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Abstract. The contribution of cold season soil respiration to the Arctic-boreal carbon cycle and its potential feedback to global 

climate remain poorly quantified, partly due to a poor understanding of changes in the soil thermal regime and liquid water 10 

content during the soil freezing process. Here, we characterized the processes controlling active layer freezing in Arctic Alaska 

using an integrated approach combining in-situ soil measurements, local scale (~50 m) longwave radar retrievals from NASA 

airborne P-band polarimetric SAR (PolSAR), and a remote sensing driven permafrost model. To better capture landscape 

variability in snow cover and its influence on the soil thermal regime, we downscaled global coarse-resolution (~0.5°) 

MERRA-2 reanalysis snow depth data using finer-scale (500 m) MODIS snow cover extent (SCE) observations. The 15 

downscaled 1-km snow depth data were used as key inputs to the permafrost model, capturing finer scale variability associated 

with local topography, and with favorable accuracy relative to the SNOTEL site measurements in Arctic Alaska (mean RMSE 

= 0.16 m, bias = -0.01 m). In-situ tundra soil dielectric constant (ɛ) profile measurements were used for model parameterization 

of the soil organic layer and unfrozen water content curve. The resulting model simulated mean zero-curtain period was 

generally consistent with in-situ observations spanning a 2° latitudinal transect along the Alaska North Slope (R: 0.6±0.2; 20 

RMSE: 19±6 days), with an estimated mean zero-curtain period ranging from 61±11 to 73±15 days at 0.25 m to 0.45 m depths. 

Along the same transect, both the observed and model simulated zero-curtain periods were positively correlated (R > 0.55, p 

< 0.01) with MODIS derived snow cover fraction (SCF) from September to October. We also examined the airborne P-band 

radar retrieved ɛ profile along this transect in 2014 and 2015, which is sensitive to near-surface soil liquid water content and 

freeze/thaw status. The ɛ difference of radar retrievals for the surface (~< 0.1 m) soil between late August and early October 25 

was negatively correlated with SCF in September (R = -0.77, p < 0.01); areas with lower SCF generally showed larger ɛ 

reductions, indicating earlier surface soil freezing. At regional scales, the simulated zero-curtain in the upper (< 0.4 m) soils 

showed large variability and was closely associated with variations in early cold season snow cover. Areas with earlier snow 

onset generally showed a longer zero-curtain period; however, the soil freeze onset and zero-curtain period in deeper (> 0.5 

m) soils were more closely linked to maximum thaw depth. Our findings indicate that a deepening active layer associated with 30 

climate warming will lead to persistent unfrozen conditions in deeper soils, promoting greater cold-season soil carbon loss. 

  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/synthetic-aperture-radar
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1 Introduction  

Warming in the northern high latitudes is occurring at roughly twice the global rate, leading to widespread soil thawing and 

permafrost degradation (Liljedahl et al., 2016). Increasing soil warming and thawing potentially expose vast soil organic 

carbon (SOC) stocks in permafrost soils to mobilization and decomposition, which may promote large positive climate 

feedbacks (Schuur et al., 2015). The timing, magnitude, location and form of this potential permafrost carbon feedback remain 5 

highly uncertain due to many poorly understood mechanisms that control permafrost thaw and subsequent organic carbon 

decomposition (Lawrence et al., 2015). Despite recent improvements in modelling permafrost soil thermal and carbon 

dynamics, global model projections of near-surface permafrost loss by 2100 range from 30% to 99% and associated carbon 

release ranges from 37-174 Pg C under the current climate warming trajectory (Representative Concentration Pathway RCP 

8.5) (Koven et al., 2013; Schuur et al., 2015). Moreover, most observational and modelling studies in the Arctic-Boreal Zone 10 

(ABZ) have emphasized the shorter growing season, while cold season soil respiration may account for more than 50% of the 

annual carbon budget (Zona et al., 2016). 

 

A lack of consensus on the contribution of cold season soil respiration to the annual ABZ carbon cycle and the potential carbon 

feedbacks of ABZ ecosystems to global climate can be largely attributed to relatively poor understanding of changes in liquid 15 

water content and soil thermal regime that occur during the seasonal soil freeze/thaw (F/T) transition (Oechel et al., 1997; 

Zona et al., 2016). Models typically assume that the thaw or growing season is the most active period of carbon exchange in 

ABZ ecosystems, while soil respiration largely shuts down when surface soils freeze (Commane et al., 2017). However, 

unfrozen conditions in deeper soil layers can persist for a substantially longer period than surface soils and maintain a 

significant amount of liquid water, sustaining soil respiration for several weeks or more (Oechel et al., 1997). Earlier snow 20 

accumulation and a deeper snowpack can effectively insulate soils from cold air temperatures (Zhang, 2005; Yi et al., 2015). 

Soil moisture can further delay soil freezing due to large latent heat release with soil water phase change, where soil 

temperatures can persist near 0°C (i.e. the zero-curtain period) for up to several weeks or more during the late autumn and 

early winter seasons. The zero-curtain can sustain soil microbial activity and has been shown to be closely correlated with soil 

respiration during early cold season (Zona et al., 2016; Euskirchen et al., 2017). Highly organic soils and peat (e.g. SOC>25 25 

kg C m-2), prevalent in the ABZ, can act as a strong insulator during the summer thaw season, and can also have a significant 

impact on the soil thermal regime and hydrologic processes due to its distinct hydraulic and thermal properties (Lawrence and 

Slater, 2008; Rawlins et al., 2013).  

 

We still lack a comprehensive understanding of how the soil freezing process and zero-curtain vary across the Arctic and are 30 

responding to recent climate trends and associated changes in snow cover conditions, especially in deep soils. Limited field 

studies have shown inconsistent trends in the autumn soil freeze-up and zero-curtain period in the Arctic, mainly attributed to 

relatively short study period examined and large inter-annual climate variability (Smith et al., 2016; Euskirchen et al., 2017; 
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Kittler et al., 2017). Moreover, sparse in-situ measurements covering different temporal periods pose challenges in 

characterizing regional trends in soil freezing across the Arctic. Satellite microwave remote sensing datasets over the past three 

decades indicate widespread reductions (~0.8-1.3 days decade-1) in the mean annual frozen season across the pan-Arctic 

domain (Kim et al., 2015). This is primarily caused by earlier spring thawing, while the onset of autumn soil freezing shows 

more variable trends, partly due to more variable snow cover conditions during fall and winter (Qian et al., 2011; Brown and 5 

Derksen, 2013; Burke et al., 2013). Moreover, current satellite microwave sensors operating at frequencies ranging from Ka 

to L-band that provide regional monitoring of surface F/T dynamics are generally less sensitive to deeper soils, e.g. below ~5 

cm depth. The soil F/T classification is also constrained by the coarse spatial resolution (~≥ 10 km) of passive microwave 

sensors and scatterometers relative to finer-scale landscape heterogeneity, particularly during seasonal F/T transitions (Naeimi 

et al., 2012; Rautiainen et al., 2016; Derksen et al., 2017).  10 

 

Detailed process models have been widely used to simulate soil F/T and permafrost dynamics in the ABZ, which can 

effectively represent heat transfer between the atmosphere and underlying soil and permafrost layers to predict changes in 

active layer conditions, and land-atmosphere interactions (Burke et al., 2013; Rawlins et al., 2013; Lawrence et al., 2015; 

Paquin and Sushama, 2015; Jafarov et al., 2018). However, regional model applications are constrained by multiple factors 15 

including large uncertainties in surface meteorology drivers, deficient representations of surface heterogeneity and 

microtopography, and insufficient understanding of the processes controlling soil F/T and permafrost dynamics (e.g. Koven et 

al., 2013; Slater and Lawrence, 2013; Walvoord et al., 2016). Other models provide an intermediate level of complexity by 

relying on a simplified process logic utilizing satellite remote sensing based environmental observations as key model drivers; 

these models have been effective in regional scale mapping of permafrost extent and active layer dynamics in the Arctic 20 

(Westermann et al., 2017; Yi et al., 2018).  

 

The objective of this study was to clarify primary environmental controls on the timing of seasonal freezing of the active layer 

and the duration of the zero-curtain period in Arctic Alaska. A remote sensing driven soil process model was used to examine 

the impact of climate variability and snow cover properties on the estimated soil F/T transition and zero-curtain within the 25 

active layer profile. Model simulations were conducted at 1-km resolution and over a multi-year period (2001-2016) to capture 

landscape level heterogeneity in active layer freezing process and its sensitivity to regional environmental trends. To better 

capture the snow cover variability and its impact on soil F/T dynamics, we also developed a new algorithm to generate a fine-

resolution (1km) snow depth dataset as soil model inputs through combining the MODerate resolution Imaging 

Spectroradiometer (MODIS) snow cover extent (SCE) and coarse-resolution global reanalysis data. The timing and duration 30 

of frozen soil conditions in the Arctic strongly influence underlying permafrost stability and potential vulnerability of vast 

SOC stocks in the tundra area (Parazoo et al., 2018; Yi et al., 2018; Zona et al., 2016). Thus, the model results also help clarify 

the potential response of cold-season soil respiration and boreal-Arctic carbon cycle to current climate warming trends. 
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2 Methods  

In this study, we used a remote sensing driven permafrost soil model that was previously applied to simulate the active layer 

dynamics across Alaska at 1 km resolution (Yi et al., 2018). Seasonal snow cover is a key model driver and one of the most 

important factors influencing soil freezing, while few snow datasets are available for the Arctic region with suitable spatial 

(≤1 km resolution) and temporal (~ weekly) fidelity. Most regional and global permafrost models rely on global reanalysis 5 

precipitation or snow datasets to represent snow insulation effects on soil thermal regime. However, coarse-resolution 

reanalysis datasets generally have difficulty capturing landscape-scale (100-1000 m) variability in snow cover conditions, 

especially over complex terrain and during seasonal transitions (Liston and Sturm, 2002; Gisnas et al., 2016). Therefore, a 

necessary first step in our study involved generating an Alaskan snow dataset with suitable spatial and temporal resolution 

consistent with soil model inputs (1-km and 8-day). To do this, we developed a new algorithm to downscale the coarse (~0.5º) 10 

global reanalysis snow depth data using finer-scale MODIS SCE records (Fig. 1). The resulting downscaled 1-km snow dataset 

was used as the soil model inputs to simulate the soil freeze onset and zero-curtain period over the Alaskan Arctic. 

 

Soil dielectric constant is directly associated with the amount of unfrozen water remaining during soil freeze-up, and thus may 

better define the active layer freezing process comparing with soil temperature. In this study, we investigated the sensitivity of 15 

soil dielectric constant to active layer freezing indicated from both in-situ measurements and airborne radar retrievals during 

the fall transitional period. Longwave (P-band) polarimetric SAR (PolSAR) data with large penetration depth (~50-60 cm 

depending on soil moisture content) were acquired from airborne radar acquisitions over northern Alaska in August and 

October of 2014 and 2015 prior to the NASA Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign. The 

airborne radar data were used to characterize spatial variability and seasonal shifts in the near surface (~<10 cm depth) soil 20 

dielectric constant associated with the soil F/T transition. These data were used to augment more detailed, but spatially limited 

in situ soil dielectric measurements used for model parameterization, and to assess the value of longwave radar measurements 

in frozen soil studies. Resulting model simulations were then validated using ground-based zero-curtain measurements. We 

then conducted an integrated analysis of the sensitivity of active layer freezing to variable snow conditions combining in-situ 

observations, model simulations, and airborne radar retrievals.  25 

2.1 Constructing a fine-resolution regional snow dataset  

In a previous study (Yi et al., 2018) we used coarse resolution (0.5°) snow depth data from the MERRA-2 global reanalysis as 

inputs for the permafrost model over Alaska. In the prior study, we first interpolated the MERRA-2 data over a finer 1-km 

spatial grid using an inverse-distance weighting scheme, and then used the MODIS 500 m SCE data to identify snow-free 

pixels within each coarser MERRA-2 grid and adjust the 1-km snow depth estimates accordingly. However, a more 30 

sophisticated downscaling scheme was needed to better account for the influence of local topography on the 1-km snow 

distribution pattern. This information can be derived from the MODIS SCE data; however, persistent cloud cover and patchy 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/synthetic-aperture-radar
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snow conditions constrain the ability of the MODIS SCE data to capture snow cover variability, especially during the 

transitional season. To overcome this constraint, in this study we developed an elevation-based spatial filtering algorithm to 

predict snow occurrence for MODIS cloud contaminated pixels; we then used the cloud-free MODIS SCE data to downscale 

the MERRA-2 snow depth data (Fig. 1). For each snow-covered 1km pixel indicated by the MODIS data, we estimated the 

snow depth based on the snow depth of neighbouring MERRA-2 0.5° grid cells, with weights predicted using a similar spatial 5 

filter. 

2.1.1 Cloud filtering of MODIS SCE data   

Most existing cloud filter algorithms designed for the MODIS SCE products use empirical relationships between snow cover 

conditions and ancillary data to predict snow cover occurrence for cloud-covered pixels (e.g. Parajka and Bloschl, 2008; 

Gafurov and Bardossy, 2009; Parajka et al., 2010). The empirical relationships are generally appropriate for the limited areas 10 

or conditions in which they were developed and may not be suitable for other regions with different climate or topography. To 

develop a more general cloud filter algorithm, we exploited spatial interpolation methods originally designed for generating 

grid-based surface meteorology from in situ weather station observations. We used a similar methodology that was used to 

generate Daymet surface precipitation, which uses a truncated Gaussian weighting filter and accounts for the dependence of 

precipitation on elevation (Thornton et al., 1997). This method was found to generate reliable precipitation estimates in 15 

complex topography in the western US (Henn et al., 2018). For our application, we treated the pixels without cloud cover as 

“station observations”, and then used the spatial filter to predict the occurrence of snow in cloud-contaminated pixels and 

generate continuous cloud-free snow cover images at 1km spatial resolution and 8-day time scale. 

 

The general form of the spatial filter, with respect to the cloud contaminated or central pixel (𝑖) to be filled, is defined as:  20 

𝑊(𝑑) =  {
                  0;                        𝑖𝑓 𝑑 ≥ 𝑅

exp [−α (1 − (
𝑑

𝑅
)

2

)] ;    𝑖𝑓 𝑑 < 𝑅
}                                                                                                                         (1)  

where 𝑊(𝑑) is the filter weight associated with the radial distance d from the central pixel, and α is a unitless shape parameter 

with a prescribed value of 6.0 following Thornton et al. (1997). 𝑅 is the truncation distance, varying with the local density of 

“observations” (i.e. cloud-free pixels) in the adjacent areas of the central pixel; at least 50 “observations” should be included 

for interpolating to the central pixel, within a maximum search radius of 50 km. Snow distribution is closely associated with 25 

local topography; therefore, we divided the “observations” falling within the range of the search radius into two groups 

representing elevations above and below the elevation of the central pixel. We then estimated the snow occurrence probability 

(𝑃𝑠𝑛𝑜𝑤) and weighted elevation (𝑍) for each group: 

𝑃𝑠𝑛𝑜𝑤 =  
∑ 𝑊(𝑑𝑗)×𝑃𝑗

𝑛
𝑗=1

∑ 𝑊(𝑑𝑗)𝑛
𝑗=1

        where  𝑃𝑗 =  {
1;                 𝑖𝑓 𝑠𝑛𝑜𝑤 𝑒𝑥𝑖𝑠𝑡𝑠
0; 𝑖𝑓 𝑠𝑛𝑜𝑤 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

}                           
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𝑍 =  
∑ 𝑊(𝑑𝑗)×𝑍𝑗

𝑛
𝑗=1

∑ 𝑊(𝑑𝑗)𝑛
𝑗=1

                                                                                                                                                                 (2)  

The snow occurrence probability at the central pixel (𝑃𝑠𝑛𝑜𝑤,𝑖) was then estimated as a weighted function of the snow occurrence 

probability of the two groups (𝑍𝑎𝑏𝑜𝑣𝑒 and 𝑍𝑏𝑒𝑙𝑜𝑤):  

𝑃𝑠𝑛𝑜𝑤,𝑖 = 𝑃𝑠𝑛𝑜𝑤,𝑏𝑒𝑙𝑜𝑤 + (𝑃𝑠𝑛𝑜𝑤,𝑎𝑏𝑜𝑣𝑒 − 𝑃𝑠𝑛𝑜𝑤,𝑏𝑒𝑙𝑜𝑤) × (𝑍𝑖 − 𝑍𝑏𝑒𝑙𝑜𝑤)/(𝑍𝑎𝑏𝑜𝑣𝑒 − 𝑍𝑏𝑒𝑙𝑜𝑤)                                    (3) 

The snow cover condition (SC) of the central pixel is determined based on the comparison of 𝑃𝑠𝑛𝑜𝑤,𝑖 with a specific cutoff 5 

value, 𝑃𝑐𝑢𝑡𝑜𝑓𝑓: 

𝑆𝐶 = {
0;  𝑃𝑠𝑛𝑜𝑤,𝑖 < 𝑃𝑐𝑢𝑡𝑜𝑓𝑓

1; 𝑃𝑠𝑛𝑜𝑤,𝑖 ≥ 𝑃𝑐𝑢𝑡𝑜𝑓𝑓
}                                                                                                                                               (4) 

Temporal filtering of the MODIS SCE data was conducted prior to the application of the spatial filter. Pixels with cloud cover 

were reclassified as either snow or non-snow conditions if the two temporally adjacent 8-day periods were both identified as 

cloud free and indicated consistent snow or non-snow covered conditions. Missing SCE pixels occurring during polar night 10 

were assigned as “snow” when there were established snow cover conditions in the prior 8-day period or there was more than 

0.2 m snow depth indicated by the co-located MERRA-2 grid cell. This procedure effectively reduced the number of cloud 

contaminated pixels requiring gap-filling.  

2.1.2 Downscaling of MERRA-2 snow depth data  

The resulting cloud-free 8-day MODIS SCE data was used with a 1-km digital elevation model (DEM) aggregated from the 2 15 

arc-second (~ 60 m) DEM for Alaska (USGS, 2017) to downscale the MERRA-2 snow depth data to 1-km resolution. Here, a 

spatial filter similar to the above procedure was used for the downscaling process, except that the MERRA-2 gridded snow 

data were treated as station “observations” and the “station” elevations were defined as the mean elevation within the associated 

MERRA-2 grid cell. Previous studies have demonstrated a clear dependence of snow depth on elevation, generally with snow 

depth increase with elevation up to a certain level followed by a decrease at the highest elevations (Grünewald et al., 2014; 20 

Kirchner et al., 2014). Therefore, we used the transformed snow depth variables instead of the original MERRA-2 snow depth 

as inputs to the spatial filter to account for the dependence of snow distribution on elevation. We used least-squares regression 

to analyse the relationship between snow depth and elevation: 

 (
𝑆𝐷−𝑆𝐷𝑚𝑖𝑛

𝑆𝐷𝑚𝑎𝑥−𝑆𝐷𝑚𝑖𝑛
) =  𝛽0 + 𝛽1(

𝑍−𝑍𝑚𝑖𝑛

𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛
)                                                                                                                         (5) 

The snow depth (SD) and elevation (Z) data were normalized using their maximum (𝑆𝐷𝑚𝑎𝑥 and 𝑍𝑚𝑎𝑥) and minimum (𝑆𝐷𝑚𝑖𝑛 25 

and 𝑍𝑚𝑖𝑛 ) values from the MERRA-2 grid cells within the spatial search radius to account for local variability in snow 

distribution (Grünewald et al., 2014). 𝛽0 and 𝛽1 are empirical fitting parameters from the regression model. Linear regression 

does not account for the snow depth decrease at the highest elevations; however, the coarse MERRA-2 data represent average 

conditions within each ~0.5° grid cell and are unable to capture snow depth changes at these high elevation extremes.  
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For each 1-km snow covered pixel indicated by the MODIS SCE data, snow depth is estimated as: 

𝑆𝐷𝑖 =  
∑ 𝑊(𝑑𝑗)×𝑆𝐶×(𝑆𝐷𝑗+(𝛽1×(

𝑍𝑖−𝑍𝑗

𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛
))×(𝑆𝐷𝑚𝑎𝑥−𝑆𝐷𝑚𝑖𝑛))𝑛

𝑗=1

∑ 𝑊(𝑑𝑗)𝑛
𝑗=1 ×𝑆𝐶

                                                                         (6) 

where the interpolation only weights MERRA-2 grid cells with snow occurrence (indicated by SC). The MERRA-2 snow 

depth data were used directly for the spatial interpolation (i.e. 𝛽1 ≅ 0) where no significant relationship was indicated 5 

between elevation and snow depth changes within the search radius.  

2.2 The remote sensing driven permafrost soil process model  

The newly developed snow depth data was used with other satellite remote sensing datasets as primary inputs to an established 

permafrost soil model (Yi et al., 2018) for simulating soil freeze onset and zero-curtain period across Arctic Alaska. The model 

was developed based on a detailed permafrost hydrology model (Rawlins et al., 2013; Yi et al., 2015), but has a flexible 10 

structure designed to exploit remote sensing observations as key model drivers and for model parameterization. The remote 

sensing based permafrost model, as described in Yi et al. (2018), uses a numerical approach to simulate soil F/T processes and 

the temperature profile down to 60 m below surface using 23 soil layers, with increasing layer thickness at depth (soil nodes 

from 0-1m: 0.01, 0.03, 0.08, 0.13, 0.23 ,0.33, 0.45, 0.55, 0.70, 1.05 m). Up to five snow layers are used to account for the 

effects of seasonal snow cover evolution on snow density and thermal properties. Both snow heat capacity and thermal 15 

conductivity vary with snow density, and are estimated using empirical methods (Calonne et al., 2011). The model also 

accounts for the effects of organic soils and soil water phase change on the soil F/T process as described below.  

 

The soil model simulates snow and ground thermal dynamics by solving a 1-D heat transfer equation with phase change 

(Nicolsky et al., 2007; Rawlins et al., 2013): 20 

( , ) ( , ) ( , ) ,

[ , ]s b

C T z t L T z T z t
t t z z

z z z

  
    

   
    



                                                                                                               (7) 

where 𝑇(𝑧, 𝑡) is the temperature (°C) at a specific soil depth (𝑧) and time step (𝑡), 𝐿 is the volumetric latent heat of fusion of 

water (J m-3), is the volumetric water content (m3 m-3), and 𝜃 is the unfrozen liquid water fraction (range: 0-1). 𝐶 and λ are 

the volumetric heat capacity (J m-3 K-1) and thermal conductivity (W m-1 K-1) of soil respectively, varying with soil moisture, 

F/T state and depth. The upper boundary condition is set as the surface temperature (i.e. LST) at the snow/ground surface (𝑧𝑠), 25 

while a heat flux characterizing the geothermal gradient is applied at the lower boundary (𝑧𝑏). The soil heat capacity is a 

function of heat capacities for soil solid and liquid water, and ice components (Farouki 1981):  
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𝐶 = ((1 − 𝑓)𝐶𝑚 + 𝑓𝐶𝑜)(1 − 𝜃𝑠𝑎𝑡) + 𝜃𝑤𝐶𝑤 + 𝜃𝑖𝐶𝑖                                                                                                                        (8) 

where 𝐶𝑚, 𝐶𝑜, 𝐶𝑤, and 𝐶𝑖 are the heat capacity of mineral and organic soil solid, liquid water and ice respectively, weighted 

by their volumetric function. 𝑓  is the soil organic fraction; 𝜃𝑠𝑎𝑡 , 𝜃𝑤 , and 𝜃𝑖  are the respective saturated water content, 

volumetric liquid water and ice content, where (𝜃𝑤 + 𝜃𝑖) ≤  𝜃𝑠𝑎𝑡. The thermal conductivity λ (W m-1 K-1) was estimated as a 

normalized thermal conductivity of the dry (𝜆𝑑𝑟𝑦) and saturated (𝜆𝑠𝑎𝑡) soil thermal conductivity weighted by soil saturation: 5 

𝜆 = 𝐾𝑒𝜆𝑠𝑎𝑡 + (1 − 𝐾𝑒)𝜆𝑑𝑟𝑦                                                                                                                                                                  (9)                                                                                                                                                                                                                                          

where the Kersten number (𝐾𝑒) is a function of the soil saturation degree, generally using a logarithm form for unfrozen soils 

or linear form for frozen soils (Lawrence and Slate, 2008). 𝜆𝑑𝑟𝑦 is estimated from the soil bulk density; 𝜆𝑠𝑎𝑡  is estimated as a 

geometric mean of the thermal conductivity of different soil components (Farouki 1981), which can vary several-fold from 

pure organic soil (~0.5 W m-1 K-1) to mineral soils (1.5 ~ 3 W m-1 K-1): 10 

𝜆𝑠𝑎𝑡 = 𝜆𝑚

(1−𝑓)(1−𝜃𝑠𝑎𝑡)
𝜆𝑜

𝑓(1−𝜃𝑠𝑎𝑡)
𝜆𝑤

𝜃𝑠𝑎𝑡,𝑤
𝜆𝑖

𝜃𝑠𝑎𝑡,𝑖
                                                                                                                             (10) 

where 𝜆𝑚, 𝜆𝑜, 𝜆𝑤, and 𝜆𝑖 are the thermal conductivity of mineral and organic soil solid, liquid water and ice, respectively; and 

𝜃𝑠𝑎𝑡,𝑤 and 𝜃𝑠𝑎𝑡,𝑖 are the respective unfrozen liquid water and ice fractions under saturated conditions.  

The unfrozen liquid water fraction (𝜃) is estimated empirically as: 

*

**

1

b b

T T

T TT T
 

 
 



                                                                                                                                                   (11) 15 

Soil water usually freezes at a sub-zero temperature depending on solute concentration and other factors, and the constant 
*T

is used to represent this freezing point depression, with values generally above -1°C (Banin and Anderson, 1974; Woo, 2012). 

b  is a dimensionless parameter determined by fitting the unfrozen water curve (Romanovsky and Osterkamp, 2000; Schaefer 

and Jafarov, 2016). A significant amount of liquid water can exist even when the soil temperature is considerably lower than 

*T , characterized by different values of b . Fine-grained soils that can have a larger amount of liquid water below freezing are 20 

generally associated with smaller b  values (Woo, 2012).  

2.3 Model driver datasets and in-situ data 

Model simulations were conducted in the Arctic Alaskan domain (>66.55°N, Fig. 2), encompassing an area of ~400,000 km2, 

and spanning a 16-year period (2001-2016). Primary model drivers include MODIS 8-day composite 1-km LST (MOD11A2; 

Wan et al., 2015) and 500-m SCE records (MOD10A2; Hall and Riggs, 2016), SMAP 9-km NatureRun (Version 4) and Level 25 

4 daily surface (≤ 5 cm depth) and root zone (0-1 m depth) soil moisture (L4SM, Reichle et al., 2017), and daily snow depth 

and snow density from MERRA-2 global reanalysis data (Gelaro et al., 2017). The MODIS LST and SMAP L4SM products 
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were used to define model boundary conditions and soil thermal properties. The soil process model was run at 1-km resolution 

and 8-day time step consistent with the MODIS LST and SCE inputs. All model input datasets were reprojected to a consistent 

1-km Albers projection. The model snow depth inputs were derived by combining the MODIS SCE and MERRA-2 snow 

depth records as discussed in Section 2.1. Compared with snow depth, snow density shows much smaller spatial and temporal 

variability (Sturm et al., 2010); therefore, we used the 1-km snow density data generated using a simple spatial interpolation 5 

scheme as described in Yi et al. (2018). Other ancillary inputs to the soil model included the 30-m National Land Cover 

Database (NLCD 2011; Jin et al., 2013), 2 arc-second (~ 60 m) DEM for Alaska (USGS, 2017), 50-m SOC estimates for 

Alaska (to 1-m depth; Mishra et al., 2016), and the global 9-km mineral soil texture data developed for the SMAP L4SM 

algorithm (De Lannoy et al., 2014). The dominant NLCD land cover type within each 1-km pixel was used to define the 

modelling domain, with open water and perennial ice/snow areas excluded from the model simulations. The soil texture and 10 

SOC data were used to define model soil properties including thermal conductivities and heat capacities. The SOC inventory 

data was distributed through the top 10 model soil layers (≤ 1.05 m depth) following an exponentially decreasing curve 

(Hossain et al., 2015) to calculate the SOC fraction and adjust the soil physical properties of each soil layer based on the 

weighted mineral and organic soil components. More details on the data processing can be found in Yi et al. (2018).  

 15 

Three in-situ datasets were used for model calibration and validation (Fig. 2), including half-hourly soil dielectric constant (𝜀) 

and temperature profile measurements from a Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) site 

(Moghaddam et al., 2010); daily soil temperature profile measurements from Global Terrestrial Network for Permafrost (GTN-

P) sites (Biskaborn et al., 2015), and ALT measurements from regional Circumpolar Active Layer Monitoring (CALM) 

network sites (Brown et al., 2000). The SoilSCAPE soil temperature and 𝜀 measurements were obtained from 4 different depths 20 

(0.05, 0.15, 0.35, 0.56 m) and 4 different nodes of a wireless sensor network deployed near Prudhoe Bay, Alaska (70°13'47''N, 

148°25'19''W) in the summer of 2016. 𝜀 was measured using a METER TEROS 12 soil moisture sensor operating at 70 MHz. 

For the GTN-P in-situ measurements, we only selected the sites where shallow ground temperature measurements (generally 

down to 1m depth) were available for at least two consecutive years. Most GTN-P sites meeting these criteria in Arctic Alaska 

are located along the Dalton Highway (Table S1). In addition, daily snow depth measurements using ultrasonic sensor were 25 

available at SNOTEL (SNOwpack TELemetry) sites across Alaska (Schaefer and Paetzold, 2000; 

http://www.wcc.nrcs.usda.gov, Fig. S1) and used to validate the 1-km snow depth product (Section 2.1). 

2.4 Model parameterization  

Soil dielectric properties are strongly correlated with soil moisture, texture and F/T state (Mironov et al., 2010);  𝜀 can capture 

the soil freezing process well due to large  𝜀 differences between liquid water and ice (Dobson et al., 1985), especially during 30 

the zero-curtain period, when soil temperatures hover around 0 °C and are a relatively poor indicator of F/T conditions (Fig. 

3). The SoilSCAPE measurements were used to calibrate the model unfrozen water content curve (Eq. 11) assuming a linear 

relationship between 𝜀 and liquid water content (Mironov et al., 2010; Park et al., 2017). However, the slope of this linear 

http://www.wcc.nrcs.usda.gov/
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relationship may change during the freezing period due to different dielectric properties of free and bound water, and ice 

(Mironov et al., 2010). The 𝜀 measurements were also used to determine the timing of complete soil freeze-up at each soil 

depth. The timing of soil freeze-up was defined when the observed 𝜀 drops below a critical level:  

𝜀 < 𝛿 × (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛)                                                                                                                                                               (12) 

where 𝜀𝑚𝑎𝑥 and 𝜀𝑚𝑖𝑛 are the maximum and minimum dielectric constant for each soil layer, and the threshold 𝛿 is an empirical 5 

parameter. The zero-curtain period at different depths was then calculated as the difference between soil freeze-up and land 

surface freeze onset. The land surface freeze onset was determined from MODIS 1-km LST records extracted at the SoilSCAPE 

site and defined as the date when the mean LST during 3 consecutive 8-day periods dropped below 0 °C. 

 

The model simulated soil temperature profile is very sensitive to the soil thermal conductivity, largely determined by soil 10 

texture (organic or mineral soils) and soil saturation (Eq. 9-10), which are also two major factors affecting 𝜀. Therefore, we 

used the in-situ 𝜀 data at the SoilSCAPE site to guide the parameterization of model soil thermal properties. Since the soil is 

mostly saturated at this site, much larger 𝜀 values in the top two layers during the thaw season (Fig. 3) should be related to 

organic-rich soils with large soil porosity (thus high volumetric soil moisture). We defined the top 5 model soil layers (0-0.23 

m) as organic soils, and adjusted the model soil thermal properties accordingly. The unfrozen soil thermal conductivity within 15 

the organic layer was assumed to gradually increase with depth from ~0.5 W m-1 K-1 in the surface organic soil layer to ~1.2 

W m-1 K-1 at 0.33 m depth for mineral soils, accounting for increases in the soil bulk density (Letts et al., 2000). Similarly, soil 

porosity was assumed to gradually decease from 0.8 at the surface to ~0.4 in the deeper mineral soil layers. The soil thermal 

conductivity for frozen conditions can then be determined from Eq. (10). Using this soil thermal conductivity profile, the model 

simulated temperatures agree well with the in-situ observations (R>0.97, RMSE<2.24 °C for all measured soil depths). We 20 

then tested different soil dielectric thresholds (𝛿) ranging from 0% to 50% and selected the threshold that produced minimum 

bias and RMSE between the zero-curtain period determined using in-situ 𝜀 measurements and model simulated unfrozen water 

content. Using this trial and error method, an optimal threshold of 15% was selected, which produced a mean RMSE of 10.3 

days in the simulated zero-curtain from 0.15-0.56 m soil depth in 2016 and 2017 (Fig. 4a).  

 25 

The resulting threshold 𝛿 was then used to determine the critical threshold of soil temperature at soil freeze-up using both the 

GTN-P measurements and soil model simulations. The observed changes in the normalized 𝜀 with soil freezing is presented 

for a selected SoilSCAPE sensor node (S6) in Fig. 4(b). 𝜀 below the freezing point and above -10°C ranges from ~5% to 20% 

of the 𝜀 value for unfrozen soils. Assuming a linear relationship between 𝜀 and liquid water content (Mironov et al., 2010), 

Fig. 4(b) can approximate changes in unfrozen water content during soil freezing. Assuming soil freeze-up starts when 𝜀 drops 30 

below 15%-20% of the annual amplitude, the corresponding soil temperatures range from -0.01 to -1°C at depths between 0.05 

and 0.56 m. We selected a temperature threshold of -0.35°C for soil freeze-up, which is at the higher end of the range indicated 

from the S6 node, but closer to the other SoilSCAPE nodes showing more rapid 𝜀 changes below 0°C. This temperature 



11 

 

threshold is also consistent with our model simulations, which show a -0.3 to -0.5°C temperature range and 15%-20% liquid 

water content during freeze-up. This temperature threshold was used to determine the soil freeze onset and zero-curtain period 

at the GTN-P sites with only soil temperature measurements available. However, there is a large variability in the relationship 

between 𝜀 and liquid water content at freezing temperatures due to changes in free and bound water and ice components 

(Mironov et al., 2010; Naeimi et al., 2012), which can result in large uncertainties in the above estimated thresholds. 5 

2.5 Soil dielectric constant retrievals from airborne P-band radar 

The soil model unfrozen water content curve used to define the soil freeze-up and zero-curtain was only calibrated using 

limited SoilSCAPE soil dielectric measurements. We therefore evaluated the sensitivity of surface soil dielectric properties 

derived from local-scale (~50 m) airborne low frequency (P-band) radar acquisitions along regional transects in northern 

Alaska and associated F/T patterns to snow cover variations. Multiple flight lines were acquired in late August (fully thawed) 10 

and early October (partially frozen) of 2014 and 2015 in northern Alaska, including a regional transect along the Dalton 

Highway (DHN, 148.39-149.05°W, 68.78-70.40°N). Multiple soil parameters, including active layer thickness (ALT) and soil 

moisture (converted from soil dielectric constant), were derived from NASA Airborne P-band (430 MHz) PolSAR radar 

backscatter measurements in August and October (Chen et al., in press). The radar soil retrievals examined in this study differ 

from Yi et al. (2018), which used active layer retrievals derived from multi-frequency (L+P-band) radar backscatter acquired 15 

in October, 2015. The alternative single channel (P-band) time series algorithm used in the current study avoids potential 

artifacts introduced from variable P and L-band radar acquisition times. The soil parameters were derived from the radar 

backscatter using a three-layer soil dielectric model. In August, the three layers represent the surface thawed layer, middle and 

bottom active layer, and the top of the upper permafrost layer. In October, the two surface layers represent a partially frozen 

active layer with a frozen surface layer overlying a deeper unfrozen active layer. An iterative optimization scheme was used 20 

to estimate the soil parameters by minimizing differences between the observed radar backscatter and radar scattering model 

simulations using the above three-layer soil dielectric model. The retrieved parameters include the thickness and soil dielectric 

constant of the surface layer in August and October, the depth and dielectric constant of deeper active layer. Initial validation 

indicated favorable radar ALT retrieval accuracy in relation to in-situ CALM measurements along the DHN transect (Chen et 

al., 2018; Chen et al., in press). The differences in surface soil dielectric constant between August and early October represent 25 

the changes in soil liquid water content that occur during F/T conditions. Therefore, we examined differences in soil dielectric 

constant under variable MODIS snow cover fraction to clarify the influence of snow cover on active layer freezing.  

2.6 Regional soil model simulation and analysis 

We conducted an integrated analysis of in-situ ground observations, soil model simulations and airborne radar retrievals to 

investigate the sensitivity of soil freezing to variable snow cover conditions across the Arctic Alaska. For the regional 30 

simulation, the soil process model was spun-up for 50 years to bring the top 10-m soil temperature profile into dynamic 

equilibrium using model inputs at year 2000 (Yi et al., 2018), followed by a model transit run from 2001 to 2017. Unfrozen 
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conditions in the deeper active layer may persist well into the winter season and into the subsequent calendar year. In order to 

accurately estimate the active layer freeze onset and zero-curtain period for the current year, model simulations of the next 

calendar year were also needed. Therefore, the soil freeze onset and zero-curtain period in year 2017 were not calculated. The 

soil freeze onset for each soil layer was determined when model simulated soil temperature dropped below -0.35°C as 

discussed in Section 2.4. The zero-curtain period at each soil depth was defined as the duration between land surface freeze 5 

onset and freeze onset of the given soil layer. The regional correlation between snow onset calculated from the MODIS SCE 

data and the zero-curtain period for each soil layer was used to examine relations between the timing of early snow 

accumulation and soil freeze-up. Snow onset was determined as the centre of the 8-day period with more than 3 adjacent snow-

covered periods within a 40-day moving window; the relatively long temporal window was used to account for more variable 

snow cover conditions during fall. 10 

 

We selected the DHN flight transect as the focus area for the integrated analysis due to the relatively dense network of GTN-

P soil temperature and CALM ALT sites in this area relative to other transects (i.e. ATQ and IVO, Fig. 2). Because the MODIS 

8-day SCE product (i.e. MOD10A2) only provides binary snow data (i.e. snow vs non-snow), the dataset was binned for each 

0.1° latitudinal region along the radar flight transect to calculate the snow covered area fraction (SCF). We also averaged the 15 

airborne radar retrieved surface soil dielectric constant for each 0.1° latitudinal bin and analysed the correlations between SCF 

and selected variables representing the soil freezing process, including the radar retrieved surface dielectric constant changes 

between October and August, and the zero-curtain period derived from both the soil model simulations and in-situ data. For 

the site analysis, the SCF from the 0.1° latitudinal bin including the site was used. Arctic Alaska is generally fully snow covered 

by the end of October or early November. Therefore, we used the SCF averaged from September to October for the zero-20 

curtain analysis, while only the September SCF was used for the airborne radar data analysis since the radar data was obtained 

in early October.  

3. Results   

3.1 Model validation 

Accurate simulation of early cold season soil freezing requires accurate characterization of landscape-scale snow cover 25 

conditions, which was addressed in this study by gap-filling the MODIS SCE record to mitigate data loss from pervasive cloud 

cover and other factors. The gap-filled MODIS SCE products were then combined with other ancillary data to downscale the 

MERRA-2 reanalysis snow depth data, as one of the main driver datasets for the permafrost soil model. The accuracy of gap-

filled MODIS SCE product was cross-checked using the two MODIS sensors (Terra and Aqua); the downscaled snow depth 

data were evaluated using in-situ SNOTEL observations across Alaska. The model simulated soil freezing process and ALT 30 

dynamics were conducted over a smaller Arctic Alaska domain and evaluated using a diverse set of regional observations.   
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3.1.1 Regional 1-km snow cover product 

The cloud-free Aqua MODIS SCE data were used to evaluate the accuracy of filled pixels identified as cloud covered in the 

Terra MODIS SCE data and vice versa, assuming relatively consistent snow conditions between morning (Terra) and afternoon 

(Aqua) SCE acquisitions during the 8-day composite period. Our results indicate an accuracy of more than 80% in the cloud 

filtering algorithm with no obvious differences observed between the two sensor SCE records (Table 2 & Fig. S2). The cloud 5 

cover fraction for the 8-day temporal composite Terra MODIS SCE data represents from 0.5% to 10.1% of the entire state 

throughout the year, and the percentage of cloud-free Aqua MODIS pixels that overlapped with cloud-covered Terra MODIS 

pixels ranges from 0.4% to 4.6% (Fig. S2). There are significantly more cloud-covered pixels in the Aqua MODIS record 

(1.1%-15.2%), and thus more cloud-free Terra MODIS pixels (0.9%-9.8%) overlapping with cloud-covered Aqua MODIS 

pixels. Cloud cover mostly occurs in the spring and fall shoulder seasons, resulting in larger SCE uncertainties during those 10 

periods. There is no obvious bias in the misclassification of cloud-contaminated pixels (Table 2), which indicates that using a 

cut-off threshold of 50% for the snow occurrence probability (𝑃𝑐𝑢𝑡𝑜𝑓𝑓 , Eq. 4 & Table 1) to classify snow or non-snow 

conditions works well. Using a higher threshold (e.g. 60%) generally results in more snow pixels misclassified as land pixels 

and vice versa.  

   15 

Comparing with in-situ snow depth measurements from the Alaskan SNOTEL sites, the 1-km MERRA-2 snow depth data 

generated using the new downscaling algorithm showed an overall improvement over the original spatial interpolation scheme 

used in Yi et al. (2018) (Table 3). The new 1-km snow depth data showed overall reduced RMSE and lower bias except in 

Interior Alaska at elevations between 400 m and 800 m. At these elevations the USGS DEM used for spatial downscaling at 

the 1-km grid shows large deviations from the reported SNOTEL site elevations (Fig. S3), which may account for the relatively 20 

poorer performance of the new snow depth dataset in this elevation band. In Arctic Alaska, the new snow depth product 

modestly improves over the Yi et al. (2018) product, with RMSE of 0.16 m and bias of -0.01 m, versus RMSE of 0.18 m and 

bias of -0.03 m for the original dataset. However, there are only eight SNOTEL sites in this region, and only two sites at the 

Alaskan North Slope. Compared with the Yi et al. (2018) product, the new MERRA-2 downscaled snow product captured 

more fine-scale details of spring snow melting and topographically varying snow distribution, especially in mountain areas 25 

(Figs. 5 & S4).  

 

The snow offset and onset derived from the MODIS SCE and downscaled MERRA-2 snow depth records show very similar 

spatial patterns and trends over the 2001 to 2016 study period (Figs. S5 & S6). These results indicate that the downscaled 

MERRA-2 snow depth data generally captures the regional variability in snow cover conditions during the transitional season 30 

indicated from the MODIS observations. During the study period, both datasets show similar spring snow offset dates over 

Alaska (e.g. DOY 138±7 for MODIS versus DOY 140±7 for downscaled MERRA-2 snow depth), while there is an 

approximate 10-day difference in autumn snow onset dates between the two datasets (MODIS: DOY 284±5; MERRA-2: DOY 
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273±5). The difference in mean snow onset is likely due to different methods used to determine snow onset for the two datasets. 

For the MODIS SCE record, snow onset was chosen as the composite period with more than 3 adjacent 8-day snow covered 

periods within a 40-day moving window, while snow onset was defined from the downscaled snow depth record as the 

composite period with mean snow depth above a 0.05 m threshold within a 24-day moving window. A higher snow depth 

threshold results in a later snow onset date in the MERRA-2 dataset. However, the two records show similar snow onset 5 

patterns (Fig. S5) and interannual variability during the study period (R=0.79, p<0.01). Both datasets show a generally earlier 

snow onset trend in Arctic Alaska over the study period, which is discussed in Section 3.2.       

3.1.2 Soil model simulations  

Across the DHN transect, the soil model simulated zero-curtain period was significantly (p<0.1) correlated with the in-situ 

observations, with a mean bias of 6.6 days and RMSE of 19.0 days at 0.35 m soil depth (Table 4). However, lower 10 

correspondence was found between the model simulations and in situ observations at the DHN Happy Valley site (R=0.48, 

p>0.1). Relatively large RMSE differences in the estimated zero curtain period were mainly due to large interannual variability 

in the soil freeze onset and zero-curtain period during the study period (Fig. 6a). Both model simulated and in-situ observed 

zero-curtain periods were strongly correlated at different soil depths (e.g., R>0.92 at 0.25 m and 0.35 m), except for the 

SagMAT site (R=0.87). Larger differences were observed in the model simulated and in-situ observed zero-curtain period at 15 

the surface (≤ 0.15 m) and for deeper soil layers (≥ 0.45 m) due to model limitations in capturing a shorter zero-curtain period 

in surface soils at the 8-day temporal scale, and larger uncertainties in both the in-situ observations and model simulated zero-

curtain period in deeper soils. Across the DHN transect, both the model simulated and in-situ observed soil freeze onset were 

strongly correlated (R>0.9) with the zero-curtain period at soil depths below 0.15 m (Fig. 6a, Figs. S7-S8); therefore, the 

modelled soil freeze onset was not discussed separately. The in-situ observations also showed consistent inter-annual 20 

variability in the soil freeze onset and zero-curtain period across the GTN-P sites within the DHN transect, which spans an 

approximate 2° latitudinal gradient (Table S1); the correspondence was particularly strong for sites located north of the Sagwon 

site (> 69.43°N), which is discussed further in the next section (3.2.1).   

 

Across Arctic Alaska, model simulations slightly overestimate ALT compared with the available in-situ ALT measurements 25 

from 32 CALM sites, with a mean bias of 10.0±13.2 cm (~20% of mean ALT), and RMSE of 15.6±7.7 cm. For the 23 CALM 

sites with at least 9 years of ALT measurements, the correlations between model simulated ALT and the in-situ measurements 

range from 0.20 to 0.69, with 17 (73.9%) of the sites showing significant correspondence (p<0.1).  

3.2 Sensitivity of active layer freezing to snow cover  

We first analysed the sensitivity of active layer freezing to seasonal snow cover using in-situ observations, local-scale airborne 30 

P-band radar retrievals, MODIS snow cover observations and model simulations, focusing on the DHN transect in the Alaska 
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North Slope. We then evaluated the regional sensitivity of model simulated soil freeze onset and zero-curtain period within 

the active layer to early snow accumulation indicated by the MODIS SCE record across Arctic Alaska.  

3.2.1 Integrated analysis along the DHN airborne flight transect  

For all sites along the DHN transect, both the model simulated and in-situ observed zero-curtain periods at 0.25 m and 0.35 m 

soil depths showed significant positive correlations (R=0.69±0.14, p<0.1) with MODIS SCF. The zero-curtain period and SCF 5 

record showed similar inter-annual variability across the DHN transect, particularly north of Sagwon sites (>69.4 °N). Thus 

years with greater (less) snow cover are associated with a generally longer (shorter) zero-curtain period at these depths. The 

average zero-curtain period at 0.35 m soil depth for the DHN transect sites located from 70.4 to 69.4 °N is shown along with 

the corresponding MODIS SCF observations in Fig. 6b. These observations show large inter-annual variability in early season 

snow accumulation in this area, with the fall (Sep-Oct) SCF varying from 0.35 to 0.77 from 2001 to 2015. Correspondingly, 10 

both the in-situ and model simulated zero-curtain show large variability throughout the study period; here, the in situ 

observations varied from 23.5-79.2 days at 0.25 m and from 24.7-90.3 days at 0.35 m, while the model simulations ranged 

from 29.3-76.0 days and 44.0-90.7 days for the same respective soil depths.  

 

The timing of early snow accumulation was the primary factor affecting the freezing process of the top soils, while ALT is 15 

more closely related to the length of zero-curtain period in deeper soils, particularly in areas with a shallower thaw depth. This 

can be seen from the delayed soil freezing below 0.30 m soil depth at two monitoring sites (West dock and Galbraith Lake) in 

years with larger ALT (Fig. 6 c-d). Both monitoring sites show deeper ALT conditions during the later years of the study 

period, which are also associated with larger soil freezing lag rates. Here, the soil freezing lag rate is defined as the ratio of the 

soil freeze onset difference between two adjacent soil layers and the respective depth difference between the two layers. 20 

However, soil freezing lag rates derived from both the in-situ measurements and model simulations show large variability and 

are likely associated with large uncertainty, especially for deeper soil layers. The temporal coverage of the in-situ observations 

used for estimating the soil parameter conditions is also less extensive than the model simulations, which may contribute 

additional uncertainty. 

 25 

The airborne P-band radar retrievals over the DHN flight transect in early October (2014: 10-09, 2015: 10-01) showed a larger 

reduction in the surface soil dielectric constant (𝜀1) in areas with shallower snow cover during September than areas with 

deeper snow conditions (Fig. 7). In both years, the 𝜀1 differences were negatively correlated with MODIS SCF across the 

DHN latitudinal gradient (2014: R=-0.69, 2015: R=-0.76, p<0.01, n=17). The reduction in 𝜀1 retrievals in early October was 

more obvious in the northern part (>69.5 °N) of the transect (2014: -10.35±5.46, 2015: -6.64±1.94), which had a shallower 30 

seasonal snow cover (mean SCF of 0.22 in 2014 and 0.38 in 2015) and relatively early onset of frozen conditions than the 

southern part of the transect. Variations in vegetation cover may also contribute to the large contrast in the 𝜀1 retrievals 
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between the northern and southern portions of the transect, though the large apparent changes in 𝜀1 between 2014 and 2015 in 

the northern portion of the transect provide a relatively robust indicator of frozen soil conditions. A similar relationship between 

radar retrieved dielectric constant changes and MODIS SCF was observed over the Atqasuk (ATQ) flight transect. However, 

the opposite pattern was observed over the Ivotuk (IVO) transect, where 𝜀1 changes increased with increasing seasonal snow 

cover at higher elevations (Fig. S9). The IVO transect differs from the other Alaska tundra transects by encompassing more 5 

variable topography (Fig. 2) and higher elevations (614±75 m) than both DHN (208±36 m) and ATQ (34±7 m).  

3.2.2 Model sensitivity analysis in Arctic Alaska  

We first compared the model simulated zero-curtain period over Arctic Alaska for two selected years with relatively late (2007) 

and early (2015) snowfall. These results indicate that snow accumulation during the early cold season is a primary control on 

the zero-curtain period within the upper (< 0.4 m) soil layers (Fig. 8). The regional mean surface freeze onset and snow onset 10 

based on the MODIS LST and SCE observations was DOY 269±5 (surface freeze onset) and 281±9 (snow onset) in 2007, and 

DOY 259±8 (surface freeze onset) and 262±12 (snow onset) in 2015. The later snow cover establishment in 2007 resulted in 

an overall shorter zero-curtain period over most of the Arctic Alaska region, with a model simulated mean zero-curtain period 

of 49.3±25.1 days at 0.25 m depth and 64.3±26.3 days at 0.35 m depth. In contrast, earlier snow accumulation in 2015 resulted 

in a longer zero-curtain period, ranging from 69.4±22.1 days at 0.25 m depth to 84.7±25.2 days at 0.35 m depth. The spatial 15 

pattern of the model simulated zero-curtain period also corresponded well with the snow accumulation pattern indicated from 

the MODIS SCE observations leading up to full snow cover conditions.   

 

During the study period, the spatial pattern of model simulated soil freeze onset and zero-curtain period trends at 0.25 m and 

0.35 m is closely associated with the trends of MODIS snow onset (Fig. 9); areas with earlier snow onset generally show later 20 

freeze onset and longer zero-curtain period. Further analysis indicates that early snow accumulation is the main control on the 

soil freezing for the upper (~< 0.4 m) active layer, while the zero-curtain period of deeper soils is more related to ALT (Fig. 

10). The model simulations show an overall longer zero-curtain period in areas with deeper ALT. Approximately 55% of the 

Arctic Alaska has a maximum thaw depth between 0.45 m and 0.55 m. In those areas, correlations between MODIS snow 

onset and zero-curtain period generally decrease with increasing soil depths below 0.4 m, which corresponds with increasing 25 

positive correlation between ALT and zero-curtain period. This reduction of the correlation between snow onset and zero-

curtain period is more pronounced in areas with shallower ALT. Compared with the zero-curtain period, we found a much 

weaker correlation between model simulated soil freeze onset in near-surface soils (< 0.1 m) and MODIS snow onset, but 

similar relationships for soil depths below (> 0.2 m) (Fig. S10). This is due to a positive correlation between surface freeze 

onset derived from MODIS LST and MODIS snow onset (R=0.71, p<0.1) in Arctic Alaska during the study period; earlier 30 

surface freezing leads to cold underlying soil, while earlier snow onset generally leads to warm soil in this area. Therefore, 

soil freeze onset at near-surface soils has weaker correlations with MODIS snow onset comparing with the middle of active 

layer (~0.2-0.4 m), while the soil freeze onset subjects to similar controls as the zero-curtain period with soil depth increases. 
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These results indicate that land surface temperature or F/T status may be a relatively poor indicator of soil freezing status and 

the zero curtain period in the deeper active layer for the Arctic region.  

4. Discussion  

4.1 Sensitivity of active layer freezing process to recent climate change  

Our results show a strong correlation between the active layer freezing process and snow accumulation during early snow 5 

season in Arctic Alaska, especially within upper (~< 0.4 m) soil layers. Earlier snow onset and establishment of a complete 

snow cover generally delays active layer freezing and promotes a longer zero-curtain period (Figs. 8&9). Previous studies have 

highlighted the decoupling of surface air and soil temperatures during the winter season in the northern high latitudes due to 

strong insulating effects of snow cover (Morse et al., 2012; Throop et al., 2012; Koven et al., 2013; Smith et al., 2016). Changes 

in the rate of accumulation, timing, duration, density and amount of snow cover play an important role in determining how 10 

soil F/T dynamics respond to surface warming (Zhang, 2005; Lawrence and Slater, 2010). The relationship between autumn 

snow onset and soil warming may vary depending on the timing and magnitude of snowfall, and local climate conditions (Yi 

et al., 2015). Early snow onset may enhance thermal buffering of cold surface temperatures, and promote soil warming in 

colder climate zones such as Arctic Alaska. A shorter snow season may cool the soil in colder areas due to less insulation from 

cold atmospheric temperatures, but may warm the soil in warmer areas by promoting greater heat transfer into soils (Lawrence 15 

and Slater, 2010). The snow cover impact on soil F/T dynamics will also depend on differences between the timing of first 

surface freeze and snow cover establishment, especially for near-surface (~<0.1 m) soils (Kim et al., 2015).    

 

Our model simulations also show that the influence of snow cover on soil freezing is weaker for deeper soil layers (~> 0.5 m) 

where the freeze onset and zero-curtain period are more closely related to the summer maximum thaw depth (i.e. ALT, Fig. 20 

10 & Fig. S10). This can be largely explained by a close link between ALT and the soil freezing lag rate of deeper soils. During 

fall, active layer freezing proceeds both downward from the surface and upward from the underlying permafrost table (Outcalt 

et al., 1990; Oechel et al., 1997; Zona et al., 2016). This can be seen from the negative soil freezing lag rate (related to 

differences in soil freeze onset between two adjacent soil layers) at the bottom of the active layer at the GTN-P sites (Fig. 6 c-

d), indicating that the bottom of the active layer freezes first. Increases in ALT can lead to abrupt changes in the soil freezing 25 

lag rate at the same soil depth, which can change from a negative value to a small positive value and result in abrupt changes 

in the zero-curtain period at the bottom active layer (e.g. at the WD1 and WDN sites in Fig. S8b). Previous studies have also 

reported a delayed soil freeze-up and thus longer zero-curtain with increasing ALT (Morse et al., 2012; Euskirchen et al., 

2017). Based on the GTN-P site measurements, deeper soils show a general delay in soil freeze onset relative to shallower 

active layer, with a mean lag rate of 0.79±0.52 days cm-1 at 0.35 m depth; large variability in the soil freezing lag rate is likely 30 

associated with different soil structure and variable active layer soil moisture content (Throop et al., 2012). Therefore, a 

deepening active layer associated with climate warming will likely lead to a longer zero-curtain period in deeper soils.  
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The Arctic is expected to experience continued warming and precipitation increases under projected climate trends (IPCC, 

2013), though the potential response of active layer freezing to these changes may vary depending on changes in seasonal 

snow cover. Both surface warming and a changing precipitation regime can modify seasonal snow cover, leading to a non-

linear response of soil temperatures to warming (Lawrence and Slater, 2010; Yi et al., 2015). Increases in winter precipitation 5 

and snowpack deepening may enhance soil warming, while a reduced snowpack may promote soil cooling in colder climate 

areas. More frequent and intense rain-on-snow events during fall and early winter have been observed across the ABZ with 

recent warming trends (Ye et al., 2008; Langlois et al., 2017). Therefore, how these climate trends will affect soil moisture 

and thermal dynamics is a key challenge for accurately estimating soil F/T dynamics and potential carbon and climate 

feedbacks. In addition, with continued warming and ALT deepening, unfrozen conditions may persist in the bottom of the 10 

active layer, resulting in a perennially thawed subsurface soil layer or talik zone; once a talik forms, it can greatly accelerate 

permafrost degradation and result in large changes in surface hydrology and soil carbon decomposition (Yoshikawa et al., 

2003; Parazoo et al., 2018).    

 

Our model simulations are associated with large uncertainties, particularly regarding soil moisture effects on soil heat transfer 15 

during the F/T period. Changes in liquid water content during soil freezing vary for different soil conditions, while accurate 

simulation of this process is challenging due to complex processes controlling ice formation, liquid water movement and heat 

transfer in frozen soils (Outcalt et al., 1990; Romanovsky and Osterkamp, 2000; Schaefer and Jafarov, 2016). Our study used 

in-situ soil dielectric constant (ɛ) measurements to parameterize the unfrozen water curve and determine the temperature 

threshold used to define soil freeze onset and calculate the zero-curtain period. However, our results also show large ɛ 20 

variability in response to freezing temperatures from the in situ SoilSCAPE measurements; the relationship between ɛ and 

liquid water content in organic-rich soils may also be different from mineral soils (Engstrom et al., 2005; Mironov et al., 2010). 

A reliable soil dielectric model characterizing the relations between unfrozen water content and ɛ for organic soils will help 

reduce uncertainty in the estimated temperature threshold at soil freeze onset; a model sensitivity analysis using different b  

values in the unfrozen water curve (Eq. 11) may also help quantify uncertainties in model simulated zero-curtain period and 25 

its regional pattern. On the other hand, potential soil moisture redistribution with active layer deepening is not accounted for 

in the current model, though this effect is likely small due to small ALT trends in this area during the study period (Yi et al., 

2018). Increasing disturbance from thermokarst and wildfire are expected to alter microclimate and soil moisture conditions, 

vegetation cover and SOC stocks in the ABZ, which will also likely influence the dynamics of ground-ice evolution and 

permafrost degradation (Grosse et al., 2011; Liljedahl et al., 2016).  30 

4.2 Potential use of remote sensing to improve regional monitoring of soil F/T process  

Large-scale satellite observations and global reanalysis data generally have difficulty capturing finer-scale snow cover 

variations and associated impacts on soil F/T dynamics. These limitations are exacerbated in the Arctic due to a paucity of 
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regional climate stations and complex microclimate and snow cover conditions influenced by local topography, vegetation and 

winds (Liston and Sturm, 2002; Gisnas et al., 2016). Optical satellite remote sensing, including Landsat and MODIS sensors, 

can provide accurate local scale information on snow cover extent, though effective regional monitoring from these 

observations is constrained by persistent cloud cover and reduced solar illumination for much of the year. Moreover, these 

observations do not include snow depth or water content information, which are critical parameters for hydrologic and 5 

ecological applications (Brown et al., 2010; Painter et al., 2016). Snow-covered areas attenuate the emitted microwave 

radiation from the underlying surface, while the magnitude of microwave emissions and attenuation depends on the sensor 

frequency, snow liquid water content, snow grain size and shape. Thus, snow properties including snow water equivalent 

(SWE) may be derived from passive microwave sensors, albeit at relatively coarse spatial scale (Kelly et al., 2003; Armstrong 

et al., 2005; Takala et al., 2011). However, its accuracy is limited in deep snow pack conditions, and its applicability is limited 10 

in forest areas and wet snow conditions (Frei et al., 2012). Compared with passive microwave sensors, active radars or 

scatterometers such as Ku band are capable of much higher spatial resolution and can be particularly useful for regional snow 

mapping (Yueh et al., 2009). However, more studies are needed to clarify the multiple scattering effects from snow 

microstructure variations and contributions from other elements within the sensor footprint including vegetation, soil and open 

water effects, to ensure accurate retrieval of snow properties (King et al., 2018). Airborne laser altimeters (lidar) also show 15 

strong potential for mapping snow depth patterns (Deems et al., 2013; Painter et al., 2016), while the recently launched ICESat-

2 is expected to provide new capabilities of satellite lidar for regional snow mapping (Kwok and Markus, 2018). In the near 

term, significant improvements in acquiring geospatial information on snow properties in the Arctic will likely come from 

merging in-situ and modelling datasets with multi-sensor snow products (Painter et al., 2016).  

 20 

Another major challenge for regional permafrost modelling is the lack of information on subsurface properties, particularly 

for organic soils with distinct hydraulic and thermal properties. Current permafrost models generally use regional or global 

SOC inventory data to parameterize the SOC profile following an exponentially decreasing curve (Lawrence and Slater, 2008; 

Rawlins et al., 2013; Yi et al, 2018). However, large discrepancies are apparent from the available SOC inventory records in 

the ABZ (Liu et al., 2013; Hugelius et al., 2014). There is also large regional variability in the vertical SOC distribution due 25 

to multiple processes affecting the SOC distribution in cryoturbated soils (Mishra et al., 2013; Hugelius et al., 2014; Hossain 

et al., 2015). Long wavelength radar including P-band (~70 cm) and L-band (~24 cm) is sensitive to surface vegetation 

structure, soil surface and subsurface dielectric properties (e.g. Dobson et al., 1985; Mironov et al., 2010; Tabatabaeenejad et 

al., 2015). Our model experiments and analysis using in-situ dielectric constant measurements and P-band radar retrieved soil 

dielectric constant for soil freezing studies, albeit simple, show the potential of longwave radar remote sensing in mapping of 30 

SOC, active layer F/T and moisture profiles. However, similar to many other inversion problems, radar retrievals suffer from 

ambiguity in the inversion parameter definitions mainly due to insufficient information on the subsurface profile (e.g. 

Tabatabaeenejad et al., 2015; Chen et al., in press). Therefore, new methodologies are needed to address the underdetermined 

nature of the radar backscatter inversion and associated land parameter retrievals, by either including additional observations 
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or other synergistic information from soil physical models to reduce parameter dimensions in the radar model (e.g. Sadeghi et 

al., 2016). The vegetation canopy also has a large impact on the radar backscatter especially at L-band and shorter wavelengths, 

while separating the radar contribution of subsurface soils from the vegetation canopy remains a challenge. Radar 

measurements with shorter wavelengths (e.g. X, C, L-bands) can be also useful for subsurface retrievals, by providing 

contributing information on surface snow, soil, and vegetation conditions (Moghaddam et al., 2000; Yueh et al., 2009; King 5 

et al., 2018), which can be used to reduce the uncertainties in the longwave (e.g. P-band) radar soil parameter retrievals. 

However, more sophisticated modelling experiments capable of representing complex landscapes and multi-frequency radar 

backscatter characteristics are needed to fully clarify the value of multi-frequency observations. Additional airborne radar 

sampling targeting regional disturbance gradients may also provide the necessary information for the regional modelling 

framework to represent increasing disturbance regimes and associated impacts on active layer F/T dynamics in the ABZ.  10 

5. Conclusions  

In this study, we used a remote sensing driven permafrost model and a newly developed fine-resolution snow dataset to 

simulate the active layer freezing process, including soil freeze onset and zero-curtain period in Arctic Alaska during the recent 

satellite period (2001-2016). The model simulations were combined with multiple in-situ measurements, and local-scale soil 

dielectric constant retrievals derived from airborne longwave (P-band) radar data to investigate the regional sensitivity of soil 15 

freezing and zero-curtain period to recent climate change. Our results indicate that: 1) the soil freeze onset and zero-curtain 

period in the upper soils (< 0.4 m) are primarily affected by snow accumulation during early cold season, whereby areas with 

earlier snow onset generally show delayed soil freeze onset and prolonged zero-curtain period; 2) the influence of snow onset 

and accumulation on the soil freezing decreases with increasing soil depth and the zero-curtain period of deeper soils (> 0.5 

m) are more closely related to ALT due to increasing delay in soil freezing with active layer deepening. Therefore, a deepening 20 

active layer associated with climate warming will very likely lead to longer unfrozen period in deeper soils and potentially 

result in more cold-season carbon loss. These findings highlight the importance of relatively fine-scale snow cover and active 

layer thickness products for better understanding of potential carbon and climate feedbacks in permafrost ecosystems. Our 

model experiments and analysis using in-situ and radar retrieved dielectric constant data to characterize soil freezing show the 

potential of longwave radar remote sensing for landscape level mapping of active layer soil properties, including SOC, F/T 25 

and soil moisture profiles. Future satellite P- and L-band radar missions including NISAR, Tandem-L and BIOMASS (Arcioni 

et al., 2014; Moreira et al., 2015; Rosen et al., 2017) may enable substantial improvements in the way models represent fine-

scale soil processes, and thus allow for more accurate predictions of boreal and arctic environmental changes.  

 

Data availability. The regional model simulations will be archived and distributed for public access through the NASA ABoVE 30 

archive at the NASA ORNL DAAC (https://daac.ornl.gov/). The radar retrievals are available upon request. Other data used 

in this study were obtained from free and open data repositories. 

https://daac.ornl.gov/
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Table 1: Key model parameters used in this study.  

Parameters Description Range This study Note 

𝑃𝑐𝑢𝑡𝑜𝑓𝑓 Critical value for snow probability 

occurrence (Eq. 4) 

0.4 ~ 1.0 0.5 Determined using trial and error method 

b Shape parameter for the unfrozen water 

content curve (Eq. 11) 

0.1 ~ 1.0 0.63 Romanovsky and Osterkamp (2000); 

Schaefer and Jafarov (2016) 

δ Critical value of soil dielectric constant 

changes at freeze-up (Eq. 12) 

0 ~ 50% 15% Determined using trial and error method 

𝑇𝑐𝑢𝑡𝑜𝑓𝑓 Critical value of soil temperature at 

freeze-up 

0 ~ -1.0°C -0.35°C Determined using SoilSCAPE 

measurements 
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Table 2: The accuracy of the spatial filter algorithm applied to the Aqua MODIS SCE data during spring (April to June) and fall 

(September to November) transitions averaged over Alaska from 2003 to 2015. Pixels identified as cloud contaminated in the Aqua 

MODIS record, but indicated as clear conditions in the Terra MODIS were used for evaluation. The percentage of cloud 

contaminated and evaluated pixels were calculated for the entire Alaska domain, while the accuracy and misclassification were 

calculated as the percentage of the evaluated pixels. Both Terra and Aqua MODIS SCE data show similar accuracy, while only the 5 
Aqua MODIS results are shown here due to a higher percentage of cloud contaminated pixels (available for evaluation) in the Aqua 

imagery.  

 Spring transitional season 

 

     April         May           June 

Fall transitional season 

 

September   October     November 

 

Cloud contaminated pixels (%) 

 

Evaluated pixels (%) 

 

 

5.0±2.7     11.2±2.6    4.4±2.3 

 

3.5±1.7     5.8±1.1     2.4±1.1 

 

8.8±4.0    13.2±3.7   11.3±3.5 

  

    5.0±2.0      9.1±2.3     7.2±2.1 

 

Accuracy (%) 

 

Misclassification of land pixels (%) 

 

Misclassification of snow pixels (%) 

 

 

92.0±3.3   80.0±1.9   82.9±4.0 

 

4.1±1.4     8.2±0.9     6.7±1.4 

 

 4.0±2.0   11.8±1.3    10.3±2.9 

 

  81.8±2.3    86.2±3.5    97.0±2.2 

 

 8.6±1.1      6.7±1.4      2.0±1.3 

 

9.6±1.9     7.1±2.2     1.1±1.0 
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Table 3: Statistics of 1-km MERRA-2 snow depth data generated using different spatial interpolation schemes compared with in-

situ snow depth measurements at the Alaskan SNOTEL sites.  

  

 

 

num of sites 

 

R 

 

Yi et al (2018)   this study 

 

 

Bias (m) 

 

Yi et al (2018)   this study 

 

RMSE (m) 

 

Yi et al (2018)    this study 

Arctic Alaska 8 0.84            0.85 -0.03          -0.01 0.18         0.16 

Other areas 

<400 m 

 

400-800 m 

 

>800 m 

 

19 

 

18 

 

10 

 

0.78            0.81 

 

0.86           0.91 

 

0.84           0.88 

 

0.01          0.01 

 

-0.01          -0.09 

 

-0.08         0.02 

 

0.39         0.28 

 

0.44        0.41 

 

0.32         0.27 
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Table 4: Comparisons of model simulated and in-situ observed zero-curtain period at 0.35 m soil depth for sites along the DHN 

transect. The model simulated mean zero-curtain period was calculated from 2001 to 2016. The zero-curtain period calculated using 

in-situ soil temperatures at closely adjacent sites (e.g. the three Franklin Bluff sites, Table S1) were combined for a longer 

observational record.      

 WD DH FB SagMAT SagMNT HV GL 

 Num of year 10 8 15 8 9 7 11 

R 0.62* 0.67* 0.82* 0.87* 0.71* 0.48 0.73* 

Bias (days) 14.40 6.25 -5.27 14.12 18.11 -13.85 -1.83 

RMSE (days) 19.15 19.38 13.73 15.83 26.5 22.20 18.75 

Model mean zero-curtain 

period (days) 

64.5 77.0 63.5 71.0 79.5 71.0 83.0 

Note:  *denotes p<0.1; WD: West Dock; DH: Deadhorse; FB: Franklin Bluffs; SagMAT: Sagwon MAT; SagMNT: Sagwon MNT; HV: 5 

Happy Valley; GL: Galbraith Lake. Imnaviat 1 and GL were closely adjacent sites and were combined to form a longer time series.  
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Figure 1: Flow diagram describing the snow data processing and soil modelling procedure. A spatial filter was used to predict the 

snow occurrence probability for MODIS cloud-contaminated pixels. Based on the cloud-free MODIS SCE imagery, the snow depth 

of each snow-covered 1-km pixel was estimated from the snow depth of the neighbouring MERRA-2 grid cells with weights predicted 

using another spatial filter. The downscaled 1-km snow depth data was then used to drive a remote sensing based soil process model 5 
to simulate the zero-curtain period and ALT. Both the snow data processing and soil modelling were carried out at 8-day time step.  
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Figure 2: a) The study area (Arctic Alaska, >66.55° N) used for the soil model simulations and the locations of in situ sites used for 

model calibration and validation; b) an Alaska permafrost probability map (Pastick et al., 2015) is also shown, indicating higher 

permafrost occurrence in Arctic Alaska. The in-situ sites include the Prudhoe Meadow SoilSCAPE site, GTN-P soil temperature 

sites and CALM ALT sites. Airborne P-band radar data (denoted by green lines) were obtained in late August and early October in 5 
2014 and 2015. Another radar flight line was collected over the Barrow area (not shown), but was not included in this analysis due 

to a large percent of surface water in this area.   
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Figure 3: In-situ measurements of soil temperature (a) and dielectric constant (b) for a single SoilSCAPE sensor node (S6) at the 

Prudhoe Meadow site in northern Alaska (http://soilscape.usc.edu).   
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Figure 4: Soil freezing characteristics at the Prudhoe Meadow SoilSCAPE site: (a) comparisons of model and observed zero-curtain 

period at two sensor nodes (S5 and S6) using a cutoff threshold of 0.15 (Eq. 12) for both in-situ soil dielectric constant and model 

simulated unfrozen water content to determine soil freeze onset; b) changes in in-situ soil dielectric constant during soil freezing at 

the S6 node. The soil dielectric constant was normalized using the maximum and minimum value of soil dielectric constant during 5 
the observation period.   
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Figure 5: Illustration of the snow data processing: the raw (a&d) and cloud filtered (b&e) MODIS SCE images using an elevation-

based spatial filter and downscaled MERRA-2 snow depth (unit: m) data (c&f) using the filtered MODIS SCE and DEM data during 

spring snow melt (top: 04/23-04/30) and early snow accumulation (bottom: 09/30-10/07) period in 2007. In the MODIS images, snow 

covered areas are shown as gray, while land and cloud covered areas are shown as black and white, respectively.  5 
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Figure 6: Comparisons of soil freezing characteristics derived from GTN-P soil temperature measurements and model simulations 

along the DHN transect in northern Alaska: a) inter-annual variations in zero-curtain period derived from in-situ measurements; 

b) variations of model versus in-situ zero-curtain period at 0.35 m soil depth relative to MODIS SCF averaged for the northern part 

of the DHN transect; c-d) changes in the soil freeze lag rate with depth at two DHN sites. Both sites have lower ALT in the earlier 5 
years shown here, ranging from 0.37 m in the earlier period to 0.43 m during later period of record for the WD1 site, and from 0.47 

m to 0.57 m for the GL site.  
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Figure 7: Soil freeze process indicated by the radar retrieved (Chen et al., in press) soil dielectric constant (ɛ1) of surface soils (~<0.10 

m) at the DHN transect in August (a) and October (b), and changes in ɛ1 in relation to MODIS SCF (c). The ɛ1 differences between 

August and October were binned to 0.1° latitudinal bin, while SCF was calculated as the percentage of snow covered pixels indicated 

by MODIS SCE data for each 0.1° bin. The standard deviation of ɛ1 differences for each 0.1° bin was shown as error bars.  5 
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Figure 8: Model simulated zero-curtain period at 0.35 m in relation to snow accumulation during early snow season indicated by 

filtered MODIS SCE images for two selected years with later (2007: a-c) and earlier (2015: d-f) snowfall. In the MODIS images, 

snow was shown as dark gray, while land was shown was black and the areas masked out were shown as white.  

 5 
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Figure 9: Trends in model simulated soil freeze onset (a) and zero-curtain period (b) at 0.35 m depth from 2001 to 2016. The autumn 

snow onset trend for the same period derived from the MODIS SCE data is shown in (c).  
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Figure 10: Regional statistics of model simulated zero-curtain period (a) and its sensitivity to MODIS snow onset and model 

simulated ALT (b-c) from 2001 to 2016: a) regional mean of model simulated zero-curtain period at different depths; b) changes in 

correlations between snow onset and zero-curtain period with depths; for both a) and b), the study area was divided into 4 groups: 5 
soil column froze below 0.33 m, 0.45 m, 0.55 m, and 0.7 m. The soil column for the majority of the study area froze below 0.7m. c) 

The proportion of pixels with significant positive correlation between zero-curtain period and ALT at different depths. The total 

number of unfrozen pixel was shown as “npixel”.  
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