
Dear Kenny Matsuoka,

We are very appreciative for the reviews of our manuscript “Antarctic Ice Shelf Thickness Change from

Multi-Mission Lidar Mapping.” In response to the reviewer comments, we have revised the manuscript

to clarify some essential points and add a comparative analysis with Adusumilli et al. (2018). The

modifications did not change the overall conclusions or results.

In the revision, we include:

1. A point-by-point response to the reviewer comments. Responses are italicized and gray.

2. An enumerated list of the modifications made to the manuscript.

3. A copy of the manuscript with the changes noted. (Highlighted with red struck-through text to

denote subtractions and
✿✿✿✿

blue
✿✿✿✿✿✿✿✿✿✿

underlined
✿✿✿✿

text to denote additions)

4. A final copy of the manuscript with those same changes incorporated.

Regards,

Tyler C. Sutterley



First Reviewer Comments:

This manuscript reports on estimates of thickness change and basal-melt rates along airborne survey

lines over West Antarctic and Antarctic Peninsula ice shelves. These estimates were derived from

lidar measurements (of surface height change) obtained from NASA’s airborne campaigns between

2002 and 2015, combined with available surface velocity data from MEaSUREs/NSIDC, and surface-

mass-balance and firn state information from models (RACMO2.3, and a firn-densification model). The

manuscript focuses on the methodology to invert height-change measurements from airborne lidar

to basal-melt estimates in a Lagrangian framework. Finally, a brief discussion on the Lagrangian

vs Eulerian approaches is presented, as well as putting in context some of the ice-shelf melt-rate

values obtained. I believe the results of this manuscript are of great value for comparing and calibrating

satellite-derived estimates of ice-shelf thickness change and melt rates. The authors put considerable

effort to integrate all available/usable NASA airborne lidar data over the West Antarctic ice shelves.

While these data set is quite sparse (only available along flight lines and with a few repeats), there

are still very little data available to compare against the vast amount of satellite measurements,

which makes this work of particular interest to the remote-sensing community. I have, however,

several questions and suggestions that I would like to see addressed prior considering publication

(see comments below). Overall, the manuscript is well written and the figures are of good quality.

Thank you. We appreciate the thoroughly beneficial review of our manuscript. We address

your comments point-by-point and update the manuscript accordingly.

General comments:

I feel a thorough error assessment on derived melt-rate estimates is lacking. Given that, as mentioned

in the manuscript itself, this set of estimates is expected to serve as a reference for published and

future (e.g. from ICESat-2) satellite-derived estimates, I would expect a more comprehensive error

assessment: How close to (available) in-situ measurements are these values?

We expanded upon our error calculation in the manuscript. There are tide gauges around

Antarctica that are used for validating the CATS2008 model. The 5.5km SMB models are

validated against Operation IceBridge snow radar observations, satellite melt observations,

and and in-situ observations (Kuipers Munneke et al., 2017; Lenaerts et al., 2018).

What are realistic confidence intervals given that some of the information comes from models?

This is an excellent question. We assume a 15% uncertainty in surface mass balance and

firn height following estimates from Kuipers Munneke et al. (2017). Tidal uncertainties are

estimated using the constituent RMS values from King et al. (2011). Uncertainties in flux

divergence were estimated using annually resolved velocity maps (Mouginot et al., 2017a)

and uncertainties in Bedmap2 ice thickness (Fretwell et al., 2013).

How sensitive are the estimated melt-rate values to unaccounted processes (due to lack of data or

knowledge)?

Great question. Because the ice shelves are largely in hydrostatic equilibrium, any

uncertainty in terms of elevation will be magnified by approximately 10× in the final estimates

of thickness change and basal melt rate.

Some of the short-time-scale (2 to 5 years) estimates are likely subject to the large interannual-to-

decadal variability characteristic in the AS-BS sector (e.g. Paolo et al. (2015)). For example, it has

been shown that even ICESat-derived estimates (5-year period) can disagree substantially from longer-

timescale averages (as those derived from radar altimetry). In many cases, the ICESat short time span

(Pritchard et al. (2012); Rignot et al. (2013)) overestimate the underlying decadal trend, simply because

https://www.esr.org/data-products/antarctic_tg_database


their estimates are focusing on the more variable short-term scales.

Absolutely. At present, records from laser altimetry are far less compete than records from

radar altimetry in terms of temporal resolution and duration (Paolo et al., 2015; Adusumilli

et al., 2018). However, laser altimetry datasets have more accurate surface determination

and can more accurately track over regions of abrupt topographical change. ICESat-2

should provide a valuable extension to the laser altimetry record and help separate short-

term oscillations with long-term change.

Substantial (and important) information on the methodology is being introduced in the Discussion

section of the manuscript. I understood some aspects/limitations of the methodology only after reaching

the discussion page (which is the final portion of the Main text).

Good point. Text and figures have been reordered for improved continuity and presentation.

Can direct comparisons with previously published estimates be made for some locations (using, for

example, Pritchard et al. (2012); Rignot et al. (2013); Paolo et al. (2015) and Adusumilli et al. (2018)?

This would be very valuable and could motivate good discussion regarding discrepancies and/or

similarities.

Great point. We have added a direct comparison with the results from Adusumilli et al. (2018)

and have added points emphasizing this purpose of our dataset. We did not compare with

data from Paolo et al. (2015) as the publicly available data is for a different time period. We

did not compare with Pritchard et al. (2012) as the data is not provided in a compiled form.

Rignot et al. (2013) do not provide publicly available data.

Specific comments:

p2, l3-4: “accelerated 2 to 8 times their previous flow rates”. . . Please define “previous”, i.e., when

those measurements were taken (right before 2002, or five/ten years before)?

Great point. Added that the before and after measurements were taken in 1996 and 2003. “In

2003, a year after the collapse of the Larsen B ice shelf, some tributary glaciers draining into

the Weddell Sea from the Antarctic Peninsula were flowing 2–8 times their 1996 flow rates

(Rignot et al., 2004). These glaciers continued flowing at accelerated rates years after the

collapse (Rignot et al., 2008; Berthier et al., 2012).”

p2, l5: “surface thinning”. . . Are you referring to thinning of the firn layer (i.e. densification), which I

don’t think any of the provided references support this? Or perhaps you mean “surface lowering”?

Clarified to mean “dynamic thinning” as noted in Pritchard et al. (2009) and Flament and

Rémy (2012).

p2, l7: What is an “internal change in ice dynamics” (as opposed to “an external change”)?

Changed to “The dynamical change of these glaciers. . . ”

p2, l8: ocean melt → ocean-driven melt

Done. Thank you.

p2, l25: “over Pre-IceBridge and NASA Operation IceBridge campaigns is shown”. . . Do you mean

“prior to and during NASA Operation IceBridge campaigns is shown. . . ”?

Changed to “The spatial coverages of each instrument in Antarctica for the campaigns prior

to and during NASA Operation IceBridge are shown in Figure 1.” Thank you.



p2, l27-28: What exactly do the ’converted’ heights represent? Height w.r.t. an ellipsoid model or

w.r.t. a geoid model. . . it seems you are tracking deviations from the geoid, and why you need this

conversion? Perhaps to invert for thickness/basal melt, but it is not clear at this point in the text.

Good point. Changed to “In order to track changes in ice shelf freeboard, the ellipsoid heights

for each instrument were then converted to be in reference to the GGM05 geoid using gravity

model coefficients provided by the Center for Space Research (Ries et al., 2016).”

p3, l7: What is “the scale of the individual triangular facet”?

Added that an individual triangle is ∼10–100m.

p3: On “Tidal and Non-Tidal Ocean Variation”: Armitage et al. (2018) showed substantial sea-level

anomalies (changes w.r.t. mean sea level) around Antarctica: about 3 cm at seasonal scales

and 5 cm associated with the ENSO cycle. How will these translate to/impact the derived ice-

shelf height changes? At the very least, these should be accounted for in the error budget.

Note that these SLAs around Antarctica could not be precisely measured until only recently (e.g.

Armitage et al. (2018)). What precisely are the “Non-tidal sea surface anomalies over ice-free

ocean points”, i.e., what process are you removing with the CMEMS product? Is this accounting

for spatially variable sea-level rise? For example, Paolo et al. (2015) corrected for rates of sea-

level change around Antarctica varying from 2 to 4 mm/yr (compared to the global mean of ∼3

mm/yr)

Good point. Paolo et al. (2015) used the same dataset from AVISO in their study (described in

their supplementary materials). We clarify that the sea surface anomalies removed are local

sea level change, which will include long-term sea level rise and inter-annual fluctuations.

We add the sentence “Regional sea levels fluctuate due to changes in ocean dynamics,

ocean mass, and ocean heat content (Church et al., 2011; Armitage et al., 2018).” We also

include that the sea surface anomalies are added to estimates of mean dynamic topography,

which are the mean deviations of the sea surface from the geoid. “The non-tidal sea surface

anomalies are added to estimates of mean dynamic topography, which is the mean deviation

of the sea surface from the Earth’s geoid due to ocean circulation.”

p4, l8-10: What’s the relevance of “highly complex topography of mountains and glacial valleys” if

you are working over (relatively flat) ice shelves? I’m saying this because I haven’t seen a

comparison between the 27km and 5.5km SMB models against in-situ measurements specifically

*over* the ice shelves, to be convinced that the higher-res product does provide a more accurate

representation of SMB state over flat surfaces.

Fair point. While there is little difference for the ice shelves in the Amundsen Sea, there are

some substantial differences for the ice shelves in the Weddell Sea. The major difference is

how well the topography of the peninsula is resolved at 5.5km versus 27km. Resolving some

downstream effects within the climate model requires the highest-possible spatial resolution

topography (Datta et al., 2018). Added “The higher spatial resolution topography improves

the modeling of wind-driven downstream effects over ice shelves (Datta et al., 2018).”

p4, l13-14: I’m confused here: “The absolute precision of the RACMO2.3p2 model outputs has been

estimated. . . ”, are you referring to the latest high-res model (the 5.5 km)? If so, why is the

reference from 2006 (I assume they did not have the high-res model back then)?

The van de Berg et al. (2006) citation was for the method used for evaluation of the RACMO2

models. We updated the sentence to say that it is “following Kuipers Munneke et al. (2017)

and Lenaerts et al. (2018)”.



p5, l3-4: What is “basal thickness change rate”? Changes in ice-shelf thickness due to mass loss/gain

at the bottom? Or. . .

Correct. It referred to changes in ice-shelf thickness due to losses at the base. We changed

the maps to use two separate colorbars and show basal melt rates in meters of ice per year.

Fig 10: “The elevation change rates shown here are not corrected for oceanic or surface processes

and are not RDE filtered”. . . Why not?

Fair question. The original intent was to only show the differences due to the processing

method. We updated the figure to correct for ocean and surface processes and we noted

that we have corrected for strain in the Eulerian-derived values. The data isn’t RDE filtered

in order to show the worst case of each technique (such as near the rifting that developed

before the calving of the A-68 iceberg).

General comment: I don’t know what ’basal thickness change means’. . . Thickness change solely

due to basal mass change? Please be more specific/accurate.

Yes, this is what it referred to in the previous manuscript. All plots have been changed to

show basal melt rates in terms of meters of ice per year.

p5, l33-35: Could the difference in melt rate near the grounding zone be explained simply by the

(large) interannual-to-decadal variability in the AS sector (as shown, for example, by Dutrieux

et al. (2014); Paolo et al. (2015); Jenkins et al. (2018))?

Yes. This point has been added to the text.

p6, l15-16: However, Lagrangian estimates miss the grounding lines due to the direction of ice flow

from grounded to floating. That is, sampled sites near the grounding lines were previously over

grounded ice, lacking the corresponding measurement pair for comparison. This limitation affects

measurements downstream of the GL depending on time separation between data points and

flow speed. Another limitation of the Lagrangian approach is the sparseness of the estimates

(compared to Eulerian solutions) since not all measurements will have a matching upstream pair

(as also demonstrated by Moholdt et al. (2014)). Further, in the case of airborne surveys where

the flight segments do not cross the entire ice shelf, measurements on the downstream end of

the transect will also lack corresponding matching pairs.

These are great points that we have been added to the methods and discussions sections.

“ In order to minimize the possibility of co-registering measurements over ice shelves with

measurements over grounded ice near the grounding zone or measurements over the ocean,

sea ice floes and icebergs, we only include points that are on the ice shelf for both time

periods using grounded ice delineations from Rignot et al. (2016) and Mouginot et al.

(2017b) and ice shelf extents manually digitized from Landsat (LPDAAC) and MODIS imagery

(Scambos et al., 2001).”

p6, l18-20: Substantial smoothing was required because the effect of ice advection and divergence

was not corrected for. With high-quality velocity products available today (e.g. Rignot et al. (2017);

Gardner et al. (2018)) the flux-divergence signal can and should be removed (or at least reduced

substantially) from the basal mass balance estimates (see for example, Berger et al. (2017); Lilien

et al. (2018); Adusumilli et al. (2018)).

Excellent point. We have noted this in the text.



p6, l19-20: “spatial smoothing [. . . ] to filter out the effects of advection”. . . This misleading. The

smoothing is not targeting specifically the advection-related features, instead, is removing

everything that falls within the cutoff frequency of the smoother.

Fair point. While one of the main noise sources for ice shelves are these advected features, it

is absolutely correct that the filters were not specifically used to remove these artifacts. This

portion has been removed.

p6, l32-33: I think a more comprehensive “update” (to Pritchard et al. (2012)) has already been

presented (see Paolo et al. (2015)). . . or not?

Fair point. While they are based on different datasets (radar vs. laser), Paolo et al. could be

considered an update to Pritchard et al.. This sentence has been removed.

p7, first para: The discussion on the limited velocity coverage back in time for Lagrangian estimation is

important (modern Eulerian estimates also depend on the removal of the advection signal). I feel

the authors should go beyond just discussing and try and quantify the effect (i.e. the contribution

to the error budget) of potential changes in ice flow. In other words, how sensitive are the melt

rate estimates to changing velocity magnitudes? Typical magnitudes of velocity change can be

taken from the literature for the few locations they are available (e.g. Mouginot et al. (2014)).

This is an excellent point. We include estimates of annual changes in flux divergence in our

error budgets. Including time-variable velocity maps to advect the locations of the elevation

measurements in our Lagrangian methodologies is the subject of future work.



Second Reviewer Comments

SUMMARY

The authors use airborne laser altimetry (from airborne topographic mappers (ATM)) over Antarctic

Peninsula (AP) and Amundsen Sea (AS) ice shelves, plus models of surface mass balance and firn

compaction, to measure ice shelf thinning rates and assign these rates to individual terms in the mass

balance. The study is complementary to several previous studies that used satellite altimeters. The

coverage of ATM is poor prior to Operation Icebridge (OIB). However, it has some advantages in terms

of dedicated tracks, in particular allowing measurements to get close to grounding lines. It is therefore

a valuable study, and dataset, to provide to the community.

Note that I have read the comments by Anonymous Referee #1 and agree with most of inverse

barometer) is a bigger source of error especially given that the ATM missions are essentially

instantaneous, and sparse in time.

We are really appreciative for the helpful review of our manuscript. In response, we have

revised the manuscript and clarified some essential points.

We completely agree that other sources of oceanic variability can influence the

measurements over ice shelves. In the current and previous versions of the manuscript,

sea level variations are accounted for using AVISO products distributed by Copernicus. The

use of these sea level anomaly products follows the ice shelf work of Paolo et al. (2015).

GENERAL

1. I spent a lot of the paper being confused by the term “ice thickness change rates”. This relates to

the use of Lagrangian calculations. The authors explain why they use Lagrangian methods, which

makes sense, although it often seems to lead to massive data loss: compare figure 1 flight lines

with locations of ice thickness change on figures 5, 7, 8 and 9. However, Lagrangian methods

are really just a tool to get the mass balance terms. The most important thing is whether the ice

shelf is losing mass, and the spatial distribution of that loss, so that Eulerian variability is really

what you want to report in terms of SMB, BMB and divergence.

Figures and text have been changed to use basal melt rates (in terms of meters of ice

equivalent per year). The data is spatially sparse over ice shelves regardless of reference

frame (especially in the pre-IceBridge era). After 2009, it is possible to have nearly annually

resolved estimates of ice thickness change along the flight lines for some ice shelves.

Idealistically, reporting Eulerian variability would be preferable over Lagrangian variability.

However, substantial smoothing or averaging is required with Eulerian-derived estimates

to reduce the impact of noise, and thus Lagrangian-derived estimates can provide more

accurate solutions if the spatial coverage isn’t comprehensive.

If you agree with that, then the important “ice thickness change rate” is Eulerian, which you get

back from Lagrangian by adding back in the strain thinning and advection terms. (If they appear

to be changing, that’s relevant too.) The simplest approach to clarify what you’re reporting would

be to introduce Eulerian and Lagrangian rate symbols early (d/dt and D/Dt), then use the symbol

rather than the words. Every time I see capital ‘D’, I’ll know it is Lagrangian.

Nomenclature has been updated.

2. It is strange that Results are presented first, then back to Methods, as far as figures go. Given how

much the data distribution thins out from Fig. 1 to the Lagrangian maps, the first thing to do would



be to determine if Lagrangian is a good method. Potentially, you are better off with averaging

of a lot of noisy Eulerian measurements rather than far fewer cleaner Lagrangian values. I’d

move Fig. 6 to Fig. 5, demonstrating the value of along-flowline repeat ATM, then next I’d have

something like Figure 10 to make points about the value of Lagrangian vs Eulerian. You need to

also check that you are comparing the same things here: results from Eulerian TINs should be

the same average as Lagrangian TINS provided the Lagrangian values have been re-corrected

for advection and strain.

Thank you. The figures and text have been reordered for improved continuity. We include

that the Eulerian-derived values are corrected for the effects of advection following Moholdt

et al. (2014). As mentioned in the manuscript, we have results for all available Operation

IceBridge data in an Eulerian reference frame using a similar TINs-based methodology.

You are absolutely correct that there is more available data when computed in an Eulerian

frame of reference; however, the data is still spatially sparse over ice shelves (particularly

in the pre-IceBridge era). Mission priorities have limited measurements over ice shelves

until fairly recently (when Mag/Grav measurements have enabled improved estimations of

sub-shelf bathymetry). The strength of the airborne laser altimetry data lies in its accurate

measurements at relatively small spatial scales compared to radar altimetry data, repeatable

processing methods, and ability to follow glacier flowlines.

3. The authors should look at another Cryosphere Discussions paper by Shean et al. (2018)

https://www.the-cryosphere-discuss.net/tc-2018-209/, where Pine Island melt rates

are assessed using high-res image-based Lagrangian processing.

We are looking forward to the publication of the Shean et al. paper as it is a very

complementary work that uses an independent dataset. As the paper is not presently through

peer-review, we have only included citations to the Discussions paper in anticipation of a

future acceptance.

4. The authors should probably compare their results for Larsen C with the ATM measurements

presented in Adusumilli et al. (2018).

Done. Figure and text have been added.

5. Overall, I think this paper fails to exploit the key features of ATM vs satellite-based products.

Satellite altimeters and stereo imagery (Shean et al. (2018), and an earlier Dutrieux et al. (2014)

paper), make the process easier, but all satellite altimeters lack spatial resolution and radar

altimeters struggle near grounding lines and other steep regions. Think about the new science

that is available from a carefully compiled ATM data set where all the biases have been corrected

for. If there is no new science, the data set is still valuable as it provides independent estimates to

compare with the satellite-derived values. In this case, the most obvious value of the data set is

as intended for OIB: a continuation of the ICESat laser altimeter record. Why not look at ICESat

data as a third, earlier period in the various plots that compare pre-2011 and post-2011 data?

We expand upon the purpose of this paper and the benefits of having an airborne lidar

derived dataset for the validation of satellite datasets and model outputs. We are investigating

processes that can be derived with the airborne dataset but are leaving that for a future work.

A comparison of Operation IceBridge with ICESat laser altimetry is certainly possible if a

compiled dataset was publicly available. We have added a comparison with the published

radar altimetry estimates from Adusumilli et al..

https://www.the-cryosphere-discuss.net/tc-2018-209/


MAJOR: SPECIFIC

p.1/l.2: See general comments. The reader needs to know whether you mean Lagrangian or Eulerian

ice thickness change, and if the Lagrangian estimates have been re-corrected back to Eulerian.

Emphasis has been added to clarify that these are Lagrangian estimates.

p.1/l.8-9: Comments on Larsen C depend on the quality of the SMB and firn models. This sentence

suggests that the ice thickness change really is DH/dt, not dh/dt.

Yes, most of the estimates in this work are Lagrangian-derived ice thickness change. Also,

in any reference frame, the conversion from volume to mass will be an important aspect. We

added an additional sentence noting how SMB uncertainties will directly impact the basal

melt rate estimate.

p.1/l.9-11: I don’t think *you* show that Wilkins depends on “short time-scale and upper-ocean

processes”: the only evidence I see for this is citations to previous work.

Fair point. Attempting to quantify the effects of individual processes is the subject of some

future work.

p.1/l.11-12: Again, this is where you’d be better off reporting dH/dt, even if you’re deriving it via re-

corrected DH/Dt. I was surprised that PIG was “thinning” by 40 m/yr, even close to the grounding

line. The more important numbers are in comparisons: you want to show actual Eulerian thinning

(dH/dt), BMB, and maybe the ice divergence term.

To clarify, we are reporting Lagrangian thickness change rates and melt rates of the Pine

Island Ice Shelf and not Pine Island Glacier. Shean et al. (2018) present very similar numbers

for the Pine Island Ice Shelf over similar time periods.

p.2/l.31: The Shean et al. (2018) TCD paper is another example of Lagrangian processing.

The Shean et al. paper is an excellent example of a similar methodology and a very

complementary to our own work. Citation has been added.

p.3/l.27-29: I don’t understand how you remove non-tidal ocean height change for ice-free ocean

points from ice-shelf data. Extrapolate under the ice front? Do you get AVISO sea surface height

all the way to the ice fronts at all times of ATM surveys, or does sea ice get in the way? What

processes do you think the AVISO products are correcting for, or is this a coarse approximation

for regional sea level rise?

Yes, it is simply an extrapolation and is a coarse approximation for regional sea level rise. The

extent varies based on sea ice. We chose to use a measured estimate in order to include

processes that can deviate strongly from the global ocean averages, such as steric effects

and self-attraction and loading effects. The use of this correction follows Paolo et al. (2015)

that used the same dataset.

p.4/l.20 ff: You need to explain all the terms in this equation immediately.

Great point. We’ve expanded upon each of the terms.

p.5-6 (Results): This would be clearer if you used sub-headers for each ice shelf that you are

considering: Larsen C, Wilkins, Pine Island, and Dotson/Crosson. Also, this is a critical place

to use symbols regarding ice thickness change: is it Eulerian dH/dt, Lagrangian DH/Dt, or

Lagrangian-derived Eulerian dh/dt?



Great suggestion. The results section has been now partitioned into subsections. We added

emphasis to note that all results are in a Lagrangian reference frame and the use of the

Eulerian frame was for comparison purposes only.

p.5/l.27-28: Sentence starting “These periods” suggest that RACMO2.3p2 ASE055 is only available

for specific periods, which then determine the breakdown of ATM into different epochs. Is this

true? Regardless, the reader needs to know the period for which this high-res surface processes

model is available.

Great point. We added the range of each climate simulation. “We use 5.5km horizontal

resolution outputs from a 1979–2016 climate simulation of the Antarctic Peninsula (XPEN055,

van Wessem et al., 2016) and a 1979–2015 climate simulation of West Antarctica (ASE055,

Lenaerts et al., 2018).”

p.5/l.32-33: Rignot and Jacobs (2002) is not the right cite for “highest impact on glacial flow dynamics”.

They just assume that and use it to justify looking at melt rates near the grounding line. There

are many more recent papers that might be relevant, e.g., Walker et al. (2007), Gagliardini et al.

(2010), probably others.

Fair point. We include citations to updated and more relevant work.

p.6/l.3: Rignot (2002) seems like a strange single choice for citation here.

We expand upon this sentence and add reference to more updated work.

p.6/l.4-13: The Dotson/Crosson data are incredibly sparse, which I assume is a consequence of using

Lagrangian processing given data density on Fig. 1. So (a) is this a place where higher noise in

Eulerian would have been better? (b) Maybe you haven’t enough data to learn whether conditions

are different from the ICESat-era results of Khazendar et al. (2016)? This points again to using

the ICESat-era results as a natural comparison for the more recent ATM.

Spatial sparseness at Dotson/Crosson is largely due to the availability of coincident data

and not as much of a function of Eulerian versus Lagrangian reference frames. The plot

below shows the same time period as the figure in the main text, but uses an Eulerian

approach. Khazendar et al. (2016) used the ICESat/OIB data from Sutterley et al. (2014)

as an estimate over the grounded ice and estimates from radar depth sounding and ATM

over ice shelves. Creating estimates from ICESat would certainly be possible but we believe

outside the purview of this paper.



p.6/l.17: The statement “Our Eulerian approach” seems to contradict everything you’ve said about

using a Lagrangian approach. This comparison should be much earlier in “Methods”, then you

could mention “We began by calculating. . . using three approaches, . . . , . . . , and . . . , applied

to Larsen C. Results (Fig. X) demonstrate that. . . ” Just make sure the figure really does

compare Eulerian with re-corrected Lagrangian, or advection-and-strain-corrected Eulerian with

Lagrangian.

Text and figures have been reordered for improved continuity and for the clarification of points.

We also clarify that the Eulerian values are corrected for advection and strain effects.

p.6/l.26-27: Dotson/Crosson data are extremely sparse, and it isn’t at all clear that Lagrangian

methods are the best approach here.

The lack of data at Dotson/Crosson is more due to the lack of coincident flight lines over the

ice shelf. This point has been emphasized.

p.6/l.29-30: the statement “would likely not be representative” is probably true, especially for

Dotson/Crosson, but needs to be justified, e.g., on the basis of data sparseness.

Point added.

p.6/l.30-32: It isn’t really obvious why you need a DEM, specifically from photogrammetry, to use

ICESat-2 for dH/dt. It helps with the advection terms and Lagrangian TINs, but maybe you need

to set up the idea better, along the lines of “The Lagrangian method is strongly dependent on a

detailed understanding of surface topographic features being advected by the ice flow. . . ”

Absolutely correct that digital elevation models are not necessary for deriving elevation

change with ICESat-2, particularly in an Eulerian reference frame. Lagrangian reference

frames are more difficult, particularly if the ice shelf flow is roughly perpendicular to the

satellite tracks, such as in the Antwitharctic peninsula. DEMs would improve the tracking of

ice parcels, and decrease data “loss” between different satellite tracks. These points have

been clarified in the text. Thank you for the comment.

p.7/l.13-22: (a) This section does not flow well, but it does raise two issues that you haven’t really

explained well up to now:

a) Pros and Cons of radar vs laser. The goal, probably, is change in vertically integrated

*mass* (or ice-equivalent thickness). With laser, you get true surface height really well, but

conversion to mass depends on the firn model. If the snow layer is lighter than you thought,

you infer too much mass. With radar, it is complicated by penetration (and footprint size),

but on the other hand maybe that’s good because the inferred reflecting surface is below the

lightest snow. However, you still need the model of firn compaction below the reflector.

Good point. We expand upon the strengths and weaknesses of each dataset. We include

a more detailed description of the complications for detecting ice shelf surface height from

each dataset.

b) The study hasn’t really been set up as well as it could have. This gets back to: Is there

really new scientific insight here, or is the goal mainly to provide an independent data set

that is of specific value in comparing with satellite-derived ice-shelf changes, specifically

laser-based? Either way is good for a paper, with the latter being the justification for OIB

anyway. A clearer goal, stated early, might help organize the paper so that results are written

around that goal. At the moment the paper reads like you’re identifying new science, but the



Results section mainly relies on, or repeats, previous studies, just with a new data set. e.g.,

Adusumilli et al. (2018) reach the same conclusions regarding Larsen C, except they don’t

spend much time of the advection and-strain terms, but they do use ATM as validation.

Wilkins is interesting, but why not compare ATM tracks with ICESat to get a better sense of

pre- and post-ICESat behavior?

Fair point. We expand upon the justification of the research and the manuscript in the

introduction. We clarify the purpose of the work and justification of using Operation IceBridge

data. Creating a comparable dataset using data from the original ICESat mission is

worthwhile and certainly possible; however, we believe outside the purview of this manuscript.

We include a comparison with the Adusumilli et al. dataset over the Larsen-C ice shelf.

We are working towards the overarching goals of ice-ocean interaction and the downstream

effects on the grounded ice. We will also have more in depth interpretation of the results for

particular ice shelves in future work.

TECHNICAL: SPECIFIC

p.1/l.19-20: (a) I think Rignot et al. (2013) just assumes that ice shelves buttress grounded ice, don’t

show it. You can’t cite every paper that makes that claim. (b) Sentence starting “The thinning. . . ”

just repeats the idea of buttressing.

The buttressing effect of ice shelves is fairly well documented and we include citations to

modeling efforts to quantify the effect.

p.2/l.1-2: Again, you’re repeating the buttressing argument.

The purpose of this second sentence is to emphasize how changes in ice shelves affect the

grounded ice.

p.2/l.19: Abbreviation “WFF” isn’t used again, so not needed.

Done. Thank you.

p.2/l.32: Here you cite Rignot et al. (2017) for MEASURES, but on p.4/l.24 it is Mouginot et al. (2017a).

This has been fixed. Thank you. The Mouginot et al. (2017a) data was used to calculate

deviations from mean ice flow.

p.4/l.28: This reads like the range of validity for hydrostatic is only the narrow band of 1-8 km from the

grounding line. You mean that this region is *not* hydrostatic, but that the flexural boundary width

is in this range.

Correct. The intent was to describe regions downstream of the 1–8 km wide grounding zones.

Changed to “The ice thickness estimates are calculated assuming hydrostatic equilibrium,

which should be valid for most areas downstream of the 1–8 km wide grounding zones (Brunt

et al., 2010, 2011).”

General style, especially in Results: You make a habit of starting paragraphs with “Figure X

shows. . . ”. This sounds like you have a collection of figures to describe, rather than making

figures to fit your narrative.

General style has been updated to first describe each ice shelf and introduce results.



General Style: “{Name} ice shelf” or “{Name} Ice Shelf”?

Updated. Thank you for the suggestion.

p.6/l.2: Why refer to Fig. 8*b*, specifically?

Fair point. This has been fixed. Thank you.

p.6/l.5: I think this means “two periods – 2002-2010 and 2010-2015 – are shown in”

Precisely. Thank you.

p.7/l.8: more precisely “maps of time-varying velocity”

Changed to “time-variable velocity maps”

p.7/l.9-12: Would be good to have cites to each of these products.

Citations added.



List of Changes

1. Modified “We calculate ice thickness change rates in a Lagrangian reference frame to reduce

the effects from advection of sharp vertical features, such as cracks and crevasses, which can

saturate Eulerian-derived estimates.” to “The ice thickness change rates are calculated in a

Lagrangian reference frame to reduce the effects from advection of sharp vertical features, such

as cracks and crevasses, that can saturate Eulerian-derived estimates.”

2. Modified “We use our method over different ice shelves in Antarctica, which vary in terms of

the processes that drive their change, their size and their repeat coverage but are all susceptible

to short-term changes in ice thickness.” to “We use our method over different ice shelves in

Antarctica, which vary in terms of size, repeat coverage from airborne altimetry and dominant

processes governing their recent changes.”

3. Modified “Larsen-C ice shelf” to “Larsen-C Ice Shelf”

4. Modified “Wilkins ice shelf” to “Wilkins Ice Shelf”

5. Modified “At The Pine Island ice shelf in the critical region near in the grounding zone, we

find that ice shelf thinning rates exceed 40 m/yr. The thickness change is dominated by strong

submarine thinning.” to “At the Pine Island Ice Shelf in the critical region near in the grounding

zone, we find that ice shelf thinning rates exceed 40 m/yr with the change dominated by strong

submarine melting.”

6. Modified “Dotson and Crosson ice shelves” to “Dotson and Crosson Ice Shelves”

7. Added “Operation IceBridge provides a validation dataset for floating ice shelves at moderately

high resolution when co-registered using Lagrangian methods.”

8. Modified “After the 2002 collapse of the Larsen B ice shelf, some tributary glaciers draining

into the Weddell Sea from the Antarctic Peninsula accelerated 2 to 8 times their previous flow

rates, and continued flowing at accelerated rates years after the collapse (Rignot et al., 2004,

2008; Berthier et al., 2012).” to “In 2003, a year after the collapse of the Larsen-B Ice Shelf,

some tributary glaciers draining into the Weddell Sea from the Antarctic Peninsula flowed at rates

2–8 times their 1996 flow rates (Rignot et al., 2004). These glaciers continued flowing at the

accelerated rates years after the collapse (Rignot et al., 2008; Berthier et al., 2012).”

9. Modified “Glaciers of the Amundsen Sea Embayment (ASE) in West Antarctica have

experienced significant increases in surface velocity, surface thinning, and grounding line

retreat since the 1990’s (Rignot et al., 2002, 2014; Pritchard et al., 2009).” to “Glaciers of the

Amundsen Sea Embayment (ASE) in West Antarctica have experienced significant increases

in surface velocity, dynamic thinning, and grounding line retreat since the 1990’s (Rignot et al.,

2002, 2014; Pritchard et al., 2009; Flament and Rémy, 2012).”

10. Modified “The internal change in ice dynamics of these glaciers likely stems from the advection

of warm Circumpolar Deep Water, which enhanced ocean melt causing thinning of the buttressing

peripheral ice shelves (Jacobs et al., 2011).” to “The dynamical change of these glaciers likely

stems from the advection of warm Circumpolar Deep Water, which enhanced ocean-driven melt

causing thinning of the buttressing peripheral ice shelves (Jacobs et al., 2011).”

11. Added “We provide a set of co-registered laser altimetry datasets for evaluating estimates from

satellite altimetry, photogrammetry and model outputs.”



12. Deleted “(WFF)”

13. Deleted “(GSFC)”

14. Modified “The spatial coverage of each instrument in Antarctica over Pre-IceBridge and NASA

Operation IceBridge campaigns is shown in Figure 1.” to “The spatial coverages of each

instrument in Antarctica for the campaigns prior to and during NASA Operation IceBridge are

shown in Figure 1.”

15. Modified “The ellipsoid heights for each instrument were converted into geoid heights using

coefficients from the GGM05 gravity model provided by the Center for Space Research (Ries

et al., 2016).” to “In order to track changes in ice shelf freeboard, the ellipsoid heights for each

instrument were converted to be in reference to the GGM05 geoid using gravity model coefficients

provided by the Center for Space Research (Ries et al., 2016).”

16. Added “Changes in ice shelf freeboard are converted into changes in ice thickness by assuming

hydrostatic equilibrium following Fricker et al. (2001).”

17. Added “Uncertainties for each instrument were calculated following Sutterley et al. (2018).”

18. Modified “(Sutterley et al., 2018; Moholdt et al., 2014)” to “(Sutterley et al., 2018; Moholdt et al.,

2014; Shean et al., 2018)”

19. Added “static”

20. Modified “. (Figure 2)” to “(Figure 2).”

21. Added “The elevation at each vertex point is weighted in the interpolation by the area of the

triangle created by the enclosed point and the two opposing vertices (Sutterley et al., 2018).”

22. Added “(∼10–100 meters)”

23. Added “In order to minimize the possibility of co-registering measurements over ice shelves with

measurements over grounded ice near the grounding zone or measurements over the ocean,

sea ice floes and icebergs, we only include points that are on the ice shelf for the compared time

periods using grounded ice delineations from Rignot et al. (2016) and Mouginot et al. (2017b)

and ice shelf extent delineations manually digitized from Landsat imagery courtesy of the U.S.

Geological Survey and MODIS imagery from Scambos et al. (2001).”

24. Added “For comparison, we compile elevation change measurements using an Eulerian

approach with the Triangulated Irregular Networks (TINs) technique outlined in Sutterley et al.

(2018) and a Lagrangian overlapping footprint approach following Slobbe et al. (2008) and

Moholdt et al. (2014).”

25. Added “The Eulerian TINs scheme follows the methods of Pritchard et al. (2012) and Rignot

et al. (2013) that used data from the NASA ICESat mission. Measurements compiled using the

Eulerian TINs scheme have been corrected for ice strain effects following Moholdt et al. (2014).”

26. Added “The Lagrangian overlapping footprint approach uses the same fourth-order Runge-Kutta

algorithm to advect the coordinates of the original elevation measurement to a predicted parcel

location at a separate time.”



27. Added “If any measurements from the separate flight line lie within 100m of the advected point,

the elevation measurement closest in Euclidean distance to the advected point is compared

against the original measurement.”

28. Added “the initial release of”

29. Deleted “(GSFC)”

30. Added “Uncertainties in tidal oscillations were estimated using constituent uncertainties from

King et al. (2011).”

31. Modified “(Legos; Carrère and Lyard, 2003)” to “(Carrère and Lyard, 2003)”

32. Added “Regional sea levels fluctuate due to changes in ocean dynamics, ocean mass, and

ocean heat content (Church et al., 2011; Armitage et al., 2018).”

33. Deleted “over ice-free ocean points”

34. Modified “(Le Traon et al., 1998; CMEMS)” to “(Le Traon et al., 1998)”

35. Added “The non-tidal sea surface anomalies are added to estimates of mean dynamic

topography, which is the mean deviation of the sea surface from the Earth’s geoid due to ocean

circulation.”

36. Added “The sea surface anomalies are extrapolated from the valid ice-free ocean values to the

ice shelf points following Paolo et al. (2016).”

37. Deleted “(IMAU)”

38. Modified “We use 5.5km horizontal resolution outputs for the Antarctic Peninsula (XPEN055,

van Wessem et al., 2016) and West Antarctica (ASE055, Lenaerts et al., 2018).” to “We use 5.5km

horizontal resolution outputs from a 1979–2016 climate simulation of the Antarctic Peninsula

(XPEN055, van Wessem et al., 2016) and a 1979–2015 climate simulation of West Antarctica

(ASE055, Lenaerts et al., 2018).”

39. Modified “(van Wessem et al., 2016, Figure 4)” to “(van Wessem et al., 2016)”

40. Added “The higher spatial resolution topography improves the modeling of wind-driven

downstream effects over ice shelves (Datta et al., 2018).”

41. Modified “The absolute precision of the RACMO2.3p2 model outputs has been estimated

using field data, such as ice cores and surface stake measurements (van de Berg et al.,

2006).” to “The absolute precision of the RACMO2.3p2 model outputs has been estimated using

Operation IceBridge snow radar observations, satellite observations of surface melt, and and in-

situ observations, such as ice cores and surface stake measurements, following Kuipers Munneke

et al. (2017) and Lenaerts et al. (2018).”

42. Added “We assume a 15% uncertainty in surface mass balance and firn height change following

estimates from Kuipers Munneke et al. (2017).”

43. Added “(Ms)”

44. Added “(Mb)”



45. Added “(M∇ · V )”

46. Modified “(Equation 1, Moholdt et al., 2014)” to “(Moholdt et al., 2014)”

47. Modified “Modified Equation 1” to “dMs

dt
+ dMb

dt
−M∇ · V = ρwρice

ρw−ρice

(

Dh
Dt

− ∂hoc

∂t
−

∂hfc

∂t

)

”

48. Deleted “inSAR-derived”

49. Modified “Mouginot et al. (2017a)” to “Rignot et al. (2017)”

50. Modified “smoothes” to “smooths”

51. Added “Deviations from mean ice flow were calculated using annually resolved ice velocity maps

derived from synthetic aperture radar and optical imagery (Mouginot et al., 2017a).”

52. Added “and uncertainties”

53. Modified “is” to “are”

54. Modified “areas 1–8 kilometers downstream of the grounding zone” to “areas downstream of

the 1–8 km wide grounding zones”

55. Added “3.1 Larsen Ice Shelves”

56. Added “The ice shelves draining from the Antarctic Peninsula into the Weddell Sea have

undergone some significant changes over the past three decades.”

57. Added “The Larsen-A Ice Shelf collapsed in 1995, and the Larsen-B Ice Shelf partially collapsed

in 2002 (Rott et al., 2002, 2011).”

58. Added “The tributary glaciers once flowing into these shelves accelerated with the loss of the

ice shelf abutment (Rignot et al., 2008).”

59. Added “Remnant”

60. Modified “ice shelves” to “Ice Shelves”

61. Modified “thickness change” to “melt”

62. Modified “ice shelf” to “Ice Shelf”

63. Modified “thickness change” to “melt”

64. Modified “ice shelf” to “Ice Shelf”

65. Added “Any uncertainties in reconstructing the regional SMB will significantly impact the

resultant basal melt rate estimate.”

66. Added “We compare our airborne laser altimetry estimate of basal melt rates with a long-term

record derived from radar altimetry (Adusumilli et al., 2018).”

67. Added “We find that the radar-derived estimate is comparable with the laser-derived estimate

within uncertainties for most points outside of the grounding zone (Figure 7).”

68. Added “3.2 Wilkins Ice Shelf”



69. Deleted “Figure 7 shows the change in ice thickness (a-b) and estimated basal thickness

change rates (c-d) of the Wilkins ice shelf for two 3-year periods from 2008–2011 and 2011–

2014.”

70. Modified “ice shelf” to “Ice Shelf”

71. Modified “ice shelf” to “Ice Shelf”

72. Deleted “The delineations were manually digitized as the ice shelf is heavily crevassed in

regions near the ice edge and the bay is often filled with ice mélange (Figure 7).”

73. Added “Figure 8 shows the change in ice thickness (a-b) and estimated basal melt rates (c-d)

of the Wilkins Ice Shelf for two 3-year periods from 2008–2011 and 2011–2014.”

74. Modified “ice shelf” to “Ice Shelf”

75. Modified “thickness change” to “melt”

76. Added “3.3 Pine Island Ice Shelf”

77. Added “The Pine Island Ice Shelf abuts one of the most rapidly changing glaciers in Antarctica

(Pritchard et al., 2009; Flament and Rémy, 2012).”

78. Modified “thickness change” to “melt”

79. Modified “ice shelf” to “Ice Shelf”

80. Added “In this area that was previously grounded, the average estimated basal melt rates from

the flight lines were 70±20 m/yr over 2009–2011 and 54±15 m/yr over 2011–2015.”

81. Modified “(Rignot, 2002)” to “(Rignot, 2002; Shean et al., 2018)”

82. Added “However, some of the changes in basal melt rate over the period could be due to large

regional interannual-to-decadal variability (Dutrieux et al., 2014; Paolo et al., 2015; Jenkins et al.,

2018).”

83. Added “3.4 Dotson and Crosson Ice Shelves”

84. Deleted “Ice thickness change rates (a-b) and estimated basal thickness change rates (c-d) of

the Dotson and Crosson ice shelves for two periods from 2002–2010 and 2010–2015 are shown

in Figure 9.”

85. Modified “ice shelves” to “Ice Shelves”

86. Modified “ice shelf” to “Ice Shelf”

87. Added “Ice thickness change rates (a-b) and estimated basal melt rates (c-d) of the Dotson and

Crosson Ice Shelves are shown in Figure 10 for two periods, 2002–2010 and 2010–2015.”

88. Modified “thinning rates” to “melt rates”

89. Modified “thickness” to “elevation”

90. Modified “(Moholdt et al., 2014, Figure 10)” to “(Moholdt et al., 2014, Figure 4)”

91. Modified “(Moholdt et al., 2014)” to “(Moholdt et al., 2014; Shean et al., 2018)”



92. Deleted “Our Eulerian approach uses the same Triangulated Irregular Networks (TINs)

technique but keeps the point measurement locations static.”

93. Deleted “The Eulerian scheme is similar to the methods of Pritchard et al. (2012) and Rignot

et al. (2013) that used ICESat data and required spatial smoothing of the elevation change rates

to filter out the effects of advected surface roughness.”

94. Modified “Moholdt et al. (2014) showed a similar improvement when comparing Lagrangian

and Eulerian-derived estimates in bottom melt for the Ross and Filchner-Ronne ice shelves.”

to “Moholdt et al. (2014) showed similar improvements in estimating basal melt rates between

Eulerian and Lagrangian processing methods for the Ross and Filchner-Ronne Ice Shelves.”

95. Modified “ICESat data” to “data from the ICESat mission”

96. Modified “Lagrangian tracking of airborne data requires 1) a sufficiently wide scanning swath,

2) accurate flow-line flight planning or 3) dense grid measurements.” to “Lagrangian tracking of

airborne data requires 1) accurate flow-line flight planning, 2) a sufficiently wide scanning swath,

or 3) dense grid measurements.”

97. Added “Flight lines along-flow need to be accurately planned to ensure upstream

measurements can be paired with future downstream measurements.”

98. Modified “ice shelf” to “Ice Shelf”

99. Modified “ice shelves” to “Ice Shelves”

100. Modified “the airborne data are” to “repeated airborne data is”

101. Modified “individual” to “singular”

102. Added “due to the spatial variability of ice thickness change”

103. Modified “Satellite altimetry measurements from ICESat-2 (Markus et al., 2017) should help

rectify the data limitation problem by providing dense point clouds which could be combined

with photogrammetric digital elevation models (DEMs) to create ice shelf-wide thickness change

maps.” to “Satellite altimetry measurements from ICESat-2 (Markus et al., 2017) should help

rectify the data limitation problem by providing dense and repeated point clouds. ICESat-2

data could be combined with photogrammetric digital elevation models (DEMs) to create high-

resolution ice shelf-wide thickness change maps (Berger et al., 2017; Shean et al., 2018).”

104. Deleted “A more comprehensive update from the ICESat results of Pritchard et al. (2012) and

Rignot et al. (2013) will be possible once ICESat-2 data become available.”

105. Added “Combining ICESat-2 with DEMs would help improve the use of the laser altimetry data

in a Lagrangian reference frame as ice parcels could be accurately tracked between separate

satellite tracks.”

106. Modified “ice shelf” to “Ice Shelf”

107. Modified “(Hogg and Gudmundsson, 2017, Figure 5)” to “(Hogg and Gudmundsson, 2017,

Figure 6)”

108. Modified “velocity time series” to “time-variable velocity maps”



109. Added “(Fahnestock et al., 2016; Gardner et al., 2018; Mouginot et al., 2017a)”

110. Added “Improvements in ice thickness and ice velocity estimates will also greatly improve

estimates of flux divergence and as a consequence estimates of basal melt rates calculated

using mass conservation (Berger et al., 2017; Adusumilli et al., 2018).”

111. Deleted “Our study provides a validation dataset for floating ice shelves using high-resolution

airborne laser altimetry data.”

112. Added “Idealistically, the laser altimeter will detect the snow surface and the radar altimeter will

detect the snow-ice interface.”

113. Added “Because laser altimeters ideally detect the snow surface, an estimate of the total column

snow/firn height change is needed to calculate the ice shelf freeboard change (Pritchard et al.,

2012).”

114. Modified “Variations in the dielectric properties of the snow due to variable temperatures and

snow grain sizes can affect the radar penetration depth (Rémy and Parouty, 2009).” to “For radar

altimeters, the radar penetration depth is affected by variations in the dielectric properties of the

surface layer due to variations in temperature, snow grain size, snow density and moisture content

(Partington et al., 1989; Rémy and Parouty, 2009).”

115. Added “Due to the variations in penetration depth, estimates of the firn height change below the

detected surface are necessary in order to calculate the freeboard change.”

116. Added “Our study provides a validation dataset for floating ice shelves using high-resolution

airborne laser altimetry data (Figure 7).”

117. Deleted “, the two methods most applicable to airborne data,”

118. Deleted “Figure 4 (previous)”

119. Replaced “Figure 4” with “Figure 10 (previous)”

120. Replaced “Figure 5” with “Figure 6 (previous)”

121. Replaced “Figure 6” with “Figure 5 (previous)”

122. Added “Figure 7”

123. Replaced “Figure 8” with “Figure 7 (previous)”

124. Replaced “Figure 9” with “Figure 8 (previous)”

125. Replaced “Figure 10” with “Figure 9 (previous)”
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Abstract.

We calculate rates of ice thickness change and bottom melt for ice shelves in West Antarctica and the Antarctic Penin-

sula from a combination of elevation measurements from Operation IceBridge corrected for oceanic and surface processes,

surface velocity measurements from synthetic aperture radar, and high-resolution outputs from regional climate models. We

calculate
✿✿✿

The
✿

ice thickness change rates
✿✿

are
✿✿✿✿✿✿✿✿✿

calculated
✿

in a Lagrangian reference frame to reduce the effects from advec-5

tion of sharp vertical features, such as cracks and crevasses, which
✿✿✿

that
✿

can saturate Eulerian-derived estimates. We use our

method over different ice shelves in Antarctica, which vary in terms of the processes that drive their change, their sizeand their

repeat coverage but are all susceptible to short-term changesin ice thickness.
✿✿✿✿

size,
✿✿✿✿✿

repeat
✿✿✿✿✿✿✿✿

coverage
✿✿✿✿

from
✿✿✿✿✿✿✿✿

airborne
✿✿✿✿✿✿✿

altimetry
✿✿✿✿

and

✿✿✿✿✿✿✿✿

dominant
✿✿✿✿✿✿✿✿

processes
✿✿✿✿✿✿✿✿

governing
✿✿✿✿

their
✿✿✿✿✿✿

recent
✿✿✿✿✿✿✿

changes.
✿

We find that ice thickness variations of the Larsen-C ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf are

due to the flux divergence of the shelf with firn and surface processes controlling short-term variability over our observation10

period. The Wilkins ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf is sensitive to short time-scale coastal and upper-ocean processes, and basal melt is the

dominate contributor to the ice thickness change over the period. At The Pine Island ice shelf
✿✿

the
✿✿✿✿

Pine
✿✿✿✿✿✿

Island
✿✿✿

Ice
✿✿✿✿✿

Shelf in the

critical region near in the grounding zone, we find that ice shelf thinning rates exceed 40 m/yr . The thickness change is
✿✿✿✿

with

✿✿

the
✿✿✿✿✿✿✿

change dominated by strong submarine thinning
✿✿✿✿✿✿

melting. Regions near the grounding zones of the Dotson and Crosson ice

shelves
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves are thinning at rates greater than 40 m/yr, also due to intense basal melt.
✿✿✿✿✿✿✿✿

Operation
✿✿✿✿✿✿✿✿✿

IceBridge
✿✿✿✿✿✿✿

provides
✿✿

a15

✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

dataset
✿✿✿

for
✿✿✿✿✿✿

floating
✿✿✿

ice
✿✿✿✿✿✿✿

shelves
✿✿

at
✿✿✿✿✿✿✿✿✿

moderately
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿✿

co-registered
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

methods.

1 Introduction

Most of the drainage from the Antarctic ice sheet is through its peripheral ice shelves, floating extensions of the land ice that

cover 75% of the Antarctic coastline and represent 10% of the total ice covered area (Cuffey and Paterson, 2010; Rignot et al.,

2013). Floating ice shelves exert control on the grounded ice sheet’s overall stability by buttressing the flow of the glaciers20

upstream (Dupont and Alley, 2005; Rignot et al., 2013). The thinning of Antarctic ice shelves reduces their ability to buttress

the glaciers that flow into them and makes the shelves more susceptible to fracture and overall collapse (Shepherd et al., 2003;

Fricker and Padman, 2012). Ice shelves gain mass by the advection of ice from the land, the accumulation of snow at the

1



surface, and the freezing of seawater at the ice shelf base (Thomas, 1979). They lose mass through runoff, wind scour and

sublimation at the surface of the shelf, melting at the base of the shelf and through calving (Thomas, 1979).

Currently, several ice shelves across Antarctica are losing volume, which has led to the acceleration and intensified discharge

of inland ice (Pritchard et al., 2012; Depoorter et al., 2013; Paolo et al., 2016). After the 2002
✿

In
✿✿✿✿✿

2003,
✿✿

a
✿✿✿✿

year
✿✿✿✿

after
✿✿✿

the collapse

of the Larsen B ice shelf
✿✿✿✿✿✿✿✿

Larsen-B
✿✿✿

Ice
✿✿✿✿

Shelf, some tributary glaciers draining into the Weddell Sea from the Antarctic Peninsula5

accelerated 2 to 8 times their previous flow rates , and
✿✿✿✿✿✿

flowed
✿✿

at
✿✿✿✿

rates
✿✿✿

2–8
✿✿✿✿✿

times
✿✿✿✿

their
✿✿✿✿

1996
✿✿✿✿

flow
✿✿✿✿

rates
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot et al., 2004).
✿✿✿✿✿

These

✿✿✿✿✿✿

glaciers
✿

continued flowing at
✿✿

the
✿

accelerated rates years after the collapse (Rignot et al., 2004, 2008; Berthier et al., 2012)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot et al., 2008; Berthier et al., 2012). Glaciers of the Amundsen Sea Embayment (ASE) in West Antarctica have ex-

perienced significant increases in surface velocity, surface
✿✿✿✿✿✿✿

dynamic
✿

thinning, and grounding line retreat since the 1990’s

(Rignot et al., 2002, 2014; Pritchard et al., 2009).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot et al., 2002, 2014; Pritchard et al., 2009; Flament and Rémy, 2012).10

The internal change in ice dynamics
✿✿✿

The
✿✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿

change
✿

of these glaciers likely stems from the advection of warm Circum-

polar Deep Water, which enhanced ocean
✿✿✿✿✿✿✿✿✿✿

ocean-driven
✿

melt causing thinning of the buttressing peripheral ice shelves (Jacobs

et al., 2011).

Here, we compile ice shelf thickness change rates calculated using a suite of airborne altimetry datasets, which have been

consistently processed and co-registered.
✿✿

We
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

co-registered
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿✿✿

datasets
✿✿✿

for
✿✿✿✿✿✿✿✿✿

evaluating
✿✿✿✿✿✿✿

estimates
✿✿✿✿✿

from15

✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿

altimetry,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

photogrammetry
✿✿✿

and
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

outputs. The main objectives of this study are to (i) calculate ice shelf thickness

change rates, (ii) investigate processes driving the changes in the shelf, (iii) investigate the sensitivity of spatial and temporal

sampling to overall estimates and (iv) evaluate different methods of calculating elevation change rates over ice shelves. In the

following sections, we discuss the co-registration method, the geophysical corrections applied, the results for a sample set of

ice shelves and the overall implications of the results for ice shelf studies.20

2 Materials and Methods

Our airborne lidar measurements are Level-2 Airborne Topographic Mapper (ATM Icessn) and Land, Vegetation and Ice Sensor

(LVIS) datasets provided by the National Snow and Ice Data Center (NSIDC) (Thomas and Studinger, 2010; Studinger, 2014;

Blair and Hofton, 2010). ATM is a conically scanning lidar which has flown in Antarctica since 2002 and was developed at

the NASA Wallops Flight Facility (WFF) (Thomas and Studinger, 2010). LVIS is a large-swath scanning lidar which flew in25

Antarctica in 2009, 2010, 2011 and 2015 and was developed at NASA Goddard Space Flight Center (GSFC) (Blair et al., 1999;

Hofton et al., 2008). For the data release available for Antarctica (LDSv1), the Level-2 LVIS data provides 3 different elevation

surfaces computed from the Level-1B waveforms: the highest and lowest returning surfaces from Gaussian decomposition,

and the centroidal surface (Blair and Hofton, 2010). Here, we use the lowest returning surface when the waveform resembles

a single-peak gaussian and the centroid surface when the waveform is multi-peak. The spatial coverage
✿✿✿✿✿✿✿✿

coverages of each30

instrument in Antarctica over Pre-IceBridge and
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

campaigns
✿✿✿✿✿

prior
✿✿

to
✿✿✿

and
✿✿✿✿✿✿

during NASA Operation IceBridge campaigns

is
✿✿

are
✿

shown in Figure 1. The elevation datasets from each instrument are converted to be in reference to the 2014 solution of the

International Terrestrial Reference Frame (ITRF) (Altamimi et al., 2016). The
✿✿

In
✿✿✿✿

order
✿✿

to
✿✿✿✿✿

track
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿✿✿✿✿✿

freeboard,

2



✿✿

the
✿

ellipsoid heights for each instrument were converted into geoid heights using coefficients from
✿✿

to
✿✿

be
✿✿

in
✿✿✿✿✿✿✿✿

reference
✿✿✿

to the

GGM05 gravity model
✿✿✿✿

geoid
✿✿✿✿✿

using
✿✿✿✿✿✿✿

gravity
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

coefficients provided by the Center for Space Research (Ries et al., 2016).

✿✿✿✿✿✿✿

Changes
✿✿

in
✿✿✿

ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

freeboard
✿✿✿

are
✿✿✿✿✿✿✿✿✿

converted
✿✿✿✿

into
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

ice
✿✿✿✿✿✿✿✿✿

thickness
✿✿

by
✿✿✿✿✿✿✿✿✿

assuming
✿✿✿✿✿✿✿✿✿

hydrostatic
✿✿✿✿✿✿✿✿✿✿

equilibrium
✿✿✿✿✿✿✿✿✿

following

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Fricker et al. (2001).
✿✿✿✿✿✿✿✿✿✿✿✿

Uncertainties
✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

instrument
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sutterley et al. (2018).
✿

2.1 Integrated analysis of altimetry5

We calculate rates of elevation change by comparing a set of measured elevation values with a set of interpolated elevation

values from a different time period after allowing for the advection of the ice (Sutterley et al., 2018; Moholdt et al., 2014)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sutterley et al., 2018; Moholdt et al., 2014; Shean et al., 2018). Each point in a flight line is advected from its original location

by integrating the Rignot et al. (2017) MEaSUREs
✿✿✿✿

static
✿

velocity data derived from synthetic aperture radar (SAR) using a

fourth-order Runge-Kutta algorithm. For each data point in a flight line, a set of Delaunay triangles is constructed from a10

separate flight line using all data points within 300 meters from the final location of the advected point (Pritchard et al., 2009,

2012; Rignot et al., 2013). If the advected point lies within the confines of the Delaunay triangulation convex hull, the triangular

facet housing the advected point is determined using a winding number algorithm (Sutterley et al., 2018). The new elevation

value is calculated using barycentric interpolation with the elevation measurements at the three triangle vertices . (Figure 2)
✿

.

✿✿✿

The
✿✿✿✿✿✿✿✿

elevation
✿✿

at
✿✿✿✿

each
✿✿✿✿✿

vertex
✿✿✿✿✿

point
✿✿

is
✿✿✿✿✿✿✿✿

weighted
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿

by
✿✿✿

the
✿✿✿✿

area
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

triangle
✿✿✿✿✿✿✿

created
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

enclosed
✿✿✿✿

point
✿✿✿✿

and15

✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿

opposing
✿✿✿✿✿✿

vertices
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sutterley et al., 2018).
✿

Assuming that the ice shelf surfaces are not curved over the scale of the individual triangular facet
✿✿✿✿✿✿✿✿

(∼10–100
✿✿✿✿✿✿✿

meters),

interpolating to the advected coordinates will compensate for minor slopes in the ice shelf surface so that the elevations of

equivalent parcels of ice can be compared in time (Pritchard et al., 2009). At this scale (below 100–200m), the topographic

relief of uncrevassed ice is primarily due to slopes in the ice surface and a planar assumption should be largely valid (Markus20

et al., 2017). Rough terrain, snow drifts and low-lying clouds will contaminate the lidar elevation values for the interpolation. In

order to limit the effect of contaminated points, the elevation measurements are filtered using the Robust Dispersion Estimator

(RDE) algorithm described in Smith et al. (2017).
✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿

minimize
✿✿✿

the
✿✿✿✿✿✿✿✿✿

possibility
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

co-registering
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

over

✿✿

ice
✿✿✿✿✿✿✿

shelves
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

over
✿✿✿✿✿✿✿✿

grounded
✿✿✿

ice
✿✿✿✿

near
✿✿✿

the
✿✿✿✿✿✿✿✿✿

grounding
✿✿✿✿

zone
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

ocean,
✿✿✿

sea
✿✿✿

ice
✿✿✿✿

floes
✿✿✿✿

and

✿✿✿✿✿✿✿

icebergs,
✿✿✿

we
✿✿✿✿

only
✿✿✿✿✿✿✿

include
✿✿✿✿✿

points
✿✿✿✿

that
✿✿✿

are
✿✿

on
✿✿✿

the
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿

time
✿✿✿✿✿✿

periods
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

grounded
✿✿✿

ice
✿✿✿✿✿✿✿✿✿✿

delineations
✿✿✿✿✿

from25

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2016) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mouginot et al. (2017b) and
✿✿✿

ice
✿✿✿✿✿

shelf
✿✿✿✿✿✿

extent
✿✿✿✿✿✿✿✿✿✿

delineations
✿✿✿✿✿✿✿✿

manually
✿✿✿✿✿✿✿✿

digitized
✿✿✿✿

from
✿✿✿✿✿✿✿

Landsat
✿✿✿✿✿✿✿✿

imagery

✿✿✿✿✿✿✿

courtesy
✿✿

of
✿✿✿

the
✿✿✿✿

U.S.
✿✿✿✿✿✿✿✿✿

Geological
✿✿✿✿✿✿

Survey
✿✿✿✿

and
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿

imagery
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Scambos et al. (2001).

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿

comparison,
✿✿✿

we
✿✿✿✿✿✿✿

compile
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿

using
✿✿

an
✿✿✿✿✿✿✿✿

Eulerian
✿✿✿✿✿✿✿✿

approach
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Triangulated
✿✿✿✿✿✿✿✿

Irregular

✿✿✿✿✿✿✿✿

Networks
✿✿✿✿✿✿

(TINs)
✿✿✿✿✿✿✿✿✿

technique
✿✿✿✿✿✿✿

outlined
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sutterley et al. (2018) and
✿✿

a
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿✿✿

overlapping
✿✿✿✿✿✿✿✿

footprint
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿✿✿

following

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Slobbe et al. (2008) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Moholdt et al. (2014).
✿✿✿✿

The
✿✿✿✿✿✿✿✿

Eulerian
✿✿✿✿

TINs
✿✿✿✿✿✿✿

scheme
✿✿✿✿✿✿

follows
✿✿✿

the
✿✿✿✿✿✿✿✿

methods
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pritchard et al. (2012) and30

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2013) that
✿✿✿✿

used
✿✿✿✿

data
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

NASA
✿✿✿✿✿✿

ICESat
✿✿✿✿✿✿✿

mission.
✿✿✿✿✿✿✿✿✿✿✿✿

Measurements
✿✿✿✿✿✿✿✿

compiled
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

Eulerian
✿✿✿✿

TINs
✿✿✿✿✿✿✿

scheme

✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿

corrected
✿✿✿

for
✿✿

ice
✿✿✿✿✿

strain
✿✿✿✿✿✿

effects
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Moholdt et al. (2014).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿✿✿

overlapping
✿✿✿✿✿✿✿

footprint
✿✿✿✿✿✿✿✿

approach
✿✿✿✿

uses

✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿✿

fourth-order
✿✿✿✿✿✿✿✿✿✿

Runge-Kutta
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

to
✿✿✿✿✿✿

advect
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

coordinates
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿

to
✿✿

a
✿✿✿✿✿✿✿✿

predicted

3



✿✿✿✿✿

parcel
✿✿✿✿✿✿✿

location
✿✿

at
✿

a
✿✿✿✿✿✿✿

separate
✿✿✿✿✿

time.
✿✿

If
✿✿✿

any
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

separate
✿✿✿✿✿

flight
✿✿✿✿

line
✿✿

lie
✿✿✿✿✿✿

within
✿✿✿✿✿

100m
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

advected
✿✿✿✿✿

point,
✿✿✿

the

✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

closest
✿✿

in
✿✿✿✿✿✿✿✿✿

Euclidean
✿✿✿✿✿✿✿

distance
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

advected
✿✿✿✿

point
✿✿

is
✿✿✿✿✿✿✿✿

compared
✿✿✿✿✿✿✿

against
✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿✿✿

measurement.

2.2 Geophysical Corrections

We correct the elevation measurements for geophysical processes following most of the procedures that will be used with
✿✿✿

the

✿✿✿✿✿

initial
✿✿✿✿✿✿

release
✿✿

of
✿

ICESat-2 data (Markus et al., 2017; Neumann et al., 2018). The processes are described in the following5

sections and represented as a schematic in Figure 3.

2.2.1 Tidal and Non-Tidal Ocean Variation

Surface elevation changes due to variations in ocean and load tides are calculated using outputs from the Circum-Antarctic Tidal

Simulation (CATS2008) model (Padman et al., 2008), a high-resolution inverse model updated from Padman et al. (2002). Sur-

face heights were predicted for the M2, S2, N2, K2, K1, O1, P1, Q1, Mf and Mm harmonic constituents and then inferred10

for 16 minor constituents following the PERTH3 algorithm developed by Richard Ray at NASA Goddard Space Flight Center

(GSFC) (Ray, 1999).
✿✿✿✿✿✿✿✿✿✿✿

Uncertainties
✿✿

in
✿✿✿✿

tidal
✿✿✿✿✿✿✿✿✿✿

oscillations
✿✿✿✿

were
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

constituent
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

King et al. (2011).

We correct for changes in load and ocean pole tides due to changes in the Earth’s rotation vector following Desai (2002) and

IERS conventions (Petit and Luzum, 2010). We correct for changes in sea surface height due to changes in atmospheric pressure

and wind stress using a dynamic atmosphere correction (DAC) provided by AVISO. The 6-hour DAC product combines outputs15

of the MOD2D-g ocean model, a 2-D ocean model forced by pressure and wind fields from ECMWF based on Lynch and Gray

(1979), with an inverse barometer (IB) response (Legos; Carrère and Lyard, 2003)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Carrère and Lyard, 2003).
✿✿✿✿✿✿✿

Regional
✿✿✿✿

sea

✿✿✿✿✿

levels
✿✿✿✿✿✿✿

fluctuate
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿

dynamics,
✿✿✿✿✿

ocean
✿✿✿✿✿

mass,
✿✿✿✿

and
✿✿✿✿✿

ocean
✿✿✿

heat
✿✿✿✿✿✿✿

content
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Church et al., 2011; Armitage et al., 2018).

Non-tidal sea surface anomalies over ice-free ocean points are removed from the ice shelf data using multi-mission altime-

try products computed by AVISO and provided by Copernicus (Le Traon et al., 1998; CMEMS).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Le Traon et al., 1998).
✿✿✿✿

The20

✿✿✿✿✿✿✿

non-tidal
✿✿✿

sea
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

anomalies
✿✿✿

are
✿✿✿✿✿✿

added
✿✿

to
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿

dynamic
✿✿✿✿✿✿✿✿✿✿

topography,
✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿

deviation
✿✿✿

of
✿✿✿

the
✿✿✿

sea

✿✿✿✿✿✿

surface
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

Earth’s
✿✿✿✿✿

geoid
✿✿✿

due
✿✿✿

to
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿✿✿

circulation.
✿✿✿✿

The
✿✿✿

sea
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

anomalies
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

extrapolated
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

valid
✿✿✿✿✿✿✿

ice-free

✿✿✿✿✿

ocean
✿✿✿✿✿

values
✿✿

to
✿✿✿

the
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿✿✿

points
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Paolo et al. (2016).

2.2.2 Surface Mass Balance and Firn Compaction

After correcting for the effects of oceanic variation and advection, changes in surface height are due to a combination of ac-25

cumulation, ablation and firn densification processes. To account for variations in surface elevation due to changes in surface

processes, we use monthly mean surface mass balance (SMB) outputs calculated from climate simulations of the Regional

Atmospheric Climate Model (RACMO2.3p2) computed by the Ice and Climate group at the Institute for Marine and At-

mospheric Research of Utrecht University (IMAU) (Ligtenberg et al., 2013; van Wessem et al., 2014, 2018). We use 5.5km

horizontal resolution outputs for
✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿✿✿✿

1979–2016
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿

the Antarctic Peninsula (XPEN055, van Wessem30

et al., 2016) and
✿

a
✿✿✿✿✿✿✿✿✿✿

1979–2015
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿

West Antarctica (ASE055, Lenaerts et al., 2018). The high-resolution

4

https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/atmospheric-corrections.html
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/msla-h.html


outputs better represent the surface mass balance state than outputs from the 27km ice sheet wide model, particularly in the

highly complex topography of mountains and glacial valleys in the Antarctic peninsula (van Wessem et al., 2016, Figure 4).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(van Wessem et al., 2016).
✿✿✿✿

The
✿✿✿✿✿

higher
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿✿✿✿✿

improves
✿✿✿

the
✿✿✿✿✿✿✿✿

modeling
✿✿

of
✿✿✿✿✿✿✿✿✿✿

wind-driven
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿✿

effects

✿✿✿

over
✿✿✿

ice
✿✿✿✿✿✿✿

shelves
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Datta et al., 2018). SMB is the quantified difference between mass inputs from the precipitation of snow and

rain, and mass losses by sublimation, runoff, and wind scour (Lenaerts et al., 2012; van den Broeke et al., 2009). Runoff5

is the portion of total snowmelt not retained or refrozen within the ice sheet. Wind scour is the erosion and sublimation

of wind-blown snow from the ice sheet surface (Das et al., 2013). The absolute precision of the RACMO2.3p2 model out-

puts has been estimated using field data,
✿✿✿✿✿✿✿✿

Operation
✿✿✿✿✿✿✿✿✿

IceBridge
✿✿✿✿✿

snow
✿✿✿✿✿

radar
✿✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

of
✿✿✿✿✿✿✿

surface

✿✿✿✿

melt,
✿✿✿✿

and
✿✿✿

and
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

observations,
✿

such as ice cores and surface stake measurements(van de Berg et al., 2006),
✿✿✿✿✿✿✿✿✿

following

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kuipers Munneke et al. (2017) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lenaerts et al. (2018). To correct for variations in the firn layer thickness, we use outputs10

from a semi-empirical firn densification model that simulates the steady-state firn density profile (Ligtenberg et al., 2011,

2012). The firn densification model is forced with surface mass balance outputs, surface temperatures fields and near-surface

wind speed fields computed by RACMO2.3p2 (Ligtenberg et al., 2011).
✿✿

We
✿✿✿✿✿✿✿

assume
✿

a
✿✿✿✿

15%
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

in
✿✿✿✿✿✿✿

surface
✿✿✿✿

mass
✿✿✿✿✿✿✿

balance

✿✿✿

and
✿✿✿

firn
✿✿✿✿✿✿

height
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kuipers Munneke et al. (2017).

2.3 Ice Shelf Bottom Melt15

Changes in ice shelf mass in a Lagrangian reference frame are due to changes in surface mass balance (SMB) processes
✿✿✿✿

(Ms),

basal melt
✿✿✿✿✿

(Mb) and the divergence of the ice shelf flow field (Equation 1, Moholdt et al., 2014).
✿✿✿✿✿✿✿✿

(M∇ ·V )
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Moholdt et al., 2014).

dMSMB

dt

dMs

dt
✿✿✿✿

+
dMb

dt
−M∇ ·V =

ρwρice

ρw − ρice

(

dh

dt

Dh

Dt
✿✿✿

−
dhoc

dt

∂hoc

∂t
✿✿✿✿

−
dhfc

dt

∂hfc

∂t
✿✿✿✿

)

(1)

✿✿✿✿✿

where
✿✿✿

ρw
✿✿✿

and
✿✿✿✿

ρice
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿

densities
✿✿

of
✿✿✿✿

sea
✿✿✿✿

water
✿✿✿✿

and
✿✿✿✿✿✿✿

meteoric
✿✿✿

ice
✿✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿

hoc
✿✿✿

are
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

heights,
✿✿✿

and
✿✿✿✿

hfc
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

firn-column20

✿✿✿✿✿✿

heights.
✿

We estimate ice shelf bottom melt rates along flight lines by using mass conservation and estimates of the mass flux

divergence (Rignot and Jacobs, 2002; Moholdt et al., 2014; Rignot et al., 2013). Ice flow divergence fields are calculated

from inSAR-derived ice velocities from Mouginot et al. (2017a)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rignot et al. (2017) differentiated using a Savitzky-Golay fil-

ter with an 11 km half-width window (Savitzky and Golay, 1964). The Savitzky-Golay algorithm smoothes
✿✿✿✿✿✿✿

smooths the ve-

locity field, and reduces the impact of ionospheric noise and other sources of uncertainty on the differentials.
✿✿✿✿✿✿✿✿

Deviations
✿✿✿✿✿

from25

✿✿✿✿

mean
✿✿✿

ice
✿✿✿✿✿

flow
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using
✿✿✿✿✿✿✿

annually
✿✿✿✿✿✿✿✿

resolved
✿✿✿

ice
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿

maps
✿✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿✿✿✿✿✿

synthetic
✿✿✿✿✿✿✿

aperture
✿✿✿✿✿

radar
✿✿✿✿

and
✿✿✿✿✿✿

optical

✿✿✿✿✿✿✿

imagery
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Mouginot et al., 2017a).
✿

We use ice thickness data
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

uncertainties from Bedmap2, which is
✿✿

are
✿

primarily derived

from Griggs and Bamber (2011) for ice shelves (Fretwell et al., 2013). The ice thickness estimates are calculated assuming

hydrostatic equilibrium, which should be valid for areas 1–8 kilometers
✿✿✿✿

most
✿✿✿✿✿

areas downstream of the grounding zone
✿✿✿

1–8
✿✿✿

km

✿✿✿✿

wide
✿✿✿✿✿✿✿✿✿

grounding
✿✿✿✿✿

zones (Brunt et al., 2010, 2011).30
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3 Results

3.1
✿✿✿✿✿✿

Larsen
✿✿✿✿

Ice
✿✿✿✿✿✿

Shelves

✿✿✿

The
✿✿✿

ice
✿✿✿✿✿✿✿

shelves
✿✿✿✿✿✿✿

draining
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

Antarctic
✿✿✿✿✿✿✿✿

Peninsula
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿

Weddell
✿✿✿✿

Sea
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

undergone
✿✿✿✿

some
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿

changes
✿✿✿✿

over

✿✿

the
✿✿✿✿

past
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿

decades.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

Larsen-A
✿✿✿

Ice
✿✿✿✿✿

Shelf
✿✿✿✿✿✿✿✿

collapsed
✿✿✿

in
✿✿✿✿✿

1995,
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿

Larsen-B
✿✿✿

Ice
✿✿✿✿✿

Shelf
✿✿✿✿✿✿✿

partially
✿✿✿✿✿✿✿✿✿

collapsed
✿✿

in
✿✿✿✿✿

2002

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rott et al., 2002, 2011).
✿✿✿✿

The
✿✿✿✿✿✿✿

tributary
✿✿✿✿✿✿✿

glaciers
✿✿✿✿✿

once
✿✿✿✿✿✿✿

flowing
✿✿✿✿

into
✿✿✿✿✿

these
✿✿✿✿✿✿✿

shelves
✿✿✿✿✿✿✿✿✿

accelerated
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿

loss
✿✿✿

of
✿✿✿

the
✿✿✿

ice
✿✿✿✿✿

shelf5

✿✿✿✿✿✿✿

abutment
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot et al., 2008). Figure 6 (a-b) shows the change in ice thickness of the Larsen-B
✿✿✿✿✿✿✿

Remnant
✿

and Larsen-C ice

shelves
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves for two periods, 2002–2008 and 2008–2016, from Pre-IceBridge and Operation IceBridge airborne data.

Figure 6 (c-d) shows the estimated basal thickness change
✿✿✿

melt
✿

rate of the ice shelves over the same periods. The average

thickness change rate between 2008 and 2016 from the flight line data over the Larsen-C ice shelf
✿✿✿

Ice
✿✿✿✿✿

Shelf is –1.4±0.6
✿✿✿

0.9

m/yr. From 2008–2016, the strongest thinning occurs near the grounding zone, particularly for the flight lines starting near10

Cabinet and Mill Inlets. For a flight line starting near the Whirlwind Inlet, the ice shelf is thinning near the grounding zone at

2 m/yr (Figure 5a). Scatter in the ice thickness change rate across the flight line is typically 30–50 cm/yr, or a 4–6 cm/yr error

in the measured elevation change rate (Figure 5a). Most of the thickness change along this line is due to the flux divergence

of the shelf. As the basal thickness change
✿✿✿✿

melt rate is calculated via mass conservation and the observed thinning rate largely

matches the flux divergence, estimates of the basal melt rate of the Larsen-C ice shelf
✿✿✿

Ice
✿✿✿✿✿

Shelf are highly dependent on the15

SMB flux estimate.
✿✿✿

Any
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructing
✿✿✿

the
✿✿✿✿✿✿✿✿

regional
✿✿✿✿

SMB
✿✿✿✿

will
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿

impact
✿✿✿

the
✿✿✿✿✿✿✿✿

resultant
✿✿✿✿

basal
✿✿✿✿✿

melt

✿✿✿

rate
✿✿✿✿✿✿✿✿

estimate.
✿✿✿

We
✿✿✿✿✿✿✿

compare
✿✿✿

our
✿✿✿✿✿✿✿✿

airborne
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿✿

basal
✿✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿

record
✿✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿✿✿

radar

✿✿✿✿✿✿✿

altimetry
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Adusumilli et al., 2018).
✿✿✿

We
✿✿✿

find
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

radar-derived
✿✿✿✿✿✿✿

estimate
✿✿

is
✿✿✿✿✿✿✿✿✿

comparable
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

laser-derived
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿

within

✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

for
✿✿✿✿

most
✿✿✿✿✿✿

points
✿✿✿✿✿✿

outside
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

grounding
✿✿✿✿

zone
✿✿✿✿✿✿✿✿✿

(Figure 7).
✿

3.2
✿✿✿✿✿✿

Wilkens
✿✿✿

Ice
✿✿✿✿✿

Shelf20

Figure 7 shows the change in ice thickness (a-b) and estimated basal thickness change rates (c-d) of the Wilkins ice shelf for two

3-year periods from 2008–2011 and 2011–2014. The Wilkins ice shelf
✿✿✿

The
✿✿✿✿✿✿✿

Wilkins
✿✿✿

Ice
✿✿✿✿✿

Shelf
✿

is fed by glaciers on Alexander

Island, which is located near the west coast of the Antarctic Peninsula and is the largest of the Antarctic islands. Wilkins ice

shelf
✿✿✿✿✿✿

Wilkins
✿✿✿

Ice
✿✿✿✿✿

Shelf is sensitive to short time-scale coastal and upper-ocean processes (Padman et al., 2012) and ablates

largely through basal melting (Rignot et al., 2013). Ice shelf extents are delineated from Landsat imagery provided courtesy25

of the U.S. Geological Survey (LPDAAC) and MODIS imagery provided by NSIDC (Scambos et al., 2001). The delineations

were manually digitized as the ice shelf is heavily crevassed in regions near the ice edge and the bay is often filled with ice

mélange . Figure 8
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

change
✿✿

in
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿

(a-b)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿

(c-d)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

Wilkins
✿✿✿

Ice
✿✿✿✿

Shelf
✿✿✿

for
✿✿✿✿

two

✿✿✿✿✿

3-year
✿✿✿✿✿✿

periods
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

2008–2011
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

2011–2014. The extent of the ice shelf reduced by over 6000 km2 between 1990 and 2017

(Scambos et al., 2009). The partial collapse occurred once the shelf started decoupling from Charcot Island (Vaughan et al.,30

1993) and likely occurred due to hydro-fracturing (Scambos et al., 2009). Meltwater ponds covered areas of 300–600 km2 in

Landsat imagery in 1986 and 1990 (Vaughan et al., 1993). The ponds existed largely in the now-collapsed portions of the shelf

near Rothschild Island. Average thinning rates of the Wilkins ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf
✿

from the flight lines were 1.2±0.4
✿✿

0.7
✿

m/yr
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from 2008–2011 and 0.7±0.4
✿✿

0.5
✿

m/yr from 2011–2014. Average estimated basal thickness change
✿✿✿

melt
✿

rates from the flight

lines were 2.8±0.3
✿✿

1.3
✿

m/yr in the earlier period and 2.0±0.3
✿✿✿

0.9 m/yr in the latter period. Basal accretion could have occurred

in some regions during the 2011–2014 period.

3.3
✿✿✿

Pine
✿✿✿✿✿✿

Island
✿✿✿

Ice
✿✿✿✿✿

Shelf

✿✿✿

The
✿✿✿✿

Pine
✿✿✿✿✿

Island
✿✿✿

Ice
✿✿✿✿✿

Shelf
✿✿✿✿

abuts
✿✿✿✿

one
✿✿

of
✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿

rapidly
✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿✿

glaciers
✿✿

in
✿✿✿✿✿✿✿✿✿

Antarctica
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pritchard et al., 2009; Flament and Rémy, 2012).5

Figure 9 shows the change in ice thickness (a-b) and estimated basal thickness change
✿✿✿

melt
✿

rates (c-d) of the Pine Island ice

shelf
✿✿✿

Ice
✿✿✿✿✿

Shelf for two periods from 2009–2011 and 2011–2015. These periods were chosen to include repeat measurements

from LVIS of the ice shelf near the grounding zone and to use the high-resolution outputs of RACMO2.3p2 ASE055. In the

previously grounded region between the 1996 and 2011 grounding lines, the ice shelf thinning rates were 97±15 m/yr during

2009–2011 and 82
✿✿

81±7 m/yr during 2011–2015.
✿✿

In
✿✿✿

this
✿✿✿✿

area
✿✿✿✿

that
✿✿✿

was
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿✿

grounded,
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

basal
✿✿✿✿

melt10

✿✿✿✿

rates
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

flight
✿✿✿✿✿

lines
✿✿✿✿

were
✿✿✿✿✿✿✿

70±20
✿✿✿✿

m/yr
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

2009–2011
✿✿✿✿

and
✿✿✿✿✿✿

54±15
✿✿✿✿

m/yr
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿✿

2011–2015. Ice thickness change rates

outside of the previously grounded area are significantly weaker, averaging –21±7 m/yr for 2009–2011 and –15±3 m/yr for

2011–2015. The average ice thinning rates from the flight lines were insignificantly different at 36±9 m/yr over 2009–2011 and

34
✿✿

35±5 m/yr over 2011–2015. Basal melt rates near the grounding zone have the highest impact on the glacial flow dynamics

(Rignot and Jacobs, 2002). The difference in melt rates near the grounding zone between 2009–2011 and 2011–2015 could15

possibly explain some of the moderation in thinning of the grounded ice and stability in ice discharge from Pine Island Glacier

after 2010 (McMillan et al., 2014; Medley et al., 2014). As shown in Figure 9c-d, the ice thickness change is dominated by

strong submarine thinning, which is further evidence of the dominant oceanic controls on the ice shelf mass balance in this re-

gion (Rignot, 2002).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rignot, 2002; Shean et al., 2018).
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿

rate
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

period
✿✿✿✿✿

could

✿✿

be
✿✿✿

due
✿✿

to
✿✿✿✿✿

large
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

interannual-to-decadal
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dutrieux et al., 2014; Paolo et al., 2015; Jenkins et al., 2018).
✿

20

3.4
✿✿✿✿✿✿

Dotson
✿✿✿

and
✿✿✿✿✿✿✿✿

Crosson
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves

Ice thickness change rates (a-b) and estimated basal thickness change rates (c-d) of the Dotson and Crosson ice shelves for two

periods from 2002–2010 and 2010–2015 are shown in Figure 9. The glaciers flowing into the Dotson and Crosson ice shelves

✿✿

Ice
✿✿✿✿✿✿✿

Shelves
✿

have rapidly thinned, increased in speed and experienced significant retreats of grounding line positions over the

past 20 years (Mouginot et al., 2014; Scheuchl et al., 2016). Flow speeds of the Crosson ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf
✿

have doubled in25

some regions over 1996 to 2014, while the flow speed of Dotson has remained largely steady (Lilien et al., 2018).
✿✿✿

Ice
✿✿✿✿✿✿✿✿

thickness

✿✿✿✿✿✿

change
✿✿✿✿

rates
✿✿✿✿

(a-b)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿✿

(c-d)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Dotson
✿✿✿

and
✿✿✿✿✿✿✿✿

Crosson
✿✿✿

Ice
✿✿✿✿✿✿

Shelves
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿

Figure 10
✿✿

for
✿✿✿✿

two

✿✿✿✿✿✿

periods,
✿✿✿✿✿✿✿✿✿✿

2002–2010
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

2010–2015. Regions near the grounding lines of the input glaciers are thinning rapidly for both shelves

driven by strong basal melt. Basal thinning rates averaged 46–71
✿✿✿

melt
✿✿✿✿✿

rates
✿✿✿✿✿✿✿

averaged
✿✿✿✿✿✿

45–71
✿

m/yr near the grounding zone of

Smith glacier over the two periods. Khazendar et al. (2016) documented rapid submarine ice melt and the loss of 300–490 m30

of floating ice between 2002 and 2009. Our work here provides independent evidence of this large-scale melt using a separate

method and more years of data. We find that the ice mass wastage continued unabated between 2010 and 2015 with thinning

rates over the flight lines averaging 22±1 m/yr.
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4 Discussion

Using a Lagrangian reference frame produces estimates of ice shelf thickness
✿✿✿✿✿✿✿

elevation
✿

change with much less noise compared

with a Eulerian reference frame (Moholdt et al., 2014, Figure 10)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Moholdt et al., 2014, Figure 4). The advection of ice thick-

ness gradients, such as that from cracks and crevasses in the ice, can saturate the Eulerian-derived estimates (Moholdt et al., 2014)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Moholdt et al., 2014; Shean et al., 2018). Our Eulerian approach uses the same Triangulated Irregular Networks (TINs) technique5

but keeps the point measurement locations static. The Eulerian scheme is similar to the methods of Pritchard et al. (2012) and

Rignot et al. (2013) that used ICESat data and required spatial smoothing of the elevation change rates to filter out the effects of

advected surface roughness. Moholdt et al. (2014) showed a similar improvement when comparing Lagrangian and Eulerian-derived

estimates in bottom melt.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Moholdt et al. (2014) showed
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

in
✿✿✿✿✿✿✿✿

estimating
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

Eulerian

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿✿

processing
✿✿✿✿✿✿✿

methods
✿

for the Ross and Filchner-Ronne ice shelves
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves. In their study, Moholdt et al.10

(2014) used ICESat data
✿✿✿

data
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

ICESat
✿✿✿✿✿✿✿

mission
✿✿✿

that
✿✿✿✿✿

were integrated using an overlapping footprints scheme.

Lagrangian tracking of airborne data requires 1)
✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿

flow-line
✿✿✿✿✿

flight
✿✿✿✿✿✿✿✿

planning,
✿✿✿

2) a sufficiently wide scanning swath,

2) accurate flow-line flight planning or 3) dense grid measurements.
✿✿✿✿

Flight
✿✿✿✿✿

lines
✿✿✿✿✿✿✿✿✿

along-flow
✿✿✿✿

need
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿

accurately
✿✿✿✿✿✿✿

planned
✿✿

to

✿✿✿✿✿

ensure
✿✿✿✿✿✿✿✿

upstream
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

paired
✿✿✿✿

with
✿✿✿✿✿✿

future
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements. With the current Operation IceBridge

data at most locations, cross-flow flight lines advected outside of the swath width over multi-year repeat times. This limited our15

dataset to regions with flow-line measurements, such as the Larsen-C ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf (Figure 6), or frequent measurements,

such as the Dotson and Crosson ice shelves
✿✿✿

Ice
✿✿✿✿✿✿✿

Shelves (Figure 10). For most ice shelves, the airborne data are
✿✿✿✿✿✿✿

repeated

✿✿✿✿✿✿✿

airborne
✿✿✿✿

data
✿✿

is too sparse to extract large-scale spatial trends, particularly in the era before Operation IceBridge. Isolated

crossovers can be calculated using Lagrangian tracking for some ice shelves using along-flow and cross-flow measurements

from separate years. However, these individual
✿✿✿✿✿✿✿

singular crossovers would likely not be representative of the large-scale behavior20

of the ice shelf
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿

change. Satellite altimetry measurements from ICESat-2 (Markus

et al., 2017) should help rectify the data limitation problem by providing dense point clouds which
✿✿✿

and
✿✿✿✿✿✿✿

repeated
✿✿✿✿

point
✿✿✿✿✿✿✿

clouds.

✿✿✿✿✿✿✿

ICESat-2
✿✿✿✿

data
✿

could be combined with photogrammetric digital elevation models (DEMs) to create
✿✿✿✿✿✿✿✿✿✿✿✿

high-resolution ice shelf-

wide thickness change maps
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Berger et al., 2017; Shean et al., 2018). A more comprehensive update from the ICESat results

of Pritchard et al. (2012) and Rignot et al. (2013) will be possible once ICESat-2 data become available.
✿✿✿✿✿✿✿✿✿

Combining
✿✿✿✿✿✿✿✿

ICESat-225

✿✿✿✿

with
✿✿✿✿✿

DEMs
✿✿✿✿✿✿

would
✿✿✿✿

help
✿✿✿✿✿✿✿

improve
✿✿✿✿

the
✿✿✿

use
✿✿

of
✿✿✿

the
✿✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry
✿✿✿✿

data
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

frame
✿✿✿

as
✿✿✿

ice
✿✿✿✿✿✿

parcels
✿✿✿✿✿

could
✿✿✿

be

✿✿✿✿✿✿✿✿

accurately
✿✿✿✿✿✿✿

tracked
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

separate
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿

tracks.
✿

Here, the airborne data are co-registered in a Lagrangian reference frame using a static velocity map provided by NSIDC

through the MEaSUREs program (Rignot et al., 2017). However, there are cases that do not fit the assumption of temporally-

invariant velocities. Prior to the calving event of the 40,000 km2 A-68 iceberg from the Larsen-C ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf
✿

on July30

11, 2017, the ice was rifting from the south and the regions downstream of the crack were rotating outward

(Hogg and Gudmundsson, 2017, Figure 5)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hogg and Gudmundsson, 2017, Figure 6). In the Amundsen Sea Embayment, the

ice velocity structure has changed year-to-year since the 1990’s (Rignot et al., 2008; Mouginot et al., 2014). The floating

ice shelves in the Amundsen Sea are also rifting concurrently with the acceleration of the instreaming glaciers (Macgre-
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gor et al., 2012). For both of these cases, it would be more appropriate to predict the advected parcel location using a

velocity time series
✿✿✿✿✿✿✿✿✿✿

time-variable
✿✿✿✿✿✿✿✿

velocity
✿✿✿✿

maps. However, the spatial coverage of annual velocity maps is lacking for some

time periods, which will complicate the advection calculation. With the high-temporal resolution data from the ESA Sen-

tinel mission, the Landsat-based goLIVE project and the future NASA-ISRO SAR mission (NISAR), the advected parcel

locations could be predicted with much greater accuracy for recent Operation IceBridge campaigns and future altimetry mis-5

sions .
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Fahnestock et al., 2016; Gardner et al., 2018; Mouginot et al., 2017a).
✿✿✿✿✿✿✿✿✿✿✿✿

Improvements
✿✿

in
✿✿✿

ice
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿

and
✿✿✿

ice
✿✿✿✿✿✿✿

velocity

✿✿✿✿✿✿✿

estimates
✿✿✿✿

will
✿✿✿✿

also
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿

improve
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿

flux
✿✿✿✿✿✿✿✿✿

divergence
✿✿✿

and
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿✿

consequence
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿✿

basal
✿✿✿✿

melt
✿✿✿✿

rates
✿✿✿✿✿✿✿✿✿

calculated

✿✿✿✿

using
✿✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿✿✿

conservation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Berger et al., 2017; Adusumilli et al., 2018).
✿

This work builds off of the work of Paolo et al. (2015) and Adusumilli et al. (2018) that used radar altimetry data to analyze

the recent thinning and basal melt rates of ice shelves. Paolo et al. (2015) calculated changes in the ice thickness time series over10

an 18-year time period using a suite of satellite radar altimetry data compiled in an Eulerian frame of reference. They found that

the overall volume loss of ice shelves accelerated over the period 1994–2012, particularly for the ice shelves of West Antarctica.

Adusumilli et al. (2018) expanded on this work to estimate the basal melt rates over 23 years and including radar altimetry data

from CryoSat-2. Our study provides a validation dataset for floating ice shelves using high-resolution airborne laser altimetry

data. Laser altimeters and radar altimeters can measure different surfaces over snow-covered ice surfaces (Rémy and Parouty,15

2009).
✿✿✿✿✿✿✿✿✿✿

Idealistically,
✿✿✿

the
✿✿✿✿✿

laser
✿✿✿✿✿✿✿

altimeter
✿✿✿✿

will
✿✿✿✿✿

detect
✿✿✿

the
✿✿✿✿✿

snow
✿✿✿✿✿✿

surface
✿✿✿✿

and
✿✿✿

the
✿✿✿✿

radar
✿✿✿✿✿✿✿✿

altimeter
✿✿✿✿

will
✿✿✿✿✿

detect
✿✿✿

the
✿✿✿✿✿✿✿✿

snow-ice
✿✿✿✿✿✿✿✿

interface.

✿✿✿✿✿✿✿

Because
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimeters
✿✿✿✿✿✿

ideally
✿✿✿✿✿✿

detect
✿✿✿

the
✿✿✿✿

snow
✿✿✿✿✿✿✿

surface,
✿✿✿

an
✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿

column
✿✿✿✿✿✿✿✿

snow/firn
✿✿✿✿✿

height
✿✿✿✿✿✿✿

change
✿

is
✿✿✿✿✿✿✿

needed
✿✿

to

✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿✿✿✿✿

freeboard
✿✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pritchard et al., 2012).
✿✿✿

For
✿✿✿✿✿

radar
✿✿✿✿✿✿✿✿

altimeters,
✿✿✿

the
✿✿✿✿✿

radar
✿✿✿✿✿✿✿✿✿✿

penetration
✿✿✿✿

depth
✿✿

is
✿✿✿✿✿✿✿

affected
✿✿✿

by

✿✿✿✿✿✿✿✿

variations Variations in the dielectric properties of the snow due to variable temperatures and snow grain sizes can affect the

radar penetration depth(Rémy and Parouty, 2009).
✿✿✿✿✿

surface
✿✿✿✿✿

layer
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

variations
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿✿

snow
✿✿✿✿✿

grain
✿✿✿✿

size,
✿✿✿✿✿

snow
✿✿✿✿✿✿

density20

✿✿✿

and
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

content
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Partington et al., 1989; Rémy and Parouty, 2009).
✿✿✿✿

Due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

variations
✿✿✿

in
✿✿✿✿✿✿✿✿✿

penetration
✿✿✿✿✿✿

depth,
✿✿✿✿✿✿✿✿

estimates

✿✿

of
✿✿✿

the
✿✿✿

firn
✿✿✿✿✿

height
✿✿✿✿✿✿✿

change
✿✿✿✿✿

below
✿✿✿

the
✿✿✿✿✿✿✿

detected
✿✿✿✿✿✿

surface
✿✿✿

are
✿✿✿✿✿✿✿✿✿

necessary
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿✿

freeboard
✿✿✿✿✿✿✿

change.
✿

Determining the

sensitivity of radar estimates to surface penetration over different surface types could help reconcile differences between the

various estimates.
✿✿✿

Our
✿✿✿✿✿

study
✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

dataset
✿✿✿

for
✿✿✿✿✿✿

floating
✿✿✿

ice
✿✿✿✿✿✿

shelves
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿✿

high-resolution
✿✿✿✿✿✿✿

airborne
✿✿✿✿

laser
✿✿✿✿✿✿✿✿

altimetry

✿✿✿

data
✿

(Figure 7
✿

).
✿

25

Compiling estimates of elevation change from laser altimetry is non-trivial and different processing methods can produce

differing results. Felikson et al. (2017) compared four different processing schemes (crossover differencing, along-track surface

fits, overlapping footprints and triangulated irregular networks) using ICESat data in an Eulerian sense over grounded ice in

Greenland. They found discernible and irreconcilable differences between methods when deriving elevation change over the

grounded ice sheet. We compare results from overlapping footprints and triangulated irregular networks , the two methods30

most applicable to airborne data, to test their coherence over ice shelf surfaces. As the surface slopes on ice shelves are small,

we find that overlapping footprints and TINs approaches produce similar estimates of elevation change with scanning lidars

in Lagrangian frames of reference (Figure 4). The overlapping footprints approach produces a slightly noisier but statistically

similar estimate compared with the TINs approach, and is a significantly simpler algorithm to implement.
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5 Conclusions

We present a method for measuring ice shelf thickness change through the co-registration of Operation IceBridge laser altimetry

data in a Lagrangian reference frame. We use our method to detect changes in ice shelves in West Antarctica and the Antarctic

Peninsula where the airborne data are available. We find that our method is a significant improvement over Eulerian-derived

estimates that require substantial smoothing or spatial averaging of the data. However, there are significant limitations when5

using airborne data for detecting ice shelf thickness change with Lagrangian tracking, particularly the lower spatial coverage

and typical lack of repeat tracks over ice shelves. Data from the recently launched NASA ICESat-2 mission will help rectify

these problems, particularly if combined with high-resolution photogrammetric digital elevation models.
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Figure 1. Pre-IceBridge and Operation IceBridge campaign flight lines over a) Antarctica b) the Antarctic Peninsula and c) the Amundsen

Sea Embayment from 2002 to 2016 colored by year of acquisition and laser ranging instrument. Antarctic grounded ice delineation provided

by Mouginot et al. (2017b). Flight lines overlaid on a 2008–2009 MODIS mosaic of Antarctica (Haran et al., 2014).
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Figure 2. Triangulated mesh formulated around an advected 2008 ATM flight line point using points from a 2009 ATM flight line (orange

dots). The red star denotes the location of the original point, the green star denotes the parcel location after advection, and the dashed green

line is the path of advection. P1, P2 and P3 represent the three vertices of the triangle housing the advected ATM point. Elevation values at

each vertex point are weighted in the interpolation by their respective areas, A1, A2 and A3. Inset map shows the location of the main figure.
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Figure 3. Representation of processes contributing to surface elevation changes for a) ice shelves and b) grounded ice. Modified from

Ligtenberg et al. (2011) and Zwally and Li (2002). Processes represented in schematic: accumulation (vacc), dynamic atmosphere (vdac),

snowmelt (vme), sublimation (vsu), wind scour (vws), firn compaction (vfc), ice dynamics (vdyn), meltwater refreeze and retainment (vrfz),

solid Earth uplift (vse), sea level (vsl), ocean tides (vot), load tides (vlt), load pole tides (vpt), ocean pole tides (vopt), and basal melt (vb).
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Ice thickness change (a-b) and estimated basal thickness change rates (c-d) of the Larsen-B remnant and Larsen-C ice shelf for two periods,

2002–2008 and 2008–2016. AI, CI, MI, WI and MOI denote the Adie, Cabinet, Mill, Whirlwind and Mobiloil inlets respectively.

MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted in gray (Mouginot et al., 2017b). 2016 and 2017 ice shelf

extents delineated from MODIS imagery are denoted in green and light gray respectively (Scambos et al., 2001). Plots are overlaid on a

2008–2009 MODIS mosaic of Antarctica (Haran et al., 2014). Inset map denotes the location of the

maps.
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Figure 5. Measured and estimated ice thickness change rates from 2008 to 2016 for a flight line over the Larsen-C ice shelf
✿✿

Ice
✿✿✿✿✿

Shelf

(a) starting near the Whirlwind inlet with the total measured ice thickness change rate denoted in black, the surface mass balance (SMB)

fluxes from RACMO2.3p2 (XPEN055) denoted in red (van Wessem et al., 2016), the flux divergence terms combining ice thicknesses from

Bedmap2 (Fretwell et al., 2013) and ice velocities from MEaSUREs (Rignot et al., 2017) denoted in green and the residual basal thickness

change rates denoted in purple. Index denotes the ATM Icessn record number for October 10, 2008. Locations of co-registered records from

the flight line are shown in b). MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted in gray (Mouginot et al., 2017b).

2016 and 2017 ice shelf extents delineated from MODIS imagery are denoted in green and light gray respectively (Scambos et al., 2001).

Map is overlaid on a 2008–2009 MODIS mosaic of Antarctica (Haran et al., 2014). Inset map denotes the location of the map.
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Figure 6. Ice thickness change (a-b) and estimated basal thickness change
✿✿✿

melt
✿

rates (c-d) of the Wilkins ice shelf
✿✿✿✿✿✿✿

Larsen-B
✿✿✿✿✿✿✿

remnant

✿✿✿

and
✿✿✿✿✿✿✿

Larsen-C
✿✿✿

Ice
✿✿✿✿

Shelf
✿

for two periods, 2008–2011
✿✿✿✿✿✿✿✿

2002–2008
✿

and 2011–2014
✿✿✿✿✿✿✿✿✿

2008–2016.
✿✿

AI,
✿✿✿

CI,
✿✿✿

MI,
✿✿✿

WI
✿✿✿✿

and
✿✿✿✿

MOI
✿✿✿✿✿

denote
✿✿✿

the
✿✿✿✿✿

Adie,

✿✿✿✿✿✿

Cabinet,
✿✿✿✿

Mill,
✿✿✿✿✿✿✿✿✿

Whirlwind
✿✿✿

and
✿✿✿✿✿✿✿

Mobiloil
✿✿✿✿

inlets
✿✿✿✿✿✿✿✿✿✿

respectively. MEaSUREs InSAR-derived Antarctic grounded ice boundaries are denoted in

gray (Mouginot et al., 2017b). Historical
✿✿✿✿

2016
✿✿✿

and
✿✿✿✿

2017
✿

ice shelf extents delineated from Landsat and MODIS imagery are denoted with

colored lines (LPDAAC; Scambos et al., 2001)
✿

in
✿✿✿✿✿

green
✿✿✿

and
✿✿✿

light
✿✿✿✿

gray
✿✿✿✿✿✿✿✿✿

respectively
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Scambos et al., 2001). Plots are overlaid on
✿

a
✿✿✿✿✿✿✿✿✿

2008–2009

MODIS images
✿✿✿✿✿

mosaic of
✿✿✿✿✿✿✿✿

Antarctica
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Haran et al., 2014).
✿✿✿✿

Inset
✿✿✿

map
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿

location
✿✿

of
✿✿✿

the
✿✿✿✿

maps.

23



Figure 7.
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✿✿✿✿
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✿✿✿

ice
✿✿✿✿

shelf
✿✿✿✿✿
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MODIS
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imagery
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Plots
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Inset map

denotes the location of the maps.
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Figure 8. Ice thickness change (a-b) and estimated basal thickness change
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✿✿✿✿✿✿✿✿

2011–2014. MEaSUREs InSAR-derived Antarctic grounded ice boundaries

are denoted in gray (Mouginot et al., 2017b). 1996 InSAR-derived grounding line locations
✿✿✿✿✿✿✿

Historical
✿✿✿

ice
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shelf
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delineated from

Rignot et al. (2016)
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Landsat
✿✿✿

and
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿

imagery are delineated in green
✿✿✿✿✿

denoted
✿✿✿✿

with
✿✿✿✿✿✿

colored
✿✿✿

lines. Plots are overlaid on MODIS images of

Antarctic ice shelves provided by NSIDC (Scambos et al., 2001). Inset map denotes the location of the maps.
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Figure 9. Ice thickness change (a-b) and estimated basal thickness change
✿✿✿

melt rates (c-d) of the Dotson and Crosson ice shelves
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✿✿✿✿✿✿✿✿

2011–2015. MEaSUREs InSAR-derived Antarctic grounded ice boundaries

are denoted in gray (Mouginot et al., 2017b). 1996 InSAR-derived grounding line locations from Rignot et al. (2016) are delineated in

green. Plots are overlaid on a 2008–2009 MODIS mosaic
✿✿✿✿✿

images of Antarctica (Haran et al., 2014)
✿✿✿✿✿✿✿
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(Scambos et al., 2001). Inset map denotes the location of the maps.
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Figure 10. Surface elevation
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2002–2010
✿
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2010–2015. The elevation change rates

shown here are not corrected for oceanic or surface processes and are not RDE filtered (Smith et al., 2017).
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