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Abstract. The firn covering the Greenland ice sheet interior can retain part of the surface melt, buffering the ice sheet’s 

contribution to sea level, but its characteristics are still little known. Using remote-sensing observations from 2000- 2017, we 25 

estimate that firn covers 1,405,500 ±17,250 km
2
 of the ice sheet. We present 344 firn-core-derived observations of the top 10 

m firn air content (FAC10), indicative of the firn’s meltwater retention capacity. FAC10 remained stable in the coldest 74% of 

the firn area during 1953-2017, while FAC10 decreased in the warmest and driest 12% of the firn area between 1997-2008 

and 2011-2017, resulting in a loss of 180 ±78 km
3
 (-26 ±11%) of air from the near-surface firn. 

1. Introduction 30 

More than half of the Greenland ice sheet’s current contribution to sea level rise stems from surface melt and subsequent 

runoff (van den Broeke et al., 2016). During summer, surface melt occurs across a large area of the ice sheet, even reaching 

the highest ice sheet elevations during extremely warm summers like 2012 (Nghiem et al., 2012). Most of the surface 

meltwater produced in the firn-covered interior of the ice sheet is refrozen into the snow and firn and does not immediately 

contribute to sea-level rise (Harper et al., 2012). This retention capacity of the firn is controlled by (i) the areal extent of the 35 

firn; (ii) the firn air content (FAC); iii) firn temperature;  and iv) firn permeability. In this study, we use in-situ and remotely-

sensed observations to estimate the firn’s extent and its air content in the upper 10 m. 
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The first attempt to delineate the ice-sheet firn area into characteristic zones dates back to the 1950s  (Benson, 1962). Later 

studies delineated the firn area using satellite remote sensing (e.g. Nolin and Payne, 2007) but had limited spatial and 

temporal coverage. Recently Fausto et al. (2018) published maps of remotely-sensed end-of-summer snowline but did not 

discuss the simple implication of these snowlines for the firn area extent. 

The FAC is the volume of air contained in the firn from the surface to a certain depth per unit area. It indicates for that depth 5 

range the maximum volume available to store percolating meltwater either in liquid or refrozen form (Harper et al., 2012).  

Harper et al., (2012) used two years (2007 and 2008) of observations from 15 sites along the western slope of the ice sheet to 

estimate the spatially integrated FAC of the entire percolation area in spite of the diversity of firn structures across the ice 

sheet (Forster et al. 2014; Machguth et al., 2016). Estimation of the FAC was also made using firn models forced by 

regional-climate-model (RCM) output (e.g. Ligtenberg et al., 2018) but model results differ significantly from each other in 10 

terms of firn density and therefore of FAC (Steger et al., 2016). 

The depth to which meltwater may percolate, and therefore to which FAC must be calculated, varies with melt intensity and 

firn permeability. Heilig et al. (2018) did not observe percolation deeper than 2.3 m below the surface at 2300 m a.s.l. in 

west Greenland indicating that, at their study site, only the near-surface FAC was being used to store meltwater. In a warmer 

region, ~400 km to the north and at 1555 m a.s.l., Humphrey et al. (2012) observed percolation below 10 m meaning that the 15 

FAC of the whole firn column, from the surface to pore-close-off depth, might be used for meltwater retention. Nevertheless, 

Machguth et al. (2016) showed that percolation depth may not increase linearly with melt intensity and that refrozen 

meltwater can reduce percolation, subsequently preventing meltwater from accessing part of the FAC. Due to the absence of 

an ice-sheet-wide estimation of percolation depth and to the scarcity of firn observations covering the whole firn column, we 

here focus on the top 10 m of firn, for which numerous observations cores are available, and assume that the firn air content 20 

in these top 10 m (FAC10) represents the maximum volume of meltwater that can be stored in the firn. 

In this study, we first estimate the firn area extent using remotely-sensed end-of-summer snow extent maps from Fausto et 

al., (2018). We then calculate the FAC10 using a set of 344 firn cores collected between 1953 and 2017. We finally present 

the spatial distribution and where possible the temporal evolution of FAC10. 

2. Data and methods 25 

2.1. Firn area extent 

Fausto et al. (2018) used surface radiance remotely sensed by the MODIS Terra satellite between 2000 and 2017 along with 

in-situ measurements of albedo at PROMICE automatic weather stations (Ahlstrøm et al., 2008) to estimate the end-of-

summer snow-covered and bare ice areas. Using these data, we determine the firn area, defined as the region where only 

snow has been detected during the entire 2000-2017 period. 30 
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2.2. Firn cores dataset 

We gathered from the literature 324 firn-density profiles from cores that were at least 5 m long (Table 1 and S1 of the 

Supplementary Material) supplemented by 20 firn cores extracted in April-May 2016 and 2017 as part of the FirnCover 

campaigns and for which the density was measured at 10 cm resolution. Potential gaps in the density profile were filled 

using a logarithmic function of depth fitted to the available densities. When near-surface snow densities were missing, we 5 

assigned a density of 315 kg/m
3
 (Fausto et al., 2018) to the top centimetre of snow before the gap-filling. 

2.3. Calculation of the FAC10 

For a discrete density profile, the FAC10 in m
3 

m
-2

 is calculated to depth  𝑧𝑁 as: 

𝐹𝐴𝐶𝑧𝑁
=  ∑ 𝑚k(1/𝜌k − 1/𝜌𝑖𝑐𝑒)N

k=1        [1] 

where, for each section k, 𝜌𝑘 is the density and 𝑚𝑘is the mass. The density of the ice formed after meltwater infiltration and 10 

refreezing, 𝜌𝑖𝑐𝑒, is set to 873 kg m
-3

 after Machguth et al. (2016). The value for 𝜌𝑖𝑐𝑒 was seen to vary within ±25 kg m
-3

 by 

Machguth et al., 2016 and Harper et al., 2012 used a value of 843 kg m
-3

. Changing 𝜌𝑖𝑐𝑒  by ±25 kg m
-3

 leads to a variation of 

±1 to 10% for FAC10 values ranging from 5 to 1 m
3 

m
-2

. Addressing the variability of 𝜌𝑖𝑐𝑒  and its potential drivers is beyond 

the scope of this study. 

With 121 cores shorter than 10 m in our dataset, we need to extrapolate shallow measurements to a depth of 10 m. For that 15 

we find the 10+ m core that best matches the FAC vs. depth profile of the shallow core, with lowest Root Mean Squared 

Difference (RMSD) amongst all available cores, and append the bottom section of this ‘twin’ core to the FAC profile of the 

shallow core (see Figure S1 of the Supplementary Material). When testing this methodology on the available 10+ m long 

cores from which we remove the deepest 3 m of the FAC profile, find a mean difference between extrapolated and real 

FAC10 inferior to 1% and a RMSD of 3-15% for FAC10 values ranging from 5 to 1 m
3 

m
-2

. 20 

The accuracy of the firn and infiltration ice densities as well as the effect of spatial heterogeneity can be assessed by 

comparing FAC10 measurements located within 1 km (Figure S2 of the Supplementary Material). The standard deviation of 

co-located FAC10 observations is below 0.15 m
3 

m
-2

 for the majority of sites (20 of 27). We therefore attach to any FAC10 

measurement an uncertainty of ±0.3 m
3
 m

-2
, twice the standard deviation, ±6 to 30% for FAC10 values ranging from 5 to 1 

m
3 

m
-2

. 25 

2.4. Zonation of the firn air content 

FAC10 depends on the site’s temperature and accumulation history and on meltwater refreezing at depth (Reeh, 2008). We 

extract each core site’s long-term (1970-2014) average net snow accumulation �̅̇� and long-term (1970-2014) average air 
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temperature 𝑇𝑎
̅̅ ̅ respectively from Box (2013) and Box et al. (2013) (Figure 1a). We also find  �̅̇� and  𝑇𝑎

̅̅ ̅ for all locations that 

occur within the firn area derived in this study (outlined area in Figure 1b). 

Borrowing the terminology from Benson (1962), we define three regions where FAC10 shows markedly different behaviours: 

(1) the Dry Snow Area (DSA, amber area in Figure 1a); (3) the Low Accumulation Wet Snow Area (LAWSA, red area in 

Figure 1a); (3) the High Accumulation Wet Snow Area (HAWSA, green area in Figure 1a). The DSA encompasses low 5 

temperature regions of high altitude or latitude where melt is rare and where FAC10 can be explained by well-known dry-firn 

compaction equations dependent on �̅̇� and  𝑇𝑎
̅̅ ̅  (amber area in Figure 1a). Toward higher  𝑇𝑎

̅̅ ̅ (lower altitude and/or latitude) 

two patterns are evident. At lower �̅̇� sites in the LAWSA, more scatter appears in FAC10, and a slope change occurs in the 

FAC10’s temperature dependency (Figure 1c). At higher �̅̇� (in the HAWSA), FAC10 remains higher than at locations with 

similar 𝑇𝑎
̅̅ ̅ in the LAWSA and the slope of the temperature dependency is different from the one found in the DSA or 10 

LAWSA (green area in Figure 1d). 

The boundary between the colder (DSA) and warmer regions (LAWSA and HAWSA) can be defined as the 𝑇𝑎
̅̅ ̅ where the dry 

firn densification cannot explain FAC10 variations and increasing scatter appears in the FAC10 values (Figure 1c). We set this 

threshold to  𝑇𝑎
̅̅ ̅ = -16

o
C as it is the temperature for which the standard deviation of FAC10 within 1

o
C-wide bins first 

exceeds 0.3 m
3
 m

-2
 (Figure 1c). Few firn cores are available in the transition zone from LAWSA to HAWSA and a boundary 15 

could be anywhere between 543 mm w.eq./yr (core with highest accumulation in the LAWSA, Figure 1a) and 762 mm w.eq. 

yr
-1

 (core with lowest accumulation in HAWSA, Figure 1a). We chose the rounded value of 600 mm w.eq. yr
-1

 to separate 

LAWSA from HAWSA. The geographical delineations of the DSA, LAWSA and HAWSA are presented in Figure 1a.  

2.5. Firn air content mapping 

To map FAC10 over the entire firn area from our collection of observations, we fit empirical functions of �̅̇� and  𝑇𝑎
̅̅ ̅  to FAC10 20 

measurements and use these functions to predict FAC10 anywhere in the firn area. We prefer this empirical approach to 

purely statistical approaches (e.g. kriging) or to the use of RCM and firn models which still do not accurately reproduce 

observations of firn densities and thus FAC10 in the lower accumulation area (Steger et al., 2016; Langen et al., 2017). The 

form of these empirical functions is arbitrary but is tightly constrained by the numerous FAC10 observations that they should 

fit. In this section, we briefly explain how we build these functions while further details and illustrations are available in 25 

Figure S3 of the Supplementary Material. 

2.5.1. Dry Snow Area 

In the DSA, we use the steady-state firn densification model by Arthern et al. (2010) and we tune the surface snow density to 

302 kg m
-3

 through least squares method to match the 209 available FAC10 observations (Figure S3 in the Supplementary 
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Material). We also investigated other densification laws and the one from Arthern et al. (2010) gave the best match with 

FAC10 observations. 

2.5.2. Low Accumulation Wet Snow Area 

FAC10 observations in the LAWSA are correlated with �̅̇� and anti-correlated with  𝑇𝑎
̅̅ ̅ (Figure S3 in Supplementary Material). 

We therefore constrain the form of our empirical function FAC10̂(�̅̇� , 𝑇�̅�) to the sum of an increasing linear function of �̅̇� and 5 

a decreasing piecewise-linear function of  𝑇𝑎
̅̅ ̅ . There are an insufficient number of observations to resolve the FAC10 

distribution each year, so we group measurements from different years until there are enough points in each group to 

constrain our empirical function. We therefore group 10 observations from 1997-1998 (having good spatial coverage but 

limited number of cores) with 35 measurements from 2005-2008 (numerous but geographically concentrated) and fit a 

function  FAC10̂1998−2008
(�̅̇� , 𝑇�̅�)  to them. We also group 35 FAC10 observations from 2011-2017 to which we fit a 10 

function FAC10̂2011−2017
(�̅̇� , 𝑇�̅�). To allow a smooth transition between these empirical functions used in the LAWSA and 

the one used in the DSA, we also include in the fitting process the FAC10 observations available in the lower DSA where -

17
o
C ≤ 𝑇𝑎

̅̅ ̅ < -16
o
C. 

We investigate the robustness of our method using a sensitivity analysis for each period separately. For 1000 repetitions, we 

randomly exclude four observations (respectively 9% and 11% of the observations in 1997-2008 and 2011-2017) and fit our 15 

empirical function FAC10̂(�̅̇� , 𝑇�̅�)  to the remaining measurements. We then calculate the standard deviation of all possible 

FAC10̂ at each (�̅̇� , 𝑇𝑎
̅̅ ̅) location and double it to quantify the 95% envelope of uncertainty that applies to any predicted 

FAC10 in the LAWSA depending on (�̅̇� , 𝑇𝑎
̅̅ ̅). Since we do not consider that prediction can be more precise than field 

measurements, we set 0.3 m
3 
m

-2
 as the minimum possible uncertainty. 

2.5.3. High Accumulation Wet Snow Area 20 

The HAWSA is described by only 15 firn cores drilled between 2010 and 2017 at 7 sites in the interior of the HAWSA, more 

than 20 km from the firn line. To overcome the scarcity of observations we use our remotely-sensed firn line as additional 

measurements where FAC10 = 0 m
3
 m

-2
. We then fit our empirical function FAC10̂(�̅̇� , 𝑇�̅�) as follows. In the surroundings of 

the core sites, we use a linear function of 𝑇𝑎
̅̅ ̅  fitted through least squares to the FAC10 observations:   FAC10

̂ ( 𝑇𝑎
̅̅ ̅)    =

 −0.07 ∗  𝑇𝑎
̅̅ ̅ + 3.4  (RMSD = 0.25 m

3
 m

-2
, Figure S3 in the Supplementary Material). The residuals of this fit did not show 25 

any correlation with �̅̇� meaning that not enough measurements are available to disentangle the control of �̅̇� and 𝑇𝑎
̅̅ ̅ on FAC10 

in the HAWSA.  We then need to describe how the FAC10 decreases from the core sites down to 0 m
3 

m
-2

 at the remotely-

sensed firn line. We can make three estimates: i) a mid-range estimate where FAC10 is bilinearly interpolated between the 

available firn cores and the firn line; ii) an upper-range estimate where FAC10 follows the temperature dependency presented 
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above until the firn line where it drops abruptly to 0 m
3 

m
-2

; and iii) a lower-range estimate where the FAC10 drops to 0 m
3 
m

-

2
 shortly after the observations. These three surfaces are presented in more detail in Figure S3 in the Supplementary Material. 

The mid-range estimate is considered as our most realistic estimation and is the empirical function FAC10̂(�̅̇� , 𝑇�̅�) we use for 

the mapping of FAC10 in the HAWSA while half the spread between the upper- and lower-range estimates quantifies the 

uncertainty applying to our FAC10 map. 5 

3. Results and Discussion 

3.1. Delineation of the firn area 

The firn area, illustrated in Figure 1b, covers at least an area of 1,405,500 km
2
 or 78.5 % of the ice sheet (when compared to 

the contiguous ice extent from Citterio and Ahlstrøm (2013)). Moving the firn line 1 km in- or outwards (the resolution of 

the MODIS surface radiance product) suggest an uncertainty of ±17,250 km
2
 (~1%). However, one should keep in mind that 10 

the firn line is an idealized view of a patchy and gradual transition from bare ice to snow and firn that survived the summer 

melt in previous years (Benson, 1962). Spatial heterogeneity in melt and snowfall leave isolated snow and firn patches at the 

end of the melt season which might be missed by the method of Fausto et al. (2018). Using the average from 18 years of data 

gives a robust firn line and reduces the noise from local heterogeneities but also provides the absolute minimum extent of the 

firn area during 2000-2017. Ephemeral or thinner firn patches may exist outside of our strict delineation but we do not 15 

believe they play an important role in the overall retention capacity of the firn.  

3.2. Stable FAC10 in the Dry Snow Area 

The spatial distribution of FAC10 in the DSA is shown in Figure 2. In that region representing 74% of the firn area, we find a 

spatiotemporally average FAC10 value of 4.9 m
3
 m

-2
. We find a 

 RMSD between predicted and observed FAC10 of 0.2 m
3
 m

-2
 (Figure S3 in the Supplementary Material). Assuming a normal 20 

distribution of errors, 95% of all FAC10 observations in the DSA are within an uncertainty range of ±0.4 m
3 

m
-2

 (twice the 

RMSD) of the predicted one. We consider the absence of temporal trend in the deviation between measured and predicted 

FAC10 as evidence of the stability of the FAC10 in the DSA between 1953 and 2017. When integrating FAC10 over the extent 

of the DSA and considering an uncertainty of ± 0.4 m
3 

m
-2

, we calculate that 5200 ±452  km
3
 of air is contained within the 

top 10 m of firn. 25 

3.3. Decreasing FAC10 in the Low Accumulation Wet Snow Area 
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For the LAWSA, comprising 12 % of the firn area, we find an average FAC10 value of 4.3 m
3
 m

-2
 for the 1997-2008 period. 

The estimated average FAC10 for the 2011-2017 period is 3.3 m
3
 m

-2
, 23% lower than for 1997-2008. The result of the 

sensitivity analysis (Figures 3b and 3c), confirms that the decrease in FAC10 between the 1997-2008 and 2011-2017 is 

greater than the uncertainty associated to the two FAC10 maps. The FAC10 loss in the LAWSA is concentrated in a 60 km 

wide band above the firn line (Figure 2). Summing the FAC10 and its uncertainty indicates that 690 ±50 km
3
 of air is 5 

contained within the LAWSA in 1997-2008 and 520 ±60 km
3
 in 2011-2017. This loss of 180 ±78 km

3
 of air content, 26 

±11% of the 1997-2008 air content in the LAWSA represents, if we assume that all the air content can be used to store 

meltwater, 150 ± 68 Gt (0.4± 0.2 mm sea level equivalent) of storage capacity available in 1997-2008 that had become 

unavailable by 2011-2017. 

Recent studies attributed the increasing near-surface firn densities and subsequent loss of FAC to increasing surface melt and 10 

meltwater refreezing (de la Peña et al., 2015; Machguth et al., 2016; Graeter et al., 2018; Charalampidis et al., 2015). 

However, firn density and FAC are also greatly dependant on annual snowfall (Herron and Langway, 1980) and a decrease 

in snowfall could also trigger a decrease in FAC10. Nevertheless, the lack of distributed observation of snow accumulation 

for the 1997-2017 period and the contradicting trends in precipitation given by the RCMs (Lucas-Picher et al., 2012; van den 

Broeke et al., 2016; Fettweis et al., 2017) make it impossible to quantify the contribution of snowfall into change in FAC10.  15 

In our regional approach, we grouped measurements from different years, which made it impossible to define the precise 

years that were responsible for this loss of FAC10. However, repeated observations in western Greenland (Machguth et al., 

2016; Charalampidis et al., 2015) indicate that 2010 and 2012 extreme melt seasons are responsible for the greatest changes 

in near-surface firn density and FAC10 during the 1997-2017 period. 

Finally, the loss of FAC10 near the firn line likely turned firn areas into bare ice and triggered the upward migration of the 20 

firn line. Unfortunately the relative uncertainty of our FAC10 maps is greatest near the firn line (Figure 2 and 3) making it 

difficult to infer firn line migration from FAC10 changes. Using our remotely-sensed firn line for all periods was a 

simplification but discussing its temporal evolution requires additional data and is beyond the scope of this study. 

3.4. Potential deep meltwater percolation in the High Accumulation Wet Snow Area 

In the HAWSA, comprising 14 % of the firn area, we calculate an average FAC10 value of 2.4 m
3
 m

-2
. The spatial 25 

distribution of FAC10 is shown in Figure 2 while our estimated uncertainty map is presented in Figure 3. Summing over the 

HAWSA, we calculate that 560 ±154 km
3
 of air exists within the top 10 m of firn. 

The markedly (up to 90%) higher FAC10 in the HAWSA compared to the LAWSA for any given 𝑇�̅� (Figure 1) indicates that 

for similar surface melt (of which 𝑇𝑎
̅̅ ̅ is a proxy) the firn in the HAWSA was less dense and potentially less saturated by ice 

than in the LAWSA. In line with observations at aquifer sites located in the HAWSA (Forster et al., 2014), we hypothesize 30 

that in this region meltwater percolation may exceed 10 m, facilitated by high snow accumulation insulating the firn from the 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-172
Manuscript under review for journal The Cryosphere
Discussion started: 28 August 2018
c© Author(s) 2018. CC BY 4.0 License.



8 

 

winter cold. This deep percolation also implies that FAC10 may not be the most adequate indicator of the firn’s retention 

capacity in the HAWSA as additional retention may occur at deeper than 10 m.  The fate of this deep meltwater whether it 

refreezes below 10 m, flows to the nearest aquifer, or reaches the bed, remains unknown and requires further investigation. 

3.5. Total firn meltwater storage capacity 

The total air content in the DSA during 1953-2017, in the LAWSA during 2011-2017 and in the HAWSA during 2010-2017 5 

can potentially accommodate 5,480 ± 420 Gt of meltwater (15 ± 1.2 mm sea level equivalent). Harper et al. (2012) estimated 

that the firn located in the long-term percolation area (as modelled by a RCM) could potentially store between 322 ±44 Gt 

(when considering the top 10 m of firn) and 1 289 −252
+388 Gt (if considering the FAC to pore close-off depth). The smaller 

retention capacity found by Harper et al. (2012) mainly owes to the smaller area considered in their study. With our 

distributed approach, it is now possible to determine each year which areas of the firn are available to store meltwater and 10 

the available FAC10 given the extent of surface melt. 

3.6. Uncertainty of long-term average climatic conditions 

To investigate how uncertainties in �̅̇� and  𝑇𝑎
̅̅ ̅ impacts our FAC10 maps, we repeat our procedure using the 1979-2014 �̅̇� and 

 𝑇𝑎
̅̅ ̅ predicted by the Modèle Atmosphérique Régional (MAR; Fettweis et al., 2017), as illustrated in Figures S4 to S7 of the 

Supplementary Material. The MAR-derived FAC10 fits equally well (within measurements uncertainty, RMSD < 0.03 m
3 
m

-
15 

2
) the FAC10 observations. Since Box et al. (2013) gives 2 m air temperature and MAR gives surface temperature the value of 

 𝑇𝑎
̅̅ ̅ threshold between DSA and LAWSA/HAWSA is adjusted to -20

 o
C. Nonetheless differences between the two FAC10 

predictions exist in areas where the spatial pattern of temperature and accumulation in Box (2013) and MAR differ, 

especially in the southern and eastern firn area. In these regions fewer cores are available to constrain the FAC10 estimates. 

More observations in these sparsely observed regions would therefore not only improve FAC10 estimates, but also elucidate 20 

which �̅̇� and  𝑇𝑎
̅̅ ̅ source best describes the spatial pattern in FAC10. 

3.7. Isolated FAC10 measurements 

In the LAWSA and HAWSA, our dataset also contains 40 firn cores that were too isolated in space and time to be used 

FAC10 in mapping. Isolated measurements nevertheless provide insight on how the FAC10 might have been at a given place 

and time. Renaud (1959) reported a measurement in the LAWSA with a FAC10 ~30% higher (+ 1 m
3 

m
-2

) than the one 25 

measured in 2006-2007. Conclusions from a single measurement are dubious, but it still indicates that the FAC10 may have 
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been significantly higher in the 1950’s. Ten observations in the LAWSA in the 1980’s by van der Veen, et al.  (2001), did 

not appear systematically different than our calculated FAC10 for the 1997-2008 period, suggesting that FAC10 was similar in 

the LAWSA during these two periods. A last measurement raises questions in the HAWSA: the core 6348 by Mosley-

Thompson et al. (2001) drilled in 1998 indicates a FAC10 of 3.9 m
3 

m
-2

. It is a factor of 2.2 higher than our mid-range FAC10 

estimate based on measurements from 2010-2017 and indicates either a drastic decrease in FAC10 between 1998 and 2010-5 

2017 or inaccuracies of our methodology for that location. A re-survey of that location would be of great interest even 

though the 1998 core, being a single point in space, can always be suspected to be anomalous or not representative. 

4. Conclusions 

Our study provides, for the first time, a delineation of the firn area of the Greenland ice sheet over the 2000 – 2017 period. 

Using remote-sensing observations from 2000 to 2017, we estimate that firn covers 1,405,500 ± 17,250 km
2
 or 78.5% of the 10 

ice sheet. This result allows further study of possible migration of this boundary in the past or in the future. Additionally, we 

present a collection of 344 firn cores spanning 65 years from which the firn air content from the surface to 10 m depth 

(FAC10) could be calculated. We identify three regions on the firn area in which FAC10 where we could fit empirical 

functions of long-term accumulation and temperature averages (�̅̇� and  𝑇𝑎
̅̅ ̅) to FAC10 measurements and explain the spatio-

temporal evolution of FAC10. The stability of the FAC10 in the Dry Snow Area (where 𝑇𝑎
̅̅ ̅ ≤ -16

o
C) over the 1953-2017 15 

period contrasts with a 21% decrease of FAC10 in the Low Accumulation Wet Snow Area (where  𝑇𝑎
̅̅ ̅ > -16

o
C and �̅̇� ≤ 600 

mm w.eq. yr
-1

) between 1998-2008 and 2011-2017. This decreasing FAC10 translates into the loss of 168 ± 138 Gt (0.5± 0.4 

mm sea level equivalent)  of meltwater retention capacity 1998-2008 and 2011-2017. In the High Accumulation Wet Snow 

Area (where  𝑇𝑎
̅̅ ̅ >= -16

o
C and �̅̇� < 600 mm w.eq. yr

-1
) we find an average FAC10 of 2.9 m

3
 m

-2
 during the 2000-2017 period. 

FAC10 observations also indicated that meltwater may percolate deeper than 10 m from the surface making FAC10 20 

insufficient to describe the retention capacity of the firn there. In a similar way, Machguth et al. (2016) showed that under 

conditions not completely understood, ice formation may prevent meltwater from accessing the entire top 10 m of firn. 

Therefore, further investigation of the firn permeability will help to understand how much of the FAC is used for meltwater 

retention. The firn area delineation and FAC10 dataset and maps can be used to constrain firn models and monitor the future 

evolution of the firn and are available for download at www.promice.dk. 25 
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Figure 1. a) Geographical distribution of the FAC10 dataset. b) Distribution of the dataset in the accumulation-temperature space 

(�̅̇� and  𝑻𝒂
̅̅̅̅ ).  FAC10 value is indicated by a coloured disk around each point. c) Temperature dependency of FAC10 in the DSA and 

LAWSA d) Temperature dependency of FAC10 in the DSA and HAWSA. 
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Figure 2. FAC10 maps and location of the FAC10 measurements (a, b, c). Map of the change in FAC10 between the 1997-2008 and 

2011-2017 periods in the LAWSA (c). 

 

Figure 3. Maps of the relative uncertainty of the FAC10 maps in the DSA (a), LAWSA for the 1997-2008 period (b) and in the 5 
LAWSA for 2011-2017 and in the HAWSA for 2010-2017 period (c). 
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Table 1. List of the publications presenting the firn cores used in this study. 

Source Number of cores  Source Number of cores 

Albert and Shultz (2002) 1  Langway  (1967) 1 

Alley (1987) 1  Lomonaco et al. (2011) 1 

Bader (1954) 1  Machguth et al. (2016) 28 

Baker (2012) 1  Mayewski and Whitlow  (2016a) 1 

Benson  (1962) 55  Mayewski and Whitlow  (2016b) 1 

Bolzan and Strobel (1999) 9  Miège et al. (2013) 3 

Buchardt et al. (2012) 8  Morris and Wingham (2014) 66 

Clausen et al. (1988) 8  Mosley-Thompson et al. (2001) 31 

Colgan et al. (2018) 1  Porter and Mosley-Thompson  (2014) 1 

Fischer et al.,  (1995) 14  Reed (1966) 1 

Forster et al. (2014) 5  Renaud  (1959) 7 

Hawley et al . (2014) 8  Spencer, et al. (2001) 8 

Harper et al. (2012) 32  Steen-Larsen et al. (2011) 1 

Jezek (2012) 1  Vallelonga et al. (2014) 1 

Kameda et al. (1995) 1  van der Veen et al. (2001)   10 

Koenig et al. (2014) 3  Wilhelms (1996)   13 

Kovacs et al. (1969) 1  This study 20 
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