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We would like to thank the two referees and the author of the short comment for their effort 

and their valuable contributions in the discussion of our manuscript. 

This document starts with a general comment by the authors followed by the replies to the 

referee comments of Matthieu Lafaysse and the anonymous referee #2, as well as to the 

short comment by S.Feng. The referee and short comments are given in grey italics while 

the author replies are presented in regular font. 

 

 

1. General comment by the authors 
 

This study is a technical approach to investigate the sensitivity and uncertainty of a glacier 

surface energy balance model. Therefore, uncertainty in the meteorological forcing is not 

considered here. For a total uncertainty quantification of the simulation and projection such 

an analysis would of course be necessary but it is out of scope of this study. 

To make this more obvious for the reader we sharpened the text of the revised manuscript 

and added a clarification about uncertainty and sensitivity in the introduction. In this 

context we define:  

The term ``model uncertainty'' is uesed to describe the difference between any modeled 

quantity and it's counterpart in reality (``the truth'') 

The term ``uncertainty'' is used to refer to the fact that their true value is really unknown. 

With the term ``model sensitivity'', we mean the variance of the model output as function of 

the variance of an input quantity (e.g. forcing data, model parameters) 

 

2. Author replies to the comments by referee #1 (Matthieu 

Lafaysse) 

 

The manuscript of Zolles et al presents ensemble simulations of glacier mass balance with 

an energy balance model applied on 2 glaciers and 3 seasons. The main innovation 

compared to the existing literature consists in a relatively comprehensive analysis of model 

sensitivities and uncertainties. The paper is well written and well structured. 



The statistical framework is clearly explained. I especially appreciate the effort of the 

authors to give simple examples to explicit the formalism (pages 7; 9). The conclusions are 

clearly summarized and consistent with the obtained results. The complex equifinality 

between the parameterizations of such models is well demonstrated and the implication in 

model calibration and model transferability is very interesting. Therefore,I think this paper 

deserves publication after a minor revision which would account for my few comments 

below when it is possible. 

 

Page 2 line 19: I think most studies base this statement on an evaluation of the energy 

fluxes and surface temperature, not only the melt rates. 

We agree and changed the statement according to the referees remark. 

Page 4 line 7: I understand the deficiencies of the cited references but given the number of 

studies which just present simulation outputs without any uncertainty quantification, I think 

that the word "inadequate" is a bit severe. 

In the revised manuscript we changed the sentence and replaced “inadequate” by 

“insufficient”. 

 

Page 4 line 11 / Table 2: the 23 parameters include a "precipitation perturbation" which 

disappears in the results section (Figure 3) without any specific explanation. More 

generally, it is not completely clear if the authors want to incorporate the spatialization of 

meteorological data as part of their model uncertainty study. The decision to exclude the 

longwave parameterization from the free parameters has a strong consequence in the 

results. Indeed, large errors are introduced here because Equation A2 is a strong 

simplification of the real behaviour of the full column of atmosphere. Snow models are 

usually extremely sensitive to these errors (Sauter and Obleitner, 2015; Quéno et al, 

2017). The authors acknowledge this limitation (page 19 lines 5-12) but I do not really 

understand this choice. Why should the impact of temperature gradient uncertainty on 

longwave radiation be accounted for if the parameters of equations A3 and A4 are not? 

Similarly, what is the logic in considering the uncertainty of precipitation gradient but not 

the uncertainty of the mean precipitation forcing? I think it could also be more explicit in the 

text that Figure 7 does not represent the full contributions of uncertainties. The very narrow 

range obtained for longwave radiation is unlikely to represent the real uncertainty of this 

component as the incoming flux is highly uncertain whereas it is not accounted for. 

As already mentioned in section 1 of this document, the subject of this study is a model 

internal sensitivity and uncertainty analysis and not an assessment of the absolute model 

performance. Hence, the uncertainties of the meteorological input parameters are not 

explicitly considered. The revised manuscript puts a clearer focus on constraining the 

model sensitivity analysis performed in this study from a model output uncertainty 

assessment. We therefore removed the precipitation perturbation from table 2. 

We fully agree that energy balance models are very sensitive to the used parametrizations 

of longwave radiation but in our study we make use of measured long-wave radiation 

which is consequently considered as a meteorological input variable. 

However, in the revised manuscript we discuss this point more clearly. 



Table 2: Can you comment the range of precipitation density? This range is not realistic for 

snowfall in the Alpine area (too high values, Helfricht et al, 2018). It may compensate 

some deficiency in a simple model which does not represent accurately compaction but 

this should be detailed. The authors could also comment the implication in the uncertainty 

analysis of using some potentially unrealistic values for some parameter ranges. The 

same could apply if the precipitation perturbation was really considered because a 10% 

error is not sufficient to represent precipitation uncertainty in mountainous areas. 

The used range of precipitation density is higher than reported by Helfricht et al (2018). By 

limiting our study to the summer season the effect is lower, but still present. It influences 

the albedo parameterization through the snow depth scale. This is a shortcoming and 

based on the new results its range should be increased. 

The precipitation perturbation would definitely be too low, but it was removed from any 

simulations to keep the original meteorological input unperturbed. As mentioned before it 

was not considered anymore in the final simulations. Therefore we removed it also from 

table 2 . 

Changes: 

Besides changing table 2 from which we removed the precipitation perturbation, the 

revised manuscript explicitly discusses the point of unrealistic parameter ranges, as well 

as the new findings by Helftricht et al. (2018). 

 

Page 13 lines 21-22: I am not sure to correctly understand this sentence. Could you 

develop what you mean by "less constrained" and what is the relationship with a narrow 

initial range of parameters? 

We changed the text of the revised manuscript according to the suggestion of the referee 

in order to make this point clear for the reader. 

 

Page 19 line 1-4: This is true but rather utopic at the moment. Such models need a forcing 

of impurity depositions. The existing products are not sufficiently reliable nor sufficiently 

detailed to depict the processes responsible for the spatial variability of albedo on a 

glacier. 

We rephrased this sentence according to the referee's remark.. 

 

Page 19 lines 13-20: The authors discuss the impact of the possible variability of 

roughness lengths. However, I think they could also discuss more generally the relevance 

of applying this theory of turbulent fluxes formulation in mountainous environments where 

the turbulence is probably more affected by the surrounding topography than by the 

surface roughness itself (Conway and Cullen, 2013). 

We added a sentence briefly discussing this issue including the citation of Conway and 

Cullen (2013) and Sauter and Galos (2016). 

 

Page 19 lines 21-22 Which effects are you talking about? From experiments with a 

detailed snowpack model (with a sufficient vertical discretization), it is rather clear than the 



absorption profile has an impact on surface temperature and on the temperature gradient 

close to the surface (and therefore on snow metamorphism). However, the 

effect on more integrated variables is likely to be much less significant. 

The statement was removed. 

 

Page 20 line 15 I do not know whether new field experiments on that topic are really 

required right now. The authors should first mention that the relationship between albedo 

and grain shapes and sizes is already implemented in detailed snowpack models such as 

Crocus (Vionnet et al, 2012) or SNOWPACK (Lehning et al, 2002). 

We agree that those models have a better parametrization for the snow albedo. The 

statement was adjusted and the references added. 

 

Page 20 lines 30-32 I agree and the same applies for various variables, especially surface 

temperature which is a good indicator of the correct resolution of the energy balance. 

Thanks. 

 

Page 20 line 33 The lack of a full quantification of the meteorological uncertainty is 

probably the main limitation of this paper. This is only stated here in a small paragraph 

which would have deserved to be more developed based on the existing literature. Indeed, 

this is probably the most studied uncertainty in previous studies in snow modelling (e.g. 

Raleigh et al, 2015) and in glacier modelling. However, the possible compensation errors 

between meteorological forcing and model parameters may deteriorate the relevance of 

model uncertainty studies which do not account for forcing uncertainties. I did the same 

thing myself in the context of a detailed multiphysics snowpack modelling (Lafaysse et al, 

2017) but I just think that this limitation could be more discussed. 

We agree. Besides the changes presented above (c.f. sect. 1 of this document) the 

revised manuscript contains a more explicit discussion of this issue. 

 

Page 21 line 27: To what does 1 kg/m² refer? In which duration? 

Thank you for spotting this error. The true value is 1000 kg/m² per summer season. We 

corrected the value and clarified the statement. 

 

Typos: Abstract line 5: "which" introduces Page 16 line 26: energy melt energy Page 

19 line 4: change Page 21 line 32: For 

We corrected all the typos indicated by the referee. 

 

 

3. Author replies to the comments by referee #2 (anonymous) 



The paper executes sensitivity and uncertainty analyses of a glacier mass balance model 

with the goal to "target a clear separation of the concepts of sensitivity and uncertainty". I 

often struggle with this, because as much as we want these two concepts to be different, 

they are inherently linked, as they are in your approach to investigate this model. Beyond 

this, I searched for a clear objective as to why this study was being performed. 

We agree that the two concepts cannot be regarded as fully independent and it is 

therefore not always trivial to provide a clear separation. As already mentioned in our 

general comment in Sect.1 we put a much stronger emphasis on this issue in the revised 

manuscript. Besides that we provide a more explicit motivation for our study. 

 

Why use all of these methods with a single model? What is the targeted outcome? Why 

would you encourage others to do the same? More clear statement of these goals upfront 

and then trying to these goals in the end will help to tie the paper together. In my 

experience, others don’t necessarily see why such a robust and technical approach to 

modeling is needed - I think you have great fodder to demonstrate why. 

We agree that an application of a similar method to more models would be highly 

appreciated. This study was limited to one model to keep it simple enough and have a 

clear focus on the technical details. In our study we decided to focus on the fundamental 

question: How robust is a single “best guess”/optimal solution? 

Our study clearly shows that a single solution is not representative despite providing good 

results within the calibration period. Additionally, the insights by our study may reduce 

computational costs in future studies as parameters with a low sensitivity may be kept 

fixed. 

However, we applied several changes to the revised manuscript to make the goal of our 

study more obvious and in particular address the topics of parameter overfitting and the 

representativeness of single best guess solutions. 

 

Many of the figures I struggled to extract the key meaning. In particular, Figure 4, Figure 5, 

and Figure 6. You might consider, instead, some sort of conceptual figure that aims to 

bring out your key findings/messages in terms of the sequential application of methods you 

took. What is learned, and how can you represent this more clearly to others? I enjoyed 

the other conceptual figures in the manuscript. 

We thank the referee for the suggestion of a conceptual figure and decided to go for a flow 

chart like image to explain the sequential approach. Such a figure is well suited in the end 

of the introduction to explain our aims goals and sequential approach prior to explaining 

the details but, due to its placing within the manuscript the results are not included in the 

figure. 

For this reason we decided to also keep the other figures. However, we improved the 

figure captions and added a clearer explanation where this was necessary. Figure 5 was 

moved to the supplement. The typo in figure 6 (Euclidean) was corrected. 

  

 

 



There is often discussion of the feedback between models and observations. What role 

does the need for observations play in your study? So much of the discussion was focused 

on parameters, and I found myself wondering often about the observations. 

There are two parts of observations to consider: 

1. the meteorological input 

2. the data used in the optimization process 

 

1. Again we would like to clarify that our study focuses on model sensitivities and does 

hence not deal with uncertainties in the forcing data (see general comment in sect. 

1 of this document and comments above). We put stronger emphasis on this issue 

in the revised manuscript. 

2. The uncertainty in the mass balance data is discussed in more detail in the revised 

manuscript than it was in the original one. The revised manuscript also expands the 

discussion on other objective functions based on additional observations. 

 

Minor referee comments 

 

Did you test for convergence in your sensitivity indices? Given the number of model runs, 

I’m not sure this is needed, but you could get the same results with fewer runs, which 

might be valuable information for other researchers (and make this type of approach seem 

more tractable to them) 

We did not use an evolutionary setup to test for convergence. The first approach used 

25.000 runs for the GSA, which was enough for confidence in the accumulation area, but 

not in the ablation zone. Instead of continuously increasing we just changed it to a base 

sample of 12.000, leading to a total of 300.000 runs for the GSA. The total cost of 

simulations is the N*(k+2) with N the base sample and k the number of parameters. In 

general the base sample and total ensemble can be continuously increased in size if 

necessary until convergence is achieved. Bootstrapping in this approach leads to the 

estimation of the sensitivity indices. The convergence criteria that were used here: 

Sxi<=STi, ΣSXi<1 (Saltelli, 2000; 2006; 2010). Finally, we required that the variance of the 

sensitivity indices after bootstrapping does not interfere with our sensitivity criteria of 

TSi<0.05. If only the mean of the sensitivity index is considered the 25.000 runs already 

show the same result, but with a lower confidence as close the ELA for sensitivity of 

individual parameters is quite uncertain at this number. 

We included a mathematical description of the quality assessment of the method in the 

revised manuscript and that the performance of fewer solutions was not investigated. 

 

It’s not clear to me why in Section 3.2.1 why analysis of 10,000 parameter samples 

is reported, as well as analysis with 300,000 simulations is reported. Why report the 

10,000 runs? 

The 10.000 runs are for the exemplary simulation of the simple model Y=X1·X2+X3 

The sample size i irrelevant for the intention of this simple model and therefore removed 

the statement in the revised manuscript. 



 

Abstract - line 2 - ’they’ is ambiguous 

The sentence was changed to avoid ambiguity. 

 

Figure 3 - consider grouping your parameters by type and using some color or labeling 

We changed the order of the parameters though to make it clearer and grouped the 

momentum roughness length of fresh snow with the other turbulent flux related 

parameters. The revised figure has a clear grouping of the parameters 

However, some parameters have a common type (for example fresh snow/firn/ice albedo) 

and influence directly the same quantity (surface albedo). Therefore we already grouped 

them in the initial order, but without a clear separation. This was intentional as for example 

the fresh snow density does influence the albedo, as well as subsurface process. 

 

Figure 4 - Quite difficult to get anything out of Fig 4(d) – consider making a few more 

subplots and grouping results, or adding labeling 

We are aware of the difficulty of reading this subplot, but this is the main finding: There is 

not really a big feature to observe. We added a better description of this subplot to the 

figure caption and the manuscript. 

 

4. Author replies to the short comment by S. Feng 

 

General comments 
 

The performance of the model is not that encouraging when applying the 17 optimal solutions 

based on the Pareto set for HEF 13 to other summer seasons and another glacier. The conclusion 

suggests that the large spatial and temporal transfer uncertainties are acceptable when applying to 

other glaciers with similar climatic settings. How does the result compare to previous research (e.g. 

the referenced an enhanced temperature-index model by Carenzo et al. (2009) which shows pretty 

good agreement of transferability in space and time)? The uncertainties of transferability are 

quantified only through the Euclidean distance towards the utopian point, which is quite clear and 

straightforward. However, it would have been better if R2 values were also reported, which is 

helpful for facilitating comparison to earlier transferability studies. 

Indeed the spatial and temporal transfer of the optimal solutions are not particularly encouraging. 

Although the settings may be transferrable between certain cases, this does not generally hold.  Te 

order of magnitude of the maximum transfer errors is similar for time and space To put this into the 

context of previous  studies we want to briefly comment on the following points: 

First the general performance based on our criteria (MAD, RMSD) is worse than to the reference 

(energy balance model) in Carenzo et al. (2009), but it compares to different quantities: differences 

between two models and differences between measurements and model. The model performance 

over a variety of points relative to the measurements may not be that great. We observe a similar 

possibility in our tuning that the cumulative mass balance, which our bias over the stakes 

functioned as a proxy, is easier to minimize than the other two criteria. Both energy balance and 



the enhanced temperature index may have similar biases. The spatial transfer is further worse for 

our model as we do calculate the solar radiation (based on cloud cover deductions from one 

weather station) and the albedo. Also Carenzo et al. (2009) find a worse transferability in the case 

of calculated solar radiation. Furthermore, additional model uncertainty is introduced for us as also 

temperature and precipitation are downscaled values from one station. Furthermore, our study has 

6 members with distinct variations in mass balances ranging from drastically negative to positive 

while the total UDG in the Carenzo study varies from 4300-3200kg/m² being clearly dominated by 

stakes with more negative mass balance. 

We did not include R² as it is a much weaker statistical measure than the multi-objective approach 

used here. The MAD/RMSD serve a similar purpose. However, R² is not a good measure for model 

performance. This is especially true if different data sets and models are compared.  Furthermore, 

there is additional variance in our mass balance measurement data (avalanche, snow 

redistribution,…) which lowers R², while this effect is not present if you compare model to model as 

done in Carenzo et al. (2009). For more details we refer to Shalzi (2015) and in Berk (2004). 

However, in the revised manuscript we provide a better explanation why the particular objective 

functions were used in this study. 

 

The article has a clear structure with a very thorough description of the parametrization. Some 

descriptions however need some clarification as specified below in specific comments. The length 

of the abstract could be shortened by reducing some of the detailed descriptions of the methods. 

 

Specific Comments 

 

P13, L5:Figure 4 could be improved. It is written that a minor change of a model bias could lead to 

an improvement in MAD by 200-300. However, this statement excludes many outliers which should 

not be ignored. A log-transform might be able to help to improve. 

It is not fully clear to the authors what is meant with “outliers”. There are no outliers in a Pareto-set. 

We specifically did choose not to use a log plot to have similar scales which enables the reader to 

see the difference in performance on a graspable scale (in kg/m², added for clarification to the 

figure). 

 

P13, L6: “the MADs plane is more curved” in Fig 4(c), (similar statement for line 2 on the same 

page seems to be just a vague description. It might help to add a reference line here to support this 

sentence. 

We changed the sentence and added an explanation. 

 

P20, L32: A minor typo is spotted where “TFor” is assumed to be “For”. 

We corrected the typo. 
 

Figure 5: the y axis should be “Euclidean” not “euclidian”. 

The axis label was capitalized in the revised manuscript in all figures. 

 

Figure 6: Maybe it would be good to compare the optimized best setting with the “classical best 

guess solution” in fig. 6? It’s good to have a comparison between the optimal results and the 



classical best settings. Then the quantified uncertainties or instance, the transferability of the 

enhanced temperature-index model (Carenzo et al., 2009), which is reported to have a good 

transferability (R2 = 0.78 under the overcast conditions and R2 = 0.925 on average under normal 

conditions). Another study of a distributed energy balance model (MacDougall and Flowers, 2011) 

concluded that an error of ∼30% is expected without calibration during transferability test. 

The question is what is considered as the classical best guess. There is a diverse variation in 

literature with the MAD, RMSD, R² relative to individual or multiple stake or glacier wide mass 

balance. This study treats the optimization as an ensemble with emphasizing the issues of best 

guess scenarios. Nevertheless, that is exactly what figure 6 shows. The compromise solution is our 

best guess. We included the classical best guess relative to the MADs and BIAS in figure 5 to 

allow for a comparison of the optimal solution space and the classical best guess settings and our 

best guess. However, the figure was moved to the supplement. We want to emphasize once more 

that a single best guess is of limited used and put a stronger emphasize on this in the manuscript. 

MacDougall and Flowers (2011) report a spatial transfer error of up to 530 mm w.e. (kg/m²). They 

furthermore report larger errors in the ablation zone. We attribute thelarger uncertainties in our 

study  to a larger variation in measured mass balance over the sample period, a larger distance 

between the glaciers and the upper limit estimation based on the multi-objective approach. 

We added a discussion of these points to the revised manuscript and we put our results in context 

to the above mentioned studies. 
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Abstract.

Energy and mass balance modeling of glaciers is a key tool for climate impact studies of future glacier behaviour. By

incorporating many of the physical processes responsible for surface accumulation and ablation, they offer more insight than

simpler statistical models and are believed to suffer less from problems of stationarity when applied under changing climate

conditions. However, this view is challenged by the widespread use of parameterizations for some physical processes
:::::
which5

introduces a statistical calibration step.

We argue that the reported uncertainty in modelled mass balance (and associated energy flux components) are likely to

be understated in modelling studies that do not use spatio-temporal cross-validation and use a single performance measure

for model optimization. To demonstrate the importance of these principles, we present a rigorous sensitivity and uncertainty

assessment workflow applied to a modelling study of two glaciers in the European Alps.10

:
,
::::::::
extending

::::::::
classical

::::
best

:::::
guess

::::::::::
approaches.

:
The procedure begins with a reduction of the model parameter space using

a global sensitivity assessment that identifies the parameters to which the model responds most sensitively. We find that the

model sensitivity to individual parameters varies considerably in space and time, indicating that a single stated model sensitivity

value is unlikely to be realistic. The model is most sensitive to parameters related to snow albedo and vertical gradients of the

meteorological forcing data.15

We then apply a Monte Carlo multi-objective optimization based on three performance measures: Model bias and mean

absolute deviation in the upper and lower glacier parts, with glaciological mass balance data measured at individual stake

locations used as reference. This procedure generates an ensemble of optimal parameter solutions which are equally valid. The

range of parameters associated with these ensemble members are used to estimate the cross-validated uncertainty of the model

output and computed energy components. The parameter values for the optimal solutions vary widely, and considering longer20

calibration periods does not systematically result in more
::::
better

:
constrained parameter choices. The resulting mass balance

uncertainties reach up to 1300 kgm−2kgm−2, with the spatial and temporal transfer errors having the same order of magnitude.

The uncertainty of surface energy flux components over the ensemble at the point scale reached up to 50 % of the computed

flux. The largest absolute uncertainties originate from the short-wave radiation and the albedo parametrizations, followed by the

turbulent fluxes. Our study highlights the need for due caution , and realistic error quantification when applying such models to25

1



regional glacier modelling efforts, or for projections of glacier mass balance in climate settings that are substantially different

from the conditions in which the model was optimized.

1 Introduction

Surface energy and mass balance models are valuable tools for estimating the response of glaciers to meteorological forcing

(Oerlemans, 2011). Model results can be used to estimate regional run-off and resultant sea level rise (e.g., Hock, 2005), but5

additionally, and unlike results of empirical melt models, they can also be used to characterize the fundamental processes

and key drivers of melt on glaciers, which is critical for understanding how they may behave under the influence of changing

climate (e.g., Mölg and Hardy, 2004; Klok and Oerlemans, 2004; Hock and Holmgren, 2005; Mölg et al., 2008; Prinz et al.,

2016; Willeit and Ganopolski, 2017).

All glacier surface mass and energy-balance models contain a degree of parametrization of physical relationships. These10

parameters are either optimized to fit measured glacier mass balance
::::::::::
observations, or chosen based on previously established

empirical relationships, or are a mix thereof. Uncertainty surrounding the transferability of parametrizations in both space

and time poses a critical limitation on the usefulness of such models for regional upscaling of glacier behaviour or forward

projections of global glacier behaviour under changing climate conditions.

Early energy balance studies typically apply models at a single point in space for which local physical relations can be readily15

established empirically, or direct measurements are available to tune the parametrizations (e.g. Mölg and Hardy, 2004; Greuell

and Konzelmann, 1994; Bintanja and Van Den Broeke, 1995). Optimizing a model to local measurements can successfully

reproduce local melt rates
::
or

::::::
surface

:::::::::::
temperature (e.g., Oerlemans and Knapp, 1998), and, where this is the case, reliable

simulation of glacier ablation is often taken to mean that the model also accurately reveals the relative importance of specific

energy sources to ice ablation. Model optimization based on data from a single site, or from a very short time series, is,20

however, prone to parameter over-fitting, meaning that parameters are specifically adjusted to the study location and/or time

(Beven, 1989). This can be evident in upscaling point optimizations to the glacier scale: For example, Klok and Oerlemans

(2002) applied a distributed energy balance model to a mid-latitude glacier, using a combination of previously published

parameter values and values estimated from local point-scale measurements, and found reasonable agreement for local energy

fluxes, but poor results for the glacier-wide mass balance. The albedo parametrization was identified as a potential source25

of error
:::::::::
uncertainty

:
as it was based on data from a single point

:::
and

:::
one

:::::
year

::
of

:::::::::::
observations (Klok and Oerlemans, 2002;

Oerlemans and Knapp, 1998) and may not be valid elsewhere on the glacier surface throughout all seasons (Van De Wal et al.,

1992; Konzelmann and Braithwaite, 1995).

In studies of spatially distributed glacier mass balance (e.g. Klok and Oerlemans, 2004; Hock and Holmgren, 2005; Hock,

2005; Reijmer and Hock, 2007; Mölg et al., 2009; Rye et al., 2012; Gurgiser et al., 2013) optimization of free parameters30

to in situ
::
in

::::
situ

:
measurements can be successful if the processes being parametrized are quasi-constant over the whole

glacier surface, or if a dense measurement network is available for spatially-distributed optimization. Brock et al. (2000)

concludes that the accuracy of spatially distributed models is strongly dependent on the ability to apply multiple local op-
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timizations, and on the importance of individual energy components. Nevertheless, most of the temperature index models

(Hock, 2005; Pellicciotti et al., 2005; Carenzo et al., 2009; Robinson et al., 2010, 2011)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Hock, 2005; Pellicciotti et al., 2005; Carenzo et al., 2009; Robinson et al., 2010, 2011)

and also a number of energy balance models (Mölg et al., 2009; Gurgiser et al., 2013)
::::::::::::::::::::::::::::::::::::
(e.g. Mölg et al., 2009; Gurgiser et al., 2013)

have been optimized towards a single best fit to the glacier-wide mass balance measurement, which requires a subjective choice

of the single mass balance metric to be used. For example,
:
optimizing for cumulative mass balance, mass balance gradient or5

stake measurements have been shown to be problematic as different optimal solutions are found depending on the mass balance

metric chosen for optimization (Rye et al., 2012). The associated differences in the individual optimal parameter values and

resultant values of the energy components have not been studied in detail, and furthermore, published uncertainties of mass bal-

ance measurements (Zemp et al., 2013; Galos et al., 2017)
:::::::::::::::::::::::::::::::::::
(e.g. Zemp et al., 2013; Galos et al., 2017) imply that a single best

fit model simulation may not be found at all (Beven and Binley, 1992).10

A more powerful way forward may be found in multi-objective optimization of glacier energy balance modeling, first applied

::
in

:
a
:::::::::::
glaciological

::::::
context

:
by Rye et al. (2012). They optimized a mass and energy balance model, on two Arctic glaciers in

Svalbard over ~40 years using three objectives for optimization: (i) the mass balance gradient, (ii) the mean absolute error

(MAE) at the stake location, and (iii) the cumulative mass balance. This approach creates an ensemble of optimal solutions

which all are equally ’good’ in respect to all three objectives. With this approach they
::
the

:::::::
authors could reconstruct the mass15

balance of the glaciers before direct measurements were available and also give an estimate of the model uncertainty from the

parameter spread within the optimal solution set. This work demonstrated that it is likely that stated model performance based

on single objective optimizations do
::::
does not adequately represent model performance at a glacier scale or over longer time

periods.

Mass balance models are required to be transferable in space and time in order to estimate run-off on a larger scale or20

the impact of a changing climate (Oerlemans et al., 2005; De Woul and Hock, 2005; Raper and Braithwaite, 2006). Studies

of
::
To

:::::
study

:::
the

:
transferability of an enhanced temperature-index model (Carenzo et al., 2009)

:::::::::::::::::
Carenzo et al. (2009) used the

optimized parameters from one particular year and glacier and compared it to the locally optimized run at different glaciers and

over different time periods. They concluded that their model shows a rather good transferability in space, except during overcast

conditions. Furthermore, they observe
:::::::
observed

:
that the parameters vary depending on year and location and are correlated to25

each other. MacDougall and Flowers (2011) and Prinz et al. (2016) investigate transferability of full energy balance models:

While
:::::
while MacDougall and Flowers (2011) find satisfactory temporal transferability in the Arctic over two years, albeit with

some local parameter adjustment, Prinz et al. (2016) fails to do so in the tropics over an interval of a century. This is attributed

to a substantially changed climate over the century and/or a different micro-meteorological setting due to dramatic glacier

shrinkage (Prinz et al., 2016) . This
:::::
which

:
implies the problem of transferring a calibrated model to rather different climatic30

settings/glaciers and raises the question about the general uncertainty and transferability of such models.

It can be expected that models with more parameters have greater variation in the solutions. Reduction of free parameters

for optimization based on a sensitivity analysis is therefore a helpful tool to reduce both the effect of parameter correlation and

computational expense (Spear and Hornberger, 1980; Saltelli et al., 2000; van Griensven et al., 2006). For example Gurgiser
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Figure 1.
:::
The

:::::::
sequential

::::::::
approach

::::
used

::
in

:::
this

:::::
study

:::
can

::
be

:::::::
classified

::
in
:::::

three
::::
steps.

::::
First

::::
data

::::::::::
management

:::
and

:::::
model

:::::
setup

::
in

:::::
beige,

::
the

:::::::::
simulations

:::::
(blue)

:::
first

:::
use

::
a
:::::
global

::::::::
sensitivity

::::::
analysis

::
to

:::::
reduce

:::
the

::::::::
parameter

:::::
space

::::::
followed

:::
by

:
a
::::::::::::
multi-objective

::::::::::
optimization.

:::
All

::::::::
simulations

:::
are

::::::::
performed

:::::::::::
independently

::
for

::::
three

:::::::
summers

::
on

::::
two

::::::
glaciers.

:::
The

::::
data

::::::
analysis

::::::
(green)

:
is
::::
done

:::::::::::
independently

:::
for

::::::::
sensitivity,

:::::::
parameter

:::
and

:::::
model

:::::::::
uncertainty

:::::::
analyses.

et al. (2013) applied such a parameter reduction procedure on a tropical glacier to reduce the free parameters prior to assessing

model transferability.

Many previous studies do not separate model

:::::
Model

:
sensitivity and model uncertainty in a transparent manner. Hence, model uncertainty

::
are

:::::
often

::::::::
evaluated

::::::::
together,

:::
and assessments of varying robustness have been presented in the literature. For example, Mölg et al. (2012) used a simplified5

approach to quantify uncertainty of the mass balance model used in this study: An
::
an

:
arbitrarily chosen spread of the most

positive and negative deviation simulations around their single best fit in respect to Root Mean Square Deviation (RMSD) of

cumulative mass balance is used to estimate uncertainty. This gives only a very rough estimate as only two particular runs de-

termine the uncertainty estimate. Anslow et al. (2008) first optimize their model and then vary the optimized parameters within

certain bounds (5 %) and perturb the meteorological input to quantify the impact on the mass balance. This provides the sensi-10

tivity of the model output towards the parameter values and inputs, but the created range is also used as model error estimate.

Such approaches are inadequate as (i) they lack a global uncertainty estimate, (ii) a priori setting of the parameter optimum

is needed to assess the sensitivity, and (iii) the model uncertainty is limited by allowing only a small range in parameter

variation. Machguth et al. (2008) perform a similar assessment but base their perturbation ranges on probability density func-
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tions whereby model uncertainty is assessed by applying random and systematic errors/uncertainties to the meteorological input

data as well as to the mean value of parameters. Considering such uncertainties in meteorological input offers an opportunity

to quantify the resulting uncertainty in the final model output, but a direct model uncertainty quantification based on the model

structure/parametrizations is not revealed, and applying random and systematic errors to arbitrarily chosen parameters is poorly

constrained. The reported uncertainty, of 700 kgm−2 for
:
a 400 days

::::::::
simulation at a single point (roughly 10 % of the total melt),5

is related to the standard deviation of the probability density function.
::::::::::::::
Rye et al. (2012)

::::
used

:::::::::::::
multi-objective

:::::::::::
optimization

::
to

:::::
better

:::::::
constrain

::::
their

::::::
model

:::::::::
parameters

:::
but

:::
do

:::
not

:::::::
evaluate

::::
their

:::::
model

:::
on

::::::::::
independent

::::::::::
observations

::::
(i.e.

:::::::::::
observations

:::
not

::::
used

::
for

:::::::::::
calibration).

In this studywe target a clear separation of the concepts of sensitivity and uncertainty in an assessment of the performance of

a distributed mass and energy
:
,
:::
we

::::::
present

:
a
::::::
model

:::::::::
calibration

:::
and

::::::::::
uncertainty

:::::::::
assessment

::::::::
workflow

::::
built

:::::
upon

:
a
:::::::::::
combination10

::
of

::::
these

:::::
ideas.

::::
Our

:::
aim

::
is
::
to
:::::
bring

:::::::::
awareness

:::
that

::::::::::
uncertainty

::::::::
estimates

::
of

:::::::::
physically

:::::
based

::::::
models

::::
with

:::::
many

:::
free

::::::::::
parameters

:
is
:::::
likely

::
to

:::
be

:::::::::::::
under-estimated

:::::
when

::::::
applied

::
in

:::::::
different

:::::::
settings

:::::::::::
(geographical

::::
and

::
or

::::::::
temporal)

::::
than

::::
those

:::
for

:::::
which

:::
the

::::::
model

:::
was

:::::::::
calibrated.

:::::
Using

:::
an

:::::::::
established

::::::::::
distributed

::::::
energy

:::
and

:::::
mass balance model (Mölg and Hardy, 2004; Mölg et al., 2008;

Mölg et al., 2009)using ,
:::
we

::::::::
simulate three years of summer mass balances simulated on two mid-latitude glaciers . This is

achieved by first
:::
(Fig.

:::
1).

:::
We

::::
start

::
by

:
applying a global sensitivity analysis to reduce the parameter space . This is an extension15

of
::::::::
extending the local sensitivity analysis used by Gurgiser et al. (2013) to a global variance based method (Saltelli et al., 2006),

:
a
::::::::
procedure

:
which has recently been applied in snow pack modeling (Sauter and Obleitner, 2015). Subsequently we build upon

:::
use the multi-objective optimization applied by Rye et al. (2012) to quantify the model output, the

:::::::
calibrate

:::
our

:::::
model

:::::
based

:::
on

:
a
:::
set

::
of

::::
three

:::::::
quality

::::::::
measures.

::::
The parameter uncertainty and resulting uncertainty of the energy components based on a set

of three objective functions used for Monte Carlo model optimization. The
::
are

::::::::
evaluated

::::::
based

::
on

::::
this

:::::::::
calibration

:::::::::
procedure.20

::::::
Finally,

:::
the temporal and spatial transfer of such a model ensemble is assessed with cross-validation. Finally, the uncertainty of

the model in the resulting energy components is presented. The aim is to develop a workflow for a more rigorous assessment

of model performance that can quantify the uncertainty of the modeling chain applied

::
In

:::
this

::::::
paper,

:::
we

::::
will

:::
use

:::
the

::::
term

:::::::
“model

::::::::::
uncertainty”

:::
to

:::::::
describe

:::
the

:::::::::
difference

:::::::
between

::::
any

:::::::
modeled

::::::::
quantity

:::
and

:::
its

:::::::::
counterpart

::
in

::::::
reality

::::
(“the

:::::::
truth”).

:::
An

:::::::::
uncertainty

:::::
value

::
is
::
a

:::::::
measure

::
of

::::
how

:::::
much

::::
trust

::::
can

::
be

:::::
given

::
to

::
a

:::::::
modeled

::::::::
quantity:25

::
in

:::::::
practice,

:::::
model

::::::::::
uncertainty

:::
can

:::
be

::::::::
estimated

:::::
based

::
on

:::::::::::
observations,

::::
and

::
in

:::
any

::::::::
modeling

:::::::
activity

:::::
which

:::::::
includes

:::::::::
parameter

:::::::::
calibration

:::::
model

::::::::::
uncertainty

::::
must

:::
be

::::::::
estimated

:::::::::
separately

:::::
from

:::
the

:::::::::
calibration

:::::::::
procedure

:::::::::::::::
(cross-validation).

:::
For

:::::::::
quantities

::::::
without

:::::::::
equivalent

::
in

::::::
reality

::::
(e.g.

:::::
model

:::::::::::
parameters),

:::
we

:::
use

:::
the

::::
term

:::::::::::
“uncertainty”

:::
to

::::
refer

::
to

:::
the

::::
fact

:::
that

::::
their

::::
true

:::::
value

::
is

:::::
really

::::::::
unknown,

::::
and

:::
that

::::
this

:::::::::
uncertainty

::
in
::::

the
:::::::::
parameters

::
is

::::
also

::::::::
conveyed

::
in

:::
the

::::::
model

::::::::::
uncertainty.

:::::
When

:::
we

:::::
speak

:::::
from

::::::
“model

::::::::::
sensitivity”,

:::
we

:::::
mean

:::
the

:::::::
variance

:::
of

:::
the

:::::
model

::::::
output

::
as

::::::::
function

::
of

:::
the

:::::::
variance

:::
of

::
an

:::::
input

:::::::
quantity

::::
(e.g.

:::::::
forcing30

::::
data,

:::::
model

:::::::::::
parameters).

::
A

::::::
model

::::::::
sensitivity

::::::::
analysis

::::
does

:::
not

::::::
require

:::::::::::
observations.

:::
In

:::
our

::::::
paper,

::
we

:::::::
restrict

:::
our

:::::::::
sensitivity

::::::
analysis

::
to
:::
the

:::::::
internal

::::::
model

:::::::::
parameters,

:::
not

::
to
:::
the

:::::
input

::::::::::::
meteorological

::::::::
variables.
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Figure 2. Model simulations are performed at the stake locations shown as points; points marked in black are only used in the optimization,

while green points indicate the seven stakes on each glacier that were also used in the sensitivity analysis. Detailed maps are available in the

supplement (fig. S.1-2).

2 Study sites and model input data

Two glaciers in the Eastern European Alps were selected as test sites in this study (Fig. 2). Hintereisferner (HEF; 46.80°N,

10.75°E) is a sizeable valley glacier in the Austrian Ötztal-Alps spanning 3720 to 2454 m m a.s.l. in 2013, when the glacier

area was ca. 6.7 km2 and km2.
:
Langenferner/Vedretta Lunga (LGF; 46.46°N, 10.61°E) is a smaller valley glacier in the Ital-

ian Ortler-Alps spanning 3370 to 2711 m m a.s.l. in 2013. These glaciers were chosen since the model used here requires5

topographic and meteorological input data, and measurements of surface mass balance for evaluation. For both these glaciers

(i) topographic data is available in the form of high-resolution digital elevation models (DEMs) derived from airborne laser-

scanning data acquired in Fall 2013 (Galos et al., 2015); (ii) meteorological data are available from automatic weather stations

(AWSs) in the vicinity of the glaciers for the period 2012 to 2014 and (iii) intense glaciological observations, including mea-

surements of seasonal mass balance (e.g. Klug et al., 2017; Galos et al., 2017), are available.10
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At HEF the AWS is located on a small plateau within a rock slope north of the upper tongue area of the glacier at an altitude

of 3025 m m a.s.l.. The horizontal distance of this AWS to the glacier is about 300 m m and it provides all meteorological data

required for the model except for precipitation. Precipitation data was taken from the gauge operated by the Bavarian Academy

of Sciences at Vernagtbrücke, 3.5 km east of HEF at an elevation of 2600 m m a.s.l., and
:::
was scaled to the elevation of the

AWS on the basis of precipitation gradients derived from 11 totalizing rain gauges in the vicinity of the glacier (Strasser et al.,5

2017). At LGF the AWS data come from the station of the Hydrological Service of the province of Bozen operated at Sulden

Madritsch, 2.5 km km north of the glacier at an altitude of 2825 m m a.s.l. (Galos et al., 2017).

3 Model and methods

3.1 Energy balance model

The energy and mass balance model used in this study is a process-based model that has been applied in a range of glacier10

environments (Mölg and Hardy, 2004; Mölg et al., 2008; Mölg et al., 2009, 2012; Gurgiser et al., 2013; Prinz et al., 2016;

Galos et al., 2017). The model was run with
::
in hourly time-steps for three summer periods over each glacier. The model is a

distributed mass and energy balance model, but in this study simulations were limited to 18 stake locations on each glacier to

reduce computational expense. The model tracks the accumulation of solid precipitation and uses the surface energy balance

to calculate the ablation at the glacier surface:15

QM +Qice = SWnet+LWnet+QS +QL+QG+QP (1)

where LWnet, SWnet are the net radiation balances for long-wave (thermal) and short-wave (solar) radiation and the other

energy fluxes are the sensible (QS), latent (QL), ground (QG) and precipitation (QP ) heat flux. The available energy is used to

raise the glacier surface temperature (Qice) if below freezing point or for melting (QM ) if the glacier surface is at the melting

point. Mass losses of the glacier are represented via melt (QM ) and sublimation (QL).:::::::::
Refreezing

::
of

::::::
liquid

::::::::::
precipitation

::::
and20

:::::::::::
resublimation

::::
lead

::
to

::::::::
additional

:::::
mass

:::::::::::
accumulation

::
at

:::
the

:::::::
surface. We use the model in a similar configuration to Prinz et al. ,

2016.
::::::::::::::
Prinz et al. (2016)

:
. The only difference is given by a change in the shortwave radiation scheme which is explained in the

detailed model description in Appendix
:::
the

::::::::
Appendix

:
(A1-A6).

3.2 Methods

3.2.1 Global Sensitivity Analysis (GSA)25

Variance based sensitivity testing methods work in a probabilistic framework judging sensitivity by relative variances of model

input and output (van Griensven et al., 2006; Saltelli et al., 2000, 2006, 2010). This is a global method that is independent of

model calibration i.e. independent of a local optimal run, and is hereafter referred to as Global Sensitivity Analysis (GSA). The

method treats the model as a simple function f with:

y = f(X) X =X1,X2, ...,Xn (2)30
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where y is the single model result (in this case mass balance) and X1,...,n are the individual input parameters.

The influence of an individual parameter can be examined by the main effect (Vi) of Xi on Y .

Vi = VXi(EX−i(Y |Xi)) (3)

X−i is the whole parameter space except any variation in Xi (a fixed Xi), E is the expectation value and V the variance.

EX−i(Y |Xi) is the mean model output with whole parameter variation except in Xi. The variance over all values for Xi yield5

the variance attributed to parameter Xi. The sensitivity of the model towards single parameters is evaluated by normalizing by

the total variance of the output.

SXi =
VXi(EX−i(Y |Xi))

Vy
(4)

SXi is the first order sensitivity index. The total sensitivity index (STi) is the effect of Xi with all its interactions on the

model variance:10

STi =
EX−i(VXi(Y |X−i))

Vy
(5)

This can be related to the sensitivity obtained from local sensitivity analysis. The model sensitivity (variance) to Xi is tested

(VXi(Y |X−i)) at every point of the parameter space (X − i fixed). To clarify, consider the example of a simple non-additive

model Y =X1 ·X2 +X3 with the variables Xi as input parameters with a given variance/uncertainty. Assuming unified dis-

tribution within the intervals

X1 ∈ [1,3],X2 ∈ [0.1,0.3],X3 ∈ [0.5,1]

leads to a model output range of Y ∈ [0.6,1.9]. The variance-based method yield the results for SXi, the first order sensitivity

index and STi, the total sensitivity index for an ensemble of 10 ,000 runs as shown in Table 1. The first order effect of X3

is the largest, while the other two are similar if computational uncertainty is neglected. Most variance is caused by the last

parameter. X3 has no interactions, so its total index is the same as the first order one, while interaction between X1 and X215

creates additional variance, so their total index is higher. In the example X1 and X2 contribute to ≈ 60 % of the total variance

and X3 ≈ 40 %, as X1 ·X2 ∈ [0.1,0.9] and X3 ∈ [0.5,1].

The estimation of the sensitivity indices follows the algorithm from Saltelli et al. (2010). The model used here has 23
::
22

free parameters. A base sample of 12 ,000 parameter settings was created with a quasi-random Sobol sequence. The random

numbers are linearly transformed onto the parameter intervals. The distribution is always treated as uniform and the limits for20

Table 1. The sensitivity indices for the simple model Y =X1 ·X2 +X3. The indices for X1 and X2 are similar as they both have the same

normalized variance. X1 ·X2 creates additional variance by the interaction of the two parameters yielding higher total indices.

X1 X2 X3

SXi 0.26 0.27 0.43

STi 0.31 0.30 0.43
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Table 2. In
:::
The

:::::
ranges

:::
for the sensitivity analysis 23

::
22 different parameters were used. The range used in the sensitivity studyfor each

parameter is given here. The equations of most of the
:::
Most

:
parametrizations are given

:::::::
explained

:
in

::
the Appendix (A).

# Name Abbreviation minimum maximum unit

1 temperature gradient Tgrad 0.0055 0.0085 Km−1 Km−1

2 precipitation gradient Pgrad 0 0.12 m−1 m−1

3 all liquid precipitation threshold Plimit+ 2 3 ◦C ◦C

4 all solid precipitation threshold Plimit− 0.5 1.5 ◦C ◦C

5 surface layer thickness sfc 0.1 0.5 m m

6 momentum roughness length (ice )
:::
over

::
ice

:
z0i 1 · 10−3 5 · 10−3 m m

7 scalar roughness length over ice zhi 0.1 · 10−3 2 · 10−3 m m

8 roughness length over fresh snow zhfs 0.1 · 10−3 2 · 10−3 m m

9 momentum roughness length over old
:::
fresh

:
snow z0fs 1.5 · 10−3 6.5 · 10−3 m m

10
:::::::
roughness

:::::::
lengthes

::
of

::::
aged

::::
snow

::::
z0hfi: ::::::::

0.1 · 10−3
::::::
4 · 10−3

:
m

::
11 precipitation density ρs 200 370 kgm−3 kgm−3

11
::
12 part of refreezing mass forming superimposed ice suifra 0.0 0.36

12
::
13 absorbed shortwave at ice surface ζi 0.72 0.88

13
::
14 absorbed shortwave at snow surface ζs 0.81 0.99

14
::
15 extinction coefficient of ice βi 2 3

15
::
16 extinction coefficient of snow βs 13.68 20.52

16
::
17 value for bottom temperature Tbottom 271 273 K K

17
::
18 ice-albedo αi 0.15 0.25

18
::
19 fresh-snow-albedo αfs 0.8 0.9

19
::
20 firn-albedo αfi 0.4 0.65

20
::
21 timescale in albedo module t 5 30 days days

21
::
22 depth-scale in albedo module d 2 5 cm (22)precipitation perturbation Ppertu -10 +10 % 23roughness length of aged snow z0hfi 0.1 · 10−3 4 · 10−3 m cm

every parameter are given in Table (2). The indices are estimated with N · (k+2) runs, where k is the number of parameters

and N the base sample size. The GSA consisted
::::::
consists

:
of a total ensemble size of 300 ,000 simulations per year and glacier,

fulfilling the convergence criteria for the algorithm
:::::::::
(STi ≥ SXi,::::::::::

∑
SXi ≤ 1,

:::::::::
SXi ≥ 0).

::::
Note

::::
that

::
we

:::
did

:::
not

:::::::::
investigate

::
if

:::::
fewer

:::::::
solutions

:::::
could

::::::
already

:::::
fulfill

:::
the

:::::::::::
convergence

::::::
criteria. To reduce computational expenses the GSA model was limited to seven

stake locations on each glacier (Fig. 2).5

The parameter sensitivity results from the GSA are also used as a tool to reduce the number of free parameters in the model

by identifying those parameters which have only a marginal influence on the model output (Spear and Hornberger, 1980;

Saltelli et al., 2000; van Griensven et al., 2006). The model is considered insensitive to parameters with a total sensitivity

9



index (STi) of <0.05, and these parameters were fixed at the median value of the range shown in Table 2 in subsequent model

simulations.

3.2.2 Multi-objective optimization and uncertainty quantification

A multi-objective optimization allows for more than one optimal solution in the calibration procedure, and offers a potential

quantification of model uncertainties
:::
way

:::
to

:::::
assess

::
a
:::::
range

::
of
::::::::

plausible
:::::::::

parameter
::::
sets

::::
that

:::
we

::::
will

:::
use

::::
later

:::
on

:::
for

::::::
model5

:::::::::
predictions. The multi-objective optimization used here follows previous approaches in hydrology and glaciology (Yapo et al.,

1998; Rye et al., 2012). Where the model is given n objectives, with fn to be minimized in respect to the model parameter

input X , the optimization approach can be written as:

minimize(f1(X),f1(X), ...,fn(X)) (6)

The result of Eq. (6) is an ensemble of optimal solutions that represent trade-offs between the objectives and no single one can10

be deemed superior to the other optimal solutions. Therefore, they are called the non-dominated set of optimal solutions, or

Pareto set
:::
Set (Pareto, 1971). As an illustration, consider an optimization with two objectives (f1,f2): The concept of a Pareto

optimal set
:::::::
Optimal

:::
Set

:
is shown in Fig. 3 in which the (classic) single objective solutions are the points fmin1 and fmin2 for

the two objectives respectively. A solution at the utopian point is desirable as all functions would be at their minimum, but the

models generally cannot optimize the different objectives simultaneously. There are only compromise solutions between the15

objectives. The members of the set of optimal solutions defining the Pareto front
:::::
Front are superior to the other solutions, but

are all equal to each other without subjective ranking by the modeler. The variation of the parameters of the optimal solution

set defines the minimum parameter uncertainty (Vrugt et al., 2007). This uncertainty is a result of shortcomings in the model

and/or the variations of parameters, such as spatial or temporal change in
::
the

:
true parameter value over the simulation period

(Oerlemans and Greuell, 1986; Marshall and Warren, 1987). If a single simulation must be chosen to be the optimal model set20

up, the compromise solution, defined as the point with the lowest euclidean distance to the utopian point is a common choice.

In this study the multi-objective optimization is based on a Monte Carlo simulation. The non-sensitive parameters from the

GSA were fixed to their median value from the range used in the GSA (Table 2). Then 20 ,000 model simulations with random

parameter
::::
value combinations of the remaining parameters were created and the mass and energy balance

::::
were simulated for

18 stake locations. This approach was chosen above
:
in

:::::
favor

::
to

:
an evolutionary algorithm so that different objective function25

spaces and all single objectives can
:::::
could be investigated with the same set of simulations. Various objective functions were

initially explored including Root Mean Square Deviation
::::::::
(RMSD) and Mean Absolute Deviation

::::::
(MAD)

:
over all simulation

points, but finally three objective functions that captured the main patterns of behaviour were applied: (i) the BIAS over all

simulated stakes, (ii) the mean absolute deviation (MAD) of the lower 9 stakes (MADlow9) and (iii) the MAD over the

upper 9 stakes (MADtop9). The BIAS is used as a proxy for the cumulative mass balance with avoiding of interpolation30

errors. The RMSD
:::::::
RMSD is a commonly used measure for optimization in glaciological modeling (Gurgiser et al., 2013)

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Gurgiser et al., 2013; MacDougall and Flowers, 2011). By using the MAD here we want to reduce the effect of individ-

ual stakes which could be influenced by processes which are not governed
:::::::
captured by the model

:::::
(snow

:::::::::::
redistribution

:::::::
through

10
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Figure 3. The figure displays a two-dimensional Pareto-space
:::::
Pareto

::::
Space

:
which comprises a 2-dimensional Pareto front

::::
Front. The solutions

on this front (black solid line) are referred to as the non-dominated set of solutions. In comparison all other solutions within the solution

space are inferior in at least one objective relatively to the Pareto front
::::
Front. Classic single objective optimization yields the points fmin

1

and fmin
2 , which represent the minimum of those objectives that the model can achieve. The utopian point (black) is the point (fmin

1 ,fmin
2 )

where both objectives are at their minimal value. Commonly the compromise solution (red) of the Pareto-set
::::
Pareto

:::
Set

:
is considered an

objective choice for a single solution as it has the minimum euclidean distance of the optimal solution towards the utopian point.

::::
wind

::
or

::::::::::
avalanches,

::::
dust

::::
and

::::::
debris

:::::
cover

:::
and

::::::
related

::::::::
changes

::
in

::::::::
radiation,

::::
etc.), but the general feature of those two sta-

tistical functions are similar. Previous studies (e.q. Klok and Oerlemans, 2004; Hock, 2005; Sauter and Obleitner, 2015) have

focussed
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Klok and Oerlemans, 2004; Hock, 2005; Sauter and Obleitner, 2015)

::::
have

:::::::
focused on the accumulation and ab-

lation area separately or exclusively, but without a distinct mathematical comparison. Therefore the approach of the split

MAD was chosen. The Pareto front
:::::
Front was identified, and additionally a second ensemble including solutions within a cer-5

tain range (500 kgm−2
:::
100

:
kgm−2) from the Pareto front

::::
Front, was identified to account for errors in the field measurements of

mass balance at each stake simulation point. Results
:::::::
However,

::::::
results

:
of this second ensemble will only be mentioned briefly

throughout the discussion. The spread of the parameter settings of all optimal solutions of the Pareto and near-Pareto sets
::::
Sets

are used to indicate the parameter uncertainty for each case, and the calculated surface energy balance components of these

optimal sets are also used to estimate the uncertainty of the energy components on the point scale, as well as on the glacier10

scale.
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4 Results and Discussion

4.1 Global sensitivity analysis
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Figure 4. The amount of sensitive stakes per year for (a) HEF and (b) LGF. The sensitivity analysis was performed at 7 stakes on each

glacier, though the vertical gradients can only be tested at 6 stakes as one is located at the same altitude as the reference weather station.

Every parameter with a sensitivity index higher than 0.05 gets
::

got a score of 1, giving a maximum count of 7 per year (meaning the model

is sensitive to this parameter at all stakes). Parameters involved in the parametrization of surface albedo are dominating, with snow related

values
::::::::
parameters

:
in the upper section of the glacier and ice

:::::
related

:::
ones

:
at the lower stakes. Hintereisferner shows a total of 11 sensitive

parameters and Langenferner 6.

The focus of this GSA is not on the absolute sensitivity towards single parameters, but rather to reduce the dimension of

the parameter space. Therefore, the following discussion is limited to two classes: parameters to which the model is sensitive

(STi > 0.05) and non-sensitive (STi < 0.05). On each glacier the mass and energy balance at 7 stake locations over three years5

was simulated for the GSA, so the maximum count of sensitivity for a parameter would be 21, meaning that the model is

always sensitive to that parameter at every point of the glacier.

At Hintereisferner, 11 out of 23
::
22

:
parameters are identified as sensitive (Fig. 4 (a)), and these sensitive parameters are

classified in two general categories. Firstly, all but the lowest stake location are sensitive to parameters related to surface

12



Table 3. Five objective functions are used to analyze the model performance. The minimum value for every function
:::
and each year are given

in kgm−2kgm−2. While the BIAS is low in all cases, absolute errors and RMSD are much higher, and highest in 2012. The
::::
Note

:::
that

:::
the

minimum MAD is
::::
does not

:::
refer

::
to
:
the same run over the whole glacier and its upper/lower parts.

HEF 2012 HEF 2013 HEF 2014 LGF 2012 LGF 2013 LGF 2014

BIAS 0,11 0,48 0,00 0,52 0,28 0,04

RMSD 470 213 285 537 391 214

MAD 414 170 225 419 309 153

MADtop9 252 108 228 328 114 170

MADlow9 397 165 130 346 283 81

albedo, particularly of snow and firn, and secondly, for stakes with high elevation differences compared to the AWS, the model

is also sensitive to the vertical temperature gradient.

The sensitivities show spatial and temporal variability which can be explained by the varying mass balance conditions of

the respective year (mean specific summer/annual mass balance with 2012 -2643/− 1560, 2013 −1841/− 510 and 2014

−1494/−122 kgm−2kgm−2). For example, sensitivity towards the ice-related parameters is most evident in 2012, which was5

the driest
:::
(in

:::::
terms

::
of

:::::::::::
precipitation,

::::
not

::
air

:::::::::
humidity)

:
and most negative mass balance year, with large parts of the glacier

surface free of snow and firn for most of the ablation season. The roughness length of fresh snow, by contrast is only influential

at the upper stakes in 2014, where snow fall was frequent during the ablation season resulting in the least negative mass balance

of the three study years. Sensitivity towards the elevational precipitation gradient is only relevant at the lowest stakes (500 m

m below the weather station) in the wet years.10

On the smaller Langenferner 6 of the 23
::
22

:
parameters were identified as sensitive (Fig. 4 (b)). Similar as at HEF, the model

shows consistent sensitivity to surface albedo and the vertical temperature gradient. As LGF is smaller than HEF, the sensitivity

shows less variability in space and time, though the annual mass balances during the three study years range from
:::::
about -1500

to +400 kgm−2kgm−2, and, as the tongue of LGF does not extend to such a low elevation as the one of HEF, it is less sensitive

to ice-related parameters. Variations in the ice albedo within the bounds of 0.15 and 0.25 hardly influence the mass balance15

model results on the smaller glacier, even though ice is exposed for the majority of the summer at the lowest stake. This low

sensitivity to the ice albedo compared to the snow albedo parameters is explained by the fact that, as the removal of snow cover

is accompanied by a large drop in albedo (0.4-0.65 to 0.15-0.25), the time of exposure is more crucial than the final ice albedo,

and this time of ice exposure is itself influenced by the snow albedo via its dominant control on the short-wave radiation budget.

Within the chosen parameter ranges, the net short-wave radiation varies by 50 % in case of fresh snow (10-20 % absorbed) and20

only by 12 % over ice.
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4.2 Calibration

First we consider the best model performance with respect to each individual objective function tested (Table 3), before pre-

senting the multi-objective optimization based on the first, fourth and fifth objective in Fig. 5.

In all cases a model simulation with very low bias (<1 kgm−2kgm−2) with respect to the stake mass balance can be found.

This illustrates that apparently
:
a good optimization on the single value of cumulative mass balance over the stakes is relatively5

easy to achieve (Table 3). In comparison, the deviation in
::
of all other objective functions is much higher, ranging from 81-537

kgm−2
::
81

::
to

::::
537

:
kgm−2. The deviations in these objectives are all largest in 2012 on both glaciers. RMSD and MAD

vary similarly between the years at each glacier, with the higher RMSD values indicating a non-uniform deviation from the

measurements over the stakes. With the exception of 2014, the glacier-averaged MAD is larger than the MAD calculated for

either the upper/lower section of the glaciers. This is to be expected as the stakes within each section of the glacier experience10

more similar climate conditions, resulting in a lower MAD. The fact that MAD in the lower glacier section is larger than in

the upper section in 2012 and 2013 is probably related to the incapability of the model
:
in

:::
its

::::::
current

:::::::::::
configuration

:
to correctly

reproduce the date of ice exposure. In 2014 the upper glacier sections show a slightly higher MAD, associated with above

average accumulation in the previous winter and the frequent summer snowfall in this season.

The multi-objective optimization, using BIAS, MADtop9 and MADlow9, yields an ensemble of solutions. The non-15

dominated set for each of the three years has 27, 17, 69 members for HEF and 58, 61, 14 members for LGF respectively

(fig. S.4). The fewest solutions are found in years with the lowest total MAD (HEF 2013, LGF 2014). Figure 5 shows the

Pareto-front
:::::
Pareto

:::::
Front

:
of optimal solutions for HEF 2012 and the corresponding parameter settings. A low bias is easily

achieved by the model if no other objectives are considered because it is a single value (the sum of the mass balance at all

stakes) and, for example, deviations in the ablation and accumulation area may cancel
::::::::::
compensate each other. The projections20

onto the BIAS planes are less curved (the distance between the utopian and compromise point is lower
::::::
smaller) and the per-

formance in respect to the MADs can be drastically increased with only a small cost in the BIAS. The two-dimensional

projections of the Pareto-space
::::::
Pareto

:::::
Space (Fig. 5 (a) and (b)) illustrates, for example, that allowing for a model bias of 25

kgm−2 kgm−2 can improve the MAD by 200 and 300 kgm−2 kgm−2 in the lower and upper glacier sections respectively.

The MADs plane (Fig. 5 (c)) is more curved
:::::
(larger

:::::::
distance

::::::::
between

:::
the

::::::
utopian

:::
and

:::::::::::
compromise

:::::
point), indicating that the25

two objectives cannot be optimized by the model at the same time, such that some parameter sets leading to good results for

the ablation zone of the glacier may not sufficiently reproduce the relevant processes in the accumulation zone.

The parameter values of those optimal solutions span the entire allowed space apart for some of those relating to snow

albedo which span (almost) the whole parameter space in all years for both glaciers, and show no obvious tendencies towards

a certain albedo range (S. 3). For HEF in 2012, snow albedo values cluster in the higher range (0.52-0.6) for firn and (0.86-0.9)30

for fresh snow (Fig. 5 (d)), while on LGF lower firn and fresh snow albedo values (<0.5/<0.84) are optimal. Similar behavior

is observed for the albedo time scale (see Appendix A3) which tends towards higher values for HEF in 2012/13 and towards

lower ones for LGF in 2013/14. The confinement of snow albedo is mainly a result of the highest model sensitivity towards

this parameter, nevertheless it still varies and the converse argument, of less sensitive parameters showing greater span is not
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valid: For example, the roughness length over fresh snow is generally at the lower margin of the allowed parameter range

(0.1-0.14·10−3 m) in 2012 even though the model is considered insensitive (STzhfs < 0.05) to this parameter in the particular

year. These results highlight that the parameter settings of multiple optimal solutions for this type of mass and energy balance

model
:::::
models

:
can vary drastically. There are no clear correlations between two individual parameters, instead all parameters

interact simultaneously to some degree. Without the a priori reduction of model parameters by GSA even less information5

could be extracted from the optimization. Compared to Rye et al. (2012) our results appear less constrained which can be

explained by the narrow initial parameter ranges used in our study
:::::::::
parameters

::::
span

:::::
about

::
a
:::::
wider

:::::
range

:::
of

:::
the

::::::::::
normalized

::::::::
parameter

:::::
space

::::::
which

::
is

:::
due

::
to

::
a
:::::
wider

:::::
initial

:::::::::
parameter

:::::
range

::
in

:::
our

::::::
study.

::::::
Despite

::::
the

::::::::
relatively

::::::
narrow

::::::
ranges

::
of

::::::
values

:::::::
reported

::
in

:::
the

::::::::
literature,

:::
our

:::::
study

::::::
clearly

::::::
reveals

:::
that

:::::
many

::
of

:::
the

::::::::::
parameters

::::
could

::::
take

::::::
almost

:::
any

:::::
value

::
in

:::
the

:::::::::::
optimization

::::::
process.

::::::::
Changes

::
to

:::
the

:::::::::
parameter

::::::
ranges

:::::::::
accounting

:::
for

:::::::::
potentially

:::::::::
unrealistic

::::::
values

::::
may

:::::::::::
quantitatively

::::::
change

:::
the

:::::::
results,10

:::
but

:::::
within

:::
the

:::::
range

:::
no

::::::
change

::
in

:::
the

::::::::
sensitive

:::::::::
parameters

::
is

:::::::
expected. Rye et al. (2012) for example applied values for fresh

snow albedo in the range of 0.65 to 0.95, while we restricted the initial range to values between 0.8 and 0.9 as reported in

the literature (e.q. Cuffey and Paterson, 2010)
::::::::::::::::::::::::::
(e.g. Cuffey and Paterson, 2010).

::::
We

::::
also

::::
used

:::::
fresh

::::
snow

::::::::
densities

::::::
which

:::
are

:::::::
relatively

::::
low

::::::::
compared

::
to
:::::
those

:::::::
reported

::
in
::::::
recent

::::::
studies

::::::::::::::::::::::
(e.g. Helfricht et al., 2018).

::::::::
However,

:::
the

:::::
used

:::::
values

:::
are

:::::
based

:::
on

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Mölg et al., 2008; Gurgiser et al., 2013; Prinz et al., 2016)

:::
and

:::
the

::::::
choice

::
of

:::::
those

::::
does

:::
not

:::::::::::
significantly15

:::::::
influence

:::
the

::::::
results.

4.3 Transferability studies

To investigate the transferability of the optimized mass balance model settings, all the optimal solutions of the Pareto set
:::
Set of

one glacier summer mass balance case were applied to the five other summer and glacier cases. While, each Pareto solution set

:::
Set was identified based on the multi-objective optimization, the transferability study uses only the euclidean distance towards20

the utopian point as a quantification tool. In Fig. ?? the optimal solutions for HEF 2013 and their performance in the other

model periods is shown. The individual optimal parameter settings yield quite different mass-balance-values/
:::
for

::::
HEF

:::::
2012

::
for

::::::::
example

::::
yield

:::::
quite

::::::
varying

:
performances for the other summers

::::
(fig.

:::
S.4

:::
(a)). While the performance on the same glacier

(HEF) is reasonably good for 2012 (200-800 kgm−2 kgm−2 compared to 152-600 kgm−2 kgm−2 in the optimization period

of summer 2013) and slightly worse for 2014, the optimal solutions do not perform so well for LGF, resulting in euclidean25

distances of up to 3500 kgm−2kgm−2. Analogous analysis of the ensemble behavior of other summers shows that the optimal

solution for 2012 also performs well in 2013 and vice-versa, and show
::::
shows

:
acceptable performance in 2014 respectively.

The deviation of the 2012 and 2013 optimal values of HEF yield errors greater than 2000 kgm−2 kgm−2 on LGF. The 2014

HEF ensemble performs on average better on HEF, but two simulations perform better on LGF in 2012/13 and around 20 are

within the same error as for HEF. On LGF also 2012 and 2013 agree better, and do
::
the

:::::::::
ensembles produce reasonable results30

for both glaciers in 2014. The ensemble of 2014 on LGF yields similar errors (250-800 kgm−2kgm−2) for LGF 12/13 and

HEF 14. All ensembles of LGF produce larger errors on HEF in 2012 and 2013.
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Figure 5. Each individual member of the Pareto set
::

Set for HEF in 2012 is displayed with a different color and the compromise solution

highlighted (red triangle/red line). The different panels are the two-dimensional projections of the Pareto-space
:::::
Pareto

:::::
Space onto the (a)

BIAS and MADtop9; (b) BIAS and MADlow9; (c) MADlow9 and MADtop9 planes. (d) Shows the normalized parameter values for

each case in the same colors as in the Pareto space
::::
Space

:
plotswith all parameters apart

:
.
:::
The

::::::::
parameter

::::::
settings

::
of

:::
the

::::::
optimal

:::::::
solutions

::
are

::::
quite

::::::
diverse

:::
and

::::
span

::::
over

::::
most

::
of

:::
the

:::::::
parameter

:::::
space.

::::
The firn albedo and albedo timescale spanning over

:::
are the entire parameter

space
:::
only

:::::::::
parameters

::::::
showing

::::
some

::::::::::
confinement

:
to
::
a

::::::
narrower

:::::
range. It

:::
The

::::::
chaotic

:::::
nature

::
of

::
the

::::::::
parameter

::::::
settings furthermore shows that

a single solution is not representative
::
in

::
its

:::::::
parameter

::::::
settings

:
for the ensemble

::
of

::::::
optimal

:::::::
solutions.

The euclidean distance of the 17 optimal solutions for model parametrization that comprise the Pareto set for HEF in 2013

as applied to all six glacier/summer cases. The performance in 2012 on HEF is still reasonably good and slightly worse for

2014. The optimal solutions for HEF 2013 perform worse in all years on LGF than in any years at HEF.

The cross validation (Fig. 6) focuses on the transferability of the single compromise solution to other season and glacier

cases. This can be considered as a classical best guess solution. The features follow the structure of the ensemble behavior5

discussed above with HEF 2012 and 2013 seeming to be distinct from the other four cases. The compromise solutions for

HEF 2012 and 2013 are similar in performance and parameter value and, while they perform adequately for HEF in 2014,

within the estimated
:::::
model

:
uncertainty of 1300 kgm−2kgm−2, the error is greater than 1500 kgm−2 kgm−2 when either of

these compromise solutions is applied on LGF, no matter for which year. Similarly, the compromise solution for the three

year period for HEF (RMSDHEF in Fig. 6), which is dominated by the characteristics of 2012 and 2013, also performs10
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Figure 6. (a) Performance of
:::
the single compromise solution for each season and glacier (GGGyy), with HEF in solid blue colors and LGF

in red. The simulations which perform best over a three (RMSDHEF and RMSDLGF ), and six year period (RMSDall) respectively

are given with dashed lines, following the same color scheme. (b) The corresponding parameter setting of the optimal solutions to the

left. The color scheme is equivalent. The
:::::::::
compromise

:::::::
solutions

:::
for

::
the

::::::::
individual

:::::
years

::::
show

::::::
different

::::::::
parameter

::::::
settings

:::
and

::::
also

::::::
varying

:::::::::
performance

:::
out

::
of

::
the

::::::::
calibration

::::::
period.

::::
Only

:::
the snow-albedo related parameters

::::
show

:
a
::::
trend

::
as

::::
they take rather large values on HEF and

small on LGF. No clear trend is visibile for the other parameters.

poorly when applied to LGF (errors of up to 3500 kgm−2kgm−2). The compromise solution of HEF 2014, however, generally

performs better on LGF than for other years at HEF, and reciprocally, the compromise solution over the whole period at LGF

performs best at HEF in 2014, and the maximum error (up to 2500 kgm−2kgm−2) is lower than for cases of HEF compromise

solutions being applied to LGF. This is probably due to the domination of more negative mass balances in 2012 and 2013 at

HEF, where good model performance is linked to capturing the large extent of the ablation area, whereas the shorter glacier5

tongue at LGF has smaller impact on the mass balance of this glacier. The compromise solution (RMSDall) for all six cases

also highlights that within this set of six the cases HEF 2012 and HEF 2013 are more distinct from the other cases as the overall

compromise solution performs worst in these two cases. For most parameters no clear separation between the two glaciers is

evident, except for fresh snow albedo and the albedo timescale which are both larger at HEF and smaller at LGF. Inspection of

the optimal parameter values reveals that runs with a longer calibration period (RMSDxxx) do not necessarily take trade-off10

values between the individual years. For example, in this case the solution that performs best over both glaciers and the whole

time period (RMSDall) takes larger values of fresh snow density and ice-albedo than any other compromise solution (Fig.

6(b)). This further highlights the model complexity and is suggestive of the effects of physical shortcomings (such as parameter

values that are constant in space and time) cancelling each otherout
:::::::::::
compensating

::::
each

:::::
other.

4.4 Energy balance components15

Analysis of the energy balance components associated with Pareto set
:::
Set solutions offers a qualitative means of verifying

that the identified optimal parameter settings are inkeeping
::
in

:::
line

:
with expected physical processes at the glacier surface.

The energy balance components calculated by the model are expected to vary depending on the parameter settings of an
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Figure 7. The energy balance components for 8/18 selected stake locations close to the central flow line, displayed in different colors for

HEF 2012. Solid bars represent the fluxes of short-wave radiation (SW ), long-wave radiation (LW ), turbulent heat fluxes (QL and QS),

penetrating short-wave (QPS), precipitation heat flux (QP ),conductive heat flux (QC ) and the resultant available heat for melting (QM , here

plotted as a positive flux).

optimal ensemble, which have been demonstrated to span almost the whole parameter space. This variation in energy balance

components is indicative of the uncertainty in the modeled energy fluxes
:::
(we

:::
say

:::::::::::
“indicative”,

:::::::
because

::
the

::::
true

:::::::::
uncertainty

::::
can

::::
only

::
be

:::::::
assessed

:::::
using

::::::::::::
observations,

:::::
which

:::
are

:::
not

::::::::
available

:::::
here). Figure 7 illustrates such variations in the energy balance

components for the case of HEF 2012.
::::
2012

:::::
based

:::
on

:::
the

:::
our

::::::
model,

::::
not

:::::::::
accounting

:::
for

:::::::::::
uncertainties

::
in

:::
the

:::::::::::::
meteorological

::::
input

:::::
itself.

:
In this case, the most uncertain energy balance component is the short-wave radiation, which at the same time5

is the largest energy source for the surface. Total energy flux from short wave radiation decreases with altitude, while the

associated uncertainty increases. The sensible and latent heat flux provide a net energy source to the surface and their value

and uncertainty also decrease with altitude. The long-wave radiation budget is a net energy loss from the surface in summer

and its value increases, and its uncertainty decreases, with elevation. As a result of these elevational patterns in uncertainty, the

uncertainty in energy melt energy is also largest at low elevations.10

The variation of the averaged energy components over the stakes for HEF 2012 are given in Fig. 8. The uncertainties are

generally lower than on a stake basis. The short-wave, conductive ground heat flux and sensible heat flux supply a net heating to

the surface on both glaciers. The precipitation heat flux is also a minor energy source. The penetration of short-wave radiation

and the long-wave budget remove energy from the glacier surface. Latent heat is the only energy flux that has either a positive

or negative effect on the surface energy balance depending on stake location, glacier and year. On both glaciers lower elevation15
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Figure 8. The energy balance components average over all stakes has less uncertainty than on the point scale for HEF 2012. As the objective

functions are all integrated over the whole glacier and therefore the uncertainty is lower. Glacier wide the short-wave radiation is the largest

component with also the largest absolute uncertainty, followed by the turbulent fluxes.The long-wave balance and the penetrating short-wave

radiation provide a net cooling effect for the surface.

locations tend to have
::::
show

:
more positive energy fluxes from latent heat. At HEF this flux is mostly an energy addition to the

glacier surface while on LGF it mostly serves to remove energy from the surface. In the beginning of the summer, sublimation

during the day and condensation/re-sublimation during the night is dominant on HEF, and the general trend over the summer

is to progressively more condensation. LGF shows less condensation during (the) mid-summer, which is mainly attributed to

less windy conditions than at HEF.5

The total contribution of the energy balance components averaged over the glacier are listed in Table 4. The relative uncer-

tainties of the energy balance components are up to 50 % of their contribution on single stake basis and 30 % averaged over

HEF; slightly lower (30 and 25 % respectively) for LGF. This leads to a variation in the available heat for melting and the mass

balance of about 30 % on a point scale. The absolute uncertainty of the seasonally averaged available energy for melting can

reach up to 35 Wm−2 Wm−2 at the tongue area of HEF. This corresponds to a daily melt uncertainty of 9 kgm−2 kgm−2 and10

seasonal uncertainty of up to 1.3 m w.e.kgm−2. The glacier averaged available heat for melting is much less uncertain over all

stakes. This is a result of the calibration process. The sum of total available melt energy is directly linked to the bias as objective

function, which shows the largest value among the optimal solutions on HEF 2012 with 600 kgm−2kgm−2. In comparison the

MADs which are more influenced by the mass balance at the individual stake reach values up to 1000 kgm−2kgm−2.

The largest uncertainty of this energy balance model is
::::::::::
uncertainties

::
in

:::
our

:::::
study

:::
are associated with the short wave radiation15

as a result of the albedo parametrization, which relies on five model parameters. Alternative albedo parametrizations are also

known to be a source of substantial uncertainty in other studies (Willeit and Ganopolski, 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Klok and Oerlemans, 2004; Willeit and Ganopolski, 2017)

. The greatest uncertainty is
:::::::::
commonly found in the accumulation area and around the equilibrium line altitude. This is because

(i) the parametrization for snow albedo has more variation/free model parameters than albedo over ice and (ii) around the ELA
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Table 4. The energy balance components are averaged over all stake locations. The uncertainty is given in respect to the minimum and

maximum of the ensemble. The short-wave radiation (SWnet) has the largest impact, decreasing in importance from 2012 to 14, with a

less negative mass balance (QM ). The penetrating shortwave radiation (QPS) follows the same pattern with opposite effect. The long-wave

budget (LWnet) is lower for LGF. The turbulent fluxes are greatest in 2012 and larger on HEF. The precipitation (QP ) and convective (QC)

heat flux are of minor importance.

SWnet LWnet QS QL QPS QP QM QC

HEF 12 80± 10 −16± 3 31± 9 17± 7 −13± 1 1 103± 19 3 Wm−2Wm−2

HEF 13 75± 11 −21± 3 21± 7 13± 5 −12± 2 0 80± 8 4 Wm−2Wm−2

HEF 14 69± 15 −21± 3 20± 7 8± 5 −10± 2 1 71± 7 4 Wm−2Wm−2

LGF 12 122± 14 −22± 1 14± 4 −3± 1 −19± 3 1 97± 11 4 Wm−2Wm−2

LGF 13 112± 22 −28± 2 8± 3 −3± 2 −16± 4 0 78± 16 5± 1 Wm−2Wm−2

LGF 14 95± 7 −27± 1 9± 2 −2± 1 −12± 1 1 68± 5 5 Wm−2Wm−2

the variation of the ice exposure date increases the uncertainty of short-wave radiation flux. Point scale albedo measurements

combined with localized optimization schemes may solve this issue, but for distributed models a more detailed model may

be necessary to better capture the full complexity of the processes governing initial snow albedo and its chnge through time

(Flanner and Zender, 2006)
::::::
change

::::::
through

::::
time

::::::::::::::::::::::::::
(e.g Flanner and Zender, 2006).

The long-wave radiation has
:::::
shows a lower uncertainty in this study than in Sauter and Obleitner (2015) and its uncertainty is5

mainly due to the air temperature, the related temperature gradient parameter, and the surface temperature. We
:
It

::
is

::::::::
important

::
to

::::
note,

:::
that

:::
we

:
cannot state that the general uncertainty of energy balance models associated with incoming long-wave radiation

is low, rather
::::
since

::
in

:::
this

:::::
study

:
the parametrization was optimized prior to the sensitivity analysis as direct measurements are

available at the weather station.
:::::::::::
Consequently,

:::::::::
long-wave

::::::::
radiation

::
is

:::::::::
considered

::
a

::::::::::::
meteorological

::::::
forcing

::::
here

::::
and

::::::::
therefore

:
it
::::
was

::::::
decided

:::
to

::
do

::::
this

::::
prior

:::::::::::
optimization.

:
The parametrization gives no bias for the station but

:::
the hourly RMSD was up to10

30 Wm−2, which is in the range of the net long-wave budget. This therefore also mainly influences short term differences in

the long-wave budget rather than the seasonal energy flux. Nevertheless, as with albedo, it remains unclear whether long-wave

radiation modules based on air-temperature, cloudiness and sky-view factor are sufficient to model spatio-temporal variation

over a glacier.

The turbulent fluxes are associated with the second largest uncertainty
::
in

::::
this

:::::
study, which is in agreement with other15

studies finding larger uncertainties in the radiative forcing (Willis et al., 2002). Turbulent fluxes are important for determining

short-term variations of melt rates due to, for example, changes in the stability regimes (Lang, 1981). The
:::::::
However,

::::
the

uncertainties in our model are due to differences in roughness lengths and the temperature gradient. Roughness lengths over

ice and snow vary substantially (Braithwaite, 1995, e.g.)
:::::::::::::::::::
(e.g. Braithwaite, 1995) in space and time (Greuell and Konzelmann,

1994; Calanca, 2001), and also with wind speed. The appropriateness of using constants for these values in glacier modelling20

is also questionable, and stability corrections may differ from the glacier margins to the interior, for example. It is therefore
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also questionable how appropriate constant roughness lengths and stability corrections for ice and snow in space and time are.

::::::::::
Furthermore,

::::::
recent

::::::
studies

:::::::::::::::::::::
(Sauter and Galos, 2016)

::::::
showed

::::
that

:::
the

:::::::::
application

:::
of

:::
the

::::::::::::
bulk-approach

::
in

::::::::
complex

::::::::
mountain

:::::
terrain

:::
can

::::::::
generally

:::
be

::::::::::
problematic.

:

The energy balance model used here indicates that it is important to treat penetrating short wave radiation in the surface

energy balance, though its effects are difficult to confirm by empirical measurements. In agreement with Hock (2005) we can5

conclude that heat supplied
::::
Heat

::::::
supply by rain is negligible in the mid-latitudes

:::::
neglect

::::
able

::
in

:::
our

:::::
study

:::::
which

::
is

::
in

:::::::::
agreement

::::
with

::::
other

::::::
studies

:::
on

:::::
alpine

:::::::
glaciers

:::::::::::::
Hock (e.g 2005).

4.5 Implications of this study

The larger glacier, Hintereisferner, has more sensitive parameters and the variation over the stakes is larger than at Langenferner,

as a result of more distinct climate regions on the longer tongue of the larger glacier. This is also true for the uncertainty of10

energy balance components, with the exception of the net solar radiation, which is comparable on both glaciers. Short-wave

radiation is the most uncertain of the energy balance components, due to the albedo parametrization, which accounts for the

change in albedo over time, but does not account for any possible spatial variation in temperature or grainsize-dependent albedo

decay rates. We have shown that the model has difficulties to optimize the upper and lower part of the glacier simultaneously,

as a result of the variable
::::::::
parameter values of physical quantities like albedo. The large spread of our ensemble is a result15

of trade-off solutions between the real albedo at any time at
:::
and

:
any location and the temporally and spatially averaged

parametrization applied. Other parameterizations that are assumed constant in space and/or time, or only indirectly varied

::::::
affected

:
by temperature and altitude dependencies, are also subject to similar trade off effects. Although the physical relations

may not be the same at all times and at the lower tongue area may be quite different from the upper glacier, this does not mean

that
::
the

:
model performance is worse on the larger glacier (HEF) with more variation in a quantitative matter (Table. 3), but20

rather that the solutions of the Pareto front
:::::
Front show more variation in the parameter settings. This analysis clearly identifies

the issue of governing parameters/parameterizations not being constant in space and time as the main problem of distributed

energy balance modeling; the .
::::
The most readily appreciable example of which

::
in

:::
this

::::::
regard is ice albedo which is often lower

nearer
::::
near the terminus due to debris and dust accumulation and water saturation of the glacier surface.

We see
::
To

:::::::
improve

::::
this

::
we

:::::::
suggest two potential approachesto improve this: (1) Although for a broad range of applications ,25

optimizing all key parameters serves a purpose, fixing low sensitivity parameters to common values, which are not optimized,

results in a type of a simplification of the model that reduces over-fitting and potentially increases the stability and comparability

of the energy balance model over short-timescales. The overall performance of such a model will be lower because the tuning

possibilities have been restricted, but better estimates of the
:::::
model

:
uncertainties for out-of-sample periods can be generated.

(2) Parameters or parameterizations could be allowed to vary in space and/or time. This could be achieved either by increasing30

the measurements/data availability or increasing the model complexity. For example snow albedo as well as surface roughness

length depend on the grain size, which in turn could be based on melt rates in the model and lapsed time since the last snowfall.

Parametrizing this requires more
::::
More

::::::::
complex

::::::
albedo

:::::::
schemes

:::
are

:::
for

:::::::
example

::::::::
available

:::
for

:::::::::
snowpack

::::::
models

:::
like

:::::::
Crocus

:::::::::::::::::
Vionnet et al. (2012)

::
or

:::::::::::
SNOWPACK

::::::::::::::::::
Lehning et al. (2002).

:::::::::
However,

::
if

::::
new

:::::::::::::::
parameterizations

:::
are

:::::::::
introduced

::::
they

:::::::
require
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:::::::
sufficient

:
field data to constrain the physical process and should not be just added as additional model free parameters to

optimize.

The approaches in this study are helpful tools to combine these suggestions. A clear understanding of the model sensitivity,

independent of the optimization of the model is necessary to decide on the importance of certain parameters. It gives the option

to fix parameters and focus on the key processes. We have shown that the multi-objective optimization is a valid tool to asses5

uncertainties in the model. The objectives used are all based on the same data (i.e. stake data). This allowed us to show the

uncertainty that is just associated with treating the available data in a different way without requiring additional measurements.

The model can readily be optimized to minimise bias or meet any single value objective, therefore model performance based

on single best fit approaches should be treated with caution. The mass balance as an objective should always be considered

with RMSD or MAD too
:::::::::::
Furthermore,

:
a
::::::

single
:::::::
solution

::::
may

:::::::::::
significantly

:::::
suffer

:::::
from

:::::::::
parameter

::::::::::
over-fitting

:::
and

::
is
::::

not10

:::::::::::
representative

::
in

:::
its

:::::::::
parameter

::::::
settings

::
to
:::::

other
:::
as

:::::::
plausible

::::::::
solutions. The chosen objectives show

:::
that there is inter-annual

variation in the performances of the upper and lower section of the glacier in our cases. The curved nature of the Pareto front

::::
Front

:
highlights that simultaneous optimization of both areas is difficult for the model. Parameters are just not constant, in

either space or time, so the
:::::
model

:
uncertainty increases when the model is applied to other time periods or on another glacier.

The overall
:::::
model

:
uncertainty is in the range of 1kgm−2

:::
,000

:
kgm−2

:::
per

:::::::
summer

::::::
season

:::
for

::::
each

::::::
glacier. It is larger when15

transferring the calibrated model to another alpine glacier, but still of the same order of magnitude.
:::
Our

::::::
results

:::::
reveal

::::::
larger

:::::
model

:::::::::::
uncertainties

::::::
related

::
to

::::::
spatial

:::::::
transfer

::::
than

::::::
found

::
in

:::::::
previous

:::::::
studies

:::::::::::::::::::::::::::
(MacDougall and Flowers, 2011).

:::::
This

:::
can

:::
be

::::::::
explained

::
by

::::
the

::::::::
relatively

::::
large

:::::::::::
inter-annual

::::::::
variability

:::
of

::::
mass

::::::::
balance,

::
as

::::
well

::
as

:::
the

:::::::::::
comparably

::::
large

:::::::
distance

::::::::
between

::
the

:::::::
glaciers

::
in

:::
our

::::::
study. Together with an uncertainty estimation of the energy balance components the key parametrizations,

which need further improvement, can be identified. Within the multi-objective framework it is furthermore possible to focus20

on processes individually: For example if the albedo is measured on the point scale, the difference to its model value could be

used as an objective, instead of a priori calibration of the albedo parametrization itself.

Neither meteorological forcing on the point scale nor mass balance measurements are absolute, and these
::::
free

::
of

::::::
errors,

:::
and

:::
the

::::::
related

::::::
model

:
uncertainties were not formally included

::::::::::
disentangled

:::::
from

:::::
other

:::::::::::
uncertainties

:
in this study. Zemp

et al. (2013) have estimated an annual measurement uncertainty of 140 kgm−2 kgm−2 on point scale glaciological mass25

balance measurements
:
,
:::::
while

:::::::::::::::
Galos et al. (2017)

:::::
report

:::::::::
somewhat

:::::
lower

:::::
values

:::
for

::::::::::::
Langenferner. More information about the

propagation of this error would need to be known
::::
those

:::::
errors

:::
are

:::::::
needed to quantitatively include it

::::
them in the optimization.

But if
::::::::
However,

::
if

::
an

::::::::::
uncertainty

::
of

:
50 kgm−2 uncertainty kgm−2 in the MAD and BIAS is included, the Pareto sets

::::
Sets

increase by one order of magnitudemaking interpretations harder and further .
::::
This

:::::::::::
complicates

::::::
further

::::::::::::
interpretations

::::
and

increases the total output
:::::
model

:
uncertainty.30

The analysis presented here indicate
:::::::
indicates

:
that while mass and energy balance models help us to understand the physical

processes on the glacier, the necessity for parameterizations within these models introduces considerable, variable uncertainty

to the model output. Calibration of surface mass balance models is complex and uncertainty studies are helpful to understand

the
::::
those

:
models, and it is not advisable to draw substantial

::::::
general conclusions from such modeling efforts without first fully
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understanding the inherent model sensitivity and the properties of the uncertainty of the calculated mass balance and associated

energy fluxes in detail.

5 Conclusions

Based on a well developed mass and energy balance model, applied to two well-studied glaciers in the European Alps, this

study gives a robust estimate of the model uncertainty and discusses the advantages of parameter space reduction and multi-5

objective optimization in glaciological modeling.

Using a variance based global sensitivity method model sensitivity to the model free
:::
free

:::::
model

:
parameters was identified,

independent of the calibration data. Model sensitivity to specific parameters is both site- and time- specific, and this should

be acknowledged in wider applications of such models. By separating the parameters into two sensitivity categories the model

parameters to be optimized can be reduced. Those that the model output is sensitive to were subject to a multi-objective10

optimization, while non-sensitive parameters were fixed to literature values.

The multi-objective optimization was based on three objectives related to stake mass balance data measured using the

glaciological method. We used the model bias over all stakes and the mean absolute deviation over the upper and lower part of

the glaciers. It proved difficult to optimize model performance in the upper and lower section of the glacier simultaneously. The

bias over all stakes, which was used as a proxy for the cumulative mass balance, can be minimized easily, and this should be15

considered when optimizing for a single best fit against single values. The ensemble of optimal solutions shows a wide spread

of parameter settings within the physically reasonable range. This implies that the common approach of a single best optimized

parameter set is subject to over-fitting and may significantly differ from other equally plausible solutions,
::::::::
meaning

:::
that

::::
they

:::
are

:::
not

:::::::::::
representative

:::
by

:::::
default. Furthermore, our results show that the constraint of plausible parameters is only marginally linked

to the sensitivity, with very sensitive parameters also taking multiple optimal values. This implies that keeping these parameters20

constant in space and time increases the
:::::
model

:
uncertainty. The overall model uncertainty

:::
(not

::::::::::
accounting

:::
for

:::::::::::
uncertainties

:::::
related

::
to
:::::::::::::
meteorological

::::::
forcing

:::::
data) is in the range of 1 kgm−2 over the whole ensemble

::::
1000

:
kgm−2

:::
per

::::::
summer

::::::
season

:::
on

::
the

:::::
same

::::::
glacier, and increases when applied to the other glacierand years. The model performance is worse when applied to

another glacier, but is of the same order of magnitude as
:::
for the temporal transfer, suggesting the model can be applied, within

its uncertainty, to other glaciers with similar climatic settings.25

Parameter uncertainty is connected with uncertainty in the energy balance components, which, in the cases studied here,

reached 30 % averaged over the glacier and 50 % at individual measurement stake locations. TFor the model used here,
::
In

:::
our

::::
study

:
the most uncertain energy balance components are

::
the

:
net short-wave radiation and

::
the

:
turbulent fluxes. Reasserting

the findings of other studies
::::::::::::::::::::::::::::::::::::::::::::::::
Van De Wal et al. (1992); Klok and Oerlemans (2002, e.g.) that indicate the snow and ice albedo

representation is the most crucial parameter on mid-latitudes glaciers for the summer mass balance.30

Overall the findings of this study highlight that understanding the sensitivity and uncertainty of surface energy and mass

balance models is complex, and simplistic assessments
:
,
::
in

::::::::
particular

:::::
single

::::
best

:::::
guess

::::::::::
approaches,

:
of model performance are

likely to overstate the model capabilities. Further studies such as this, incorporating more models, glaciers and years would
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help
::
to constrain the degree to which results from such models can be considered reliable for regional applications and for

projections of glacier mass balance.

Code availability. The code of the mass balance model can be requested from Thomas Mölg (thomas.moelg@fau.de). Pareto construction

scripts and the updated solar module can furthermore be requested directly from Tobias Zolles (tobias.zolles@uib.no).

Data availability. The used mass balance and meteorological data is available at zenodo.org; DOI:10.5281/zenodo.1326398. All mass bal-5

ance data is publicly available through the WGMS (https://wgms.ch/).

Appendix A: Model description

The mass and energy balance model used here consists of coupled surface and subsurface components. The model computes

mass balance as the sum of solid precipitation, surface deposition, internal accumulation (refreezing of liquid water in snow),

change in englacial liquid water storage, subsurface and surface melt, and sublimation. This approach is based on the surface10

energy balance of a glacier in the following form:

QM +Qice = SWnet+LWnet+QS +QL+QG+QP (A1)

where SWnet is net short-wave radiation, LWnet is the sum if incoming and outgoing long-wave radiation a the glacier surface,

QS andQL are the turbulent fluxes of sensible and latent heat, respectively,QG is the subsurface energy flux comprised ofQC ,

the conductive heat flux in the subsurface, and QPS the energy flux from short-wave radiation penetrating into the subsurface,15

and finally, QP is the heat flux from precipitation. The sum of these fluxes yields a residual flux F which, if the glacier surface

temperature (TS) reaches 273.15 K, represents the latent energy for melting. If TS is below 273.15 K, energy conservation is

achieved by solving TS to balance the fluxes (e.q. Mölg et al., 2009). The model is fully described in the previously mentioned

publications and briefly below.

A1 Long-wave radiation20

The calculation of the incoming long-wave radiation is based on Stefan-Boltzmann law (Mölg et al., 2009; Klok and Oerlemans,

2002; Konzelmann et al., 1994):

LWin = σεTa.
4 (A2)

with σ being the Stefan-Boltzmann constant and ε the emissivity:

ε= εcs(1−np)+ εcln
p (A3)25
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where cs and cl are the clear-sky and cloud emissivity respectively, n is the cloud cover fraction calculated in the solar

module as neff and p an exponent related to the importance of cloud emissivity (Greuell et al., 1997). The cloud emissivity is

computed using

εcl = 0.23+ b(
ea
Ta

)1/8 (A4)

with ea as the atmospheric vapor pressure. The three parameters εcs, p and b were optimized (using a 5000 member Monte5

Carlo) to reproduce the measured long-wave radiation. First the runs within 10 % of the best run in respect to a weighted

average of BIAS and RMSD between the simulated and the measured incoming long-wave radiation at the HEF Station were

determined. The run of this ensemble with the lowest RMSD/BIAS on LGF was taken as the best compromise solution. The

parameters are fixed within the model for the whole study period and are based on three summers of data at HEF and 1.5 at

LGF (therefore a larger impact of the longer data at HEF on the optimization). The trade-off values are taken to be applicable10

on both glaciers with the final values of b= 0.515, n= 1.95 and εcs = 0.994. These setting results in an hourly RMSD below

31/37 Wm−2 for HEF/LGF and no bias, this is not far of the optimal setting for either glacier with 30/36 Wm−2.

The outgoing long-wave radiation follows Stefan-Boltzmann law Eq. (A2), with T the glacier surface temperature and the

emissivity of ice εi is assumed 1.

A2 Convective fluxes15

The latent heat flux (QL) and the sensible (QS) are computed similar to Mölg and Hardy (2004). The calculations are based

on Monin-Obhukov similarity theory (Garratt et al., 1992).

QL = 0.623Lvρ0
1

p0

κ2ν(ea−Es)
ln zm
z0m

ln zν
z0ν

(A5)

with Lv being the enthalpy of vaporization (2.514MJkg−1), ρ0 the air density at mean sea level (1.29 kgm−3), p0 is

1013hPa, κ the van Karman constant (0.4), ea is the water vapor pressure in air and Es the surface value respectively. z0m20

and z0ν are the momentum and scalar roughness length of water vapor. zm and zv is the height above ground where the wind

speed and the water vapor (ea) is measured/calculated. The sensible heat flux

QS = cpρ0
p

p0

κ2ν(Ta−Ts)
ln zm
z0m

ln zh
z0h

(A6)

is computed with cp the specific heat of air at constant pressure, Ta, TS the air and surface temperature and zh the scalar

roughness length for temperature. The roughness length (zj) are model free parameters in this study. The model distinguishes25

three different roughness lengths depending on the glacier surface: fresh snow, firn and ice. For a stable stratified atmosphere

a stability correction based on Phi functions is applied (Mölg and Hardy, 2004).
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A3 Surface albedo and the Albedo-module

The albedo parametrization is based on Oerlemans and Knapp (1998). It computes the broad band albedo for each grid cell,

based on the ice and snow albedo and the depth of the snow pack:

α= αsnow +(αice−αsnow) · exp(
−d
d∗

) (A7)

αice is a model free parameter, d is the snow depth, and d∗ is the characteristic scale for the snow depth and a free parameter5

(Oerlemans and Knapp, 1998). The relation for the snow albedo (αsnow) is

αsnow = αfirn+(αfreshsnow −αfirn) · exp(
−t
t∗

) (A8)

with αfirn, αfreshsnow and t∗ as model free parameters subject of/to optimization. The albedo module (t∗) is a characteristic

time scale in days (Klok and Oerlemans, 2002) and t the time since the last snowfall event (> 0.1cm fresh snow).

A4 Surface Temperature and ground energy flux10

The conductive heat flux (QC) and the energy flux from penetrating shortwave radiation (QPS) determine the ground heat

flux (QG) of the energy balance (EQ. (1)). The model solves the thermodynamic energy equation for a multi-layer grid with

a fixed bottom temperature (15 Layers, 0.1m steps in the first meter, gradually increasing to a total depth of 7 m). The bottom

temperature is a model free parameter. QC is computed from the temperature difference between the surface and the first layer.

The calculation of the penetration of short-wave radiation is based on Bintanja and Van Den Broeke (1995). A constant15

fraction (1− ζi) of the net-shortwave radiation is penetrating the surface and the intensity is exponentially decreasing with

depth. The optimization and sensitivity analysis in this study uses four parameters with the extinction coefficient and the

absorbed fraction (ζi) for snow and ice.

A5 Surface accumulation/precipitation

The surface accumulation is directly related to the precipitation. The model has two threshold values for all liquid and all solid20

precipitation (Mölg et al., 2012). In between these the portion increases linearly. The temperature threshold as well as the

density of solid precipitation are subject of the sensitivity analysis and optimization.

A6 Solar module and solar module sensitivity

The parametrization of the short-wave radiation is based on the calculation of the cloudiness, in the form of the effective cloud

cover fraction neff :25

neff =
1−SWmea/(Dcs+Scs)

k
(A9)

with SWmea being the measured short-wave and Dcs,Scs the calculated diffuse and direct radiation under clear sky condi-

tions. The parameter k determines at which fraction of the clear sky value full cloudiness is achieved i.e. all incoming radiation
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is diffuse. (Important to note, we allow neff > 1 if such low radiation was measured.) The influence of k on the model out-

put was investigated (Appendix A6). The calculation of the clear sky values is described in Mölg et al. (2009). The diffusion

portion of radiation under clear sky conditions was determined using a manual selection of clear sky days. The values var-

ied between the snow free (Kdif = 0.51) and snow covered days (Kdif > 0.65). For the calculations an averaged value of

0.6 was used. As Kdif is a fixed glacier wide value, while snow cover might vary, a modulation depending on the condi-5

tions at the weather station is not possible. The applicability of Kdif as a single value might need to be reevaluated for other

models/applications/research questions.

The calculation of the incoming short-wave radiation on every point of the glacier is based on the assumption of homoge-

neous cloudiness (neff ). It is a reversing of Eq. (A9):

SWdiff = (Dcs+Scs) · (1−neff · k)((1− pdiff ) ·neff + pdiff ) (A10)10

with SWdiff being the calculated diffuse radiation and pdiff the portion of diffuse radiation under clear sky conditions. pdiff

is calculated as the ratio of the clear sky diffuse and total radiation. It was 0.084 and 0.085 for the two glaciers and set to 8.5

% (for both to have a common value). Compared to previous works using the solar module, we changed the increase of diffuse

radiation. Instead of a linear increase of diffuse radiation, the portion of diffuse radiation is linearly increasing with increased

cloudiness. This is a basic parametrization and reproduces the measured radiation fully. Via neff k is determining the ratio of15

direct and diffuse radiation. This could alter the energy balance. The direct radiation is calculated analogous and corrected for

slope and aspect.

The calculation of solar radiation incorporates the free parameter k, which determines at which fraction of the total possible

global radiation everything is considered as diffuse radiation. The parameter k varies with latitude (Hastenrath, 1984) an is not

constant in time either, therefore the effective cloud cover incorporates some of its variability and is not exactly the cloudiness20

(Mölg et al., 2009). With the new used parametrization (eq. A10) the global solar radiation at the weather station can be fully

reproduced so k cannot be optimized. But it determines the portions of direct and diffuse radiation, which may have a significant

influence on the energy and mass balance. Therefore, an additional GSA was performed with the parameter k as the 24th model

free parameter. Based on the values for the tropics 0.65 (Mölg et al., 2009) and the arctic with ≈ 0.85 (Hock and Holmgren,

2005) it was varied in this range for the sensitivity analysis. Its maximum sensitivity index over all 7 investigated stakes in25

the GSA was 2× 10−3, which is one order of magnitude lower than the threshold for our sensitive parameters. Therefore, the

choice of k within the given range is not influential on the simulation of the mass balance on/at the glacier. The model albedo

does not vary between direct and diffuse radiation, so it only influences the total amount of radiation at less/more shaded areas

than the weather station.

Furthermore, the change in the calculation of direct and diffuse components from linear with cloudiness to a linear increase30

of the fraction are better suited to represent the site radiation. This is in agreement with measured radiation by Hock and

Holmgren (2005) on the Arctic glacier, Storglaciären (fig. S. 5). The slightly higher starting value (pdiff ) is due to larger

portion of diffuse radiation under clear sky conditions in the arctic than in the mid-latitudes and a higher final value is due

to a smaller k in this study with 0.8 compared to around 0.85 in the arctic. The influence of this change in parametrization is
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probably also rather small, as the model is not sensitive to changes in the relative fractions of diffuse and direct radiation on

the chosen glaciers/stake location.
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