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General comments : 

The paper shows the results of sea ice data assimilation experiments into a coupled ocean and sea 
ice model using an ensemble Kalman filter (EnKF). Sea ice concentration, sea ice thickness and 
snow depth are assimilated in different combinations and verifications are performed using 
assimilated and independent observations. The impact of assimilation is measured on the analysis, 
7-day forecasts and 5-month seasonal forecasts. The paper is generally well written. The 
assimilation experiments and verifications are well designed. The assimilation of snow depth is 
particularly original as it has not been done in other studies, as far as I know. However, some 
aspects could be clarified. 
We thank the reviewer for the kind words and the careful and constructive feedback.

For examples, the observation-error used for the assimilation could have been explicitly specified.
Information regarding the observation uncertainty for AMSR sea-ice concentration, SMOS sea-ice 
thickness and the snow depth product is now provided in the observations section.

In some cases it is not clear whether the verification has been done on the ensemble mean or on 
individual ensemble members (and then calculating and average). 
Verification is always done on the ensemble mean. This has been clarified by writing ensemble 
mean instead of ensemble average when applicable.

Also the error of the ensemble mean and ensemble spread relationship could have been shown, as 
this is usually considered a requirement for an EnKF. 
We agree that this would be an interesting result to show, but we think that for sea-ice this is less 
interesting than it likely is for other applications. We think it would be difficult to present in a useful
manner in our case. In a normal EnKF system one would expect the ensemble spread to be of the 
same order as the ensemble mean error, but this is not the case here. To generate the ensemble 
spread we use perturbation amplitudes we find to be physically reasonable, we set this independent 
of model error. This creates an ensemble spread significantly lower than the model error. In 
addition, too large ensemble spread with only 20 ensemble members would give an assimilation 
result skewed towards the observations.

Specific comments : 

1. A couple of sentences at the end of the abstract around line 15 are confusing to me. It seems that 
the conclusions about the assimilation of snow depth are contradictory: “. . . while the snow 



observations have a positive effect on snow thickness and ice concentration. In our study, the 
seasonal forecast showed that assimilating snow depth lead to a worse estimation of sea-ice extent 
compared to the other assimilation systems, the other three gave similar results.” How come the 
assimilation of snow depth have a positive effect on ice concentration but lead to a worse estimation
of sea-ice extent ?
We agree that this is not well formulated. The point we make here is that there is a difference 
between long- and short-term effect of the assimilation. Where a positive effect is seen at the shorter
timescales, immediately after assimilation and for the one-week forecasts. While for the seasonal 
forecast over several months there is a negative effect of assimilating the snow depth observations. 
The text has been updated for clarification: «It is found that the assimilation of ice thickness 
strongly improves ice concentration, ice thickness and snow depth, while the snow observations 
have a smaller but still positive short-term effect on snow thickness and ice concentration. In our 
study, the seasonal forecast showed that assimilating snow depth lead to a less accurate long-term 
estimation of sea-ice extent compared to the other assimilation systems, the other three gave similar 
results.»

2. In section 4.1, page 7: First Pb is defined as the background-error covariance matrix. A couple of 
lines later, it is referred as the model-error covariance matrix. I think you should stick to 
background-error covariance matrix because model-error covariance matrix is usually reserved for 
the errors accumulated during model integration.
This has been changed.

3. In section 4.3, it is mentioned that there is 5 thickness categories; I assume they are the partial 
concentrations for each thickness categories and that the total ice concentration can be calculated 
from them. Later it is mentioned that the assimilation can result into a positive SIC but no volume. 
Does that mean that the 5 thickness categories and the SIC are all independent analysis variables ?
The 5 partial SICs and the total SIC is 6 different parameters in the analysis, but they are not 
independent, the total SIC is only a sum of the 5 partial SICs. The model uses the 5 partial SICs, 
while the total SIC is a dummy parameter used for assimilation. When assimilating, the total SIC is 
the parameter corresponding to the observations, while the partial SICs are updated based on 
correlation and these are the ones used in the model afterwards.

If that is the case, wouldn’t it be better to only have the 5 partial concentrations as analysis variable 
and calculate SIC ? It seems that it would avoid the problem of having positive SIC but no volume.
If we understand you correctly this is what is already done.  What we mean is that we can have a 
partial SIC larger than one, but the corresponding partial SIT zero or less than zero. New text: 
where some areas have a positive partial SIC but the corresponding partial SIT is zero or less than 
zero.

4. In Figure2, what are the observation uncertainty of AMSR-E/2 ice concentration used in the 
calculation of the RMSE ? Are they included in the product and are they constant values or are they 
specified for each points ?
The AMSR observation uncertainty is included in the product and specified in each grid point. This 
is now specified in section 3: Observations. New text: «The AMSR-E/2 SIC observation product 
includes individual uncertainty estimates for all grid points. This uncertainty is based on the sum of 
algorithm uncertainty and smearing uncertainty. Where smearing uncertainty is related to the 
location of the observation compared to the grid.»

5. Figure 5: Over which year(s) ? Is it against IceBridge observations ? Also in the text under 
section 5.4, please specify what is “observed satellite snow depth”, is this IceBridge ?



No, this is against the observed snow depth product used for assimilation. New caption: «RMSE of 
monthly averaged model SIT and snow depth averaged over all ensemble members for the years 
2011-2013 calculated against the a) combined SMOS-Cryosat SIT product and b) observed snow-
depth product. These are observations also used for assimilation.»

New text in section 5.4: «In Fig. \ref{fig:Snow_Thickness}b the RMSE of monthly averaged 
modelled snow depth over all ensembles validated against the observed satellite snow depth 
\citep{Rostosky_2018} used for assimilation is plotted.»

6. Page 16, line 5: “This lack of improvement can be an indication of a too simple snow component 
in our coupled system, only one snow layer is used.” I think that is pure speculation, unless the 
authors can show evidence to convince the readers. Could the reason be simply that there are large 
discrepancies between IceBridge and the assimilated snow depth products ? Same comment on page
21, line 25 and on page 22, line 30.
We agree that this is pure speculation and is mentioned as a suggestion to what might cause the lack
of consistency between model and observations. As you mention there are large errors in the snow 
depth observation product too as compared to icebridge, and we agree this is a more likely reason 
for the large errors. We have changed the text to highlight this: «It is seen that within one grid cell, 
there are huge variations in the IceBridge snow observations. Such variations cannot be provided 
with a coarse resolution model. Hence large errors are found for the RMSE against IceBridge 
observations for experiments where the snow observation are assimilated, even though IceBridge is 
used to «tune» the assimilated product \citep{Rostosky_2018}. In addition, the snow component 
used in our coupled system is likely too simple, having only one snow layer, which may effect the  
snow cover accuracy.»

7. Table 3: It is hard to understand from the caption what are the numbers in the table. Is the 
averaged snow depth over a grid cell compared to the model ensemble mean ?
There was an error here, the ensemble mean is validated by observations averaged over all grid 
cells.

It would help rephrase the caption, maybe removing one of the 3 averages and using “ensemble 
mean”, if that is appropriate.
We agree, new caption: «The annual-mean RMSE of the ensemble-mean snow depth averaged over 
all grid cells. The five experiments and the snow-depth satellite observations are compared to the 
IceBridge airborne snow-depth observations.»

8. Figure 8: Are these monthly averages over the 3 years ? The caption is hard to read because the 
“seven day” and “forecast” are too far apart.
Yes, they are, new caption: «RMSE of monthly averaged (over three years) ensemble mean of 
seven-day forecast SIC validated against a) AMSR-E/2 SIC observations and b) OSISAF SIC 
observations.»

9. Figure 9: Please specify in the caption that (b) is the monthly averaged RMSE over the three 
years.
This is now corrected, new text: «The figures show RMSE of the ensemble mean SIC averaged 
over 3 years and verified against the assimilated OSISAF SIC.»

10. Figure 10: I think it is unrealistic to use re-analysed forcing for the seasonal forecasts, as the re-
analysed forcing would not be available in an operational real time context.
Agreed, this is of course not very realistic, but more a simplification since the focus of this study is 
on the assimilation. Since we compare our assimilation results with a control run using the same 
reanalysed forcing we think that the comparison is fair. 



Technical corrections :

Page 5, line 8: Change “. . .observations where given...” to “. . .observations were given...” 
This is corrected

Caption of Figure 3 : Change “low concentration ice (> 50 %)” to “low concentration ice (< 50 %)” 
This is corrected

Caption of Figure 4 : Change “the blue stars the OSISAF” to “the red stars the OSISAF”. 
This is corrected

Caption of Figure 4 : For ice volume the units are km. Is it the volume per unit area ? 
No, this is an error. The figures has been updated.

Caption of Figure 4 : It would be easier for the readers to mention that the x-labels are month-year. 
Text added: The xlabel is given as month-year.

Page 14, line : Change “sea-ice extent being too large and the ice is too thick” to “sea-ice extent 
being too large and the ice being too thick”. 
This is corrected

Page 18, line 18: “The figures show that that . . .” 
This is corrected

Figure 10: Change “The blue line represents a forecast using a climatological forcing made from an 
over of atmospheric data for 2000-2014 with assimilation” to “The blue line represents a forecast 
using a climatological forcing made from atmospheric data over 2000-2014 with assimilation” 
This is corrected

Page 21, line 31: Change “The main parameters analysed in this study snow depth, SIT and SIC all 
vary on longer time scales than one week for the spatial resolution in our model” to “The main 
parameters analysed in this study, snow depth, SIT and SIC, all vary on longer time scales than one 
week for the spatial resolution in our model”
This is corrected



Response comment Reviewer 2

Anonymous Referee #2 Received and published: 4 December 2018 

General Comments 

In this paper, the authors perform 5 experiments with a 20 km coupled ROMS-CICE model forced 
with ERA-Interim forcing for 3 full years for the period of 2011-2013. The five experiments are 1) 
assimilation of OSISAF sea ice concentration (SIC) only, 2) assimilation of OSISAF SIC and 
CryoSat-2 sea ice thickness (SIT), 3) assimilation of OSISAF SIC and SMOS SIT, 4) assimilation 
of OSISAF SIC and AMSR-E/2 snow depth observations, and 5) control run without any data 
assimilation. The Ensemble Kalman Filter (EnKF) is the data assimilation technique used in this 
study. Ocean boundary conditions are provided by the FOAM ocean model. Two sets of 
experiments are performed: 1) assimilation experiments with 20 ensemble members with a 7-day 
assimilation time step, 2) seasonal forecasts with 20 ensemble members for the fivemonth period 
beginning in April/May to examine the skill in predicting the September sea ice minimum extent. 

The authors computed the annual RMSE of the ensemble mean SIC over the threeyear period and 
found that from January – August, the SIT experiments performed similarly and outperformed the 
SIC-only run during that period when using the weighted AMSR-E/2 data. From September – 
November, the SIC experiment had the lowest error. This could be related to no IT data during the 
summer months. The authors speculate the model has difficulty in transitioning from the melt to 
growing season. When comparing against the OSISAF ice concentration (which was assimilated 
into the model), the SIT experiment using SMOS showed the lowest RMSE from January – July. 
The snow depth experiment showed a lower RMSE than the SIC-only experiment for the period of 
January – June. 

The authors examined “hit rates” to determine which experiment led to the most accurate number of
grid cells classified as open water (concentration < 10%), low (<50%) or high concentration (>50%)
and found that the experiments with the assimilation of ice thickness performed best. Total ice 
volume is examined for all 5 experiments and they find that except for the control run, the volume 
steadily decreases from year to year. The authors need to better address why this is happening, and 
propose future studies to investigate this further. 

The decrease in sea-ice volume is not a model problem, but a response to the assimilation where the
model, in general, has too much and too thick ice. An attempt at a discussion of this case was given 
on page 11. line 26-32 in the old manuscript. This section has now been modified to make this more
clear, new text is added: « The control model is found to have too thick ice compared to the 
observations, while the experiments assimilating SIT are much closer to the observations, though 
largely biased. This can be used to explain the drastic decrease in sea-ice volume found in Fig. 



\ref{fig:extent_volume}b. The model SIT is adjusting towards the  observations by rapidly thinning 
the sea-ice.» 

Comparisons are performed with the annual mean ice thickness and snow depth from all 5 
experiments versus data from NASA Operation IceBridge. Since IceBridge data is only available 
for typically 10 transects for March/April each year; this is not a very compelling analysis. While 
Arctic snow depth data is difficult to obtain, it is recommended that the authors examine additional 
sources of ice thickness data, such as ice mass balance data (see comment below) which has much 
better temporal and spatial resolution. 

Thank you for this valuable suggestion. We were not aware of these observations, and they are now 
included in the validation of the experiments.

Seasonal forecasts are evaluated by performing 5-month experiments for all five cases beginning in 
April of 2011, 2012 and 2013 to examine the SIC RMSE. When averaged for all three years, the 
SIT experiments perform best. Through mid-June, the snow depth experiment is very similar to the 
CryoSat-2 (SITI), but afterward the error increased significant and mirrors the control runs high 
error from August through September. 

With the exception to the Lisæter (2007) reference, throughout the paper you should consistently 
refer to CryoSat as CryoSat-2. 

This is corrected

Why aren’t ice mass balance buoys used in your study? Look at available data at: http://imb-crrel-
dartmouth.org/results/. During the period of your study, there is drifting buoy data available.

They are now included.

 Are melt ponds used in your CICE simulations? If yes, state that in Section 4.3. 

Yes, the model use melt pond parametrization. Information regarding this is now added to the 
description of the model in section 2: «The model has a thermodynamic component calculating the 
local growth rate of snow and ice, ice dynamics component calculating ice drift based on the 
material ice strength, a transport component, a melt pond parametrization and a ridging 
parametrization used to distribute ice in thickness categories \citep{Hunke_2015}.»

Why didn’t you evaluate model ice drift errors using the International Arctic Buoy Programme buoy
data? See http://iabp.apl.washington.edu/ 



We did not have in mind to include ice drift in the study, thus unfortunately, the model drift output 
was not saved.

This is a very well written paper with clear tables and complementary graphics. I recommend 
publication after my comments are addressed. 

We thank the reviewer for the kind words and the careful and constructive feedback.

Specific Comments 

Page 2 lines 15-25: Suggest you add the following reference to this section when discussing 
operational system assimilating SIC: 

Posey, P. G., Metzger, E.J., Wallcraft, A.J., Hebert, D.A., Allard, R.A., Smedstad, O.M., Phelps, 
M.W, Fetterer, F., Stewart, J.S., Meier, W.N., Helfrich, S.R., 2015. Assimilating high horizontal 
resolution sea ice concentration data into the US Navy’s ice forecast systems: Arctic Cap 
Nowcast/Forecast System (ACNFS) and the Global Ocean Forecast System (GOFS 3.1). The 
Cryosphere 9 2339-2365. doi: 10.5194/tcd-9-2339- 2015. 

Thank you for the advice, this has now been added: «\cite{posey2015assimilating} assimilated 
high-resolution SIC observations (~4 km) into a coupled ocean sea-ice model, the Arctic Cap 
Nowcast/Forecast System (ACNFS) using the 3DVAR assimilation method. In this study, they 
showed that increased observation resolution has a significant impact on the ice-edge forecast.»

Page 3 first paragraph: Consider adding the following recent references when discussing the use of 
CryoSat-2 data: 

Allard, R. A., Farrell, S. L., Hebert, D. H., Johnston, W. F., Li, L., Kurtz, N. T., Phelps, M. W., 
Posey, P. G., Tilling, R., Ridout, A., and Wallcraft, A. L.: Utilizing CryoSat-2 sea ice thickness to 
initialize a coupled ice-ocean modeling system, Advances in Space Research, 62, 
doi:10.1016/j.asr.2017.12.030, 2018. 

Blockley, E. W. and K. A. Peterson: Improving Met Office seasonal predictions of Arctic sea ice 
using assimilation of CryoSat-2 thickness, Cryosphere, 12, 3419–3438, doi:10.5194/tc-12-3419-
2018. 

Xie, J., F. Countillon, and L. Bertino: Impact of assimilating a merged sea-ice thickness from 
CryoSat-2 and SMOS in the Arctic reanalysis, Cryosphere, 12, 3671-3691, doi:10.5194/tc-12-3671-
2018. 

Thank you, we were not aware of the recent papers. We have improved the text to include these 
studies: «In the last couple of years, there has also been an increase in the use of Cryosat-2 
observations in various forms for assimilation. \cite{Chen_2017} assimilated both the SMOS thin 
SIT and the CryoSat-2 thick SIT into the National Centers for Environmental Prediction's (NCEP) 
Climate Forecast System version 2 \citep{Saha_2014} using the localized error subspace transform 



ensemble Kalman filter \citep{Nerger_2013}. This study showed improved sea-ice prediction with 
SIT assimilation, thus verifying the importance of SIT observations to achieve accurate sea-ice 
forecasts. \cite{xie2018impact} assimilated a blended SMOS CryoSat-2 product into TOPAZ. They 
showed that these observations provide the primary source of observational information in the 
central Arctic, and when assimilating this product the model SIT was improved. 
\cite{blockley2018improving} argued that by assimilating Cryosat-2 observations, the Arctic 
summer prediction of ice extent and location were significantly improved. 
\cite{allard2018utilizing} used CryoSat-2 observations for initialization in the coupled ocean sea-
ice ACNFS model. The study showed improved model thickness with CryoSat-2 initialization when
compared to independent ice thickness observations.»

Page 4 line 12: Please state the horizontal resolution of the ERA-Interim dataset 

This is now added: «The coupled model is forced by atmospheric data from the ERA-Interim 
dataset from the European Centre for Medium Ranged Weather Forecast \citep[ECMWF; ][]
{Dee_2011}.  The ERA-Interim dataset has a horizontal resolution of approximately 0.7$^\circ$, 
corresponding to T255 spectral truncation.»

Page 4 lines 13-14: You use FOAM for prescribed ocean boundary conditions. What do you use for 
the CICE boundary conditions? 

At the moment no boundary conditions are used for the sea-ice. For the most part of the year, this is 
not a problem because the sea-ice is surrounded by ocean. While during winter when the sea-ice 
extends beyond the Behring straight this might be a problem for this area, but this is not included 
here, and we do not believe this to be an issue regarding the results.

Page 6 last paragraph: What is the accuracy of the AMSR-E/2 snow depth data? 

This has now been added: «For the snow depth product uncertainty estimates exist for every grid 
point. There are two main sources of uncertainties in this observation product: The first is that the 
number of IceBridge observations used to develop the empirical relationship between brightness 
temperatures and snow depths is small compared to the coverage of the product. The second 
uncertainty is in the input parameters (brightness temperature, ice concentration etc.). More on how 
the uncertainties are explicitly calculated can be found in \citep{Rostosky_2018}.»

Page 8: You state the coupled modeling system is run for 1 year as an initial state. Was it spun-up 
from rest? How was ice initialized? Uniform everywhere from a particular thickness? 

This has now been clarified in the manuscript: «The initial ensemble is generated from ice states 
from January 1. based on 20 different years of a standalone ice model run without assimilation. The 
standalone model was initialised without ice in 1979. All initial ocean states are model output at 
initial date January 1. 2010. This output is taken from a model spin-up over1993-2010.»

Page 8 last paragraph: Why didn’t you include another experiment which included a blended 
CryoSat-2/SMOS ice thickness? 



The focus of this study was on the individual observation products. , we could have tested all sorts 
of combination between the products, but this would become quite messy. In addition, the blended 
product provided an alternative dataset for model verification.

Page 13 Figure 4b: Please explain your views on why the ice volume (except for control run) 
steadily decreases. I suggest in your conclusions section to include to some possible follow-on 
studies to better investigate this issue. 

This is already mentioned on p.11 lines 26-32 in the previous version of the manuscript. The 
decrease is related to too much ice in the control model, and due to assimilation, the thickness is 
slowly going towards the observed values which are thinner. This section has been updated to 
further clarify this result, see comment above.. Thus no further studies of this effect should be 
necessary.

Page 14 lines 20-24: Please include figures and discussion on comparison for April 2012 and 2013? 

Figure 7. is only meant as an illustration of the curves shown in figure 4b. Even though the figures 
could be added for 2012 and 2013 we do not think this would provide any additional information 
from figure 4b. Also, 8 more figures would take a lot of space in the manuscript and would be too 
messy as they are providing only little new information.

Page 14 last paragraph: Have you looked at Dartmouth (formerly CRREL) IMB data for an 
additional source of ice thickness data? These data sets have much more temporal coverage than 
just Mar/Apr from NASA IceBridge. 

Yes, as mentioned previously a new section including verification of these data have been added: « 
Another independent dataset of SIT observations complementing the IceBridge observations by 
observations throughout the year is the IMB buoy dataset. The result of model validation with the 
IMB is shown in table \ref{tab:IMB_th}. For these observations, a slightly different method than 
that applied for IceBridge is performed. This is because IceBridge temporarily only covered March-
April, while the IMB data span the entire year. The buoy observations are converted to daily 
averages on the model grid. From these values, the RMSE is calculated on the 7-day ensemble 
mean and averaged for each year. Since SIT is a relatively slow varying variable, for each 7-day 
output, observations from +/-3 days are used to increase the number of observations. The IMB 
observations do not include an uncertainty estimation, hence the RMSE is not normalised was the 
case for other other RMSE values in this work. The results show that over the three study years, the 
SMOS internal SIT assimilation system has the lowest RMSE values, followed by the CryoSat-2 
internal SIT assimilation. The other three show similar results, indicating the positive impact of 
assimilating ice thickness in the model.» A table has also been added illustrating the yearly averaged
results.



Page 16 last paragraph: Table 3 shows yearly averaged RMSE values of ensemble average of snow 
depth compared to NASA IceBridge. Explain how you can do this when NASA IceBridge is only 
available for Mar/Apr each year. 

The yearly average is a Mar/Apr average. This has now been made clearer by adding it into the 
figure text: «The Mar/Apr-mean RMSE of the ensemble-mean snow depth averaged over all grid 
cells.» In addition, new text has been added: The same method as for the SIT in table 
\ref{tab:IceBridge} was used, where Mar/Apr model values are compared to the IceBridge 
observations and averaged.

Page 18 lines 15-16: You state five-month forecasts, but experiments are performed April – 
September What are the actual dates? Apr 30 – Sept 30 would be 5 months; April 1 – Sept 30 would
be 6 months. 

We mean it is an approximately 5-month forecast. The start date varied a bit because of the 7-day 
assimilation cycle. Information regarding this is now added to the text: «This is done by running 
each of the experiments from mid-April to mid-September each year without assimilation and 
validating against the OSISAF SIC observations. The actual start date varied slightly from year to 
year because of the 7-day assimilation cycle, but the start date was the same for all experiments.»

Technical Corrections: 

Page 1 line 7: replace “asses” to “assess” 

done

Page 1 line 12: should be CryoSat-2 (and throughout the paper) 

done

Page 1 line 16: replace “lead” to “led” 

done

Page 2 line 14: add comma after “later” 

done

Page 8 line 30: reword “Five assimilation experiments” to “Five experiments” 

done

Page 12: Fig 3 caption: first line should read “low concentration ice <50%” (not >50) 

done

Page 13 line 8: replace “to much ice” to “too much ice” 

done

Page 26 line 24: Provide more complete info for Sakov EnKF-C user guide (2015) reference



Added arXiv: «Sakov, P.: EnKF-C user guide. arXiv:1410.1233., 2015.
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Copyright statement. TEXT

Abstract. The accuracy of the initial state is very important for the quality of a forecast, and data assimilation is crucial for

obtaining a
::
the

:
best possible initial state. For many years, sea-ice concentration was the only parameter used for assimilation

into numerical sea-ice models. Sea-ice concentration can easily be observed by satellites, and satellite observations provide a

full Arctic coverage. During the last decade, an increasing number of sea-ice related variables have become available, these5

include sea-ice thickness and snow depth, which are both important parameters in the numerical sea-ice models. In the present

study, a coupled ocean-sea-ice model is used to asses
::::
assess

:
the assimilation impact of sea-ice thickness and snow depth on the

model. The model system with the assimilation of these parameters is verified by comparison with a system assimilating only

ice concentration and a system having no assimilation. The observations assimilated are sea ice concentration from the Ocean

and Sea Ice Satellite Application facility, thin sea ice thickness from the European Space Agency’s (ESA) Soil Moisture and10

Ocean Salinity mission, thick sea ice thickness from ESA’s CryoSat
:::::::::
CryoSat-2 satellite, and a new snow depth product derived

from the National Space Agency’s Advanced Microwave Scanning Radiometers (AMSR-E/AMSR-2) satellites. The model

results are verified by comparing assimilated observations and independent observations of ice concentration from AMSR-

E/AMSR-2, and ice thickness and snow depth from the IceBridge campaign. It is found that the assimilation of ice thickness

strongly improves ice concentration, ice thickness and snow depth, while the snow observations have a positive
::::::
smaller

:::
but15

:::
still

:::::::
positive

:::::::::
short-term effect on snow thickness and ice

:::::
depth

:::
and

::::::
sea-ice

:
concentration. In our study, the seasonal forecast

showed that assimilating snow depth lead to a worse
::
led

::
to

::
a

:::
less

:::::::
accurate

:::::::::
long-term estimation of sea-ice extent compared to

the other assimilation systems, the other three gave similar results. The improvements due to assimilation were found to last

for at least 3-4 months, possibly even longer.

1



1 Introduction

Observations show that for the last 50 years there has been a decline in both Arctic sea-ice extent (Stroeve et al., 2007; Perovich

et al., 2017) and sea-ice thickness (Kwok and Rothrock, 2009), in addition, models show that the sea-ice decline is likely to

continue (Zhang and Walsh, 2006). Wang and Overland (2012) estimate the Arctic ocean to be nearly ice-free within the

2030s. This large change in the global climate system leads to a need for improved models and forecasting systems due to5

more variable and mobile Arctic sea ice (Eicken, 2013). In addition, a decreased amount of sea ice will lead to increased Arctic

ship traffic (Smith and Stephenson, 2013). Safe travel in the Arctic is dependent on accurate knowledge of weather and sea ice.

The Arctic is characterized by harsh conditions involving for instance sea ice, icebergs, and polar low storms. The numerical

weather prediction models are becoming more complex and detailed, but still, the vital part of an accurate forecast is the model

initial state. Accurate initial states can be achieved by assimilating observations into the model system.10

For sea-ice modelling in the Arctic, observations are sparse. The sea-ice concentration (SIC), defined as the fraction of the

total area covered by sea-ice, has been available since the start of the satellite era in 1979, but observations of other parameters

such as sea ice thickness (SIT) are more difficult to obtain because of the remote location, and satellites cannot easily be used

to extract information about the SIT. The passive microwave satellites derive SIC from brightness temperatures, but many of

the earth observing satellites do not have sufficient wavelength to observe changes in the brightness temperature as a function15

of the SIT. Thus acquiring SIT from satellites are significantly more difficult than SIC, but as will be described later,
:
satellites

using the L-band frequency can, to some degree, be used to measure the SIT as a function of brightness temperature.

During the last 15 years, there have been various studies of SIC assimilation, using several different models and assimilation

methods. Lisæter et al. (2003) assimilated SIC obtained from passive microwave satellite into a coupled ocean-ice model using

the Ensemble Kalman Filter (EnKF; Evensen, 1994; Burgers et al., 1998). In the study of Lisæter et al. (2003), the assimilation20

was found to have a strong effect on the modelled SIC, and also small effects on other model parameters due to the multivariate

properties of the EnKF. The multivariate properties of the EnKF consist of a model update for all model variables based on cor-

relation with the observed variables. A similar SIC assimilation study using the 3D-Variational (3D-Var) assimilation method

was done by Caya et al. (2010). In this study, both ice charts from the Canadian east coast and Radarsat 2 SIC observations

were assimilated. Significant improvements to the short-term forecast were found for the assimilation system. Studies with the25

coupled ocean-ice model TOPAZ (Sakov et al., 2012) have shown improvements to SIT and multivariate effects on SIT for as-

similation of SIC (Sakov et al., 2012). Other SIC studies have been done by Lindsay and Zhang (2006) and Wang et al. (2013)

both using nudging methods to show model improvements for SIC assimilation.
::::::::::::::::::::::::
Posey et al. (2015) assimilated

:::::::::::::
high-resolution

:::
SIC

:::::::::::
observations

:
(
::
4

::::
km)

:::
into

::
a
:::::::
coupled

:::::
ocean

::::::
sea-ice

::::::
model,

:::
the

::::::
Arctic

::::
Cap

:::::::::::::::
Nowcast/Forecast

::::::
System

:::::::::
(ACNFS)

:::::
using

:::
the

::::::
3DVAR

:::::::::::
assimilation

:::::::
method.

::
In

:::
this

::::::
study,

::::
they

::::::
showed

::::
that

::::::::
increased

::::::::::
observation

::::::::
resolution

::::
has

:
a
:::::::::
significant

::::::
impact

:::
on

:::
the30

::
ice

:::::
edge

:::::::
forecast.

In recent years there has been a focus on increasing the number of observable ice parameters, especially accurate knowledge

of the Arctic SIT is important in order to quantify changes in the total Arctic sea-ice volume and to elucidate changes related

to for instance global warming. Dedicated satellite altimeters like ICESat (Forsberg and Skourup, 2005) and CryoSat-2 (Laxon
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et al., 2013) have been prepared for SIT measurements. These satellites use measurements of the ice freeboard to calculate

the SIT (Kurtz and Harbeck, 2017; Kurtz et al., 2014b). Another source of satellite SIT observations is the European Space

Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission. The SMOS mission uses L-band passive microwave

measurements utilizing long penetration depth and a relationship between observed brightness temperature and ice thickness

(Tian-Kunze et al., 2016). However, in general, the uncertainties of the CryoSat
::::::::
CryoSat-2 and SMOS SIT observations are5

high (Zygmuntowska et al., 2014; Xie et al., 2016), which result in reduced, though still valuable, observational information

available for assimilation into the model system. The SIT observations are limited to winter conditions when the snow and ice

are dry.

One of the first studies with SIT assimilation was done by Lisæter et al. (2007). In this study, computer-generated SIT ob-

servations simulating CryoSat observations were assimilated into a coupled ice-ocean model using the EnKF. The assimilation10

showed significant effects on the model state; both improvements to the modelled SIT and multivariate effects on SIC, ocean

temperature and ocean salinity were found. Yang et al. (2014) used the localized singular evolutive interpolated Kalman filter

(Pham, 2001) to assimilate the SMOS SIT observations into the Massachusetts Institute of Technology general circulation

model (Marshall et al., 1997). In this study, an improved thickness forecast when assimilating SMOS observations and some

improvements to the SIC forecasts were found. Similar to Yang et al. (2014), Xie et al. (2016) used the EnKF to assimilate15

SMOS SIT observations into the TOPAZ system (Sakov et al., 2012). In this study it was found that assimilation of SMOS

observations showed improvements for the ice thickness along the ice edge, both compared to SIT observations not assimi-

lated and compared to the SMOS observations themselves. In general, similar to that found by Yang et al. (2014) the SMOS

observations were found to have a relatively small impact on the SIC, and the SIT far from the ice edge.

Fritzner et al. (2018) assimilated SMOS observations into a standalone sea-ice model with the EnKF. This study showed20

that due to the correlation between SIC and SIT, the SMOS observations were found to have a positive effect on the mod-

elled SIC.
:
In

::::
the

:::
last

::::::
couple

::
of

::::::
years,

::::
there

::::
has

:::
also

:::::
been

::
an

::::::::
increase

::
in

:::
the

:::
use

::
of
:::::::::

Cryosat-2
:::::::::::
observations

::
in

::::::
various

::::::
forms

::
for

:::::::::::
assimilation.

:
Chen et al. (2017) assimilated both the SMOS thin SIT and the CryoSat

::::::::
CryoSat-2

:
thick SIT into the Na-

tional Centers for Environmental Prediction’s (NCEP) Climate Forecast System version 2 (Saha et al., 2014) using the lo-

calized error subspace transform ensemble Kalman filter (Nerger and Hiller, 2013). This study showed improved sea-ice25

prediction with SIT assimilation. Thus verifying the importance of SIT observations to achieve accurate sea-ice forecasts.

:::::::::::::::::::::::
Xie et al. (2018) assimilated

:
a
:::::::
blended

::::::
SMOS

:::::::::
CryoSat-2

::::::
product

::::
into

:::::::
TOPAZ.

:::::
They

::::::
showed

::::
that

:::::
these

::::::::::
observations

::::::::
provided

::
the

:::::::
primary

::::::
source

::
of

::::::::::::
observational

::::::::::
information

::
in

:::
the

::::::
central

::::::
Arctic,

::::
and

::::
when

:::::::::::
assimilating

:::
this

:::::::
product

:::
the

:::::
model

::::
SIT

::::
was

::::::::
improved.

:::::::::::::::::::::::::::::::
Blockley and Peterson (2018) showed

::::
that

:::
by

::::::::::
assimilating

:::::::::
Cryosat-2

:::::::::::
observations

:::
the

::::::
Arctic

:::::::
summer

:::::::::
prediction

::
of

:::
ice

:::::
extent

::::
and

:::::::
location

::::
was

:::::::::::
significantly

::::::::
improved.

:::::::::::::::::::::
Allard et al. (2018) used

:::::::::
CryoSat-2

::::::::::
observations

::::
for

::::::::::
initialization

:::
in30

::
the

:::::::
coupled

::::::
ocean

::::::
sea-ice

:::::::
ACNFS

::::::
model.

::::
The

:::::
study

:::::::
showed

::::::::
improved

::::::
model

::::::::
thickness

::::
with

:::::::::
CryoSat-2

:::::::::::
initialization

:::::
when

::::::::
compared

::
to

::::::::::
independent

:::
ice

::::::::
thickness

:::::::::::
observations.

:

Recent attempts have proved that it might be possible to observe snow depth from satellite (Markus and Cavalieri, 1998;

Maaß et al., 2013; Rostosky et al., 2018). Both Maaß et al. (2013) and Rostosky et al. (2018) used a relationship between

observed brightness temperature and snow depth to calculate the latter variable. Due to the close connection between snow,35
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albedo and ice melting, accurately modelled snow depths are expected to have a large impact on the snow and ice models.

Snow observations are limited to the winter season when the ice and snow are dry.

In our study, a coupled ocean sea-ice model (Kristensen et al., 2017) is used. The coupled model is prepared for improved sea-

ice representation compared to previous coupled ocean sea-ice models. This improvement will give a deeper insight into how

sea-ice is affecting both the ocean and atmosphere. The assimilation system will be tested with different kinds of observations5

to analyse both long-term and short-term effects. Observations of SIC, SIT and snow depth are assimilated. The results will be

verified with independent and semi-independent data, in addition to forecasts both in summer and winter.

This study is important in order to elucidate the effect of different sea-ice observations and reveal the most important

observations for an improved sea-ice forecast. Even though some studies have looked into the assimilation of different SIT

observations, as far as we know this is the first study to compare the effect of the different observations on the assimilation10

system. In addition, as far as we know, this is the first study to present the assimilation of snow depth observations in a coupled

ocean sea-ice model.

2 The coupled ocean sea-ice model

The coupled model (Kristensen et al., 2017) is based on the Regional Ocean Modelling System (ROMS; Shchepetkin and

McWilliams, 2005; Moore et al., 2011) version 3.6 as the ocean component and the Los Alamos sea-ice model version 5.1.215

(CICE; Hunke and Dukowicz, 1997; Hunke et al., 2015a) as the ice component. The ROMS model is a state-of-the-art ocean

model, which in our study is configured with 35 terrain-following vertical layers. The eddy viscosity and eddy diffusivity are

parametrized using a second-order turbulence closure model.

The CICE model is a state-of-the-art sea-ice model with 5 thickness categories, 7 ice layers and one snow layer. The model

has a thermodynamic component calculating the local growth rate of snow and ice, ice dynamics component calculating ice20

drift based on the material ice strength, a transport component
:
,
:
a
::::
melt

:::::
pond

:::::::::::::
parametrization and a ridging parametrization used

to distribute ice in thickness categories (Hunke et al., 2015a). The model has a horizontal resolution of 20 km with 242x322

grid cells covering the entire Arctic ocean. The model domain covering the Arctic sea is shown in Fig. 1.

The coupled model is forced by atmospheric data from the ERA-Interim dataset from the European Centre for Medium

Ranged Weather Forecast (ECMWF; Dee et al., 2011).
:::
The

:::::::::::
ERA-Interim

::::::
dataset

:::
has

:
a
:::::::::
horizontal

:::::::::
resolution

::
of

::::::::::::
approximately25

::::
0.7◦,

::::::::::::
corresponding

::
to

:
a
:::::

T255
:::::::
spectral

:::::::::
truncation.

:
In addition, the model has prescribed ocean boundary and climatic forcing

from the Fast Ocean Atmosphere Model (FOAM; Bell et al., 2003). The assimilation system used in the model is the Ensemble

Kalman Filter. The code used for assimilation is the EnKF-c code (Sakov, 2015). The EnKF-c is an easy-to-implement and

efficient framework for off-line data assimilation for use in geophysical models.
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Figure 1. The model domain, the blue area is covered by the model, grey area indicate land areas

3 Observations

In the present study, observations related to the Arctic sea-ice are used for assimilation, these include SIC, SIT and snow

depth. The SIC observations used for assimilation are from the European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSISAF; Tonboe et al., 2016). The SIC product

is the near-real-time global sea-ice concentration product. This dataset contains SIC observations calculated from brightness5

temperatures measured by SSMI/S passive microwave. The SSMI/S brightness temperatures are corrected for air temperature,

wind roughening over open water and water vapour in the atmosphere by the ECMWF numerical weather prediction (NWP)

model (Andersen et al., 2006). To convert from brightness temperatures to SIC a combination of the Bootstrap and the Bristol

Algorithm is used (Tonboe et al., 2016). The Bootstrap algorithm is primarily used for observations with low SIC, and the

Bristol algorithm for high SIC. The older OSISAF products do not include an error estimate, but an estimate of the observation10

confidence. The observation confidences are a simple measure of the observations quality, where 5 is excellent quality, 2

indicate poor quality, 1 indicates computation failure, and 0 no data. In the more recent OSISAF observations, a total uncertainty

parameter is associated with each observation. In our study, the observation uncertainty of the OSISAF observations where
::::
were

given by the following formula:

TU = a+ b ∗ (5−C), (1)15

where C is the confidence and TU is the total uncertainty, a=0.06 and b=0.1 are estimated based on the relationship

between confidence and uncertainty in the more recent OSISAF observations. Observations flagged with a confidence of 0 or

1 are not used in our study. For verification of the modelled SIC, the AMSR-E/Aqua Daily L3 12.5km
:::
ESA

::::
Sea

:::
Ice

:::::::
Climate

::::::
Change

::::::::
Initiative,

:
Sea Ice Concentration product was used (Cavalieri et al., 2014), consisting

::::::
Climate

:::::
Data

::::::
Record

:::::
from

:::
the

::::::::
AMSR-E

:::
and

::::::::
AMSR-2

::::::::::
Instruments

::
at

::
25

:::
km

::::
Grid

::::::::
Spacing,

::::::
Version

:::
2.0

:::::::::::::::::::::::::
(Toudal Pedersen et al., 2017).

::::
The

::::::
dataset

:::::::
consists of20

satellite observations from the National Space Agency’s Advanced Microwave Scanning Radiometers (AMSR-E/AMSR-2).
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The AMSR-E/2 observations are, as the OSISAF SIC observations, also based on measurements from a passive microwave

measuring the brightness temperature, and the observations are structured on a 12.5
::
25

:
km grid. For the AMSR-E/2 dataset, the

Enhanced NASA Team algorithm (Markus and Cavalieri, 2000) is used to convert from brightness temperatures to SIC. The

OSISAF and AMSR-E/2 datasets are different data products, but are in many cases tuned to give similar results and cannot

be viewed as true independent datasets. The AMSR-E/2 product has a gap from October 2011, when AMSR-E failed, until5

AMSR-2 became operational in July 2012, this is in the middle of our analysis period resulting in less data for verification.

:::
The

::::::::::
AMSR-E/2

:::
SIC

::::::::::
observation

:::::::
product

:::::::
includes

::::::::
individual

::::::::::
uncertainty

::::::::
estimates

::
for

:::
all

::::
grid

:::::
points.

::::
This

::::::::::
uncertainty

::
is

:::::
based

::
on

:::
the

::::
sum

::
of

:::::::::
algorithm

::::::::::
uncertainty

:::
and

::::::::
smearing

::::::::::
uncertainty.

::::::
Where

::::::::
smearing

::::::::::
uncertainty

::
is

::::::
related

::
to

:::
the

:::::::
location

:::
of

:::
the

:::::::::
observation

:::::::::
compared

::
to

:::
the

::::
grid.

Two different SIT products are assimilated. For thick SIT observations, the CryoSat-2 Level-4 Sea Ice Thickness product10

is used (Kurtz and Harbeck, 2017). The CryoSat
::::::::
CryoSat-2 observations are based on radar altimeter measurements of sea

ice freeboard. The SIT is derived assuming nominal densities for ice, snow and water, and only valid for high concentration

ice (> 70 %; Kurtz et al., 2014b), thus they are assumed to be observations of thick ice relative to the SMOS observations.

The snow depth used to calculate sea-ice elevation is constructed from the Warren climatology of snow depth (Warren et al.,

1999), modified to account for the loss of multi-year ice in recent years (Kurtz and Farrell, 2011). The dataset has a spatial15

resolution of 25 km and a 30-day average temporal resolution covering the entire Arctic. For the CryoSat
::::::::
CryoSat-2

:
dataset,

no uncertainty estimates are provided, thus following Zygmuntowska et al. (2014) an uncertainty of 0.5 m was used for all

CryoSat
::::::::
CryoSat-2

:
observations. Due to the low temporal coverage, this is most likely an underestimation of the uncertainty,

and other publications have suggested higher uncertainties (Xie et al., 2016; Chen et al., 2017). In our study, the main focus

is on the impact of the observations on the assimilation system and thus a low error is applied in order to elucidate the model20

impact of the observations. Since the Cryosat
:::::::::
CryoSat-2 dataset is only valid for high concentration ice, all observations are

in the internal part of the Arctic sea ice, and will in future reference also be referred to as internal ice thickness. The Cryosat

::::::::
CryoSat-2

:
observations are only available in the cold season from October to April.

For thin SIT observations, the daily L3C SMOS Sea Ice Thickness version 3.1 is used (Tian-Kunze et al., 2016). These

SIT observations are acquired from a satellite using a passive microwave with L-band frequency. Measurements of brightness25

temperatures are converted into SIT using a radiation and thermodynamic model based on penetration depth (Tian-Kunze et al.,

2014). Xie et al. (2016) found that observations thinner than around 0.4 m were the most realistic to use in the analysis, hence

in this study observations thicker than 0.5 m have not been used. For the SMOS observations it is assumed that all observations

are acquired at 100 % SIC, thus the observations are assimilated as normalised ice volume. The SMOS dataset has a resolution

of 12.5 km and is structured on a stereographic grid. Since all SMOS observations are thinner than 0.5 m they are all located30

in the vicinity of the Arctic ice rim, and will in future reference also be referred to as rim ice thickness. As for the internal ice

thickness observations, the SMOS SIT are only available in the cold season from October to April.
:::
The

::::::
SMOS

:::::::::::
observations

::::::
include

::::::::
individual

::::::::::
uncertainty

::::::::
estimates

:::
for

::::
each

::::
grid

:::::
point.

:::::
These

::::::::::
uncertainty

::::::::
estimates

:::
are

:
a
:::::::::::
combination

::
of

:::::::::::
uncertainties

::
of

::::::::
measured

:::::::::
brightness

::::::::::
temperature,

::::::::
auxiliary

::::
data

::::
sets

:::
and

:::::::::::
assumptions

:::::
made

::
in

:::
the

::::::::
radiation

:::
and

::::::::::::::
thermodynamic

:::::::
models,

::
in

::::::
general

::::::
thicker

:::
ice

:::
has

::::::
higher

:::::::::
uncertainty

::::::::::::::::::::
(Kaleschke et al., 2017).

:
35
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For verification of the modelled SIT, the weekly combined SMOS-CryoSat
::::::::::::::
SMOS-CryoSat-2

:
dataset version 1.3 was used

(Ricker et al., 2017). This observation product provides SIT observations covering the whole Arctic during the cold sea-

son. In addition, the IceBridge L4 Sea Ice Thickness observations are used for verification (Kurtz et al., 2013, 2014a). This

dataset consists of SIT and snow depth measurements from an aeroplane, using a radar altimeter measuring the ice freeboard.

The IceBridge observations are limited temporally to March-April, and spatially to parts of the Beaufort Sea, the Canadian5

Archipelago, and north of Greenland.

The snow depth observations are derived from AMSR-E/2 observed brightness temperatures (Rostosky et al., 2018). The

data are available on a daily basis with a resolution of 25 km x 25 km. The algorithm uses the same technique which was

developed by Markus and Cavalieri (1998) to retrieve snow depth over Antarctic sea ice. Their product is based on an empirical

relationship between the gradient ratio of the 37 GHz and 19 GHz brightness temperature observations and Antarctic snow10

depth. It was adapted to retrieve snow depth on Arctic sea ice (Comiso et al., 2003), but due to the radiometric properties of

Arctic multi-year ice, the retrieval is limited to first-year ice only. The new product by Rostosky et al. (2018) makes use of

lower frequency channels (i.e. brightness temperature observations at 6.9 GHz) which are less sensitive to the Arctic multi-year

ice and thus the retrieval can be, with some exceptions (Rostosky et al., 2018), applied over the whole Arctic sea ice. The new

snow depth retrieval was trained and evaluated using NASA’s Operation Icebridge airborne snow depth observations (Newman15

et al., 2014). Those observations are, however, mainly limited to March and April and, so far, no evaluation of the snow depth

product exists for the remaining winter season. We, therefore, limit our analysis to snow depth observations in March and

April.
:::
For

:::
the

::::
snow

:::::
depth

:::::::
product,

::::::::::
uncertainty

::::::::
estimates

::::
exist

:::
for

:::::
every

:::
grid

:::::
point.

::::::
There

:::
are

:::
two

::::
main

:::::::
sources

::
of

:::::::::::
uncertainties

::
in

:::
this

::::::::::
observation

:::::::
product:

::::
The

::::
first

::
is

:::
that

:::
the

:::::::
number

::
of

:::::::::
IceBridge

::::::::::
observations

:::::
used

::
to

::::::
develop

::::
the

::::::::
empirical

::::::::::
relationship

:::::::
between

::::::::
brightness

:::::::::::
temperatures

::::
and

::::
snow

::::::
depths

::
is

:::::
small

::::::::
compared

::
to

:::
the

::::::::
coverage

::
of

:::
the

:::::::
product.

:::
The

::::::
second

::::::::::
uncertainty

::
is20

::
in

::
the

:::::
input

:::::::::
parameters

::::::::::
(brightness

::::::::::
temperature,

:::
ice

:::::::::::
concentration

:::::
etc.).

::::
More

:::
on

::::
how

:::
the

::::::::::
uncertainties

:::
are

::::::::
explicitly

:::::::::
calculated

:::
can

::
be

:::::
found

:::
in

:::::::::::::::::::
(Rostosky et al., 2018). When the model simulations were performed the snow depth product was in its early

development state. By now, a slightly updated version of the snow depth product exists, but since the overall differences

between the updated version and the early state version are small we do not expect the updated data set to yield substantially

different results.25

::
In

:::::::
addition

::
to

::
the

:::::
radar

:::::::::::
observations,

:::
Ice

::::
Mass

:::::::
Balance

::::::
(IMB)

::::
buoy

::::::::::
observations

::
of

::::
SIT

:::
and

:::::
snow

::::
depth

:::::::::::::::::::::
(Perovich et al., 2018) are

::::
used

:::
for

:::::
model

:::::::::::
verification.

:::::
These

::::
data

:::::::
include

::::::::::::
measurements

::
of

::::
SIT

::::
and

:::::
snow

:::::
depth

::::
from

:::::::
drifting

:::::
buoys

:::
in

:::
the

::::::
Arctic

::
at

:::::::
multiple

::::
time

:::::::
intervals

:::
and

:::::::
different

:::::::
location

:::::
every

::::
year.

::::
The

:::::::::::
measurements

:::
are

:::::::::
performed

::
by

::::::::
sounders

::::::::::::::::::::
Polashenski et al. (2011).
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4 Methods and model setup

4.1 The Ensemble kalman filter

The Ensemble Kalman Filter (EnKF) is a sequential data-assimilation method used in a wide variety of geophysical systems

(Evensen, 1994, 2009; Houtekamer and Zhang, 2016). The analysis equation for the EnKF is given by (Jazwinski, 1970;

Evensen, 2003),5

xa = xb+PbH
T
(
HPbH

T +R
)−1

(y−Hxb) . (2)

The model background and analysis state vectors are matrices given by, xb ∈ Rn×N and xa ∈ Rn×N , respectively. Here n is

the number of variables (that will become updated) times number of grid cells, andN is the number of ensemble members. The

covariance of the observations is given by R ∈ Rm×m, where m is the number of observations, H ∈ Rm×n is the observation

operator, which is a transformation operator between model and observations space, and y ∈ Rm×N is the observation matrix.10

For the EnKF the background error covariance matrix, Pb, is estimated based on the covariance of an ensemble of model states.

The ensemble is generated by either perturbing the forcing, the model parameters, the observations or a combination of the

three. The estimator for model
:::::::::
background

:
error covariance, Pb ∈ Rn×n, is

Pb = ((xb−xb)(xb−xb)T ). (3)

The overbars indicate an ensemble average. In our study, the Deterministic Ensemble Kalman Filter (DEnKF) proposed by15

Sakov and Oke (2008) is used. This method solves the analysis equation without the use of perturbed observations.

When using the EnKF spurious co-variances might occur due to distant state vector elements and insufficient model rank

when small ensemble sizes are used. These artefacts can be reduced by using a method for localization (Evensen, 2003; Sakov

and Bertino, 2011), limiting the assimilation to affect a smaller area. There are several methods for localization, and in this

study, the polynomial taper function (Gaspari and Cohn, 1999) is used. The taper function is a bell-shaped function providing20

stronger influence to nearby grid cells.

4.2 Ensemble spread

Sufficient ensemble spread is essential for a robust and well-functioning EnKF assimilation system. In general, this is main-

tained by the Kalman Filter equations, but it is important to also take into account the uncertainty in the model and the

atmospheric forcing. The atmospheric forcing is perturbed to account for uncertainty in the forcing. The atmospheric forcing25

is perturbed using smooth pseudo-random fields (Evensen, 2003) with zero mean and standard deviation based on perturbation

values applied also in the more tested and robust TOPAZ system (Sakov et al., 2012). For the 2-m temperature, the standard

deviation is 3K, cloud cover is 20%, per-area precipitation flux is 4× 10−9 m, and for wind, 1m s−1 in both horizontal

directions is applied. To account for model uncertainty the ice strength parameter, P , is perturbed. This is done by perturbing

8



the model parameter Cf which is the frictional energy dissipation parameter. In CICE, Cf is proportional to the ice strength

(Hunke et al., 2015b),

P ∝ Cf . (4)

The default value of Cf is 17, but according to Flato and Hibler (1995) this is not a well-known parameter. In our study, this

parameter is modelled as a stochastic variable with a mean value of 17 and a standard deviation of 10, the different values are5

chosen based on values found during model tuning using observations by Flato and Hibler (1995). Since only one value less

than 10 was found in their study, values less than 10 for Cf is not used.

4.3 Experimental design

The assimilation model system consists of 20 ensemble members, with an assimilation time step of seven days. Similar to Sakov

et al. (2012) a localization radius of 300 km is used. The initial ensemble is generated from ice states from the 1. January from10

::::::
January

::
1.

:::::
based

:::
on 20 different years , while all

::
of

:
a
:::::::::
standalone

::::::
sea-ice

:::::
model

:::
run

:::::::
without

:::::::::::
assimilation.

:::
The

:::::::::
standalone

::::::
model

:::
was

::::::::
initialised

:::::::
without

:::
ice

::
in

:::::
1979.

:::
All

:::::
initial

:
ocean states are from

:::::
model

::::::
output

:
at
:
the initial date 1. January

::::::
January

::
1. 2010.

::::
This

:::::
output

::
is
:::::
taken

:::::
from

:
a
::::::
model

::::::
spin-up

::::::::::::::
over1993-2010. Before performing the experiments, a model system assimilating

ice concentration and sea-surface temperature (SST) from OSTIA (Donlon et al., 2012) is run for one year until 1. January

2011, to use as an initial state.15

In the CICE model, the
::::::
sea-ice variables are distributed in 5 thickness categories, while all observations are single category

values. This discrepancy was solved by assimilating the aggregated category values and using the EnKF correlation properties

to update each category individually. After assimilations, the analysis results are post-processed before running new forecasts.

During post-processing, it is verified that the consistency of the different ice variables is maintained during assimilation as the

analysis can lead to for instance situations where some areas have a positive SIC but no volume
:::::
partial

:::
SIC

:::
but

:::
the

::::::::::::
corresponding20

:::::
partial

::::
SIT

::
is

::::
zero

:::
or

:::
less

:::::
than

::::
zero, in this example the SIC is set to zero. In addition, all variable bounds are checked

during post-processing. Due to linear correlation effects of the EnKF, locations with non-physical concentrations can occur,

for instance, SIC values both above one and below zero.

For the ocean parameters, only ocean temperature and ocean salinity are updated during the assimilation. Experiments have

shown that large instantaneous changes to the ocean parameters lead to model instability. These large changes are especially25

seen in the marginal ice zone (MIZ) where the ensemble spread is the largest and the update to the ensemble is the strongest. To

prevent these instabilities in the ocean the magnitude of the ocean update during an assimilation step is limited. In this work, a

maximum temperature update step of 0.2 K for the ocean surface layer and 0.1 K for all other ocean layers is chosen. Similarly

for the salinity 0.2 for the surface layer and 0.1 for all other layers is chosen. The limits are chosen crudely, based on values

where the model did not immediately crash after assimilation. Although this is a crude simplification, almost omitting ocean30

update, it is believed to be sound, because the focus in this research is on the sea ice, and because it is implemented consistently

for all the model experiments.
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Table 1. Overview of the 5 experiments used to asses
::::

assess observation impact, the X marks if the given observation is assimilated in the

experiment.

OSISAF Cryosat
:::::::

CryoSat-2 SMOS Snow depth

Exp1 (SIC) X

Exp2 (SIC + SITI ) X X

Exp3 (SIC + SITR) X X

Exp4 (SIC + SD) X X

Exp5 (Control)

Five assimilation experiments assimilating different observations are used to investigate the observations effect on the model.

In experiment 1 only OSISAF SIC is assimilated, in exp. 2 both OSISAF SIC and CryoSat
::::::::
CryoSat-2

:
SIT, in exp. 3 both

OSISAF SIC and SMOS SIT, in exp 4. OSISAF SIC and snow depth (SD) observations, exp 5. is a control run without

assimilation. All assimilation systems are initialized after one year of initial assimilation on 1. January 2011 and run for three

years. A summary of the different experiments is shown in table 1.5

5 Results

In this section, the output of the five ensemble experiments is compared. All results are based on the output from 2011-2013.

As mentioned, the first year of modelling, 2010, is only used to spin-up the experiments, generating a stable and consistent

ice-ocean model state.

Many of the results shown in this section will be based on the root mean squared error (RMSE). In this study, the RMSE is10

weighted by the observation uncertainty, σObs(i),

RMSE =

√√√√√ N∑
i=1

(Mod(i)−Obs(i))2
σ2
Obs(i)

N
, (5)

where N is the number of grid cells, Obs and Mod are the observations and model values, respectively. Thus an RMSE of one

indicates that the difference between model and observations are on average of the same order as the observation uncertainty.

5.1 Validation against concentration observations15

In Figure 2 the monthly averaged ensemble mean of the five experiments validated against two different SIC observation

products, one assimilated and one independent is plotted. In Fig 2a the RMSE values of the ensemble mean of the modelled

SIC validated with the observed AMSR-E/2 product are plotted after assimilation. All four assimilation experiments are found

to be significant improvements compared to the control experiment without assimilation. Using a one-sided paired sample

student t-test over all 36 months of simulation both the Cryosat
::::::::
CryoSat-2

:
internal SIT and SMOS rim SIT experiments show20

significant improvements compared to the OSISAF SIC only experiment on a 5 % level, but the differences are relatively small.

10
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Figure 2. The monthly averaged RMSE of the ensemble mean SIC over three years. In a) the model is validated against AMSR-E/2 SIC

observations and in b) OSISAF SIC observations. The lines represent different experiments, black: only SIC assimilation, blue: SIC and

CryoSat
::::::::
CryoSat-2 thick internal SIT assimilation, red: SIC and SMOS and thin rim SIT assimilation, yellow: SIC and snow depth (SD)

assimilation, magenta dotted: without assimilation.

The significance is derived using monthly data, but not yearly averaged as in the figures. However, the snow experiment is not

found to be significantly better than the OSISAF SIC only experiment on a 5 % level, a p-value of 0.23 is found. The difference

between the SIT experiments and the SIC only experiment is largest during the first half of the year, while in the second half of

the year all experiments give similar results with a peak in the RMSE in October-November. This peak in RMSE is also seen

in the control model, indicating a possible model problem related to the transition from melt season to growing season.5

In Fig. 2b the monthly averaged RMSE of the model SIC ensemble mean versus the assimilated OSISAF SIC observations

is plotted. The result in Fig. 2b is similar to that of 2a, but the differences between the models are larger when verified against

OSISAF, even though the OSISAF observations are assimilated in all experiments. This is partly related to lower observation

error in the MIZ for the OSISAF dataset than the AMSR-E/2 dataset, and that the OSISAF includes almost an extra year

of observations, due to the AMSR-E/2 gap. Since the RMSE values are weighted by the observation error the differences10

in the MIZ are more pronounced when verified against OSISAF SIC observations. In addition, evidence that there are small

differences between the two observation products is seen by different shapes on the graphs, even though the curves follow

the same trends. As mentioned, the Cryosat
::::::::
CryoSat-2

:
and SMOS SIT experiments are significantly better than the OSISAF

SIC only experiment. When compared to the OSISAF observations also snow depth assimilation experiment is found to be

significantly better than the OSISAF SIC only experiment, especially during the first half of the year there are significant15

differences. In conclusion, assimilating SIT and to some degree, snow depth has a significant effect on the SIC RMSE, and the

effect is largest for the first half of the year. In the transition from melting ice to freezing ice, all four experiments give similar

high RMSE values.
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RMSE estimates are sensitive to individual measurements contributing to large portions of the total RMSE, thus a small area

with large errors will obscure the overall model results. Another assimilation quality measure is hit rates, where all grid cells

are given equal weight in the analysis. In our work, the hit rate is analysed by classifying the SIC in three categories, open

water (concentration less than 10 %), low concentration ( < 50 %), and high concentration ( > 50 %). The hit rate is defined as

the number of grid cells correctly classified. The independent AMSR-E/2 observations are used for verification. In Fig. 3a the5

number of grid cells correctly classified is shown; in Fig. 3b the number of grid cells with modelled ice and observed water;

in Fig. 3c the number of grid cells with modelled water and observed ice; in Fig. 3d the number of grid cells with wrong

concentration category, high SIC classified as low SIC and vice versa. All assimilation experiments outperform the control run

in terms of hit rate. The control run has a large number of false positives, indicating too much ice. Among the experiments, the

variations are small in spring, fall and winter, while summer shows significant differences. In summer all experiments have a10

minimum, this minimum is related to an under-prediction of sea ice and wrong classification of concentration in observations

due to melt ponds on ice which leads to an underestimation of SIC in the observations (Kern et al., 2016). In summer the

CryoSat
::::::::
CryoSat-2

:
assimilation has the highest number of hits, closely followed by the SMOS and snow experiments.

5.2 Total extent and volume

In figure 4, the total sea ice extent (4a), the total sea-ice volume (4b), and the total sea-ice volume overlapping the area and15

period covered by the CryoSat
::::::::
CryoSat-2

:
internal SIT observations (4c) are shown for the five experiments. Figure 4a shows

that the control experiment has a too large sea-ice extent both in summer and winter, while the assimilation experiments have

a slightly too large ice extent in winter.

The total sea-ice volume shown in Fig. 4b indicates large differences between the five experiments. Snow depth assimilation

generally leads to thicker ice. The model has a lower amount of snow than the observations and due to positive correlation, the20

ice thickness is also increased during the assimilation of snow depth. The increased thickness can be seen by the fact that the

snow depth experiment has about the same extent as the other experiments, but show a significantly larger ice volume, both in

summer and winter for all three years. Both the SMOS and CryoSat
::::::::
CryoSat-2

:
ice thickness experiments lead to thinner sea ice

compared to the control experiment. Especially the SMOS assimilation model shows much thinner sea-ice than do the other

assimilation experiments. The thin SIT observations have a very strong effect on the modelled SIT, seen by an abrupt update25

of sea-ice volume during assimilation in winter. A concerning effect of the assimilation experiments is the strong decrease in

the Arctic sea-ice volume throughout the period of study. The sea-ice volume maximum in winter is decreasing for every year

of assimilation, this is not seen in the control run.

In Fig. 4c the modelled sea-ice volume is compared to the sea-ice volume in the combined CryoSat-SMOS
:::::::::::::::
CryoSat-2-SMOS

product. The control model is found to have too thick ice compared to the observations, while the experiments assimilating SIT30

are much closer to the observations, though largely biased. It was seen that the
:::
This

::::
can

::
be

::::
used

::
to

:::::::
explain

:::
the

:::::
drastic

:
decrease

in sea-ice volume
::::
found

:
in Fig. 4bcan be explained by the volume adjusting to the observed SIT.

::::
The

:::::
model

::::
SIT

::
is

::::::::
adjusting

::::::
towards

:::
the

:::::::::::
observations

::
by

::::::
rapidly

:::::::
thinning

:::
the

::::::
sea-ice. For the OSISAF SIC only assimilation experiment, the volume is also

slowly diverging towards the observed volume, even though SIT is not assimilated. This is likely related to a more accurate

12
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Figure 3. Classification of the model result based on three classes, high concentration ice (> 50 %), low concentration ice (> 50
:::
< 50

:
%) or

water and compared to AMSR-E/2 SIC observations. The figures show a) the fraction of correctly classified grid cells, b) the fraction of grid

cells with modelled ice while water is observed, c) fraction of grid cells with modelled water while ice is observed, and d) fraction of grid

cells where the model and observations have different SIC classification. The colour coding in the figure is the same as that of Fig. 2. These

panels cover all possible classifications, thus the sum of them equals to one.
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Figure 4. The evolution of a) total sea-ice extent, b) total sea-ice volume, and c) total sea-ice volume for the area covered by the

Cryosat-SMOS
:::::::::::::
CryoSat-2-SMOS SIT observation product. The coloured lines represent the same as in Fig. 2. In a) the black stars rep-

resent the AMSR-E/2 SIC observations and the blue
::
red

:
stars the OSISAF SIC observations. In b) same as a) without observations. In c) the

black stars represent the Cryosat-SMOS
:::::::::::::
CryoSat-2-SMOS

:
observation product.

:::
The

:::::
xlabel

:
is
:::::
given

::
as

:::::::::
month-year.

sea-ice extent also leads to improved ice thickness in the marginal ice zone. However, the improvements are obtained at a

slower pace than when assimilating SIT directly.

5.3 Validation against thickness observations

In Fig. 5a the SIT RMSE of the ensemble averaged
::::
mean

:
modelled SIT is verified with the combined SMOS-CryoSat

::::::::::::::
SMOS-CryoSat-2

:
SIT product. The experiment assimilating SMOS thin SIT has significantly lower RMSE values than the5

other three assimilation experiments. The other three experiments are more similar, all showing high RMSE values. It is found

using a one-sided paired student t-test that only the SMOS SIT experiments are significantly better than the SIC only assimila-

tion, with p-values less than 5 %. Due to the high RMSE values, only small improvements compared to the control run is seen.
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The result is consistent with what was found for the sea-ice volume (Fig. 4c), regarding the SMOS SIT assimilation having

the strongest effect on the modelled SIT. The reason for the high RMSE values is that in general, the model has to
:::
too much

ice, leading to too thick ice in the MIZ. For the SMOS-CryoSat
::::::::::::::
SMOS-CryoSat-2

:
SIT product the uncertainties provided are

very small, especially in the MIZ where the SMOS observations are used, thus when calculating the RMSE these values have a

huge effect on the result. Thus it is also reasonable that the assimilation system assimilating these MIZ thickness observations5

also give the lowest RMSE values. For the other assimilation systems, the ice extent is updated in the MIZ, but the thickness

reduction takes longer because this has to evolve over time.

As for the SIC observations, the RMSE values are biased by locations showing large differences. Particularly for thickness

which is not bounded upwards, a few grid cells in the MIZ can contribute to a large total RMSE. As for concentration, an

alternative measure where correctly classified model thickness hit rates are used. The model is separated into four thickness10

categories, less than 0.5m, between 0.5m and 1.5m, between 1.5m and 3m, and above 3m. In Fig. 6a the number of correctly

classified ice thicknesses grid cells is plotted for each experiment. The figure shows that the CryoSat
::::::::
CryoSat-2

:
internal SIT

experiment is the model which has the highest number of correctly classified grid cells. The other experiments are more similar,

except in spring where the SMOS rim SIT assimilation is equally good as the CryoSat
:::::::::
CryoSat-2 internal SIT assimilation,

and both much better than the other three. In spring the SIC only and snow depth assimilations are not improved compared to15

the control case. In general, the model shows too much ice. This can be seen by a large number of grid cells having too thick

ice in the control model (Fig. 6b). This is a combination of the sea-ice extent being too large and the ice is
:::::
being too thick. By

assimilating observations the ice volume is reduced, not only for the SIT assimilations, but also for the snow depth and SIC

only assimilations, but to a lower degree for the latter. This is an effect of a lower sea-ice extent (Fig. 4a). In Fig. 6c the number

of grid cells with too thin ice compared to the observations is shown. It was found that this problem is large in early winter for20

all experiments but reduces during winter for all experiments except the SMOS experiment. During SMOS assimilation, only

thin ice is assimilated which might lead to a bias towards the thinner ice, causing a relatively high number of grid cells with

too thin ice.

As an example, in Fig. 7 the absolute differences between the experiments and the combined CryoSat
::::::::
CryoSat-2 SMOS ice

thickness observations are plotted for 1. April 2011. Figure 7 is consistent with Fig. 6a showing that the CryoSat
::::::::
CryoSat-225

experiment has the smallest differences compared to the observations in the internal Arctic, affecting a large area, however,

large differences can be seen in MIZ. While for the SMOS rim SIT assimilation the effect is the opposite, with large impact in

the MIZ, and low impact in the ice interior. This shows that assimilating SIT is important both in the interior and in the MIZ.

In addition to the satellite observations, the independent airborne IceBridge dataset is used for verification of the modelled

SIT (Kurtz et al., 2013, 2014a). This dataset has low temporal and spatial distribution, but is believed to have higher accuracy30

and has a much higher spatial and temporal resolution. All observations occurring in March and April are gathered as a yearly

averaged observation as a function of space. These yearly observations are then compared to modelled SIT averaged over the

same period for the observed IceBridge locations. Since the IceBridge resolution is much higher than that of the model, all

IceBridge observations within one model grid cell are averaged and used for verification, the average is done by a weighted

mean based on the observation uncertainty. The validation results are shown in table 2. On average the CryoSat
::::::::
CryoSat-2

:
SIT35
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Figure 5. RMSE of monthly averaged model SIT and snow depth averaged over all ensemble members
::

for
::
the

:::::
years

::::::::
2011-2013 calculated

against observed
::
the a) ice thickness

:::::::
combined

::::::::::::::
SMOS-CryoSat-2

:::
SIT

::::::
product

:
and b) snow depth

:::::::
observed

:::::::::
snow-depth

::::::
product.

:::::
These

:::
are

:::::::::
observations

:::
also

::::
used

:::
for

:::::::::
assimilation. The colour coding is as in Fig. 2.

Table 2. The yearly
::::::
Mar/Apr averaged RMSE values of the five experiments compared to the IceBridge aerial SIT observations. Bold values

represent the model with the lowest RMSE values for that year.

2011 2012 2013
:::::::

2011-2013
:

SIC 0.88 0.87 1.11
:::
0.94

SIC+SITI 0.63 0.86 0.72
:::
0.80

SIC+SITR 0.74 1.14 0.87
:::
0.96

SIC+SD 0.93 1.38 1.64
:::
1.51

Control 0.82 1.25 2.31
:::
1.38

Cryo Obs 0.67 0.95 0.84
:::
0.84

experiment has the best SIT estimation as compared to IceBridge. Both the SMOS and the CryoSat
::::::::
CryoSat-2

:
SIT experiments

give on average thinner SIT than the IceBridge observations, consistent with the findings of Chen et al. (2017). The last line in

the table shows the RMSE between the CryoSat
:::::::::
CryoSat-2 observations and the IceBridge observations and the results show

that the error is comparable to the model errors.

For all three years, the CryoSat
::::::::
CryoSat-2

:
assimilation has lower RMSE values than the CryoSat

:::::::::
CryoSat-2 observations,5

indicating a well-balanced assimilation, with appropriate observation error and ensemble spread. It should also be mentioned

that the Cryosat
::::::::
CryoSat-2

:
observations have less spatial coverage than the model and not all IceBridge observations are

covered, thus the number of useful observations for the CryoSat
::::::::
CryoSat-2

:
RMSE calculation is smaller than for the validation

of the experiments.
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Figure 6. The monthly mean SIT averaged over all ensemble members is classified into four thickness categories and compared to the

CryoSat-SMOS
:::::::::::::
CryoSat-2-SMOS SIT observation product. The fraction of grid cells are shown with a) correctly classified thickness cate-

gory, b) too thick ice, and c) too thin ice. As in Fig. 2 the coloured lines represent different experiments.

:::::::
Another

::::::::::
independent

:::::::
dataset

::
of

::::
SIT

:::::::::::
observations

:::::::::::::
complementing

::::
the

::::::::
IceBridge

:::::::::::
observations

:::
by

::
a
::::::::
temporal

:::::::::
resolution

:::::::
spanning

:::
the

::::::
entire

::::
year

::
is

:::
the

:::::
IMB

::::
buoy

:::::::
dataset.

::::
The

:::::
result

:::
of

:::::
model

:::::::::
validation

::::
with

:::
the

:::::
IMB

:::::::
product

::
is

::::::
shown

::
in

:::::
table

::
3.

:::
For

::::
these

::::::::::::
observations,

:
a
:::::::
slightly

:::::::
different

:::::::
method

::::
than

:::
that

:::::::
applied

:::
for

::::::::
IceBridge

::
is

:::::::::
performed.

::::
This

::
is
:::::::
because

:::::::::
IceBridge

:::::::::
temporarily

::::
only

:::::::
covered

:::::::::::
March-April,

:::::
while

:::
the

:::::
IMB

:::
data

:::::
span

:::
the

:::::
entire

::::
year.

::::
The

::::
buoy

:::::::::::
observations

:::
are

::::::::
converted

::
to

:::::
daily

:::::::
averages

:::
on

:::
the

:::::
model

:::::
grid.

:::::
From

::::
these

::::::
values,

:::
the

:::::::
RMSE

::
is

::::::::
calculated

:::
on

:::
the

:::::
7-day

::::::::
ensemble

:::::
mean

::::
and

:::::::
averaged

:::
for

:::::
each5

::::
year.

:::::
Since

:::
SIT

::
is

:
a
::::::::
relatively

::::
slow

:::::::
varying

:::::::
variable,

:::
for

::::
each

:::::
7-day

::::::
output,

:::::::::::
observations

::::
from

::::
+/-3

::::
days

:::
are

::::
used

::
to

:::::::
increase

:::
the

::::::
number

::
of

:::::::::::
observations.

::::
The

::::
IMB

:::::::::::
observations

::
do

:::
not

::::::
include

:::
an

:::::::::
uncertainty

::::::::::
estimation,

:::::
hence

:::
the

:::::
RMSE

::
is
:::
not

::::::::::
normalised

::
as

:::
was

:::
the

::::
case

:::
for

:::::
other

::::::
RMSE

::::::::
estimates

::
in

:::
this

:::::
work.

::::
The

::::::
results

::::
show

::::
that

::::
over

:::
the

::::
three

:::::
study

::::::
years,

:::
the

::::::
SMOS

::::::
internal

::::
SIT

::::::::::
assimilation

::::::
system

:::
has

:::
the

::::::
lowest

::::::
RMSE

::::::
values,

::::::::
followed

::
by

:::
the

:::::::::
CryoSat-2

:::::::
internal

:::
SIT

:::::::::::
assimilation.

::::
The

::::
other

:::::
three

:::::
show

::::::
similar

::::::
results,

:::::
again

::::::::
indicating

:
a
:::::::
positive

::::::
impact

::
of

:::::::::::
assimilating

::
ice

::::::::
thickness

::
in

:::
the

::::::
model.

:
10
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Figure 7. Absolute differences between the experiments and the combined SMOS-CryoSat
:::::::::::::
SMOS-CryoSat-2 observation product are given

on 1. April 2011. The experiments are assimilating a) OSISAF SIC, b) OSISAF SIC and CryoSat
:::::::
CryoSat-2

:
SIT, c) OSISAF SIC and SMOS

SIT and d) OSISAF SIC and snow depth.

Table 3.
::
The

:::::
yearly

:::::::
averaged

::::::
RMSE

:::::
values

::
of

::
the

:::
five

::::::::::
experiments

:::::::
compared

::
to

:::
the

::::
IMB

:::
SIT

::::
buoy

::::::::::
observations.

::::
Bold

:::::
values

:::::::
represent

:::
the

:::::
model

::::
with

:::
the

:::::
lowest

:::::
RMSE

:::::
values

:::
for

:::
that

::::
year.

:::
No

:::::::::
uncertainties

:::
are

::::
used

:
to
::::::::
normalise

:::
the

:::::
RMSE

:::::
values.

::::
2011

:::
2012

: :::
2013

: :::::::
2011-2013

:

:::
SIC

::::
0.99

:::
1.45

:::
1.32

:::
1.27

:::::::
SIC+SITI: :::

1.08
: :::

1.28
:::
1.00

:::
1.13

::::::::
SIC+SITR :::

1.09
: :::

1.07
:::
0.99

:::
1.05

::::::
SIC+SD

: :::
1.02

: :::
1.40

:::
1.28

:::
1.25

::::::
Control

:::
1.46

: :::
1.27

:::
1.23

:::
1.26
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Table 4. The yearly averaged
::::::::::
Mar/Apr-mean

:
RMSE values of an ensemble average of

::
the

::::::::::::
ensemble-mean snow depth averaged over all the

ensemble members for the
:::
grid

:::::
cells.

:::
The five experiments

::
and

:::
the

:::::::::
snow-depth

::::::
satellite

:::::::::
observations

:::
are compared to the IceBridge airborne

snow depth
::::::::
snow-depth observations. Bold values represent the model with the lowest RMSE values for that year.

2011 2012 2013
:::::::

2011-2013
:

SIC 0.79 1.38 2.64
:::
1.63

SIC+SITI 0.79 1.15 1.44
:::
1.06

SIC+SITR 0.78 0.83 1.73
:::
1.17

SIC+SD 0.74 1.22 1.46
:::
1.13

Control 0.77 2.49 1.85
:::
1.33

Snow Obs 1.46 NA 1.17
:::
1.16

5.4 Validation against Snow observations

In Fig. 5b the RMSE of monthly averaged modelled snow depth over all ensembles validated against the observed satellite

snow depth
::::::::::::::::::::::
(Rostosky et al., 2018) used

:::
for

::::::::::
assimilation

:
is plotted. The control experiment is found to have the lowest RMSE

values. This is most likely an effect of sea-ice extent being different compared to the assimilation experiments, rather than the

assimilation decline the accuracy of the modelled snow depth. In addition, the control experiment has an increasing RMSE dur-5

ing the period, while the assimilation experiments show the effect of assimilation by decreasing the RMSE. For the assimilation

experiments, the snow experiment has the lowest RMSE values followed by the CryoSat
::::::::
CryoSat-2 experiment, indicating that

the thick ice observations have a correlation effect on the snow depth. These two observation products also cover a similar area

of the Arctic ocean.

A verification of the modelled snow depth using the independent IceBridge dataset is given in table 4. The same method10

as for the SIT in table 2 was used,
::::::
where

:::::::
Mar/Apr

::::::
model

::::::
values

:::
are

::::::::
compared

:::
to

:::
the

::::::::
IceBridge

:::::::::::
observations

:::
and

::::::::
averaged.

It is found that none of the experiments is particularly better than any of others when verified against IceBridge snow depth

observations. This lack of improvement can be an indication of a too simple snow component in our coupled system, only

one snow layer is used. It was also
:
It

::
is seen that within one grid cellthere where

:
,
::::
there

:::
are

:
huge variations in the IceBridge

snow observations, indicating the difficulty of modelling snow
:
.
::::
Such

:::::::::
variations

::::::
cannot

::
be

::::::::
provided with a coarse resolution15

model.
::::::
Hence,

::::
even

::::::
though

::::::::
IceBridge

::
is
::::
used

:::
to

:::::
"tune"

:::
the

:::::
snow

::::::::::
observations

::::::::::::::::::::
(Rostosky et al., 2018),

::::
large

::::::
RMSE

::::::
values

:::
are

::::::::
estimated

:::
for

:::
the

:::::::::
experiment

::::::::::
assimilating

:::::
snow

::::::
depth. In addition, the snow

:::::::::
component

::::
used

::
in

::::
our

:::::::
coupled

::::::
system

::
is

:::::
likely

:::
too

::::::
simple,

::::::
having

::::
only

::::
one

:::::
snow

:::::
layer,

:::::
which

::::
may

:::::
effect

::::
the

::::
snow

:::::
cover

::::::::
accuracy.

::
It
::
is
::::
also

:::::::::
important

::
to

:::::::
mention

::::
that

:::
the

::::
snow

:
observations are in the

::
an

:
early development stage and might have larger uncertainties than what

::
is used in this study.

:::::::::
Additional

:::::
model

::::::::::
verification

:::
is

:::::::::
performed

::::
with

:::
the

:::::::::::
independent

:::::
IMB

:::::
buoy

:::::
snow

:::::
depth

:::::::::::
observations.

::::
The

:::::::
method

:::
of20

::::::::
validation

::
is

:::::::::
performed

::
in

::
a
::::::
similar

:::::::
manner

::
as

:::
for

::::
SIT

::::::::
validation

::::
with

:::::
IMB

::::
buoy

:::::
data,

:::
the

::::::
results

:::
are

::::::
shown

::
in

:::::
table

::
5.

:::
As

::
the

:::::
IMB

::::
data

::::
does

:::
not

::::::
include

:::
an

:::::::::
uncertainty

:::::
these

::::::
RMSE

::::::
values

:::
are

:::
not

::::::::::
normalised,

::::
thus

::::
they

:::
are

:::::::::
significant

:::::
lower

::::
than

:::
the

::::
error

::::::::
estimates

::::
from

:::
the

:::
ice

::::::
bridge

::::::::
validation

::
in

:::::
table

::
4.

::::
From

:::
the

:::::
table

:
it
::
is
:::::
clear

:::
that

:::
the

:::::::::
differences

::::::::
between

:::
the

::::::::::
assimilation
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Table 5.
:::
The

:::::
yearly

:::::::
averaged

::::::
RMSE

:::::
values

::
of

:::
the

:::
five

::::::::::
experiments

::::::::
compared

::
to

:::
the

::::
IMB

::::
snow

:::::
depth

::::
buoy

::::::::::
observations.

::::
Bold

::::::
values

:::::::
represent

::
the

:::::
model

::::
with

::
the

::::::
lowest

:::::
RMSE

:::::
values

:::
for

:::
that

::::
year.

::
No

::::::::::
uncertainties

::
are

::::
used

::
to

::::::::
normalise

::
the

::::::
RMSE

:::::
values.

::::
2011

:::
2012

: :::
2013

: :::::::
2011-2013

:

:::
SIC

::::
0.06

:::
0.15

::
0.2

: :::
0.15

:::::::
SIC+SITI: :::

0.08
: :::

0.14
:::
0.17

:::
0.13

::::::::
SIC+SITR :::

0.09
: :::

0.15
:::
0.17

:::
0.14

::::::
SIC+SD

: :::
0.09

: :::
0.14

:::
0.16

:::
0.13

::::::
Control

:::
0.09

: :::
0.16

:::
0.19

:::
0.15

:::
‘=11

::::::
systems

:::
are

::::::
small,

:::
the

::::::::::
assimilation

:::::::
systems

:::::::::::
assimilating

:::::
snow

:::::
depth

:::
and

:::::::::
CryoSat-2

:::::::
internal

::::
SIT

:::
are

::::::
slightly

::::::
better

::::
than

:::
the

:::::
others,

:::
but

:::
the

::::::::::
differences

:::
are

:::
too

:::::
small

::
to

::::::::
conclude.

5.5 One week forecasts

Figure 8 shows the RMSE of the monthly averaged modelled SIC over all ensemble members before assimilation validated

against the AMSR-E/2 and OSISAF SIC observations. Since the assimilation time step is seven days, this gives the accuracy5

of a seven-day forecast. The comparison against AMSR-E/2 SIC observations (Fig. 8a) shows that the differences between the

experiments are small, and the differences are similar to those found after assimilation (Fig. 2a). In general, the system with

the most accurate initial state also gives the most accurate forecasts. Thus the CryoSat
:::::::::
CryoSat-2 and SMOS SIT assimilation

experiments have a better seven-day forecast from January to June than SIC only, and snow depth assimilation shows improve-

ments from January to April. Using the OSISAF SIC observations (Fig. 8b) gave the same result as found for AMSR-E/2: the10

best initial states also provide the best forecast, indicating that the sea-ice overall does not change much in a week. The same

experiments were also done for ice thickness and snow depth and similar results were encountered. A reason for the small

differences between the different experiments is the coarse model resolution. Large-scale variations as seen by a 20 km model

are not expected within a week.

6 Seasonal forecast15

In the previous section, it was found that our coarse resolution model only exhibits small changes during a one week forecast.

Thus a more interesting forecast would be one of seasonal length. A five-month forecast of the September sea-ice extent

is performed. This is done by running each of the experiments from April to September without assimilation
::::::::
mid-April

:::
to

::::::::::::
mid-September

:::::
each

::::
year

:::::::
without

:::::::::::
assimilation, and validating against the OSISAF SIC observations.

:::
The

::::::
actual

::::
start

::::
date

:::::
varied

::::::
slightly

:::::
from

::::
year

::
to

::::
year

::::::
because

:::
of

:::
the

:::::
7-day

::::::::::
assimilation

:::::
cycle,

:::
but

:::
the

::::
start

::::
date

:::
was

:::
the

:::::
same

::
for

:::
all

:::::::::::
experiments. In20

Fig. 9a, the RMSE of three five-month forecasts are shown sequentially, and a monthly averaged RMSE over the three years

is shown in Fig. 9b. The figures show that that the experiments have very similar seasonal forecasts, with some differences in

late summer. In general, the model error is gradually increasing towards the level of the control run, and in summer they have
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Figure 8. RMSE of a seven day monthly averaged
:::
(over

:::::
three

:::::
years) ensemble average

::::
mean

:
of modelled SIC

:::::::
seven-day

:
forecast

:::
SIC

validated by
:::::
against

:
a) AMSR-E/2 SIC observations and b) OSISAF SIC observations.
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Figure 9. Seasonal forecast of summer sea-ice extent. Each forecast started at the beginning of April every year. The figures show SIC RMSE

:
of
:::

the
:::::::
ensemble

:::::
mean

:::
SIC averaged over all ensemble members

:
3
::::
years

:::
and

::::::
verified

:::::
against

:::
the

:::::::::
assimilated

::::::
OSISAF

:::
SIC. The coloured lines

represent the same as in figure 2. In a) Full period, in b) monthly averaged values.

similar error levels. In August/September the experiments assimilating thickness and concentration seems to be improvements

compared to without assimilation and assimilating snow depth observations. All experiments show an increased RMSE in

2013, this is related to a too low sea-ice extent. The low sea-ice extent is caused by a weaker modelled ice growth compared to

observations in the first months of 2013.
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Figure 10. Seasonal forecast of summer sea-ice extent both with climatological forcing and re-analysed forcing. Each forecast started at

the beginning of April every year. The figure describes monthly averaged RMSE SIC averaged over all ensemble members. The blue line

represents a forecast using a climatological forcing made from an over of atmospheric data for
:::
over

:
2000-2014 with assimilation, the black

line using re-analysed atmospheric forcing and assimilation, and the dotted magenta line use re-analysed forcing only.

The seasonal forecast is compared to a climatological seasonal forecast in Fig. 10. This provides an estimate of the expected

sea-ice forecast accuracy. The climatological experiment is done by running the model with averaged atmospheric forcing data

over the years from 2000 to 2014. The result shows that the forecast skill of the model is rapidly decreasing and that a correct

atmospheric forecast is very important for an accurate sea-ice forecast. But still, skills are evident on much longer time-scales

that can be obtained with numerical weather prediction models.5

7 Discussion

Significant differences in modelled SIC after assimilation was found, especially in the first half of the year. The SMOS and

CryoSat
::::::::
CryoSat-2

:
SIT assimilations gave the lowest RMSE values, significantly better than assimilating OSISAF SIC only.

The snow depth experiment showed improvements during the first half of the year compared to the experiment assimilating

OSISAF SIC observations only. In addition, assimilating SIT and snow depth lead to an improved model of SIC in summer,10

where the CryoSat
::::::::
CryoSat-2

:
internal SIT assimilation gave the highest number of correctly classified grid cells, closely

followed by the SMOS rim SIT and snow depth assimilations. The reason for these differences in summer is that the pace in

which the ocean becomes ice-free is dependent on the ice thickness and the snow depth. In the second half of the year, fall and

early winter, all our experiments gave similar results, these similarities seem to be a consequence of the transition from melt

season to growing season not well represented in the model. The observed transition is faster than the modelled, leading to an15

extended period with more open water in the model than in the observations.

In the control model without assimilation, the ice extent both in summer and winter was found to be larger than observed.

However, with assimilation, the experiments are closer to the observed extent, even though a slight overestimation of extent
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in winter was found for the first two years. The sea-ice extent overestimation in winter is a result of a lower effect of SIC

assimilation in winter due to lower ensemble spread. When the ensemble spread is low the EnKF assimilation result is closer

to the model values, because the estimated model errors become small.

It is found that originally the sea-ice volume is too large compared to the observations, and over the three years, the

sea-ice volume in the assimilation experiments are gradually decreasing towards the observed values in the SMOS-CryoSat5

::::::::::::::
SMOS-CryoSat-2

:
SIT product. The effect is much stronger for the SMOS rim SIT assimilation, indicating that a large portion

of the original sea-ice volume overestimation is located in the MIZ. This is a consequence of too much ice in the control model

causing the observed MIZ to be located deeper into the Arctic as compared to the model, as noted by Fritzner et al. (2018).

In the verification of modelled SIT (Fig. 5a), the SMOS rim SIT assimilation was found to give the lowest RMSE values,

while the CryoSat
::::::::
CryoSat-2

:
internal SIT assimilation had the largest amount of correctly classified thickness grid cells.10

This is as expected since even though the CryoSat
::::::::
CryoSat-2

:
observations cover a larger area, they are 30-day averaged

observations with much larger uncertainties than the SMOS observations. In addition, the non-updated grid cells in the MIZ

leads to larger RMSE values than non-updated grid cells in the internal Arctic, where the model, in general, is more accurate and

less sensitive to changes. When verified by IceBridge observations which only covers the central Arctic, the CryoSat
::::::::
CryoSat-2

SIT assimilation experiment was found to give the lowest SIT RMSE values. The CryoSat
::::::::
CryoSat-2

:
SIT observations are in15

general thinner than the SIT values for the SIC only experiment. In comparison with the IceBridge observations, the CryoSat

::::::::
CryoSat-2

:
SIT is biased low, which was also found by Chen et al. (2017). When assimilating snow depth, it was found that

snow depth observations, in general, were thicker than those modelled, resulting in increased snow depth during assimilation.

Due to the correlation nature of the EnKF, a positive correlation between snow depth and SIT resulted in increased SIT in the

snow depth assimilation experiment compared to the other assimilation experiments.20

Validating our experiments with snow observations proved the control run to have the lowest RMSE values, this can be an

effect of a different sea-ice extent in the control run than in the assimilation experiments. For the control model, the ice extent

is too large, thus collecting more snow on the ice than the assimilation experiments. When the ice concentration is reduced

during assimilation, the accumulated snow is also removed, this can result in removal of too much snow if the ice extent is less

than it should be. A verification of the impact of assimilation on the snow depth is that the RMSE is decreasing throughout the25

observation period for the assimilation experiments, while for the control run the RMSE is increasing. Between the assimilation

experiments, the snow depth assimilation was found to give the lowest snow depth RMSE values, not unexpected since the

same dataset is used for assimilation and verification. More interestingly the CryoSat
:::::::::
CryoSat-2 internal SIT experiment has

significantly lower RMSE values than the SMOS rim SIT and OSISAF SIC only assimilations, indicating a close correlation

between SIT and snow depth. A curiosity here is that the SIT assimilation has a positive effect on the snow depth, while30

it was found previously that the snow depth assimilation had a negative effect on the SIT. This is likely an effect of more

SIT observations than snow depth observations, and SIT is assimilated throughout the whole winter. It could be the case that

the correlation relationship between snow depth and SIT changes throughout the winter. This results in a better snow depth

estimate, while for snow depth assimilation the assimilation period is limited to Mars-April. In addition, when the assimilation

is only in two months of the year, the model error is larger when the assimilation period starts, thus the assimilation update35
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has a large effect both on snow depth and SIT. An indication of the relation between SIT and snow depth is also seen by lower

snow depth RMSE value for the SMOS rim SIT assimilation than the OSISAF SIC only assimilation. Since the SMOS system

covers a much smaller area and has less overlap with the snow dataset than the CryoSat
::::::::
CryoSat-2 internal SIT, the effect of

assimilation on the modelled snow is smaller.

When validating our experiments with the IceBridge snow depth observations, none of the experiments showed any im-5

provements compared to the others. This can be related to an underestimated uncertainty in the snow observations, or that the

snow representation in the model is too simplistic, only utilizing a single layer. Another problem is local variations, the coupled

model is coarse with a resolution of 20 km, but as can be seen from the IceBridge observations the snow depths have large

spatial variations in this range. This causes high RMSE values, both compared to satellite observations (on the model grid)

and the modelled snow depth values. In addition only four months of snow depth observations where available for assimilation10

during the three years.

For sea ice, the model drift is in general small, the model system with the best initial state provides the best short-term

forecast. The main parameters analysed in this study
:
, snow depth, SIT and SIC,

:
all vary on longer time scales than one week

for the spatial resolution in our model. Thus the correlation between day-one and day-seven is too strong, as also shown by

Chen et al. (2017) the sea-ice drift is low.15

Several five-month seasonal forecasts of the September sea-ice extent showed small differences between the assimilation

experiments. All experiments showed a steady increase in RMSE with time. This is likely caused by the model overgrowth of

ice. The seasonal forecasts showed that after 3-4 months the RMSE values were found to be of the same order as those in the

control run. Thus assimilation gives at least an improvement over 3-4 months, and the September result suggests that with the

assimilation of SIC and SIT there are improvements in the Arctic sea-ice extent compared to the control run on even longer20

timescales, this was not seen for the snow depth experiment. The seasonal forecast was compared to a climatological run, and

it was found that without accurate forcing the forecast degenerates fast.

In this work, four different observation products have been used for assimilation. The different products differ widely in

both temporal and spatial coverage in addition to accuracy. There is no doubt that it is preferable to have as much coverage and

as accurate observations as possible. Where a realistic observation error is a necessity for the assimilation, without a realistic25

observation error the observation is not useful. E.g. the Cryosat
::::::::
CryoSat-2

:
product does not provide an observation error and a

uniform error was chosen, which will lead to some observations given too much weight and others with too little. In this study,

the spatial resolution of the observations is not a problem, because the model resolution is coarse, but in the future when the

model resolution increases, there will be an increasing demand for high-resolution SIT observations. Both SIT products are

only available in winter, and temporal coverage of the snow depth observations are limited to four months out of a three-year30

experiment. Thus for these products to be even more useful, there is a strong need for increased seasonal coverage, especially

in summer when the Arctic sea-ice extent is at a minimum and there is ship traffic there. Observations can then help to improve

the models, thereby helping planning operations and decrease the risks. In addition, because there are few snow observations

available for assimilation, there are large unknown aspects regarding the assimilation effect. Finally, it should be remembered
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that the model itself has in general too much ice and that the forcing is known to contain biases and errors (Jakobson et al.,

2012).

8 Conclusions

In conclusion, we have found that assimilation of more observation types than SIC into coupled sea-ice ocean models can

lead to significant model improvements. We show that especially the assimilation of SIT leads to improvements in modelled5

SIC, SIT and snow depth, for long-term model improvement. There is a clear evidence that assimilation of SIT gives a better

representation of the full ice state and we recommend that they are assimilated into models when available. Even though

SIT seems to be an important variable for improving sea-ice modelling, it still has several limitations in terms of spatial

and temporal resolution and realistic observation errors.
:
It
::

is
:::::::::

important
::
to

:::::::::
emphasize

::::
that

::::::::::
assimilation

::
of

::::
SIC

::
is
::::
vital

:::
to

:::
the

::::::::::
assimilation

::::::
update,

:::::
these

::::::::::
observations

::::
give

::::::::
important

::::::::::
information

::::
with

::::
full

:::::
Arctic

::::::::
coverage

:::::
about

:::::
where

:::
the

:::
ice

::
is

:::::::
located.

::
In10

:::::::
addition

:::
the

::::::::
fractional

:::
ice

::
in

:::
the

::::
MIZ

::
is

::::::::
important

:::
for

:::
the

:::::::
forecast

::
in
:::::
terms

:::
of

::::
how

:::
the

:::::::::
short-term

:::::::
changes

::
of

:::
the

::::::
sea-ice

::::
will

::::
look

::::
like,

:::
and

::::
also

:::
and

:::::::::
indication

::
of

:::
the

::::::::
thickness.

:

Assimilation of snow depth was found to have a weaker effect on the model than assimilating SIT, but improvements to

modelled SIC and modelled snow depth were found. In addition, we found a strong correlation between SIT and snow depth

which should be analysed further when more observations from other months become available. The low efficiency of snow15

depth observations can be related to a too simple snow component with only a single layer used or
::
the

:
low model resolution

:
,
:::
the

::::::::
IceBridge

::::::::::
observations

:::::
show

:::::
large

::::
snow

:::::
depth

:::::::::
variations

:::::
within

::
a

:::::
model

::::
grid

:::
cell. It is also important to keep in mind that the

snow depth observations are in an early development stage, and we should expect improvements in the future
::
the

::::::::::
uncertainty

:::::::::
estimations

:::::
might

:::
not

:::
be

::::::
correct. Possibly inaccurate observations or a wrong uncertainty estimation can have a huge impact

on the assimilation result. Due to the small temporal coverage in our study more investigation has to be done on the effect of20

assimilating snow depth observations.

As mentioned the assimilation of SIT leads to an improved model, which leads to improved short-term forecasts over

time, because the initial states are better represented. For seasonal forecast, we found that the model improvements due to

assimilating observations have a memory of at least 3-4 months, and possibly even longer. Assimilating SIC and SIT showed

improvements of the September ice forecasts compared to assimilating snow depth and no assimilation
:
.25

:::::::::
Comparing

:::
the

:::
two

::::
SIT

:::::::
products,

::::::
SMOS

::::
thin

:::
SIT

::::
and

::::::::
CryoSat-2

:::::
thick

:::
SIT,

:::
we

:::
see

:::
that

::
in
:::::::
general

:::
the

::::::::
CryoSat-2

:::::::::::
observations

::::
gives

:::
the

::::
best

::::::::
long-term

::::::
model

::::::::::::
improvement,

::::::::
especially

::::::::
decreased

::::::
RMSE

::::::
values

:::
for

:::
the

:::::
model

:::
in

:::::::
summer.

::
It

::
is

:::::::
expected

::::
that

:::::
SMOS

::::::::::
observation

::::::::::
assimilation

::::::
should

::
be

:::::
better

:::
for

:::
the

:::::::::
short-term

:::::::
forecast,

:::
but

:::
we

::::
were

:::
not

::::
able

::
to

::::::
provide

::::
any

:::::
results

:::
on

::::
this.

::::
This

:::::
could

::
be

::
an

:::::
effect

:::
of

:::
too

:::
low

::::::
model

:::::::::
resolution,

::::
with

:::
20

:::
km

::::::::
resolution

:::
the

:::
ice

::::
state

::::
does

::::
not

::::::
change

:::::
much

::::::
during

:
a
:::::
week

::
of

:::::::::
simulation.30
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