-derived Antarctic

grounded ice boundaries are denoted in gray (Mouginot et al., 2017b). 2016 and 2017 ice shelf extents delineated from MODIS imagery are

denoted in green and light gray
✿

, respectively (Scambos et al., 2001). Plots are overlaid on a 2008–2009 MODIS mosaic of Antarctica (Haran

et al., 2014). Inset map denotes the location of the maps.
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Figure 8. Ice thickness change (a-b) and estimated basal melt rates (c-d) of the Wilkins Ice Shelf for two periods, 2008–2011 and 2011–2014.

✿✿

HI
✿✿✿

and
✿✿

SI
✿✿✿✿✿✿

denote
✿✿

the
✿✿✿✿✿✿

Haydn
✿✿✿

and
✿✿✿✿✿✿✿

Schubert
✿✿✿✿✿

Inlets,
✿✿✿✿✿✿✿✿✿

respectively.
✿

MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted

in gray (Mouginot et al., 2017b). Historical ice shelf extents delineated from Landsat and MODIS imagery are denoted with colored lines.

Plots are overlaid on MODIS images of Antarctic ice shelves provided by NSIDC (Scambos et al., 2001). Inset map denotes the location of

the maps.
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Figure 9. Ice thickness change (a-b) and estimated basal melt rates (c-d) of the Pine Island Ice Shelf for two periods, 2009–2011 and 2011–

2015. MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted in gray (Mouginot et al., 2017b). 1996 InSAR-derived

grounding line locations from Rignot et al. (2016) are delineated in green. Plots are overlaid on MODIS images of Antarctic ice shelves

provided by NSIDC (Scambos et al., 2001). Inset map denotes the location of the maps.
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Figure 10. Ice thickness change
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