Brief communication: Firn data compilation reveals the evolution of the firn air content on the Greenland ice sheet

Baptiste Vandecrux^{1,2}, Michael MacFerrin³, Horst Machguth^{4, 5}, William T. Colgan¹, Dirk van As¹, Achim Heilig⁶, C. Max Stevens⁷, Charalampos Charalampidis⁸, Robert S. Fausto¹, Elizabeth M. Morris⁹, Ellen Mosley-Thompson¹⁰, Lora Koenig¹¹, Lynn N. Montgomery¹¹, Clément Miège¹², Sebastian B. Simonsen¹³, Thomas Ingeman-Nielsen², Jason E. Box¹

¹Geological Survey of Denmark and Greenland, Copenhagen, Denmark.

² Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark.

³ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA

⁴ Department of Geosciences, University of Fribourg, Fribourg, Switzerland

⁵ Department of Geography, University of Zurich, Zurich, Switzerland

⁶ Department of Earth and Environmental Sciences, LMU, Munich, Germany

⁷ Department of Earth and Space Sciences, University of Washington, WA USA

⁸ Bavarian Academy of Sciences and Humanities, Munich, Germany

⁹ Scott Polar Research Institute, Cambridge University, United Kingdom

¹⁰ Byrd Polar and Climate Research Center and Department of Geography, Ohio State University, Columbus, OH USA.

¹¹ National Snow and Ice Data Center, University of Colorado, Boulder, NV, United States

¹² Department of Geography, Rutgers University, Piscataway, NJ, United States

¹³ National Space Institute, Technical University of Denmark, Kgs. Lyngby, Denmark

Correspondence to: B. Vandecrux (bava@byg.dtu .dk)

Figure S1. Extrapolation of FAC to 10 m using the lower section of the existing 10 m-long FAC profile that has the lowest Root Mean Squared Difference with the shallow FAC profile.

Figure S1. Extrapolation of FAC to 10 m using the lower section of the existing 10 m-long FAC profile that has the lowest Root Mean Squared Difference with the shallow FAC profile.

Figure S1. Extrapolation of FAC to 10 m using the lower section of the existing 10 m-long FAC profile that has the lowest Root Mean Squared Difference with the shallow FAC profile.

Figure S1. Extrapolation of FAC to 10 m using the lower section of the existing 10 m-long FAC profile that has the lowest Root Mean Squared Difference with the shallow FAC profile.

Figure S2. Standard deviation of FAC measurements located within 1 km. Dashed line indicate 0.3 m³ m⁻², value used to describe the uncertainty applying on any FAC₁₀ measurement.

Figure S3. Empirical functions of \overline{b} and $\overline{T_a}$, fitted to the FAC₁₀ observations and used to predict FAC₁₀ over the entire frin area. a) Over the DSA, the firn densification function from Arthern et al. (2010) (blue plane) was used with a fresh snow density of 302.15 kg m⁻³. b) In the LAWSA two functions linearly increasing with \overline{b} and piecewise linearly decreasing with $\overline{T_a}$ (two slope breaks at 1/3 and 2/3 of the $\overline{T_a}$ range covered by the data) were fitted separately to the FAC₁₀ observations for 1997-2008 and 2011-2017 periods. c) In the HAWSA we use the linear dependence of FAC₁₀ on $\overline{T_a}$ (Section 2.5.3.) as maximum value. The upper-range FAC₁₀ estimate (blue contour lines) follows that linear function of $\overline{T_a}$ until it reaches the idealized boundary of the firn area (black line, exponential fit to the remotely-sensed location of the firn line in the (\overline{b} , $\overline{T_a}$) space, inset). The mid-range estimate links the measurements and the idealized boundary of the firn area using a smoothed bilinear function. The lower-range estimate follows the mid-range estimate in the lowest temperatures but is set to zero for any location where temperature exceeds the FAC₁₀ measurements by 1 °C.

Figure S4. Repetition of the procedure with \overline{b} and $\overline{T_a}$ taken as 1979-2014 average snowfall and surface temperature from MAR regional climate model (Fettweis et al. 2017). Threshold temperature between the dry snow area and the wet snow areas is -20°C given the different definition of $\overline{T_a}$. a) Geographical distribution of the FAC₁₀ dataset. B) Distribution of the dataset in the accumulation-temperature space (\overline{b} and $\overline{T_a}$). FAC₁₀ value is indicated by a coloured disk around each point. c) Temperature dependency of FAC₁₀ in the DSA and LAWSA d) Temperature dependency of FAC₁₀ in the DSA and HAWSA.

Figure S5. Construction of the empirical functions used for the mapping of FAC₁₀, similar to Figure S3 but using \overline{b} and $\overline{T_a}$ from MAR (Fettweis et al. 2017).

Figure S6. FAC₁₀ maps using the \overline{b} and $\overline{T_a}$ maps from MAR (Fettweis et al. 2017).

Figure S7. Difference between the FAC₁₀ maps obtained using $\overline{\dot{b}}$ and $\overline{T_a}$ from Box (2013) and Box et al. (2013) and the maps obtained using $\overline{\dot{b}}$ and $\overline{T_a}$ from MAR (Fettweis et al. 2017).

Table S1. List of the cores used in this study, sorted by alphabetical order of the source, along with their calculated FAC₁₀. Long-term average air temperature $(\overline{T_a})$ and accumulation $(\overline{\dot{b}})$ were taken from Box et al. (2013) and Box (2013).

Year	Name	Latitude (°N)	Longitude (°E)	$\overline{T_a}$ (°C)	$\overline{\dot{b}}$ (mm w.eq. yr ⁻¹)	Length of core (m)	FAC_{10} (m ³ m ⁻²)	Source
1997	Albert_1997	72.58	-38.50	-30.2	204	9.8	4.4	Albert, M., and Shultz, E.: Snow and firn properties and air- snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789-2797, 2002.
1987	Site A	70.63	-35.82	-28.0	293	109.0	5.1	Alley, R.: Transformations in Polar Firn, Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1987.
1954	Eismitte	71.75	-40.75	-27.8	272	15.0	4.8	Bader, H.: Sorge's law of densication of snow on high polar glaciers, Journal of Glaciology, 2, 15, 319-411, 1954.
2009	Baker_2009	77.45	-51.06	-28.6	210	79.8	5.2	Baker, I.: Density and permeability measurements with depth for the NEEM 2009S2 firn core, ACADIS Gateway, doi:10.18739/A2Q88G, 2012.
1954	Benson_1954_12	76.72	-65.39	-19.7	543	14.4	4.7	
1954	Benson_1954_14	76.89	-64.40	-21.0	379	6.5	4.6	
1954	Benson_1954_15	76.96	-63.90	-21.4	347	6.7	4.8	
1954	Benson_1954_16	77.05	-63.39	-21.7	296	6.6	4.9	
1954	Benson_1954_18	77.14	-62.89	-22.0	259	6.7	4.8	
1954	Benson_1954_19	77.24	-62.33	-22.9	270	16.8	4.9	
1954	Benson_1954_20	77.24	-61.67	-23.7	306	6.7	4.9	
1954	Benson_1954_21	77.22	-61.02	-24.3	382	8.9	4.8	
1954	Benson_1954_22	77.18	-60.39	-24.9	417	15.2	4.8	Benson, C. S.: Stratigraphic Studies in the Snow and Firn of the Greenland Lee Sheet, U.S. Army Snow, Lee and Dermefront
1954	Benson_1954_23	77.18	-59.74	-24.9	453	8.2	4.8	Research Establishment 1962
1954	Benson_1954_24	77.15	-59.09	-25.1	436	10.2	4.8	Resource Establishment, 1962.
1954	Benson_1954_25	77.13	-58.45	-25.0	435	10.3	4.8	
1954	Benson_1954_26	77.09	-57.82	-24.7	446	14.2	4.8	
1954	Benson_1954_27	77.06	-57.20	-24.9	429	7.9	4.8	
1954	Benson_1954_28	77.03	-56.56	-24.8	411	7.2	4.8	
1953	Benson_1953_6	76.73	-65.42	-20.2	500	6.0	4.6	
1953	Benson_1953_12	77.24	-62.33	-22.9	270	5.7	4.9	
1953	Benson_1953_17	77.15	-59.10	-25.1	436	9.3	4.8	

1953	Benson_1953_27	77.30	-49.94	-29.0	206	10.8	5.3
1955	Benson_1955_24	77.03	-54.52	-25.8	339	6.5	5.0
1955	Benson_1955_25	77.05	-52.92	-26.9	287	5.9	5.1
1955	Benson_1955_26	77.05	-51.33	-27.9	250	6.1	5.2
1955	Benson_1955_27	77.07	-49.60	-28.9	217	7.5	5.2
1955	Benson_1955_28	77.07	-48.02	-29.6	182	7.9	5.3
1955	Benson_1955_29	76.97	-46.98	-30.1	170	7.3	5.4
1955	Benson_1955_30	76.64	-45.70	-30.4	166	7.7	5.3
1955	Benson_1955_31	76.32	-45.10	-30.5	171	7.5	5.4
1955	Benson_1955_32	75.99	-44.58	-30.5	175	7.2	5.3
1955	Benson_1955_33	75.64	-43.95	-30.4	175	7.8	5.3
1955	Benson_1955_34	75.30	-43.42	-30.4	177	7.9	5.3
1955	Benson_1955_35	74.94	-42.97	-30.3	179	8.4	5.3
1955	Benson_1955_36	74.59	-42.55	-30.0	182	8.6	5.3
1955	Benson_1955_37	74.22	-42.17	-29.9	185	8.7	5.3
1955	Benson_1955_38	74.87	-41.80	-30.8	149	8.2	5.2
1955	Benson_1955_39	73.52	-41.42	-29.3	188	7.4	5.2
1955	Benson_1955_40	73.17	-41.10	-29.2	199	8.5	5.1
1955	Benson_1955_41	72.82	-40.75	-29.1	219	7.3	5.1
1955	Benson_1955_42	72.47	-40.33	-29.0	232	7.7	5.0
1955	Benson_1955_43	72.12	-39.93	-28.9	241	7.5	5.1
1955	Benson_1955_44	71.77	-39.60	-28.8	249	7.4	5.0
1955	Benson_1955_45	71.43	-39.33	-28.3	258	7.5	4.9
1955	Benson_1955_46	71.08	-38.97	-28.0	266	7.4	5.0
1955	Benson_1955_47	71.00	-39.67	-27.5	277	7.3	4.9
1955	Benson_1955_48	70.91	-40.63	-26.7	296	7.5	4.9
1955	Benson_1955_49	70.78	-41.63	-25.7	318	7.2	4.8
1955	Benson_1955_50	70.63	-42.62	-24.6	344	7.7	4.8
1955	Benson_1955_51	70.46	-43.58	-23.6	369	6.6	4.7
1955	Benson_1955_52	70.30	-44.55	-22.4	388	6.8	4.7
1955	Benson_1955_53	70.25	-44.97	-21.9	391	6.8	4.7

1955	Benson_1955_54	70.18	-45.37	-21.5	398	6.8	4.7	
1955	Benson_1955_55	70.11	-45.73	-21.0	402	7.1	4.8	
1955	Benson_1955_56	70.04	-46.13	-20.4	401	6.6	4.7	
1955	Benson_1955_57	69.98	-46.50	-19.9	411	6.9	4.7	
1955	Benson_1955_58	69.92	-46.93	-19.1	418	7.2	4.6	
1955	Benson_1955_59	69.87	-47.30	-18.6	428	6.9	4.7	
1987	Bolzan_1987	77.98	-37.70	-30.3	79	16.6	5.2	
1987	Bolzan_1987_1	72.21	-35.67	-29.8	199	14.8	5.2	
1987	Bolzan_1987_2	72.29	-37.92	-30.4	215	8.5	4.5	
1987	Bolzan_1987_3	71.60	-38.14	-29.5	237	16.9	5.1	Bolzan, J. F., and Strobel, M.: Oxygen isotope data from
1987	Bolzan_1987_4	71.92	-35.96	-29.6	207	11.0	5.0	snowpit at GISP2 Site 15., PANGAEA,
1987	Bolzan_1987_5	72.64	-35.94	-30.6	186	14.2	5.1	doi:10.1594/PANGAEA.55511, 1999.
1987	Bolzan_1987_6	72.35	-40.21	-29.0	235	16.5	5.1	
1987	Bolzan_1987_7	72.89	-39.16	-30.0	193	16.2	5.2	
1987	Bolzan_1987_8	71.93	-39.84	-28.7	249	16.5	5.1	
2011	B262011	77.25	-49.21	-29.4	193	29.7	5.4	
2011	Camp Century 2010	77.85	-52.02	-28.3	168	40.7	5.3	
2010	CC_2010_	77.18	-60.50	-24.8	431	30.3	5.0	Buchardt, S. L., Clausen, H. B., Vinther, B. M., and Dahl-
2007	TraverseSite1	76.45	-44.77	-30.7	157	70.7	5.4	Jensen, D.: Investigating the past and recent delta 180-
2001	NGRIP2001S4	75.10	-42.30	-30.7	157	100.1	5.5	accumulation relationship seen in Greenland ice cores, Clim.
2001	NGRIP2001S5	75.10	-42.30	-30.7	157	100.1	5.5	Past, 8, 6, 2053-2059, 2012.
1997	NG97S2~1-3bag	75.10	-42.30	-30.7	157	141.5	5.4	
1987	del44	72.29	-35.92	-29.9	197	8.5	4.5	
1988	Site A, (Crete)	71.12	-37.32	-29.1	256	128.6	5.2	
1988	Site B	70.65	-37.48	-28.4	279	105.6	5.2	
1988	Site C	70.68	-38.79	-27.7	279	24.8	5.2	Clausen, H., Gundestrup, N. S., Johnsen, S. J., Binchadler, R.,
1988	Site D	70.64	-39.62	-27.0	291	100.1	5.1	and Zwally, J.: Glaciological investigations in the Crete area,
1988	Site E	71.76	-35.85	-29.4	212	77.8	5.3	Central Greenland: a search for a new deep-drilling Site, Ann.
1988	Site F	71.49	-35.90	-29.2	221	25.7	5.3	Glaciol., 10, 10-15, 1988.
1988	Site G	71.15	-35.84	-28.8	239	70.8	5.2	
1988	Site H	70.87	-35.84	-28.5	267	26.2	5.1	

2017	Camp Century 2017	77.17	-61.13	-24.3	382	62.3	5.0	Colgan, W., Pedersen, A., Binder, D., Machguth, H., Abermann, J., and Jayred, M.: Initial field activities of the Camp Century Climate Monitoring Programme in Greenland. Geological Survey of Denmark and Greenland Bulletin, Geol. Surv. Denmark Greenland Bull., 41, 75-78, 2018.
1990	T05_1990	69.85	-47.25	-18.7	425	7.6	4.5	
1990	T09_1990	70.02	-46.31	-20.1	402	8.1	4.6	
1990	T13_1990	70.23	-45.02	-21.9	391	8.0	4.7	
1990	T17_1990	70.37	-44.10	-23.0	377	8.9	4.6	
1990	T21_1990	70.54	-43.02	-24.2	357	8.3	4.6	
1990	T27_1990	70.78	-41.54	-25.7	318	7.6	4.8	
1990	T31_1990	70.91	-40.64	-26.7	296	7.8	4.9	Fischer, H., Wagenbach, D., Laternser, M., and Haeberli, W.:
1990	T41_1990	71.08	-37.92	-28.8	258	7.3	5.2	line central Greenland I of Glaciol 41 139 515-527 1995
1990	T43_1990	71.12	-37.32	-29.1	256	6.3	5.4	inic, central Orcentana., 5. 61 Glación, 41, 159, 515-527, 1995.
1990	T43_1990	71.12	-37.32	-29.1	256	8.0	5.3	
1990	T47_1990	71.20	-35.95	-28.9	238	9.8	5.3	
1990	T53_1990	71.35	-33.48	-26.7	273	7.5	5.2	
1990	T61_1990	72.23	-32.33	-27.2	254	9.8	5.3	
1990	T99_1990	72.58	-37.63	-30.5	200	13.7	5.4	
2011	ACT11A2	66.18	-39.02	-12.7	1626	10.1	4.1	Forster R R Box I E van den Broeke M R Miège C
2011	ACT11A	66.18	-39.08	-13.2	1542	25.0	3.8	Burgess, E. W., Angelen, J. H., McConnell, J. R.:
2011	ACT11B	66.22	-39.57	-14.3	1310	60.9	3.5	Extensive liquid meltwater storage in firn within the
2011	ACT11C	66.29	-40.75	-17.0	983	61.4	4.0	Greenland ice sheet., Nat. Geosci., 7, 95-19,
2011	ACT11D	66.48	-46.31	-18.4	355	59.4	3.8	doi:10.1038/NGEO2043, 2014.
2008	GGU163	69.73	-48.19	-16.7	445	10.5	2.8	
2008	GGU165	69.72	-48.27	-16.2	431	10.3	3.2	
2008	H1-1	69.74	-48.24	-16.7	445	11.1	3.2	Harper, L. Humphrey, N., Pfeffer, W. T., Brown, L. and
2008	H1-15	69.74	-48.24	-16.7	445	10.4	3.1	Fettweis, X.: Greenland ice-sheet contribution to sea-level
2008	H1-30	69.74	-48.24	-16.7	445	10.3	3.0	rise buffered by meltwater storage in firn, Nature, 491,
2008	H2-1	69.71	-48.35	-16.1	444	10.3	1.7	240-243, doi:doi:10.1038/nature11566, 2012.
2008	H3-1	69.69	-48.50	-15.4	413	10.3	2.5	
2008	H3.5-1	69.67	-48.59	-15.4	413	9.5	2.4	

2008	H4-1	69.66	-48.69	-15.2	406	10.0	1.5	
2008	H4-2	69.66	-48.69	-15.2	406	9.7	0.9	
2008	H5-1	69.64	-48.82	-14.9	407	8.2	0.5	
2008	T1-2	69.74	-48.06	-17.1	448	10.5	3.5	
2007	G1	69.88	-47.01	-19.0	420	9.7	4.5	
2007	G2	69.88	-47.01	-19.0	420	10.3	4.2	
2007	G3	69.88	-47.01	-19.0	420	10.4	4.7	
2007	G4	69.88	-47.01	-19.0	420	10.3	4.1	
2007	G5	69.88	-47.01	-19.0	420	10.1	4.5	
2007	G6	69.88	-47.01	-19.0	420	10.4	4.4	
2007	G7	69.88	-47.01	-19.0	420	10.2	4.7	
2007	G8	69.88	-47.01	-19.0	420	10.5	4.6	
2007	G9	69.88	-47.01	-19.0	420	10.4	4.6	
2007	SW-1	69.80	-47.57	-17.9	424	10.4	4.1	
2007	SW-2	69.80	-47.57	-17.9	424	10.2	4.0	
2007	SW-3	69.81	-47.54	-17.9	424	10.3	4.0	
2007	SW-4	69.79	-47.61	-17.9	426	10.2	4.1	
2007	T1-1	69.74	-48.06	-17.1	448	10.5	3.2	
2007	T2-1	69.76	-47.88	-17.3	443	10.5	4.1	
2007	T3-1	69.78	-47.67	-17.7	431	10.0	4.0	
2007	T3-2	69.78	-47.67	-17.7	431	10.4	3.7	
2007	T3-3	69.78	-47.67	-17.7	431	10.0	3.7	
2007	T4-1	69.82	-47.45	-18 2	425	10.6	12	
2007			.,e	10.2	723	10.0	4.2	
	T5-1	69.85	-47.27	-18.4	427	10.0	4.5	
	T5-1	69.85	-47.27	-18.4	427	10.0	4.5	
2011	T5-1 Hawley_2011	69.85 73.34	-47.27	-18.4	423 427 169	10.0	4.2 4.5 5.4	Hawley, R. L., Courville, Z. R., Kehrl, L., Lutz, E., Osteberg,
2011 2011	T5-1 Hawley_2011 Hawley_2011_2	69.85 73.34 74.02	-47.27 -39.72 -40.62	-18.4 -29.8 -30.4	427 169 156	10.0 10.2 10.1 10.4	4.2 4.5 5.4 5.5	Hawley, R. L., Courville, Z. R., Kehrl, L., Lutz, E., Osteberg, E., Overly, T. B., and Wong, G.: Recent accumulation
2011 2011 2011	T5-1 Hawley_2011 Hawley_2011_2 Hawley_2011_3	69.85 73.34 74.02 74.42	-47.27 -39.72 -40.62 -39.29	-18.4 -29.8 -30.4 -30.8	427 169 156 116	10.0 10.2 10.1 10.4 10.0	4.2 4.5 5.4 5.5 4.9	Hawley, R. L., Courville, Z. R., Kehrl, L., Lutz, E., Osteberg, E., Overly, T. B., and Wong, G.: Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow error along the Greenland Inland Traverse
2011 2011 2011 2011 2011	T5-1 Hawley_2011 Hawley_2011_2 Hawley_2011_3 Hawley_2011_10	69.85 73.34 74.02 74.42 76.50	-47.27 -39.72 -40.62 -39.29 -43.73	-18.4 -29.8 -30.4 -30.8 -31.2	427 169 156 116 128	10.0 10.2 10.1 10.4 10.0 10.5	4.2 4.5 5.4 5.5 4.9 5.0	Hawley, R. L., Courville, Z. R., Kehrl, L., Lutz, E., Osteberg, E., Overly, T. B., and Wong, G.: Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse, I. Glaciol. 60, 220, 375-382, doi:10.3189/2014JoG131141
2011 2011 2011 2011 2011 2011	T5-1 Hawley_2011 Hawley_2011_2 Hawley_2011_3 Hawley_2011_10 Hawley_2011_11	69.85 73.34 74.02 74.42 76.50 76.50	-47.27 -39.72 -40.62 -39.29 -43.73 -44.84	-18.4 -29.8 -30.4 -30.8 -31.2 -30.7	427 169 156 116 128 154	10.0 10.2 10.1 10.4 10.0 10.5 10.2	4.2 4.5 5.4 5.5 4.9 5.0 5.3	Hawley, R. L., Courville, Z. R., Kehrl, L., Lutz, E., Osteberg, E., Overly, T. B., and Wong, G.: Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse, J. Glaciol., 60, 220, 375-382, doi:10.3189/2014JoG13J141, 2014.

2011	Hawley_2011_19	77.37	-55.93	-26.6	324	10.5	4.7	
2011	Hawley_2011_22	77.45	-50.54	-28.8	200	8.4	5.6	
1993	U6 (2006)	65.29	-45.83	-19.9	393	11.5	4.7	Jezek, K. C.: Surface Elevation and Velocity Changes on the South Central Greenland Ice Sheet: 1980-2011 - Data Summary. BPRC Technical Report No. 2012-01, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio, 2012.
1989	Site J 1989	66.87	-46.26	-18.4	354	206.6	4.2	Kameda, T., Narita, H., Shoji, H., Nishio, F., Fuji, Y., and Watanabe, O.: Melt features in ice cores from Site J, southern Greenland: some implication for summer climate since AD 1550, Ann. Glaciol., 21, 51-58, 1995.
2014	FA14	66.18	-39.04	-12.7	1626	8.1	4.1	Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L.:
2013	FA13A	66.18	-39.04	-12.7	1626	50.4	3.8	Initial in situ measurements of perennial meltwater storage in
2013	FA13B	66.18	-39.04	-12.7	1626	32.1	3.9	doi:10.1002/2013GL058083, 2014.
1963	Camp Century	77.18	-61.17	-24.1	385	222.6	4.8	Kovacs, A., Weeks, W. F., and Michitti, F.: Variation of Some Mechanical Properties of Polar Snow, Camp Century, Greenland, CRREL Res. Rpt. 276, 1969.
1965	Site 2	76.98	-56.07	-24.6	397	282.5	4.7	Langway, C. C.: Stratigraphic analysis of a deep ice core from Greenland, CRREL Res. Rpt. 77, 1967.
2007	Albert_2007	72.58	-38.50	-30.2	204	86.9	5.0	Lomonaco, R., Albert, M., and Baker, I.: Microstructural evolution of fine-grained layers through the firn column at Summit, Greenland, J. Glaciol., 57, 204, 2011.
2015	core_1_2015	67.00	-47.02	-16.7	348	14.4	1.2	
2015	core_2_2015	66.99	-44.39	-21.0	380	15.6	4.4	
2015	core_3_2015	66.48	-42.50	-20.7	690	16.6	4.3	
2015	core_5_2015	66.48	-42.50	-20.7	690	8.3	4.4	Machguth, H., MacFerrin, M., As, D. v., Box, J.,
2015	core_6_2015	66.48	-42.50	-20.7	690	16.3	4.4	Charalampidis, C., Colgan, W., Mosley-Thompson, E.: Greenland meltwater storage in firm limited by near surface
2015	core_7_2015	66.00	-44.50	-21.0	519	16.4	4.3	ice formation. Nature Clim. Change, 6, 390-395.
2015	core_9_2015	66.00	-44.50	-21.0	519	8.3	4.4	doi:10.1038/NCLIMATE2899, 2016.
2015	core_10_2015	66.00	-44.50	-21.0	519	16.5	4.3	
2015	core_11_2015	66.48	-46.29	-18.4	355	19.3	3.3	
2015	core_14_2015	69.88	-47.03	-19.0	420	17.3	4.2	

2015	core_16_2015	69.88	-47.03	-19.0	420	9.4	4.0	
2015	core_18_2015	75.63	-35.98	-30.6	94	15.3	5.4	
2015	core_20_2015	75.63	-35.98	-30.6	94	8.0	5.6	
2015	core_22_2015	72.58	-38.47	-30.3	203	15.8	5.4	
2015	core_24_2015	72.58	-38.47	-30.3	203	7.7	5.5	
2015	core_25_2015	72.58	-38.47	-30.3	203	15.9	5.4	
2013	core_1_2013	67.00	-47.02	-16.7	348	19.1	1.2	
2013	core_2_2013	67.00	-47.02	-16.7	348	15.9	1.0	
2013	core_3_2013	66.98	-46.63	-17.8	362	16.0	2.4	
2013	core_4_2013	66.98	-46.12	-18.5	358	16.3	3.0	
2013	core_5_2013	66.48	-46.28	-18.4	355	16.6	3.3	
2013	core_6_2013	66.47	-46.28	-18.4	355	16.5	3.0	
2013	core_7_2013	66.98	-45.75	-19.2	359	16.4	3.6	
2013	core_8_2013	66.98	-45.04	-20.3	363	16.3	3.8	
2013	core_9_2013	66.99	-44.39	-21.0	380	17.0	4.3	
2012	core_1_2012	67.00	-47.02	-16.7	348	10.7	1.8	
2012	core_2_2012	67.00	-47.02	-16.7	348	10.5	1.9	
2012	core_3_2012	67.00	-47.02	-16.7	348	10.2	1.6	
1984	Mayewski_1984	65.10	-44.87	-20.8	472	104.1	4.7	Mayewski, P., and Whitlow, S.: 2016. Snow Pit and Ice Core Data from Southern Greenland, 1984, NSF Arctic Data Center. doi:10.5065/D6S180MH, 2016.
1990	Mayewski_1990	72.58	-38.46	-30.3	203	6.1	5.3	Mayewski, P., and Whitlow S.: Snow Pit Data from Greenland Summit, 1989 to 1993. NSF Arctic Data Center. doi:10.5065/D6NP22KX, 2016.
2010	ACT10A	65.70	-41.48	-15.0	1281	46.6	4.1	Miège, C., Forster R.C., B. J., Burgess, E., McConnell, J.,
2010	ACT10B	65.78	-41.87	-16.5	1101	50.8	4.7	Pasteris, D., and Spikes, V. B.: Southeast Greenland high
2010	ACT10C	66.00	-42.78	-19.5	838	49.1	4.4	penetrating radar, Ann. Glaciol., 54, 63, 322-332, doi:10.3189/2013AoG63A358, 2013.
2011	T21_2011	70.54	-43.02	-24.2	357	9.5	4.5	
2011	T21c_2011	70.54	-43.02	-24.2	357	8.2	4.5	Morris, E. M., and Wingham, D. J.: Densification of polar snow: Meaurements, modeling and implication for altimatry
2011	T23_2011	70.63	-42.58	-24.6	344	8.6	4.8	J. Geophys. ResEarth. doi:10.1002/2013JF002898_2014
2011	T27_2011	70.78	-41.54	-25.7	318	8.4	4.8	

2011	T31_2011	70.91	-40.64	-26.7	296	9.8	4.8
2011	T39_2011	71.04	-38.46	-28.4	263	6.8	4.8
2011	T41_2011	71.08	-37.92	-28.8	258	6.8	5.1
2011	T41b_2011	71.08	-37.92	-28.8	258	7.3	5.0
2011	T41c_2011	71.08	-37.92	-28.8	258	7.0	5.1
2011	T41d_2011	71.08	-37.92	-28.8	258	6.2	5.2
2010	T21_2010	70.54	-43.02	-24.2	357	10.2	4.7
2010	T21b_2010	70.54	-43.02	-24.2	357	10.0	4.7
2010	T23_2010	70.63	-42.58	-24.6	344	6.9	4.9
2010	T27_2010	70.78	-41.54	-25.7	318	8.9	4.9
2010	T31_2010	70.91	-40.64	-26.7	296	9.9	4.8
2010	T35_2010	70.98	-39.55	-27.6	275	8.0	5.1
2010	T39_2010	71.04	-38.46	-28.4	263	8.8	5.0
2010	T41_2010	71.08	-37.92	-28.8	258	9.3	5.0
2010	T41b_2010	71.08	-37.92	-28.8	258	7.1	5.3
2010	T41c_2010	71.08	-37.92	-28.8	258	8.7	5.2
2010	T41e_2010	71.08	-37.92	-28.8	258	5.7	5.4
2006	T41_2006	71.08	-37.92	-28.8	258	9.4	5.0
2006	T41b_2006	71.08	-37.92	-28.8	258	10.3	5.1
2006	T41c_2006	71.08	-37.92	-28.8	258	8.9	5.1
2006	T41d_2006	71.08	-37.92	-28.8	258	8.9	5.2
2006	T12_2006	70.18	-45.34	-21.5	398	9.1	4.6
2006	T15_2006	70.30	-44.57	-22.4	388	11.4	4.6
2006	T19_2006	70.47	-43.56	-23.6	369	12.0	4.5
2006	T31_2006	70.91	-40.64	-26.7	296	9.1	4.9
2006	T35_2006	70.98	-39.55	-27.6	275	9.4	4.9
2006	T41e_2006	71.08	-37.92	-28.8	258	10.5	5.0
2006	T12b_2006	70.18	-45.34	-21.5	398	7.2	4.7
2006	T15b_2006	70.30	-44.57	-22.4	388	11.7	4.6
2006	T19b_2006	70.47	-43.56	-23.6	369	12.1	4.5
2006	T21_2006	70.54	-43.02	-24.2	357	8.6	4.7

2006	T23_2006	70.63	-42.58	-24.6	344	6.7	4.8
2006	T27_2006	70.78	-41.54	-25.7	318	8.2	4.7
2006	T31b_2006	70.91	-40.64	-26.7	296	8.5	4.9
2006	T35b_2006	70.98	-39.55	-27.6	275	9.5	4.8
2006	T39_2006	71.04	-38.46	-28.4	263	6.4	5.0
2006	T41f_2006	71.08	-37.92	-28.8	258	10.3	5.0
2006	T05_2006	69.85	-47.25	-18.7	425	11.0	4.1
2006	T09_2006	70.02	-46.31	-20.1	402	10.1	4.5
2006	T21b_2006	70.54	-43.02	-24.2	357	9.4	4.6
2006	T41g_2006	71.08	-37.92	-28.8	258	9.5	5.0
2006	T41h_2006	71.08	-37.92	-28.8	258	10.4	5.0
2006	T41i_2006	71.08	-37.92	-28.8	258	9.0	5.1
2006	T41j_2006	71.08	-37.92	-28.8	258	8.8	5.2
2004	T41_Spring_2004	71.08	-37.92	-28.8	258	11.4	5.0
2004	T41b_Spring_2004	71.08	-37.92	-28.8	258	11.1	5.1
2004	T41c_Spring_2004	71.08	-37.92	-28.8	258	10.6	5.1
2004	T41d_Spring_2004	71.08	-37.92	-28.8	258	11.2	5.2
2004	T41_Autumn_2004	71.08	-37.92	-28.8	258	10.2	5.0
2004	T41b_Autumn_2004	71.08	-37.92	-28.8	258	10.0	5.0
2004	T41c_Autumn_2004	71.08	-37.92	-28.8	258	10.7	5.1
2004	T41d_Autumn_2004	71.08	-37.92	-28.8	258	11.8	4.9
2004	T12_Spring_2004	70.18	-45.34	-21.5	398	12.7	4.5
2004	T15_Spring_2004	70.30	-44.57	-22.4	388	12.0	4.6
2004	T21_Spring_2004	70.54	-43.02	-24.2	357	13.8	4.6
2004	T23_Spring_2004	70.63	-42.58	-24.6	344	12.6	4.6
2004	T27_Spring_2004	70.78	-41.54	-25.7	318	12.0	4.8
2004	T31_Spring_2004	70.91	-40.64	-26.7	296	12.3	4.8
2004	T35_Spring_2004	70.98	-39.55	-27.6	275	11.9	4.9
2004	T39_Spring_2004	71.04	-38.46	-28.4	263	11.2	4.9
2004	T41e_Spring_2004	71.08	-37.92	-28.8	258	12.4	5.0
2004	T21b_Spring_2004	70.54	-43.02	-24.2	357	12.1	4.7

1998	CORE 6345	63.80	-45.00	-21.1	482	14.8	4.8	
1998	CORE 6348	63.00	-48.00	-15.8	650	15.0	3.9	
1998	CORE 6642 (B)	66.50	-42.50	-20.7	690	20.5	4.6	
1998	CORE 6745	67.50	-45.00	-20.1	334	12.1	4.7	
1998	CORE 6839	68.50	-39.00	-24.3	386	11.9	4.9	
1998	CORE 6841	68.00	-41.00	-23.2	480	12.0	4.8	
1998	CORE 6938	69.00	-38.00	-25.6	372	12.2	5.0	
1998	CORE 6939	69.60	-39.00	-26.1	317	12.3	5.0	
1998	CORE 6941	69.40	-41.00	-24.5	330	11.7	4.9	
1998	CORE 6943	69.20	-43.00	-22.7	339	17.6	4.8	
1998	CORE 6945	69.00	-45.00	-20.3	337	18.6	4.7	
1998	CORE 7145	71.50	-45.00	-24.0	380	12.0	4.9	
1998	CORE 7245	72.25	-45.00	-25.4	348	12.1	4.9	
1998	CORE 7249	72.20	-49.40	-21.0	743	15.3	4.6	Mosley-Thompson F. McConnell I. Bales R. Li Z. Lin
1998	CORE 7345	73.00	-45.00	-26.5	274	14.5	5.1	PN., and Steffen, K.: Local to regional-scale variability of
1998	CORE 7347	73.60	-47.20	-25.3	274	12.2	5.0	annual net accumulation on the Greenlandice sheet from
1998	DYE2 1998 core A	66.48	-46.28	-18.4	355	120.0	4.4	PARCA cores, J. Geophys.l Res., 106, 33839-33851,
1998	DYE2 1998 core B	66.48	-46.28	-18.4	355	20.1	4.5	doi:10.1029/2001JD900067, 2001.
1997	CORE 7147	71.05	-47.23	-20.8	415	19.9	4.7	
1997	CORE 7247	71.93	-47.49	-22.2	440	19.7	4.8	
1997	CORE 7551	75.00	-51.00	-23.4	349	21.1	4.9	
1997	CORE 7653	76.00	-53.00	-23.8	386	14.9	4.9	
1997	N. Dye 3 (Saddle) - A	66.00	-44.50	-21.0	519	18.7	4.5	
1997	N. Dye 3 (Saddle) - B	66.00	-44.50	-21.0	519	17.3	4.8	
1997	S. TUNU Core A	69.50	-34.50	-21.0	647	20.6	4.9	
1997	S. TUNU Core B	69.50	-34.50	-21.0	647	10.2	4.9	
1997	S. TUNU Core C	69.50	-34.50	-21.0	647	10.3	4.9	
1997	S. Dome Core A	63.15	-44.82	-20.8	918	24.6	4.9	
1997	S. Dome Core B	63.15	-44.82	-20.8	918	15.3	4.9	
1997	NASA East Core A	75.00	-30.00	-28.1	167	20.2	5.3	
1997	NASA East Core B	75.00	-30.00	-28.1	167	10.8	5.3	

2007	CP_2007	70.00	-47.00	-19.2	411	152.1	4.7	Porter, S., and Mosley-Thompson, E.: Exploring seasonal accumulation bias in a west central Greenland ice core with observed and reanalyzed data, J. Glaciol., 60, 224, 1065-1074, doi:10.3189/2014JoG13J233, 2014.
1963	DYE-2 1963	66.47	-46.28	-18.4	355	31.8	4.1	Reed, S.: Performance Study of the Dewline Ice Cap Stations, 1963, CRREL Special Report 72, 1966.
1967	Carrefour_1967	69.82	-47.43	-18.2	425	19.8	4.2	
1959	Camp_VI_1959	69.70	-48.27	-16.1	444	39.5	4.1	
1959	Milcent_1959	70.30	-44.57	-22.4	388	20.2	4.7	Renaud, A.: Etude physiques et chimiques sur la glace de
1959	Centrale_1959	70.91	-40.64	-26.7	296	30.9	4.7	l'indlandsis du Groenland, Medd. Groenland, 2, 177, 100-107,
1959	Crete_1959	71.12	-37.32	-29.1	256	15.8	5.0	1959.
1959	Jarl-Joset_1959	71.35	-33.48	-26.7	273	27.0	4.9	
1959	Depot 420_1959	72.23	-32.33	-27.2	254	13.8	4.9	
1990	GRIP	72.57	-37.62	-30.5	202	82.3	5.3	
1984	Dye3-11B-1984	65.18	-43.83	-20.2	620	24.8	4.9	
1984	Dye3-15B-1984	65.18	-43.83	-20.2	620	24.8	4.9	Spencer, M. K., Aller, R. B., and Crevts, T. T.: Preliminary
1984	Dye3-16C-1984	65.18	-43.83	-20.2	620	24.8	4.9	firn-densification model with 38-site dataset, J. Glaciol., 47,
1983	Dye3-4B-1983	65.18	-43.83	-20.2	620	173.6	4.8	159, 671-676, 2001.
1984	Dye3-5B-1984	65.18	-43.83	-20.2	620	24.8	4.8	
1984	Dye3-9B-1984	65.18	-43.83	-20.2	620	24.8	4.8	
1983	Dye3-station1-1983	65.18	-43.83	-20.2	620	27.1	4.8	
2007	NEEM07S3	77.50	-51.00	-28.7	205	80.0	5.2	Steen-Larsen, H. C., Masson-Delmotte, V., Sjolte, J., Johnsen, S. J., Vinther, B. M., Bréon, FM.,: Understanding the climatic signal in the water stable isotope records from the NEEM cores, J. Geophys. Res., 116, D06108, doi:10.1029/2010JD014311, 2011.
2012	NEGIS	75.62	-35.96	-30.6	94	66.3	5.8	Vallelonga, P., Christianson, K., Alley, R. B., Anandakrishnan, S., Christian, J. E., Dahl-Jensen, D., Popp, T.: Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS), Cryosphere, 8, 1275-1287, doi:10.5194/tc-8-1275-2014, 2014.
1987	Summit	72.29	-37.92	-30.4	215	16.3	5.1	van der Veen, C. J., Mosley-Thompson, E., Jezek, K. C.,
1981	L1 (1001)	65.39	-47.67	-16.5	419	20.0	3.2	Whillans, I. M., and Bolzan, J. F.: Accumulation rates in

1981	L2 (12.18)	65.39	-47.19	-17.6	398	20.1	3.8	South and Central Greenland, Polar Geography, 25, 2, 79-162,
1981	L5 (15.12)	65.40	-47.85	-16.2	418	20.7	2.4	doi:10.1080/10889370109377709, 2001.
1981	U3 (2003)	64.93	-45.60	-20.3	403	15.1	4.4	
1981	U4 (2004)	64.98	-46.03	-19.8	395	16.0	4.1	
1981	U6 (2006)	65.29	-45.83	-19.9	393	15.0	4.2	
1981	U7 (2007)	65.25	-45.41	-20.4	408	15.1	4.5	
1981	1D (3001)	65.25	-43.49	-19.3	750	8.7	3.7	
1981	8D (3008)	64.85	-44.65	-20.9	504	18.3	4.3	
1995	B26_NGT37_1995	77.15	-49.13	-29.4	198	118.7	5.5	
1995	B27_NGT39_1995	76.39	-46.29	-29.9	192	172.4	5.3	
1995	B28_NGT39_1995	76.39	-46.29	-29.9	192	70.1	5.4	
1995	B29_NGT42_1995	76.00	-43.29	-30.9	144	108.2	5.8	
1995	B30_NGT45_1995	75.00	-42.00	-30.8	150	163.9	5.4	
1994	B19_NGT19_1994	78.00	-36.23	-29.5	83	149.4	5.6	
1994	B20_NGT23_1994	78.50	-36.30	-29.7	86	149.7	5.5	Wilhelms, F.: Measuring the Conductivity and Density of Ice
1994	B21_NGT27_1994	80.00	-41.08	-29.6	121	100.4	5.6	Coles, Bel. Foldhorsen., 191, 1990.
1994	B22_NGT30_1994	79.20	-45.54	-29.6	134	119.6	5.6	
1994	B23_NGT33_1994	78.00	-44.00	-31.3	115	150.2	5.7	
1993	B16_NGT03_1993	73.56	-37.37	-30.3	135	101.6	5.6	
1993	B17_NGT06_1993	75.15	-37.37	-31.1	92	100.4	5.6	
1993	B18_NGT14_1993	76.37	-36.24	-30.0	88	149.0	5.5	
2017	core_1_2017	67.00	-47.02	-16.7	348	23.3	0.9	
2017	core_2_2017	66.99	-44.39	-21.0	380	22.2	4.2	
2017	core_3_2017	66.48	-42.50	-20.7	690	22.5	4.4	
2017	core_4_2017	66.00	-44.50	-21.0	519	22.7	4.6	
2017	core_5_2017	66.48	-46.29	-18.4	355	23.0	3.3	This study
2017	core_6_2017	66.48	-46.29	-18.4	355	7.0	3.2	
2017	core_7_2017	66.48	-46.29	-18.4	355	5.6	3.3	
2017	core_8_2017	66.63	-46.89	-17.2	330	15.2	2.0	
2017	core_9_2017	69.88	-47.03	-19.0	420	22.3	3.9	
2017	core_10_2017	75.63	-35.98	-30.6	94	20.1	5.4	

2017	core_11_2017	72.58	-38.47	-30.3	203	22.2	5.2
2016	core_1_2016	67.00	-47.03	-16.7	348	8.0	1.1
2016	core_2_2016	67.00	-47.03	-16.7	348	16.5	1.6
2016	core_3_2016	66.99	-44.39	-21.0	380	18.0	4.7
2016	core_4_2016	66.48	-42.50	-20.7	690	18.4	4.7
2016	core_5_2016	66.00	-44.50	-21.0	519	18.5	4.5
2016	core_6_2016	72.58	-38.47	-30.3	203	16.3	5.5
2016	core_7_2016	75.63	-35.98	-30.6	94	15.9	5.4
2016	core_8_2016	69.88	-47.03	-19.0	420	18.1	3.9
2016	core_10_2016	66.48	-46.29	-18.4	355	17.4	3.3