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Abstract.

Energy and mass balance modeling of glaciers is a key tool for climate impact studies of future glacier behaviour. By

incorporating many of the physical processes responsible for surface accumulation and ablation, they offer more insight than

simpler statistical models and are believed to suffer less from problems of stationarity when applied under changing climate

conditions. However, this view is challenged by the widespread use of parameterizations for some physical processes which5

introduces a statistical calibration step. We argue that the reported uncertainty in modelled mass balance (and associated energy

flux components) are likely to be understated in modelling studies that do not use spatio-temporal cross-validation and use a

single performance measure for model optimization. To demonstrate the importance of these principles, we present a rigorous

sensitivity and uncertainty assessment workflow applied to a modelling study of two glaciers in the European Alps, extending

classical best guess approaches. The procedure begins with a reduction of the model parameter space using a global sensitivity10

assessment that identifies the parameters to which the model responds most sensitively. We find that the model sensitivity to

individual parameters varies considerably in space and time, indicating that a single stated model sensitivity value is unlikely

to be realistic. The model is most sensitive to parameters related to snow albedo and vertical gradients of the meteorological

forcing data. We then apply a Monte Carlo multi-objective optimization based on three performance measures: Model bias and

mean absolute deviation in the upper and lower glacier parts, with glaciological mass balance data measured at individual stake15

locations used as reference. This procedure generates an ensemble of optimal parameter solutions which are equally valid.

The range of parameters associated with these ensemble members are used to estimate the cross-validated uncertainty of the

model output and computed energy components. The parameter values for the optimal solutions vary widely, and considering

longer calibration periods does not systematically result in better constrained parameter choices. The resulting mass balance

uncertainties reach up to 1300 kgm−2, with the spatial and temporal transfer errors having the same order of magnitude. The20

uncertainty of surface energy flux components over the ensemble at the point scale reached up to 50 % of the computed flux.

The largest absolute uncertainties originate from the short-wave radiation and the albedo parametrizations, followed by the

turbulent fluxes. Our study highlights the need for due caution and realistic error quantification when applying such models to

regional glacier modelling efforts, or for projections of glacier mass balance in climate settings that are substantially different

from the conditions in which the model was optimized.25
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1 Introduction

Surface energy and mass balance models are valuable tools for estimating the response of glaciers to meteorological forcing

(Oerlemans, 2011). Model results can be used to estimate regional run-off and resultant sea level rise (e.g., Hock, 2005), but

additionally, and unlike results of empirical melt models, they can also be used to characterize the fundamental processes

and key drivers of melt on glaciers, which is critical for understanding how they may behave under the influence of changing5

climate (e.g., Mölg and Hardy, 2004; Klok and Oerlemans, 2004; Hock and Holmgren, 2005; Mölg et al., 2008; Prinz et al.,

2016; Willeit and Ganopolski, 2017).

All glacier surface mass and energy-balance models contain a degree of parametrization of physical relationships. These

parameters are either optimized to fit observations, or chosen based on previously established empirical relationships, or are a

mix thereof. Uncertainty surrounding the transferability of parametrizations in both space and time poses a critical limitation10

on the usefulness of such models for regional upscaling of glacier behaviour or forward projections of global glacier behaviour

under changing climate conditions.

Early energy balance studies typically apply models at a single point in space for which local physical relations can be readily

established empirically, or direct measurements are available to tune the parametrizations (e.g. Mölg and Hardy, 2004; Greuell

and Konzelmann, 1994; Bintanja and Van Den Broeke, 1995). Optimizing a model to local measurements can successfully15

reproduce local melt rates or surface temperature (e.g., Oerlemans and Knapp, 1998), and, where this is the case, reliable

simulation of glacier ablation is often taken to mean that the model also accurately reveals the relative importance of specific

energy sources to ice ablation. Model optimization based on data from a single site, or from a very short time series, is,

however, prone to parameter over-fitting, meaning that parameters are specifically adjusted to the study location and/or time

(Beven, 1989). This can be evident in upscaling point optimizations to the glacier scale: For example, Klok and Oerlemans20

(2002) applied a distributed energy balance model to a mid-latitude glacier, using a combination of previously published

parameter values and values estimated from local point-scale measurements, and found reasonable agreement for local energy

fluxes. The albedo parametrization was identified as a potential source of uncertainty as it was based on data from a single

point and one year of observations (Klok and Oerlemans, 2002; Oerlemans and Knapp, 1998) and may not be valid elsewhere

on the glacier surface throughout all seasons (Van De Wal et al., 1992; Konzelmann and Braithwaite, 1995).25

In studies of spatially distributed glacier mass balance (e.g. Klok and Oerlemans, 2004; Hock and Holmgren, 2005; Hock,

2005; Reijmer and Hock, 2007; Mölg et al., 2009; Rye et al., 2012; Gurgiser et al., 2013) optimization of free parameters to

in situ measurements can be successful if the processes being parametrized are quasi-constant over the whole glacier surface,

or if a dense measurement network is available for spatially-distributed optimization. Brock et al. (2000) concludes that the

accuracy of spatially distributed models is strongly dependent on the ability to apply multiple local optimizations, and on30

the importance of individual energy components. Nevertheless, most temperature index models (e.g. Hock, 2005; Pellicciotti

et al., 2005; Carenzo et al., 2009; Robinson et al., 2010, 2011) and also a number of energy balance models (e.g. Mölg et al.,

2009; Gurgiser et al., 2013) have been optimized towards a single best fit to the glacier-wide mass balance measurement,

which requires a subjective choice of the single mass balance metric to be used. For example, optimizing for cumulative
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mass balance, mass balance gradient or stake measurements have been shown to be problematic as different optimal solutions

are found depending on the mass balance metric chosen for optimization (Rye et al., 2012). The associated differences in

the individual optimal parameter values and resultant values of the energy components have not been studied in detail, and

furthermore, uncertainties of mass balance measurements (e.g. Zemp et al., 2013; Galos et al., 2017) imply that a single best

fit model simulation may not be found at all (Beven and Binley, 1992).5

A way forward may be found in multi-objective optimization of glacier energy balance modeling, first applied in a glacio-

logical context by Rye et al. (2012). They optimized a mass and energy balance model, on two Arctic glaciers in Svalbard

over ~40 years using three objectives for optimization: (i) the mass balance gradient, (ii) the mean absolute error (MAE) at

the stake location, and (iii) the cumulative mass balance. This approach creates an ensemble of optimal solutions which all

are equally ’good’ in respect to all three objectives. With this approach the authors could reconstruct the mass balance of the10

glaciers before direct measurements were available and also give an estimate of the model uncertainty from the parameter

spread within the optimal solution set. This work demonstrated that it is likely that stated model performance based on single

objective optimizations does not adequately represent model performance at a glacier scale or over longer time periods.

Mass balance models are required to be transferable in space and time in order to estimate run-off on a larger scale or the

impact of a changing climate (Oerlemans et al., 2005; De Woul and Hock, 2005; Raper and Braithwaite, 2006). To study15

the transferability of an enhanced temperature-index model Carenzo et al. (2009) used the optimized parameters from one

particular year and glacier and compared it to the locally optimized run at different glaciers and over different time periods.

They concluded that their model shows a rather good transferability in space, except during overcast conditions. Furthermore,

they observed that the parameters vary depending on year and location and are correlated to each other. MacDougall and

Flowers (2011) and Prinz et al. (2016) investigate transferability of full energy balance models: while MacDougall and Flowers20

(2011) find satisfactory temporal transferability in the Arctic over two years, albeit with some local parameter adjustment, Prinz

et al. (2016) fails to do so in the tropics over an interval of a century. This is attributed to a substantially changed climate over

the century and/or a different micro-meteorological setting due to dramatic glacier shrinkage (Prinz et al., 2016) which implies

the problem of transferring a calibrated model to rather different climatic settings/glaciers and raises the question about the

general uncertainty and transferability of such models.25

It can be expected that models with more parameters have greater variation in the solutions. Reduction of free parameters

for optimization based on a sensitivity analysis is therefore a helpful tool to reduce both the effect of parameter correlation and

computational expense (Spear and Hornberger, 1980; Saltelli et al., 2000; van Griensven et al., 2006). Gurgiser et al. (2013)

applied such a parameter reduction procedure on a tropical glacier to reduce the free parameters prior to assessing model

transferability.30

Model sensitivity and model uncertainty are often evaluated together, and assessments of varying robustness have been

presented in the literature. For example, Mölg et al. (2012) used an arbitrarily chosen spread of the most positive and negative

deviation simulations around their single best fit in respect to Root Mean Square Deviation (RMSD) of cumulative mass balance

to estimate uncertainty. This gives only a rough estimate as only two particular runs determine the uncertainty estimate. Anslow

et al. (2008) first optimize their model and then vary the optimized parameters within certain bounds (5 %) and perturb the35
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Figure 1. The sequential approach used in this study can be classified in three steps. First data management and model setup in beige,

the simulations (blue) first use a global sensitivity analysis to reduce the parameter space followed by a multi-objective optimization. All

simulations are performed independently for three summers on two glaciers. The data analysis (green) is done independently for sensitivity,

parameter and model uncertainty analyses.

meteorological input to quantify the impact on the mass balance. This provides the sensitivity of the model output towards

the parameter values and inputs, but the created range is also used as model error estimate. Machguth et al. (2008) perform a

similar assessment but base their perturbation ranges on probability density functions whereby model uncertainty is assessed by

applying random and systematic errors/uncertainties to the meteorological input data as well as to the mean value of parameters.

The reported uncertainty, of 700 kgm−2 for a 400 days simulation at a single point (roughly 10 % of the total melt), is related to5

the standard deviation of the probability density function. Rye et al. (2012) used multi-objective optimization to better constrain

their model parameters but do not evaluate their model on independent observations (i.e. observations not used for calibration).

In this study, we present a model calibration and uncertainty assessment workflow built upon a combination of these ideas.

Our aim is to bring awareness that uncertainty estimates of physically based models with many free parameters is likely to

be under-estimated when applied in different settings (geographical and or temporal) than those for which the model was10

calibrated. Using an established distributed energy and mass balance model (Mölg and Hardy, 2004; Mölg et al., 2008; Mölg

et al., 2009), we simulate three years of summer mass balances on two mid-latitude glaciers (Fig. 1). We start by applying a

global sensitivity analysis to reduce the parameter space extending the local sensitivity analysis used by Gurgiser et al. (2013)

to a global variance based method (Saltelli et al., 2006), a procedure which has recently been applied in snow pack modeling
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(Sauter and Obleitner, 2015). Subsequently we use the multi-objective optimization applied by Rye et al. (2012) to calibrate our

model based on a set of three quality measures. The parameter uncertainty and resulting uncertainty of the energy components

are evaluated based on this calibration procedure. Finally, the temporal and spatial transfer of such a model ensemble is assessed

with cross-validation.

In this paper, we will use the term “model uncertainty” to describe the difference between any modeled quantity and its5

counterpart in reality (“the truth”). An uncertainty value is a measure of how much trust can be given to a modeled quantity:

in practice, model uncertainty can be estimated based on observations, and in any modeling activity which includes parameter

calibration model uncertainty must be estimated separately from the calibration procedure (cross-validation). For quantities

without equivalent in reality (e.g. model parameters), we use the term “uncertainty” to refer to the fact that their true value is

really unknown, and that this uncertainty in the parameters is also conveyed in the model uncertainty. When we speak from10

“model sensitivity”, we mean the variance of the model output as function of the variance of an input quantity (e.g. forcing

data, model parameters). A model sensitivity analysis does not require observations. In our paper, we restrict our sensitivity

analysis to the internal model parameters, not to the input meteorological variables.

2 Study sites and model input data

Two glaciers in the Eastern European Alps were selected as test sites in this study (Fig. 2). Hintereisferner (HEF; 46.80°N,15

10.75°E) is a sizeable valley glacier in the Austrian Ötztal-Alps spanning 3720 to 2454 m a.s.l. in 2013, when the glacier

area was ca. 6.7 km2. Langenferner/Vedretta Lunga (LGF; 46.46°N, 10.61°E) is a smaller valley glacier in the Italian Ortler-

Alps spanning 3370 to 2711 m a.s.l. in 2013. These glaciers were chosen since the model used here requires topographic and

meteorological input data, and measurements of surface mass balance for evaluation. For both these glaciers (i) topographic

data is available in the form of high-resolution digital elevation models (DEMs) derived from airborne laser-scanning data20

acquired in Fall 2013 (Galos et al., 2015); (ii) meteorological data are available from automatic weather stations (AWSs) in

the vicinity of the glaciers for the period 2012 to 2014 and (iii) intense glaciological observations, including measurements of

seasonal mass balance (e.g. Klug et al., 2017; Galos et al., 2017), are available.

At HEF the AWS is located on a small plateau within a rock slope north of the upper tongue area of the glacier at an altitude

of 3025 m a.s.l.. The horizontal distance of this AWS to the glacier is about 300 m and it provides all meteorological data25

required for the model except for precipitation. Precipitation data was taken from the gauge operated by the Bavarian Academy

of Sciences at Vernagtbrücke, 3.5 km east of HEF at an elevation of 2600 m a.s.l., and was scaled to the elevation of the

AWS on the basis of precipitation gradients derived from 11 totalizing rain gauges in the vicinity of the glacier (Strasser et al.,

2017). At LGF the AWS data come from the station of the Hydrological Service of the province of Bozen operated at Sulden

Madritsch, 2.5 km north of the glacier at an altitude of 2825 m a.s.l. (Galos et al., 2017).30
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Figure 2. Model simulations are performed at the stake locations shown as points; points marked in black are only used in the optimization,

while green points indicate the seven stakes on each glacier that were also used in the sensitivity analysis. Detailed maps are available in the

supplement (fig. S.1-2).

3 Model and methods

3.1 Energy balance model

The energy and mass balance model used in this study is a process-based model that has been applied in a range of glacier

environments (Mölg and Hardy, 2004; Mölg et al., 2008; Mölg et al., 2009, 2012; Gurgiser et al., 2013; Prinz et al., 2016;

Galos et al., 2017). The model was run in hourly time-steps for three summer periods over each glacier. The model is a5

distributed mass and energy balance model, but in this study simulations were limited to 18 stake locations on each glacier to

reduce computational expense. The model tracks the accumulation of solid precipitation and uses the surface energy balance

to calculate the ablation at the glacier surface:

QM +Qice = SWnet+LWnet+QS +QL+QG+QP (1)
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where LWnet, SWnet are the net radiation balances for long-wave (thermal) and short-wave (solar) radiation and the other

energy fluxes are the sensible (QS), latent (QL), ground (QG) and precipitation (QP ) heat flux. The available energy is used to

raise the glacier surface temperature (Qice) if below freezing point or for melting (QM ) if the glacier surface is at the melting

point. Mass losses of the glacier are represented via melt (QM ) and sublimation (QL). Refreezing of liquid precipitation and

resublimation lead to additional mass accumulation at the surface. We use the model in a similar configuration to Prinz et al.5

(2016). The only difference is given by a change in the shortwave radiation scheme which is explained in the detailed model

description in the Appendix (A1-A6).

3.2 Methods

3.2.1 Global Sensitivity Analysis (GSA)

Variance based sensitivity testing methods work in a probabilistic framework judging sensitivity by relative variances of model10

input and output (van Griensven et al., 2006; Saltelli et al., 2000, 2006, 2010). This is a global method that is independent of

model calibration i.e. independent of a local optimal run, and is hereafter referred to as Global Sensitivity Analysis (GSA). The

method treats the model as a simple function f with:

y = f(X) X =X1,X2, ...,Xn (2)

where y is the single model result (in this case mass balance) and X1,...,n are the individual input parameters.15

The influence of an individual parameter can be examined by the main effect (Vi) of Xi on Y .

Vi = VXi(EX−i(Y |Xi)) (3)

X−i is the whole parameter space except any variation in Xi (a fixed Xi), E is the expectation value and V the variance.

EX−i(Y |Xi) is the mean model output with whole parameter variation except in Xi. The variance over all values for Xi yield

the variance attributed to parameter Xi. The sensitivity of the model towards single parameters is evaluated by normalizing by20

the total variance of the output.

SXi =
VXi(EX−i(Y |Xi))

Vy
(4)

SXi is the first order sensitivity index. The total sensitivity index (STi) is the effect of Xi with all its interactions on the

model variance:

STi =
EX−i(VXi(Y |X−i))

Vy
(5)25

This can be related to the sensitivity obtained from local sensitivity analysis. The model sensitivity (variance) to Xi is tested

(VXi(Y |X−i)) at every point of the parameter space (X − i fixed). To clarify, consider the example of a simple non-additive

model Y =X1 ·X2 +X3 with the variables Xi as input parameters with a given variance/uncertainty. Assuming unified dis-

tribution within the intervals

X1 ∈ [1,3],X2 ∈ [0.1,0.3],X3 ∈ [0.5,1]

7



leads to a model output range of Y ∈ [0.6,1.9]. The variance-based method yield the results for SXi, the first order sensitivity

index and STi, the total sensitivity index for an ensemble of 10 000 runs as shown in Table 1. The first order effect of X3

is the largest, while the other two are similar if computational uncertainty is neglected. Most variance is caused by the last

parameter. X3 has no interactions, so its total index is the same as the first order one, while interaction between X1 and X2

creates additional variance, so their total index is higher. In the example X1 and X2 contribute to ≈ 60 % of the total variance5

and X3 ≈ 40 %, as X1 ·X2 ∈ [0.1,0.9] and X3 ∈ [0.5,1].

The estimation of the sensitivity indices follows the algorithm from Saltelli et al. (2010). The model used here has 22

free parameters. A base sample of 12 000 parameter settings was created with a quasi-random Sobol sequence. The random

numbers are linearly transformed onto the parameter intervals. The distribution is always treated as uniform and the limits for

every parameter are given in Table (2). The indices are estimated withN ·(k+2) runs, where k is the number of parameters and10

N the base sample size. The GSA consists of a total ensemble size of 300 000 simulations per year and glacier, fulfilling the

convergence criteria for the algorithm (STi ≥ SXi,
∑
SXi ≤ 1, SXi ≥ 0). Note that we did not investigate if fewer solutions

could already fulfill the convergence criteria. To reduce computational expenses the GSA model was limited to seven stake

locations on each glacier (Fig. 2).

The parameter sensitivity results from the GSA are also used as a tool to reduce the number of free parameters in the model15

by identifying those parameters which have only a marginal influence on the model output (Spear and Hornberger, 1980;

Saltelli et al., 2000; van Griensven et al., 2006). The model is considered insensitive to parameters with a total sensitivity

index (STi) of <0.05, and these parameters were fixed at the median value of the range shown in Table 2 in subsequent model

simulations.

3.2.2 Multi-objective optimization and uncertainty quantification20

A multi-objective optimization allows for more than one optimal solution in the calibration procedure, and offers a way to

assess a range of plausible parameter sets that we will use later on for model predictions. The multi-objective optimization

used here follows previous approaches in hydrology and glaciology (Yapo et al., 1998; Rye et al., 2012). Where the model

is given n objectives, with fn to be minimized in respect to the model parameter input X , the optimization approach can be

written as:25

minimize(f1(X),f1(X), ...,fn(X)) (6)

Table 1. The sensitivity indices for the simple model Y =X1 ·X2 +X3. The indices for X1 and X2 are similar as they both have the same

normalized variance. X1 ·X2 creates additional variance by the interaction of the two parameters yielding higher total indices.

X1 X2 X3

SXi 0.26 0.27 0.43

STi 0.31 0.30 0.43
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Table 2. The ranges for the 22 different parameters used in the sensitivity study. Most parametrizations are explained in the Appendix (A).

# Name Abbreviation minimum maximum unit

1 temperature gradient Tgrad 0.0055 0.0085 Km−1

2 precipitation gradient Pgrad 0 0.12 m−1

3 all liquid precipitation threshold Plimit+ 2 3 ◦C

4 all solid precipitation threshold Plimit− 0.5 1.5 ◦C

5 surface layer thickness sfc 0.1 0.5 m

6 momentum roughness length over ice z0i 1 · 10−3 5 · 10−3 m

7 scalar roughness length over ice zhi 0.1 · 10−3 2 · 10−3 m

8 roughness length over fresh snow zhfs 0.1 · 10−3 2 · 10−3 m

9 momentum roughness length over fresh snow z0fs 1.5 · 10−3 6.5 · 10−3 m

10 roughness lengthes of aged snow z0hfi 0.1 · 10−3 4 · 10−3 m

11 precipitation density ρs 200 370 kgm−3

12 part of refreezing mass forming superimposed ice suifra 0.0 0.36

13 absorbed shortwave at ice surface ζi 0.72 0.88

14 absorbed shortwave at snow surface ζs 0.81 0.99

15 extinction coefficient of ice βi 2 3

16 extinction coefficient of snow βs 13.68 20.52

17 value for bottom temperature Tbottom 271 273 K

18 ice-albedo αi 0.15 0.25

19 fresh-snow-albedo αfs 0.8 0.9

20 firn-albedo αfi 0.4 0.65

21 timescale in albedo module t 5 30 days

22 depth-scale in albedo module d 2 5 cm

The result of Eq. (6) is an ensemble of optimal solutions that represent trade-offs between the objectives and no single one

can be deemed superior to the other optimal solutions. Therefore, they are called the non-dominated set of optimal solutions,

or Pareto Set (Pareto, 1971). As an illustration, consider an optimization with two objectives (f1,f2): The concept of a Pareto

Optimal Set is shown in Fig. 3 in which the (classic) single objective solutions are the points fmin1 and fmin2 for the two

objectives respectively. A solution at the utopian point is desirable as all functions would be at their minimum, but the models5

generally cannot optimize the different objectives simultaneously. There are only compromise solutions between the objectives.

The members of the set of optimal solutions defining the Pareto Front are superior to the other solutions, but are all equal to

each other without subjective ranking by the modeler. The variation of the parameters of the optimal solution set defines the

minimum parameter uncertainty (Vrugt et al., 2007). This uncertainty is a result of shortcomings in the model and/or the

variations of parameters, such as spatial or temporal change in the true parameter value over the simulation period (Oerlemans10
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and Greuell, 1986; Marshall and Warren, 1987). If a single simulation must be chosen to be the optimal model set up, the

compromise solution, defined as the point with the lowest euclidean distance to the utopian point is a common choice.
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Figure 3. The figure displays a two-dimensional Pareto Space which comprises a 2-dimensional Pareto Front. The solutions on this front

(black solid line) are referred to as the non-dominated set of solutions. In comparison all other solutions within the solution space are inferior

in at least one objective relatively to the Pareto Front. Classic single objective optimization yields the points fmin
1 and fmin

2 , which represent

the minimum of those objectives that the model can achieve. The utopian point (black) is the point (fmin
1 ,fmin

2 ) where both objectives are

at their minimal value. Commonly the compromise solution (red) of the Pareto Set is considered an objective choice for a single solution as

it has the minimum euclidean distance of the optimal solution towards the utopian point.

In this study the multi-objective optimization is based on a Monte Carlo simulation. The non-sensitive parameters from

the GSA were fixed to their median value from the range used in the GSA (Table 2). Then 20 000 model simulations with

random value combinations of the remaining parameters were created and the mass and energy balance were simulated for5

18 stake locations. This approach was chosen in favor to an evolutionary algorithm so that different objective function spaces

and all single objectives could be investigated with the same set of simulations. Various objective functions were initially

explored including Root Mean Square Deviation (RMSD) and Mean Absolute Deviation (MAD) over all simulation points,

but finally three objective functions that captured the main patterns of behaviour were applied: (i) the BIAS over all simulated

stakes, (ii) the mean absolute deviation (MAD) of the lower 9 stakes (MADlow9) and (iii) the MAD over the upper 9 stakes10

(MADtop9). The BIAS is used as a proxy for the cumulative mass balance with avoiding of interpolation errors. The RMSD

is a commonly used measure for optimization in glaciological modeling (e.g. Gurgiser et al., 2013; MacDougall and Flowers,

2011). By using theMAD here we want to reduce the effect of individual stakes which could be influenced by processes which

10



are not captured by the model (snow redistribution through wind or avalanches, dust and debris cover and related changes in

radiation, etc.), but the general feature of those two statistical functions are similar. Previous studies (e.g. Klok and Oerlemans,

2004; Hock, 2005; Sauter and Obleitner, 2015) have focused on the accumulation and ablation area separately or exclusively,

but without a distinct mathematical comparison. Therefore the approach of the split MAD was chosen. The Pareto Front was

identified, and additionally a second ensemble including solutions within a certain range (100 kgm−2) from the Pareto Front,5

was identified to account for errors in the field measurements of mass balance at each simulation point. However, results of this

second ensemble will only be mentioned briefly throughout the discussion. The spread of the parameter settings of all optimal

solutions of the Pareto and near-Pareto Sets are used to indicate the parameter uncertainty for each case, and the calculated

surface energy balance components of these optimal sets are also used to estimate the uncertainty of the energy components

on the point scale, as well as on the glacier scale.10

4 Results and Discussion

4.1 Global sensitivity analysis

The focus of this GSA is not on the absolute sensitivity towards single parameters, but rather to reduce the dimension of the

parameter space. Therefore, the following discussion is limited to two classes: parameters to which the model is sensitive

(STi > 0.05) and non-sensitive (STi < 0.05). On each glacier the mass and energy balance at 7 stake locations over three years15

was simulated for the GSA, so the maximum count of sensitivity for a parameter would be 21, meaning that the model is

always sensitive to that parameter at every point of the glacier.

At Hintereisferner, 11 out of 22 parameters are identified as sensitive (Fig. 4 (a)), and these sensitive parameters are clas-

sified in two general categories. Firstly, all but the lowest stake location are sensitive to parameters related to surface albedo,

particularly of snow and firn, and secondly, for stakes with high elevation differences compared to the AWS, the model is also20

sensitive to the vertical temperature gradient.

The sensitivities show spatial and temporal variability which can be explained by the varying mass balance conditions of

the respective year (mean specific summer/annual mass balance with 2012 -2643/− 1560, 2013 −1841/− 510 and 2014

−1494/− 122 kgm−2). For example, sensitivity towards the ice-related parameters is most evident in 2012, which was the

driest (in terms of precipitation, not air humidity) and most negative mass balance year, with large parts of the glacier surface25

free of snow and firn for most of the ablation season. The roughness length of fresh snow, by contrast is only influential at

the upper stakes in 2014, where snow fall was frequent during the ablation season resulting in the least negative mass balance

of the three study years. Sensitivity towards the elevational precipitation gradient is only relevant at the lowest stakes (500 m

below the weather station) in the wet years.

On the smaller Langenferner 6 of the 22 parameters were identified as sensitive (Fig. 4 (b)). Similar as at HEF, the model30

shows consistent sensitivity to surface albedo and the vertical temperature gradient. As LGF is smaller than HEF, the sensitivity

shows less variability in space and time, though the annual mass balances during the three study years range from about -1500

to +400 kgm−2, and, as the tongue of LGF does not extend to such a low elevation as the one of HEF, it is less sensitive
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Figure 4. The amount of sensitive stakes per year for (a) HEF and (b) LGF. The sensitivity analysis was performed at 7 stakes on each

glacier, though the vertical gradients can only be tested at 6 stakes as one is located at the same altitude as the reference weather station.

Every parameter with a sensitivity index higher than 0.05 got a score of 1, giving a maximum count of 7 per year (meaning the model is

sensitive to this parameter at all stakes). Parameters involved in the parametrization of surface albedo are dominating, with snow related

parameters in the upper section of the glacier and ice related ones at the lower stakes. Hintereisferner shows a total of 11 sensitive parameters

and Langenferner 6.

to ice-related parameters. Variations in the ice albedo within the bounds of 0.15 and 0.25 hardly influence the mass balance

model results on the smaller glacier, even though ice is exposed for the majority of the summer at the lowest stake. This low

sensitivity to the ice albedo compared to the snow albedo parameters is explained by the fact that, as the removal of snow cover

is accompanied by a large drop in albedo (0.4-0.65 to 0.15-0.25), the time of exposure is more crucial than the final ice albedo,

and this time of ice exposure is itself influenced by the snow albedo via its dominant control on the short-wave radiation budget.5

Within the chosen parameter ranges, the net short-wave radiation varies by 50 % in case of fresh snow (10-20 % absorbed) and

only by 12 % over ice.
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Table 3. Five objective functions are used to analyze the model performance. The minimum value for every function and each year are given

in kgm−2. While the BIAS is low in all cases, absolute errors and RMSD are much higher, and highest in 2012. Note that the minimum

MAD does not refer to the same run over the whole glacier and its upper/lower parts.

HEF 2012 HEF 2013 HEF 2014 LGF 2012 LGF 2013 LGF 2014

BIAS 0,11 0,48 0,00 0,52 0,28 0,04

RMSD 470 213 285 537 391 214

MAD 414 170 225 419 309 153

MADtop9 252 108 228 328 114 170

MADlow9 397 165 130 346 283 81

4.2 Calibration

First we consider the best model performance with respect to each individual objective function tested (Table 3), before pre-

senting the multi-objective optimization based on the first, fourth and fifth objective in Fig. 5.

In all cases a model simulation with very low bias (<1 kgm−2) with respect to the stake mass balance can be found. This

illustrates that apparently a good optimization on the single value of cumulative mass balance over the stakes is relatively5

easy to achieve (Table 3). In comparison, the deviation of all other objective functions is much higher, ranging from 81 to 537

kgm−2. The deviations in these objectives are all largest in 2012 on both glaciers. RMSD and MAD vary similarly between

the years at each glacier, with the higher RMSD values indicating a non-uniform deviation from the measurements over the

stakes. With the exception of 2014, the glacier-averaged MAD is larger than the MAD calculated for either the upper/lower

section of the glaciers. This is to be expected as the stakes within each section of the glacier experience more similar climate10

conditions, resulting in a lower MAD. The fact that MAD in the lower glacier section is larger than in the upper section in

2012 and 2013 is probably related to the incapability of the model in its current configuration to correctly reproduce the date

of ice exposure. In 2014 the upper glacier sections show a slightly higher MAD, associated with above average accumulation

in the previous winter and the frequent summer snowfall in this season.

The multi-objective optimization, using BIAS, MADtop9 and MADlow9, yields an ensemble of solutions. The non-15

dominated set for each of the three years has 27, 17, 69 members for HEF and 58, 61, 14 members for LGF respectively

(fig. S.4). The fewest solutions are found in years with the lowest total MAD (HEF 2013, LGF 2014). Figure 5 shows the

Pareto Front of optimal solutions for HEF 2012 and the corresponding parameter settings. A low bias is easily achieved by

the model if no other objectives are considered because it is a single value (the sum of the mass balance at all stakes) and,

for example, deviations in the ablation and accumulation area may compensate each other. The projections onto the BIAS20

planes are less curved (the distance between the utopian and compromise point is smaller) and the performance in respect to

the MADs can be drastically increased with only a small cost in the BIAS. The two-dimensional projections of the Pareto

Space (Fig. 5 (a) and (b)) illustrates, for example, that allowing for a model bias of 25 kgm−2 can improve the MAD by 200

and 300 kgm−2 in the lower and upper glacier sections respectively. The MADs plane (Fig. 5 (c)) is more curved (larger
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distance between the utopian and compromise point), indicating that the two objectives cannot be optimized by the model at

the same time, such that some parameter sets leading to good results for the ablation zone of the glacier may not sufficiently

reproduce the relevant processes in the accumulation zone.

The parameter values of those optimal solutions span the entire allowed space apart for some of those relating to snow

albedo which span (almost) the whole parameter space in all years for both glaciers, and show no obvious tendencies towards5

a certain albedo range (S. 3). For HEF in 2012, snow albedo values cluster in the higher range (0.52-0.6) for firn and (0.86-0.9)

for fresh snow (Fig. 5 (d)), while on LGF lower firn and fresh snow albedo values (<0.5/<0.84) are optimal. Similar behavior

is observed for the albedo time scale (see Appendix A3) which tends towards higher values for HEF in 2012/13 and towards

lower ones for LGF in 2013/14. The confinement of snow albedo is mainly a result of the highest model sensitivity towards

this parameter, nevertheless it still varies and the converse argument, of less sensitive parameters showing greater span is not10

valid: For example, the roughness length over fresh snow is generally at the lower margin of the allowed parameter range

(0.1-0.14·10−3 m) in 2012 even though the model is considered insensitive (STzhfs < 0.05) to this parameter in the particular

year. These results highlight that the parameter settings of multiple optimal solutions for this type of mass and energy balance

models can vary drastically. There are no clear correlations between two individual parameters, instead all parameters interact

simultaneously to some degree. Without the a priori reduction of model parameters by GSA even less information could be15

extracted from the optimization. Compared to Rye et al. (2012) our parameters span about a wider range of the normalized

parameter space which is due to a wider initial parameter range in our study. Despite the relatively narrow ranges of values

reported in the literature, our study clearly reveals that many of the parameters could take almost any value in the optimization

process. Changes to the parameter ranges accounting for potentially unrealistic values may quantitatively change the results,

but within the range no change in the sensitive parameters is expected. Rye et al. (2012) for example applied values for fresh20

snow albedo in the range of 0.65 to 0.95, while we restricted the initial range to values between 0.8 and 0.9 as reported in

the literature (e.g. Cuffey and Paterson, 2010). We also used fresh snow densities which are relatively low compared to those

reported in recent studies (e.g. Helfricht et al., 2018). However, the used values are based on previous studies (e.g. Mölg et al.,

2008; Gurgiser et al., 2013; Prinz et al., 2016) and the choice of those does not significantly influence the results.

4.3 Transferability studies25

To investigate the transferability of the optimized mass balance model settings, all the optimal solutions of the Pareto Set of

one glacier summer mass balance case were applied to the five other summer and glacier cases. While, each Pareto Set was

identified based on the multi-objective optimization, the transferability study uses only the euclidean distance towards the

utopian point as a quantification tool. The individual optimal parameter settings for HEF 2012 for example yield quite varying

performances for the other summers (fig. S.4 (a)). While the performance on the same glacier (HEF) is reasonably good for30

2012 (200-800 kgm−2 compared to 152-600 kgm−2 in the optimization period of summer 2013) and slightly worse for 2014,

the optimal solutions do not perform so well for LGF, resulting in euclidean distances of up to 3500 kgm−2. Analogous analysis

of the ensemble behavior of other summers shows that the optimal solution for 2012 also performs well in 2013 and vice-versa,

and shows acceptable performance in 2014 respectively. The deviation of the 2012 and 2013 optimal values of HEF yield errors
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Figure 5. Each individual member of the Pareto Set for HEF in 2012 is displayed with a different color and the compromise solution

highlighted (red triangle/red line). The different panels are the two-dimensional projections of the Pareto Space onto the (a) BIAS and

MADtop9; (b) BIAS and MADlow9; (c) MADlow9 and MADtop9 planes. (d) Shows the normalized parameter values for each case in

the same colors as in the Pareto Space plots. The parameter settings of the optimal solutions are quite diverse and span over most of the

parameter space. The firn albedo and albedo timescale are the only parameters showing some confinement to a narrower range. The chaotic

nature of the parameter settings furthermore shows that a single solution is not representative in its parameter settings for the ensemble of

optimal solutions.

greater than 2000 kgm−2 on LGF. The 2014 HEF ensemble performs on average better on HEF, but two simulations perform

better on LGF in 2012/13 and around 20 are within the same error as for HEF. On LGF also 2012 and 2013 agree better, and the

ensembles produce reasonable results for both glaciers in 2014. The ensemble of 2014 on LGF yields similar errors (250-800

kgm−2) for LGF 12/13 and HEF 14. All ensembles of LGF produce larger errors on HEF in 2012 and 2013.

The cross validation (Fig. 6) focuses on the transferability of the single compromise solution to other season and glacier5

cases. This can be considered as a classical best guess solution. The features follow the structure of the ensemble behavior

discussed above with HEF 2012 and 2013 seeming to be distinct from the other four cases. The compromise solutions for

HEF 2012 and 2013 are similar in performance and parameter value and, while they perform adequately for HEF in 2014,

within the estimated model uncertainty of 1300 kgm−2, the error is greater than 1500 kgm−2 when either of these compromise

solutions is applied on LGF, no matter for which year. Similarly, the compromise solution for the three year period for HEF10
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Figure 6. (a) Performance of the single compromise solution for each season and glacier (GGGyy), with HEF in solid blue colors and LGF

in red. The simulations which perform best over a three (RMSDHEF and RMSDLGF ), and six year period (RMSDall) respectively

are given with dashed lines, following the same color scheme. (b) The corresponding parameter setting of the optimal solutions to the

left. The color scheme is equivalent. The compromise solutions for the individual years show different parameter settings and also varying

performance out of the calibration period. Only the snow-albedo related parameters show a trend as they take rather large values on HEF and

small on LGF. No clear trend is visibile for the other parameters.

(RMSDHEF in Fig. 6), which is dominated by the characteristics of 2012 and 2013, also performs poorly when applied to

LGF (errors of up to 3500 kgm−2). The compromise solution of HEF 2014, however, generally performs better on LGF than

for other years at HEF, and reciprocally, the compromise solution over the whole period at LGF performs best at HEF in 2014,

and the maximum error (up to 2500 kgm−2) is lower than for cases of HEF compromise solutions being applied to LGF. This

is probably due to the domination of more negative mass balances in 2012 and 2013 at HEF, where good model performance5

is linked to capturing the large extent of the ablation area, whereas the shorter glacier tongue at LGF has smaller impact on the

mass balance of this glacier. The compromise solution (RMSDall) for all six cases also highlights that within this set of six

the cases HEF 2012 and HEF 2013 are more distinct from the other cases as the overall compromise solution performs worst

in these two cases. For most parameters no clear separation between the two glaciers is evident, except for fresh snow albedo

and the albedo timescale which are both larger at HEF and smaller at LGF. Inspection of the optimal parameter values reveals10

that runs with a longer calibration period (RMSDxxx) do not necessarily take trade-off values between the individual years.

For example, in this case the solution that performs best over both glaciers and the whole time period (RMSDall) takes larger

values of fresh snow density and ice-albedo than any other compromise solution (Fig. 6(b)). This further highlights the model

complexity and is suggestive of the effects of physical shortcomings (such as parameter values that are constant in space and

time) compensating each other.15

4.4 Energy balance components

Analysis of the energy balance components associated with Pareto Set solutions offers a qualitative means of verifying that the

identified optimal parameter settings are in line with expected physical processes at the glacier surface. The energy balance
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Figure 7. The energy balance components for 8/18 selected stake locations close to the central flow line, displayed in different colors for

HEF 2012. Solid bars represent the fluxes of short-wave radiation (SW ), long-wave radiation (LW ), turbulent heat fluxes (QL and QS),

penetrating short-wave (QPS), precipitation heat flux (QP ),conductive heat flux (QC ) and the resultant available heat for melting (QM , here

plotted as a positive flux).

components calculated by the model are expected to vary depending on the parameter settings of an optimal ensemble, which

have been demonstrated to span almost the whole parameter space. This variation in energy balance components is indicative

of the uncertainty in the modeled energy fluxes (we say “indicative”, because the true uncertainty can only be assessed using

observations, which are not available here). Figure 7 illustrates such variations in the energy balance components for the case

of HEF 2012 based on the our model, not accounting for uncertainties in the meteorological input itself. In this case, the5

most uncertain energy balance component is the short-wave radiation, which at the same time is the largest energy source for

the surface. Total energy flux from short wave radiation decreases with altitude, while the associated uncertainty increases.

The sensible and latent heat flux provide a net energy source to the surface and their value and uncertainty also decrease

with altitude. The long-wave radiation budget is a net energy loss from the surface in summer and its value increases, and its

uncertainty decreases, with elevation. As a result of these elevational patterns in uncertainty, the uncertainty in melt energy is10

also largest at low elevations.

The variation of the averaged energy components over the stakes for HEF 2012 are given in Fig. 8. The uncertainties are

generally lower than on a stake basis. The short-wave, conductive ground heat flux and sensible heat flux supply a net heating to

the surface on both glaciers. The precipitation heat flux is also a minor energy source. The penetration of short-wave radiation

and the long-wave budget remove energy from the glacier surface. Latent heat is the only energy flux that has either a positive15
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Figure 8. The energy balance components average over all stakes has less uncertainty than on the point scale for HEF 2012. As the objective

functions are all integrated over the whole glacier and therefore the uncertainty is lower. Glacier wide the short-wave radiation is the largest

component with also the largest absolute uncertainty, followed by the turbulent fluxes.The long-wave balance and the penetrating short-wave

radiation provide a net cooling effect for the surface.

or negative effect on the surface energy balance depending on stake location, glacier and year. On both glaciers lower elevation

locations tend to show more positive energy fluxes from latent heat. At HEF this flux is mostly an energy addition to the glacier

surface while on LGF it mostly serves to remove energy from the surface. In the beginning of the summer, sublimation during

the day and condensation/re-sublimation during the night is dominant on HEF, and the general trend over the summer is to

progressively more condensation. LGF shows less condensation during (the) mid-summer, which is mainly attributed to less5

windy conditions than at HEF.

The total contribution of the energy balance components averaged over the glacier are listed in Table 4. The relative uncer-

tainties of the energy balance components are up to 50 % of their contribution on single stake basis and 30 % averaged over

HEF; slightly lower (30 and 25 % respectively) for LGF. This leads to a variation in the available heat for melting and the

mass balance of about 30 % on a point scale. The absolute uncertainty of the seasonally averaged available energy for melting10

can reach up to 35 Wm−2 at the tongue area of HEF. This corresponds to a daily melt uncertainty of 9 kgm−2 and seasonal

uncertainty of up to 1.3 kgm−2. The glacier averaged available heat for melting is much less uncertain over all stakes. This is

a result of the calibration process. The sum of total available melt energy is directly linked to the bias as objective function,

which shows the largest value among the optimal solutions on HEF 2012 with 600 kgm−2. In comparison the MADs which

are more influenced by the mass balance at the individual stake reach values up to 1000 kgm−2.15

The largest uncertainties in our study are associated with the short wave radiation as a result of the albedo parametrization,

which relies on five model parameters. Alternative albedo parametrizations are also known to be a source of substantial un-

certainty (e.g. Klok and Oerlemans, 2004; Willeit and Ganopolski, 2017). The greatest uncertainty is commonly found in the

accumulation area and around the equilibrium line altitude. This is because (i) the parametrization for snow albedo has more
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Table 4. The energy balance components are averaged over all stake locations. The uncertainty is given in respect to the minimum and

maximum of the ensemble. The short-wave radiation (SWnet) has the largest impact, decreasing in importance from 2012 to 14, with a

less negative mass balance (QM ). The penetrating shortwave radiation (QPS) follows the same pattern with opposite effect. The long-wave

budget (LWnet) is lower for LGF. The turbulent fluxes are greatest in 2012 and larger on HEF. The precipitation (QP ) and convective (QC)

heat flux are of minor importance.

SWnet LWnet QS QL QPS QP QM QC

HEF 12 80± 10 −16± 3 31± 9 17± 7 −13± 1 1 103± 19 3 Wm−2

HEF 13 75± 11 −21± 3 21± 7 13± 5 −12± 2 0 80± 8 4 Wm−2

HEF 14 69± 15 −21± 3 20± 7 8± 5 −10± 2 1 71± 7 4 Wm−2

LGF 12 122± 14 −22± 1 14± 4 −3± 1 −19± 3 1 97± 11 4 Wm−2

LGF 13 112± 22 −28± 2 8± 3 −3± 2 −16± 4 0 78± 16 5± 1 Wm−2

LGF 14 95± 7 −27± 1 9± 2 −2± 1 −12± 1 1 68± 5 5 Wm−2

variation/free model parameters than albedo over ice and (ii) around the ELA the variation of the ice exposure date increases

the uncertainty of short-wave radiation flux. Point scale albedo measurements combined with localized optimization schemes

may solve this issue, but for distributed models a more detailed model may be necessary to better capture the full complexity

of the processes governing initial snow albedo and its change through time (e.g Flanner and Zender, 2006).

The long-wave radiation shows a lower uncertainty in this study than in Sauter and Obleitner (2015) and its uncertainty is5

mainly due to the air temperature, the related temperature gradient parameter, and the surface temperature. It is important to

note, that we cannot state that the general uncertainty of energy balance models associated with incoming long-wave radiation is

low, since in this study the parametrization was optimized prior to the sensitivity analysis as direct measurements are available

at the weather station. Consequently, long-wave radiation is considered a meteorological forcing here and therefore it was

decided to do this prior optimization. The parametrization gives no bias for the station but the hourly RMSD was up to 3010

Wm−2, which is in the range of the net long-wave budget. This therefore also mainly influences short term differences in the

long-wave budget rather than the seasonal energy flux. Nevertheless, as with albedo, it remains unclear whether long-wave

radiation modules based on air-temperature, cloudiness and sky-view factor are sufficient to model spatio-temporal variation

over a glacier.

The turbulent fluxes are associated with the second largest uncertainty in this study, which is in agreement with other studies15

finding larger uncertainties in the radiative forcing (Willis et al., 2002). Turbulent fluxes are important for determining short-

term variations of melt rates due to, for example, changes in the stability regimes (Lang, 1981). However, the uncertainties in

our model are due to differences in roughness lengths and the temperature gradient. Roughness lengths over ice and snow vary

substantially (e.g. Braithwaite, 1995) in space and time (Greuell and Konzelmann, 1994; Calanca, 2001). The appropriateness

of using constants for these values in glacier modelling is also questionable, and stability corrections may differ from the20

glacier margins to the interior, for example. It is therefore also questionable how appropriate constant roughness lengths and
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stability corrections for ice and snow in space and time are. Furthermore, recent studies (Sauter and Galos, 2016) showed that

the application of the bulk-approach in complex mountain terrain can generally be problematic.

Heat supply by rain is neglect able in our study which is in agreement with other studies on alpine glaciers Hock (e.g 2005).

4.5 Implications of this study

The larger glacier, Hintereisferner, has more sensitive parameters and the variation over the stakes is larger than at Langenferner,5

as a result of more distinct climate regions on the longer tongue of the larger glacier. This is also true for the uncertainty of

energy balance components, with the exception of the net solar radiation, which is comparable on both glaciers. Short-wave

radiation is the most uncertain of the energy balance components, due to the albedo parametrization, which accounts for the

change in albedo over time, but does not account for any possible spatial variation in temperature or grainsize-dependent albedo

decay rates. We have shown that the model has difficulties to optimize the upper and lower part of the glacier simultaneously, as10

a result of the variable parameter values of physical quantities like albedo. The large spread of our ensemble is a result of trade-

off solutions between the real albedo at any time and any location and the temporally and spatially averaged parametrization

applied. Other parameterizations that are assumed constant in space and/or time, or only indirectly affected by temperature and

altitude dependencies, are also subject to similar trade off effects. Although the physical relations may not be the same at all

times and at the lower tongue area may be quite different from the upper glacier, this does not mean that the model performance15

is worse on the larger glacier (HEF) with more variation in a quantitative matter (Table. 3), but rather that the solutions

of the Pareto Front show more variation in the parameter settings. This analysis clearly identifies the issue of governing

parameters/parameterizations not being constant in space and time as the main problem of distributed energy balance modeling.

The most readily appreciable example in this regard is ice albedo which is often lower near the terminus due to debris and dust

accumulation and water saturation of the glacier surface.20

To improve this we suggest two potential approaches: (1) Although for a broad range of applications optimizing all key

parameters serves a purpose, fixing low sensitivity parameters to common values, which are not optimized, results in a type of

a simplification of the model that reduces over-fitting and potentially increases the stability and comparability of the energy

balance model over short-timescales. The overall performance of such a model will be lower because the tuning possibilities

have been restricted, but better estimates of the model uncertainties for out-of-sample periods can be generated. (2) Parameters25

or parameterizations could be allowed to vary in space and/or time. This could be achieved either by increasing the mea-

surements/data availability or increasing the model complexity. More complex albedo schemes are for example available for

snowpack models like Crocus Vionnet et al. (2012) or SNOWPACK Lehning et al. (2002). However, if new parameterizations

are introduced they require sufficient field data to constrain the physical process and should not be just added as additional

model free parameters to optimize.30

The approaches in this study are helpful tools to combine these suggestions. A clear understanding of the model sensitivity,

independent of the optimization of the model is necessary to decide on the importance of certain parameters. It gives the option

to fix parameters and focus on the key processes. We have shown that the multi-objective optimization is a valid tool to asses

uncertainties in the model. The objectives used are all based on the same data (i.e. stake data). This allowed us to show the
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uncertainty that is just associated with treating the available data in a different way without requiring additional measurements.

The model can readily be optimized to minimise bias or meet any single value objective, therefore model performance based on

single best fit approaches should be treated with caution. Furthermore, a single solution may significantly suffer from parameter

over-fitting and is not representative in its parameter settings to other as plausible solutions. The chosen objectives show that

there is inter-annual variation in the performances of the upper and lower section of the glacier in our cases. The curved nature5

of the Pareto Front highlights that simultaneous optimization of both areas is difficult for the model. Parameters are just not

constant, in either space or time, so the model uncertainty increases when the model is applied to other time periods or on

another glacier. The model uncertainty is in the range of 1,000 kgm−2 per summer season for each glacier. It is larger when

transferring the calibrated model to another alpine glacier, but still of the same order of magnitude. Our results reveal larger

model uncertainties related to spatial transfer than found in previous studies (MacDougall and Flowers, 2011). This can be10

explained by the relatively large inter-annual variability of mass balance, as well as the comparably large distance between

the glaciers in our study. Together with an uncertainty estimation of the energy balance components the key parametrizations,

which need further improvement, can be identified. Within the multi-objective framework it is furthermore possible to focus

on processes individually: For example if the albedo is measured on the point scale, the difference to its model value could be

used as an objective, instead of a priori calibration of the albedo parametrization itself.15

Neither meteorological forcing on the point scale nor mass balance measurements are free of errors, and the related model

uncertainties were not formally disentangled from other uncertainties in this study. Zemp et al. (2013) have estimated an

annual measurement uncertainty of 140 kgm−2 on point scale glaciological mass balance measurements, while Galos et al.

(2017) report somewhat lower values for Langenferner. More information about the propagation of those errors are needed to

quantitatively include them in the optimization. However, if an uncertainty of 50 kgm−2 in the MAD and BIAS is included,20

the Pareto Sets increase by one order of magnitude. This complicates further interpretations and increases the total model

uncertainty.

The analysis presented here indicates that while mass and energy balance models help us to understand the physical processes

on the glacier, the necessity for parameterizations within these models introduces considerable, variable uncertainty to the

model output. Calibration of surface mass balance models is complex and uncertainty studies are helpful to understand those25

models, and it is not advisable to draw general conclusions from such modeling efforts without first fully understanding the

inherent model sensitivity and the properties of the uncertainty of the calculated mass balance and associated energy fluxes in

detail.

5 Conclusions

Based on a well developed mass and energy balance model, applied to two well-studied glaciers in the European Alps, this30

study gives a robust estimate of the model uncertainty and discusses the advantages of parameter space reduction and multi-

objective optimization in glaciological modeling.
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Using a variance based global sensitivity method model sensitivity to the free model parameters was identified, independent

of the calibration data. Model sensitivity to specific parameters is both site- and time- specific, and this should be acknowledged

in wider applications of such models. By separating the parameters into two sensitivity categories the model parameters to be

optimized can be reduced. Those that the model output is sensitive to were subject to a multi-objective optimization, while

non-sensitive parameters were fixed to literature values.5

The multi-objective optimization was based on three objectives related to stake mass balance data measured using the

glaciological method. We used the model bias over all stakes and the mean absolute deviation over the upper and lower part of

the glaciers. It proved difficult to optimize model performance in the upper and lower section of the glacier simultaneously. The

bias over all stakes, which was used as a proxy for the cumulative mass balance, can be minimized easily, and this should be

considered when optimizing for a single best fit against single values. The ensemble of optimal solutions shows a wide spread10

of parameter settings within the physically reasonable range. This implies that the common approach of a single best optimized

parameter set is subject to over-fitting and may significantly differ from other equally plausible solutions, meaning that they

are not representative by default. Furthermore, our results show that the constraint of plausible parameters is only marginally

linked to the sensitivity, with very sensitive parameters also taking multiple optimal values. This implies that keeping these

parameters constant in space and time increases the model uncertainty. The overall model uncertainty (not accounting for15

uncertainties related to meteorological forcing data) is in the range of 1000 kgm−2 per summer season on the same glacier,

and increases when applied to the other glacier. The model performance is worse when applied to another glacier, but is of

the same order of magnitude as for the temporal transfer, suggesting the model can be applied, within its uncertainty, to other

glaciers with similar climatic settings.

Parameter uncertainty is connected with uncertainty in the energy balance components, which, in the cases studied here,20

reached 30 % averaged over the glacier and 50 % at individual stake locations. In our study the most uncertain energy balance

components are the net short-wave radiation and the turbulent fluxes. Reasserting the findings of other studies Van De Wal et al.

(1992); Klok and Oerlemans (2002, e.g.) that indicate the snow and ice albedo representation is the most crucial parameter on

mid-latitudes glaciers for the summer mass balance.

Overall the findings of this study highlight that understanding the sensitivity and uncertainty of surface energy and mass25

balance models is complex, and simplistic assessments, in particular single best guess approaches, of model performance are

likely to overstate the model capabilities. Further studies such as this, incorporating more models, glaciers and years would

help to constrain the degree to which results from such models can be considered reliable for regional applications and for

projections of glacier mass balance.

Code availability. The code of the mass balance model can be requested from Thomas Mölg (thomas.moelg@fau.de). Pareto construction30

scripts and the updated solar module can furthermore be requested directly from Tobias Zolles (tobias.zolles@uib.no).
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Data availability. The used mass balance and meteorological data is available at zenodo.org; DOI:10.5281/zenodo.1326398. All mass bal-

ance data is publicly available through the WGMS (https://wgms.ch/).

Appendix A: Model description

The mass and energy balance model used here consists of coupled surface and subsurface components. The model computes

mass balance as the sum of solid precipitation, surface deposition, internal accumulation (refreezing of liquid water in snow),5

change in englacial liquid water storage, subsurface and surface melt, and sublimation. This approach is based on the surface

energy balance of a glacier in the following form:

QM +Qice = SWnet+LWnet+QS +QL+QG+QP (A1)

where SWnet is net short-wave radiation, LWnet is the sum if incoming and outgoing long-wave radiation a the glacier surface,

QS andQL are the turbulent fluxes of sensible and latent heat, respectively,QG is the subsurface energy flux comprised ofQC ,10

the conductive heat flux in the subsurface, and QPS the energy flux from short-wave radiation penetrating into the subsurface,

and finally, QP is the heat flux from precipitation. The sum of these fluxes yields a residual flux F which, if the glacier surface

temperature (TS) reaches 273.15 K, represents the latent energy for melting. If TS is below 273.15 K, energy conservation is

achieved by solving TS to balance the fluxes (e.q. Mölg et al., 2009). The model is fully described in the previously mentioned

publications and briefly below.15

A1 Long-wave radiation

The calculation of the incoming long-wave radiation is based on Stefan-Boltzmann law (Mölg et al., 2009; Klok and Oerlemans,

2002; Konzelmann et al., 1994):

LWin = σεTa.
4 (A2)

with σ being the Stefan-Boltzmann constant and ε the emissivity:20

ε= εcs(1−np)+ εcln
p (A3)

where cs and cl are the clear-sky and cloud emissivity respectively, n is the cloud cover fraction calculated in the solar

module as neff and p an exponent related to the importance of cloud emissivity (Greuell et al., 1997). The cloud emissivity is

computed using

εcl = 0.23+ b(
ea
Ta

)1/8 (A4)25

with ea as the atmospheric vapor pressure. The three parameters εcs, p and b were optimized (using a 5000 member Monte

Carlo) to reproduce the measured long-wave radiation. First the runs within 10 % of the best run in respect to a weighted
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average of BIAS and RMSD between the simulated and the measured incoming long-wave radiation at the HEF Station were

determined. The run of this ensemble with the lowest RMSD/BIAS on LGF was taken as the best compromise solution. The

parameters are fixed within the model for the whole study period and are based on three summers of data at HEF and 1.5 at

LGF (therefore a larger impact of the longer data at HEF on the optimization). The trade-off values are taken to be applicable

on both glaciers with the final values of b= 0.515, n= 1.95 and εcs = 0.994. These setting results in an hourly RMSD below5

31/37 Wm−2 for HEF/LGF and no bias, this is not far of the optimal setting for either glacier with 30/36 Wm−2.

The outgoing long-wave radiation follows Stefan-Boltzmann law Eq. (A2), with T the glacier surface temperature and the

emissivity of ice εi is assumed 1.

A2 Convective fluxes

The latent heat flux (QL) and the sensible (QS) are computed similar to Mölg and Hardy (2004). The calculations are based10

on Monin-Obhukov similarity theory (Garratt et al., 1992).

QL = 0.623Lvρ0
1

p0

κ2ν(ea−Es)
ln zm
z0m

ln zν
z0ν

(A5)

with Lv being the enthalpy of vaporization (2.514MJkg−1), ρ0 the air density at mean sea level (1.29 kgm−3), p0 is

1013hPa, κ the van Karman constant (0.4), ea is the water vapor pressure in air and Es the surface value respectively. z0m

and z0ν are the momentum and scalar roughness length of water vapor. zm and zv is the height above ground where the wind15

speed and the water vapor (ea) is measured/calculated. The sensible heat flux

QS = cpρ0
p

p0

κ2ν(Ta−Ts)
ln zm
z0m

ln zh
z0h

(A6)

is computed with cp the specific heat of air at constant pressure, Ta, TS the air and surface temperature and zh the scalar

roughness length for temperature. The roughness length (zj) are model free parameters in this study. The model distinguishes

three different roughness lengths depending on the glacier surface: fresh snow, firn and ice. For a stable stratified atmosphere20

a stability correction based on Phi functions is applied (Mölg and Hardy, 2004).

A3 Surface albedo and the Albedo-module

The albedo parametrization is based on Oerlemans and Knapp (1998). It computes the broad band albedo for each grid cell,

based on the ice and snow albedo and the depth of the snow pack:

α= αsnow +(αice−αsnow) · exp(
−d
d∗

) (A7)25

αice is a model free parameter, d is the snow depth, and d∗ is the characteristic scale for the snow depth and a free parameter

(Oerlemans and Knapp, 1998). The relation for the snow albedo (αsnow) is
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αsnow = αfirn+(αfreshsnow −αfirn) · exp(
−t
t∗

) (A8)

with αfirn, αfreshsnow and t∗ as model free parameters subject of/to optimization. The albedo module (t∗) is a characteristic

time scale in days (Klok and Oerlemans, 2002) and t the time since the last snowfall event (> 0.1cm fresh snow).

A4 Surface Temperature and ground energy flux

The conductive heat flux (QC) and the energy flux from penetrating shortwave radiation (QPS) determine the ground heat5

flux (QG) of the energy balance (EQ. (1)). The model solves the thermodynamic energy equation for a multi-layer grid with

a fixed bottom temperature (15 Layers, 0.1m steps in the first meter, gradually increasing to a total depth of 7 m). The bottom

temperature is a model free parameter. QC is computed from the temperature difference between the surface and the first layer.

The calculation of the penetration of short-wave radiation is based on Bintanja and Van Den Broeke (1995). A constant

fraction (1− ζi) of the net-shortwave radiation is penetrating the surface and the intensity is exponentially decreasing with10

depth. The optimization and sensitivity analysis in this study uses four parameters with the extinction coefficient and the

absorbed fraction (ζi) for snow and ice.

A5 Surface accumulation/precipitation

The surface accumulation is directly related to the precipitation. The model has two threshold values for all liquid and all solid

precipitation (Mölg et al., 2012). In between these the portion increases linearly. The temperature threshold as well as the15

density of solid precipitation are subject of the sensitivity analysis and optimization.

A6 Solar module and solar module sensitivity

The parametrization of the short-wave radiation is based on the calculation of the cloudiness, in the form of the effective cloud

cover fraction neff :

neff =
1−SWmea/(Dcs+Scs)

k
(A9)20

with SWmea being the measured short-wave and Dcs,Scs the calculated diffuse and direct radiation under clear sky condi-

tions. The parameter k determines at which fraction of the clear sky value full cloudiness is achieved i.e. all incoming radiation

is diffuse. (Important to note, we allow neff > 1 if such low radiation was measured.) The influence of k on the model out-

put was investigated (Appendix A6). The calculation of the clear sky values is described in Mölg et al. (2009). The diffusion

portion of radiation under clear sky conditions was determined using a manual selection of clear sky days. The values var-25

ied between the snow free (Kdif = 0.51) and snow covered days (Kdif > 0.65). For the calculations an averaged value of

0.6 was used. As Kdif is a fixed glacier wide value, while snow cover might vary, a modulation depending on the condi-

tions at the weather station is not possible. The applicability of Kdif as a single value might need to be reevaluated for other

models/applications/research questions.
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The calculation of the incoming short-wave radiation on every point of the glacier is based on the assumption of homoge-

neous cloudiness (neff ). It is a reversing of Eq. (A9):

SWdiff = (Dcs+Scs) · (1−neff · k)((1− pdiff ) ·neff + pdiff ) (A10)

with SWdiff being the calculated diffuse radiation and pdiff the portion of diffuse radiation under clear sky conditions. pdiff

is calculated as the ratio of the clear sky diffuse and total radiation. It was 0.084 and 0.085 for the two glaciers and set to 8.55

% (for both to have a common value). Compared to previous works using the solar module, we changed the increase of diffuse

radiation. Instead of a linear increase of diffuse radiation, the portion of diffuse radiation is linearly increasing with increased

cloudiness. This is a basic parametrization and reproduces the measured radiation fully. Via neff k is determining the ratio of

direct and diffuse radiation. This could alter the energy balance. The direct radiation is calculated analogous and corrected for

slope and aspect.10

The calculation of solar radiation incorporates the free parameter k, which determines at which fraction of the total possible

global radiation everything is considered as diffuse radiation. The parameter k varies with latitude (Hastenrath, 1984) an is not

constant in time either, therefore the effective cloud cover incorporates some of its variability and is not exactly the cloudiness

(Mölg et al., 2009). With the new used parametrization (eq. A10) the global solar radiation at the weather station can be fully

reproduced so k cannot be optimized. But it determines the portions of direct and diffuse radiation, which may have a significant15

influence on the energy and mass balance. Therefore, an additional GSA was performed with the parameter k as the 24th model

free parameter. Based on the values for the tropics 0.65 (Mölg et al., 2009) and the arctic with ≈ 0.85 (Hock and Holmgren,

2005) it was varied in this range for the sensitivity analysis. Its maximum sensitivity index over all 7 investigated stakes in

the GSA was 2× 10−3, which is one order of magnitude lower than the threshold for our sensitive parameters. Therefore, the

choice of k within the given range is not influential on the simulation of the mass balance on/at the glacier. The model albedo20

does not vary between direct and diffuse radiation, so it only influences the total amount of radiation at less/more shaded areas

than the weather station.

Furthermore, the change in the calculation of direct and diffuse components from linear with cloudiness to a linear increase

of the fraction are better suited to represent the site radiation. This is in agreement with measured radiation by Hock and

Holmgren (2005) on the Arctic glacier, Storglaciären (fig. S. 5). The slightly higher starting value (pdiff ) is due to larger25

portion of diffuse radiation under clear sky conditions in the arctic than in the mid-latitudes and a higher final value is due

to a smaller k in this study with 0.8 compared to around 0.85 in the arctic. The influence of this change in parametrization is

probably also rather small, as the model is not sensitive to changes in the relative fractions of diffuse and direct radiation on

the chosen glaciers/stake location.
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