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Abstract. We present a workflow for rapid delineation and microtopographic characterization of ice wedge polygons within 10 

high-resolution digital elevation models. At the core of the workflow is a convolutional neural network used to detect pixels 

representing polygon boundaries. A watershed transformation is subsequently used to segment imagery into discrete polygons. 

Fast training times (<5 minutes) permit an iterative approach to improving skill as the routine is applied across broad 

landscapes. Results from study sites near Barrow and Prudhoe Bay, Alaska demonstrate robust performance in diverse tundra 

settings, with manual validations demonstrating 70-96% accuracy by area at the kilometer scale. The methodology permits 15 

precise, spatially extensive measurements of polygonal microtopography and trough network geometry. 

1 Introduction and Background 

This research addresses the problem of delineating and measuring ice wedge polygons within high-resolution digital 

elevation models (DEMs). Ice wedge polygons are the surface expression of ice wedges, a form of ground ice nearly ubiquitous 

to coastal tundra environments in North America and Eurasia (Leffingwell, 1915; Lachenbruch, 1962). High resolution 20 

inventories of ice wedge polygon microtopography are of hydrologic and ecologic interest, because decimeter-scale variability 

in polygonal relief can drive pronounced changes to soil drainage (Liljedahl et al., 2016), and surface emissions of CO2 and 

CH4 (Lara et al., 2015; Wainwright et al., 2015). At typical sizes, several thousand ice wedge polygons may occupy a single 

square kilometer of terrain, motivating our development of an automated approach to mapping. The key innovation in our 

method is the use of a convolutional neural network (CNN), a variety of machine learning algorithm, to identify pixels 25 

representing polygon boundaries. Integrated within a set of common image processing operations, this approach permits the 

extraction of microtopographic attributes from entire populations of ice wedge polygons at the kilometer scale or greater.  

 Previous geospatial surveys of polygonal microtopography have often aimed to map the occurrence of two 

geomorphic endmembers: basin-shaped low-centered polygons (LCPs), which are characterized by rims of soil at the 

perimeters, and hummock-shaped high-centered polygons (HCPs), which often are associated with permafrost degradation. 30 
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Analyses of historic aerial photography have demonstrated a pan-Arctic acceleration since 1989 in rates of LCP conversion 

into HCPs, a process which improves soil drainage and stimulates enhanced emissions of CO2 (Jorgenson et al., 2006; Raynolds 

et al., 2014; Jorgenson et al., 2015; Liljedahl et al., 2016). Nonetheless, precise rates of geomorphic change have been difficult 

to quantify, as these surveys typically have relied on proxy indicators, such as the presence of ponded water in deepening HCP 

troughs. In a related effort to characterize contemporary polygon microtopography, a landcover map of LCP and HCP 5 

occurrence across the Arctic coastal plain of northern Alaska was recently developed using multispectral imagery from the 

Landsat 8 satellite at 30 m resolution (Lara et al., 2018). This dataset offers a static estimate of variation in polygonal form 

over unprecedented spatial scales; however, geomorphology was inferred from the characteristics of pixels larger than typical 

polygons, preventing inspection of individual features. 

 Higher-resolution approaches to segment imagery into discrete ice wedge polygons have often been motivated by 10 

efforts to analyse trough network geometry. On both Earth and Mars, for example, paleo-environmental conditions in remnant 

polygonal landscapes have been inferred by comparing parameters such as boundary spacing and orientation with systems in 

modern periglacial terrain (e.g., Pina et al., 2008; Levy et al., 2009; Ulrich et al., 2011). An early semi-automated approach to 

delineating Martian polygons from satellite imagery was developed by Pina et al. (2006), who employed morphological image 

processing operations to emphasize polygonal boundaries, then applied a watershed transformation (discussed in Section 4.1.3) 15 

to identify discrete polygons. This workflow was later applied to lidar-derived DEMs from a landscape outside Barrow, Alaska 

by Wainwright et al. (2015), but in their experience and our own, robust results at spatial scales approaching a square kilometer 

or greater were elusive. 

 Our application of CNNs to the task of identifying polygonal troughs was inspired by the remarkable solutions that 

CNNs recently have permitted to previously intractable image processing problems. Aided by advances in the performance of 20 

graphics processing units (GPUs) over the last decade, CNNs have demonstrated unprecedented skill at tasks analogous to ice 

wedge polygon delineation, such as cell membrane identification in biomedical images (Ciresan et al., 2012) or road extraction 

from satellite imagery (Kestur et al., 2018; Xu et al., 2018). Motivated by this potential, an exploratory study was recently 

conducted by Zhang et al. (2018), who demonstrated that a sophisticated neural network, the Mask R-CNN of He et al. (2017), 

is capable of end-to-end extraction of ice wedge polygons from satellite-based optical imagery, capturing ~79% of ice wedge 25 

polygons across a >134 km2 field site and classifying each as HCP or LCP. The authors concluded that the method has potential 

for pan-Arctic mapping of polygonal landscapes. Here we explore an alternative approach, using a less complex CNN paired 

with a set of post-processing operations, to extract ice wedge polygons from high-resolution DEMs derived from airborne 

Lidar surveys. An advantage to this method is that training the CNN is rapid (~5 minutes or less on a personal laptop), 

permitting an iterative workflow in which supplementary data can easily be incorporated to boost skill in targeted areas. We 30 

demonstrate the suitability of this approach to extract ice wedge polygons with very high accuracy (up to 96% at the kilometer 

scale), applying it to ten field sites of 1 km2 outside Barrow and Prudhoe Bay, Alaska. Because our method operates on high 

resolution elevation data, it enables direct measurement of polygonal microtopography, and we anticipate that in the future, 

the method will permit precise monitoring of surface deformation in landscapes covered by repeat airborne surveys. 
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2 Study areas and data acquisition 

 To demonstrate the flexibility of our approach, we applied it simultaneously at two clusters of study sites near Barrow 

and Prudhoe Bay, Alaska, settings with highly divergent ice wedge polygon geomorphology, ~300 km distant from one another 

(Fig S1). 

2.1 Barrow 5 

The first cluster of study sites (Figs. S2-S3) is located within 10 km of the Beaufort Sea coast in the Barrow 

Environmental Observatory, operated by the National Environmental Observatory Network (NEON). Mean elevation is less 

than 5 m above sea level, and vegetation consists of uniformly low-growing grasses and sedges. Mesoscale topography is 

mostly flat but marked by depressions up to 2 m deep associated with draws and drained lake beds. In the landcover map of 

Lara et al. (2018), the area is characterized by extensive coverage by both LCPs and HCPs, with occasional lakes and patches 10 

of non-polygonal meadow. Microtopography at the sites reflects nearly ubiquitous ice wedge development, which becomes 

occluded in some of the depressions. Ice wedge polygons are of complex geometry and highly variable area, ranging from 

~10 m2 to >2000 m2. An airborne lidar survey was flown in August 2012 as part of the U.S. Department of Energy’s Next 

Generation Ecosystems Experiment-Arctic program (https://ngee-arctic.ornl.gov/). The resulting point cloud was processed 

into a 25 cm horizontal resolution DEM with an estimated vertical accuracy of 0.145 m (Wilson et al., 2012). In the present 15 

study, to compare algorithm performance on data of variable spatial resolution, the 25 cm DEM was resampled at 50 cm and 

100 cm resolution. Two sites of 1 km2, here referred to as Barrow-1 and Barrow-2, were extracted from the DEMs and 

processed using our workflow. 

2.2 Prudhoe Bay 

The second cluster of sites (Figs. S4-S11) is approximately 300 km east of the first and farther inland, located ~40 km 20 

south of Prudhoe Bay, AK (Fig S1). As at Barrow, vegetation consists almost exclusively of low and even-growing grasses 

and sedges. Mesoscale topography is generally flat, with a slight (<4%) dip toward the northwest. In the landcover map of 

Lara et al. (2018), the area is primarily characterized by HCPs, with smaller clusters of LCPs, patches of non-polygonal 

meadow, and occasional lakes. Ice wedge polygons are generally of more consistent area than those of Barrow, ~400-800 m2. 

Airborne lidar data was acquired in August 2012 by the Bureau of Economic Geology at the University of Texas at Austin 25 

(Paine et al., 2015) and subsequently processed into 25 cm, 50 cm, and 100 cm resolution DEMs. Vertical accuracy was 

estimated at 0.10 m. As the Prudhoe Bay survey area is substantially larger than the survey area at Barrow, eight sites of 1 km2, 

here referred to as Prudhoe-1 through Prudhoe-8, were extracted from the DEMs and processed using our workflow. 
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3 Methods 

3.1 Polygon delineation algorithm 

A chart summarizing our iterative workflow is presented in Fig. 1, and several intermediate stages in the polygon 

delineation algorithm are illustrated in Fig. 2. In the first (pre-processing) stage, regional trends were removed from a DEM 

(Fig. S12), generating an image of polygonal microtopography (Fig. 2A). Next, the microtopographic information was 5 

processed by a CNN, which was trained to use the 27×27 neighborhood surrounding each pixel to assign a label of “boundary” 

or “not boundary” (Fig. 2B). A distance transformation was then applied, (i.e., each non-boundary pixel was assigned a 

negative intensity proportional to its Euclidean distance from the closest boundary), generating a grayscale image analogous 

to a DEM of isolated basins, in which the polygonal boundaries appear as ridges (Fig. 2C). Subsequently, a watershed 

transform was applied to segment the image into discrete ice wedge polygons (Fig. 2D). These steps, and a post-processing 10 

algorithm used to remove non-polygonal terrain from the final image, are described in detail below. 

3.1.1 Pre-processing 

In the pre-processing stage, regional topographic trends were estimated by processing the DEM with a 2D filter, 

which assigned to each pixel the mean elevation within a 20 m radius. This radius was chosen such that the area over which 

elevation was averaged would be larger than a typical ice wedge polygon. Polygon-scale microtopography was then estimated 15 

by subtracting the regional topography from the DEM (Fig S12). In preparation for passing the data to the CNN, 

microtopography was subsequently converted to 8-bit gray-scale imagery. The minimum intensity (0) was assigned to 

depressions of 0.7 m or greater, and the maximum intensity (255) was assigned to ridges of 0.7 m or greater. These bounds 

captured >99% of pixel values at each study site. Finally, one thumbnail-sized image was created for each pixel in the 

microtopography raster, capturing the immediate neighbourhood surrounding it. These thumbnail images were the direct input 20 

to the CNN. The CNN required the width in pixels of each thumbnail to be an odd multiple of 9; therefore, at 50 cm resolution 

the thumbnails were assigned a width of 27 pixels (13.5 m), at 25 cm resolution a width of 45 pixels (11.25 m), and at 100 cm 

resolution a width of 27 pixels (27 m). The width of these thumbnails was chosen such that each image would contain sufficient 

spatial context for a human observer to distinguish easily between polygonal boundaries, which typically were demarcated by 

inter-polygonal troughs, and other microtopographic depressions such as LCP centers. 25 

3.1.2 Convolutional neural network 

The function of the CNN in our workflow was to identify pixels likely to represent boundaries. Conceptually, a CNN 

is a classification tool that accepts images of a fixed size (in our case, the thumbnails described in the previous section) as 

input and generates categorical labels as output. The CNN determines decision criteria through training with a set of manually-

labeled images. The architecture of a CNN consists of a user-defined sequence of components, or layers, which take inspiration 30 

from the neural connections of the visual cortex. We developed our CNN in MATLAB (R2017b) using the Image Processing, 
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Parallel Computing, and Neural Network toolboxes. We purposefully constructed the CNN with an architecture of minimal 

complexity, to maximize the efficiency of training and application. Here we briefly describe the function of each layer in our 

CNN; for more detailed description, the reader is directed to Ciresan et al. (2012).  

 Summarized in Table S1, the most important components of our CNN were a single convolutional layer, a max-

pooling layer, and two fully connected layers. In the convolutional layer, a set of 2D filters was applied to the input image, 5 

generating intermediate images in which features including concavities, convexities, or linear edges were detected. The max-

pooling layer downsized the height and width of these intermediate images by a factor of three, by selecting the highest 

intensity pixel in a moving 3×3 window with a stride of 3 pixels. Each pixel in the downsized intermediate images was then 

passed as an input signal to the fully connected layers, which functioned identically to standard neural networks. Two 

additional components of our CNN were Rectified Linear Unit (ReLU) layers, which enhance non-linearity by reassigning a 10 

value of zero to any negative signals output by a preceding layer, and a softmax layer, which converted the output from the 

final fully connected layer into a probability for each categorical label (i.e., boundary or not boundary).  

 During training, the weights of the 2D filters in the convolutional layer and the activation functions of the neurons in 

the fully connected layers were optimized to correctly predict the labels in a training deck of images. Our workflow was 

designed to generate the training deck primarily by processing 100 ×100 m tiles of manually-labeled imageryIn each of these 15 

tiles, boundary pixels were delineated by hand in a standard raster graphics editor, a process that required ~1 hour per tile at 

50 cm resolution (Fig. S13A). Our algorithm imported these tiles, identified the geographic coordinates of each pixel identified 

as a boundary, then created a thumbnail image centered on that pixel from the 8-bit microtopographic imagery. This procedure 

generated several thousand thumbnail images centered on boundaries from each manually delineated tile. Subsequently, an 

equal number of pixels not labeled as boundaries were selected at random, and the thumbnail extraction procedure was 20 

repeated, generating a set of non-boundary images for the training deck. Finally, for more targeted training that did not require 

full delineation of a 100 ×100 m tile, individual instances of boundary or non-boundary features could also be added to 

supplement the training deck, based again on manual delineation (Fig. S13B). Just prior to training, 25% of the training deck 

assembled by these methods was set aside to be used for validation. 

 Once trained, the CNN was executed to assign a label of “boundary” or “not boundary” to the thumbnail image 25 

corresponding to each pixel of a study site. These labels were then reassembled into a binary image of polygon boundaries 

(Fig. 2B), which was further processed to extract discrete ice wedge polygons.  

3.1.3 Polygon extraction 

After applying the CNN to classify all pixels at a site as boundary or not boundary, we extracted discrete ice wedge 

polygons by applying several standard image processing operations. The first step was elimination of “salt and pepper” noise 30 

in the binary image, which we accomplished by eliminating all contiguous sets of boundary-identified pixels with an area 

< 20 m2. This threshold was selected based on the reasoning that most true boundary pixels should be part of a continuous 

network, covering an area arbitrarily larger than 20 m2, while most false detections should occur in smaller clusters. Next, we 
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applied a distance transform, assigning to every non-boundary pixel a negative intensity equal to its Euclidean distance from 

the nearest boundary. This created an intermediate image in which each ice wedge polygon appeared as a valley, surrounded 

on all or most sides by ridges representing the ice wedge network (Fig. 2C). At this stage, to prevent over-segmentation, valleys 

with maximum depths of 1.5 meters or less were then identified and merged with the closest neighbor through morphological 

reconstruction (Soille, 1992). The effect of this procedure was to ensure that the algorithm would only delineate polygons 5 

whose centers contained at least one point greater than 1.5 m from the boundaries, as field observations indicate that ice wedge 

polygons tend to measure at least several meters across (Leffingwell, 1915; Lachenbruch, 1962). Next, watershed segmentation 

was applied to divide the valleys into discrete polygons (Fig. 2D). Our use of this operation was inspired by its incorporation 

in the polygon delineation method developed by Pina et al. (2006). Conceptually, this procedure was analogous to identifying 

the up-gradient region or area of attraction surrounding each local minimum. 10 

3.1.4 Partitioning of non-polygonal ground  

In the final stage of delineation, we partitioned out regions of a survey area that had been segmented using the 

techniques described above, but were unlikely to represent true ice wedge polygons. For example, polygons were eliminated 

from the draw in the southern half of Barrow-1 (Fig. S2A), where microtopography was too occluded to permit accurate 

delineation. Toward this aim, our algorithm analysed individually each boundary between two polygons (black line segments 15 

in Fig. 2D), tabulating the number of pixels that had been identified positively by the CNN (white pixels in Fig. 2B). It then 

dissolved all boundaries in which less than half the pixels had been classified positively, merging adjacent polygons. In 

practice, this procedure resulted in areas of non-polygonal terrain being demarcated by unusually large “polygons.” We 

removed these areas by partitioning out any polygon with an area greater than 10,000 m2, a threshold selected to be arbitrarily 

larger than most real ice wedge polygons. This procedure had the strengths of being conceptually simple and providing a 20 

deterministic means of partitioning non-polygonal terrain from the rest of a survey area.  

3.2 Microtopographic analysis 

To demonstrate the capabilities of our workflow for microtopographic analysis, we developed a simple method for 

measuring the relative elevation at the center of each delineated polygon, serving as a proxy for LCP or HCP form. In each 

polygon, we first applied a distance transform, calculating the distance from the closest boundary of all interior pixels. We 25 

then divided the area of the polygon in half at the median distance from boundaries, designating a ring of “outer” pixels and 

an equally sized core of center pixels. Microtopographic relief was then estimated as the difference in mean elevation between 

the center and outer pixels. 

3.3 Case study experimental design 

The case study was first conducted using topographic data at 50 cm resolution, then repeated at 25 cm and 100 cm 30 

resolution. Training was focused primarily on sites Prudhoe-1 and Barrow-1. Leveraging the rapid training and application 
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times of our CNN, we manually delineated one 100 ×100 m tile of imagery at a time from either site, trained the CNN, extracted 

results from both sites, then introduced additional training data from regions of poor performance to improve skill (Fig. 1). 

After four iterations of this approach, the CNN incorporated training data from three fully-delineated tiles at Barrow-1 and one 

at Prudhoe-1, representing 3% and 1% of the sites, respectively. From this point, we opted to “fine-tune” the CNN by 

supplementing the training deck directly with instances of problematic features, rather than using information from fully-5 

delineated tiles. Several examples of boundary and non-boundary features were included from Barrow-1 and Prudhoe-1. Next, 

to test its extensibility, the CNN was applied across the remaining sites, and re-trained once more. In this final iteration, several 

instances of boundary and non-boundary features (but no fully delineated tiles) were incorporated into the training deck from 

sites Prudhoe-2, Prudhoe-3, and Prudhoe-4. No training data at all were incorporated from sites Prudhoe-5 through Prudhoe-8 

or Barrow-2. (All training data used in the final iteration of our workflow can be viewed in the data and code repository 10 

accompanying this article.) Once this procedure was complete at 50 cm resolution, training decks at 25 cm and 100 cm 

resolution were prepared. To generate CNNs comparable to the network trained on 50 cm data, the 25 cm and 100 cm training 

decks were constructed using data sampled from identical geographic locations, but manual labeling was performed without 

reference to the labeled 50 cm resolution data. 

After the CNN was trained and applied across all study sites, we quantified the performance of the polygon delineation 15 

algorithm through manual validation. At each site, we first calculated the total area and number of polygons extracted from 

the landscape. We then randomly sampled 500 of the computer-delineated polygons, and classified each as either whole, 

fragmentary, conglomerate, or false. Fragmentary polygons were defined as computer-delineated polygons that included less 

than 90% of one real polygon; conglomerate polygons were defined as computer-delineated polygons comprising parts of two 

or more real polygons; and false polygons were defined as computer-delineated polygons occupying terrain in which no 20 

polygonal pattern was deemed visible to the human evaluator. The percentage of computer-delineated polygonal terrain 

corresponding to each class was then calculated by number of polygons and by area. This procedure was completed for all ten 

study sites at 50 cm data resolution, and for sites Prudhoe-1 and Barrow-1 at 25 cm and 100 cm resolution. 

4 Results and discussion  

4.1 Training speed and accuracy 25 

 Due to the compact architecture of our CNN, training speeds at 50 cm resolution and 100 cm resolution were rapid. 

At 50 cm resolution, the training procedure operated on a deck of ~36,000 thumbnail images. Executed on a personal laptop 

with an Intel i7 CPU and a single GeForce MX150 GPU, accuracies >97% on the training deck and >95% on the validation 

deck of thumbnails were achieved in less than five minutes. At 100 cm resolution, the procedure operated on ~12,000 thumbnail 

images, achieving comparable levels of accuracy within 90 seconds. These speeds enable the iterative approach to training on 30 

which our workflow is based (Fig. 1), as the CNN can be re-trained quickly to incorporate new data when applied across 

increasingly large areas.  
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 Using 25 cm resolution data, the training procedure operated on a set of ~115,000 thumbnail images. Accuracies 

>97% on the training deck and >95% on the validation deck were once more obtained, but training required just under one 

hour on the same computer. This substantial increase to training time is attributable to the facts that more thumbnail images 

were processed, and the number of pixels in each thumbnail was larger, making execution of the CNN more computationally 

expensive.  5 

4.2 Delineation speed and validation 

 Operating at 50 cm resolution, delineation of ice wedge polygons within a 1 km2 field site required ~2 minutes, 

including application of the CNN and subsequent post-processing. Results generally were very accurate; across study sites, 

~1000-5000 ice wedge polygons were detected per square kilometer, of which 85-96% were estimated as “whole” during 

manual validation, representing 70-96% of the polygonal ground by area (Table 1). The most common type of error at all sites 10 

with <95% accuracy was incorrect aggregation of several real ice wedge polygons into a single feature. Unsurprisingly, 

performance was strongest at sites with clearly defined polygon boundaries and relatively simple polygonal geometry, such as 

Prudhoe-1, Prudhoe-7, and Prudhoe-8 (Figs. S4, S10, S11). In contrast, performance was weakest at sites such as Barrow-2 or 

Prudhoe-6 (Figs. S2, S9), where considerable swaths of terrain are characterized by faint microtopography, as ice wedge 

polygons appear to grade into non-polygonal terrain. In such locations, polygonal boundaries frequently went undetected, 15 

resulting in the delineation of unrealistically large conglomerate polygons. In general, the results of the delineation clearly 

illustrate that the polygonal network at Barrow possesses more complex geometry than Prudhoe Bay, with many instances 

where secondary or tertiary ice wedges appear to subdivide larger ice wedge polygons. 

 Although simple, our post-processing procedure for partitioning out non-polygonal ground from the results was 

generally accurate. Examples of features successfully removed from the 50 cm resolution DEMs included thaw lakes (Figs. S6-20 

S10), drained thaw lake basins (Fig. S2), stream beds (Figs. S5, S9), non-polygonal marsh (Figs. S3, S7, S9), shallow ponds 

(Fig. S7), and the flood plain of a braided stream (Fig. S10). Because the partitioning procedure removed areas with a low 

density of boundaries identified by the CNN, we found that it could be trained efficiently by supplementing the training deck 

with extra examples of “non-boundary” thumbnails extracted from these regions. Across the study sites, we encountered almost 

no cases where well-defined polygons were mistakenly partitioned out. Instances of non-polygonal ground mistakenly 25 

classified as polygonal accounted for less than 1% of machine-delineated polygons by area.  

 When the delineation algorithm was repeated using data at 100 cm resolution, delineation speeds increased somewhat, 

but performance dropped significantly, with greater declines occurring in the challenging environment of Barrow (Table S2). 

We attribute declines in performance to an obscuration of fainter polygonal boundaries at this resolution, and to decreases in 

the amount of contextual information that can be derived from the neighbourhood of any given pixel, reducing the capacity 30 

for the algorithm to distinguish between polygonal troughs and other microtopographic depressions (Fig. S14). Somewhat 

surprisingly, performance also declined slightly using data at 25 cm resolution, with larger fractions of fragmentary and false 

polygons accounting for most of the increases in errors (Table S2). We attribute these mistakes to the larger number of 
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distinguishable features in the higher resolution data, leading the algorithm to more frequently mistake features not encountered 

in the training dataset as boundary pixels. As the imagery nonetheless is of sufficient resolution for our purposes, we anticipate 

that, with augmentations to the training dataset, performance at 25 cm resolution could improve and even exceed performance 

at 50 cm resolution; however, performance speeds were generally inhibitory to our workflow, as delineation required ~50 

minutes per square kilometer. We therefore conclude that 50 cm resolution data is optimal for our analysis.   5 

4.3 Measurement of polygonal microtopography 

 The time required to execute our procedure for measuring polygonal microtopography varied from ~10-30 seconds 

per square kilometer at 50 cm resolution, depending on the number of polygons delineated. A comparison of calculated relief 

at polygon centers between Prudhoe-1 and Barrow-1 reveals that both sites are characterized by the prevalence of HCPs, which 

surround smaller clusters of LCPs (Fig. 3). Relief tends to be more extreme at Barrow, with the relative elevation of polygon 10 

centers commonly approaching 20-30 cm. Our automated calculations of relief align well with visual inspection of the DEMs, 

as rimmed LCPs are consistently assigned negative center elevations. To our knowledge, our results represent the first direct 

measurement of polygonal relief at the kilometer-scale, demonstrating a spectrum of center elevations rather than a binary 

classification into LCP or HCP. We anticipate these measurements may be useful for further investigations into relationships 

between microtopography, soil moisture, and carbon fluxes (e.g., Wainwright et al., 2015). 15 

4.4 Comparison with Mask R-CNN and future applications 

 Several key differences are apparent between the workflow presented in this paper (hereafter termed the CNN-

watershed approach) and a recent implementation of Mask R-CNN for mapping of ice wedge polygons (Zhang et al., 2018), 

revealing relative strengths to each approach. An advantage of the CNN-watershed approach, stemming from its sparse neural 

architecture, is that training times are extremely rapid, facilitating iterative improvements to skill (Fig. 1). In contrast, although 20 

inference times using the CNN-watershed approach are reasonable, extraction of ice wedge polygons over broad landscapes 

is several times faster using Mask R-CNN, with a reported time of ~21 minutes for inference over 134 km2 of terrain (Zhang 

et al., 2018). Because the CNN-watershed approach operates on high-resolution DEMs, it enables direct quantification of 

polygonal relief, whereas Mask R-CNN instead produces a binary classification of each polygon as either LCP or HCP. The 

CNN-watershed approach is therefore useful for generating unique datasets summarizing polygonal geomorphology, 25 

demonstrating high-performance at spatial scales typical of airborne surveys using lidar or photogrammetry to produce high-

resolution DEMs. In comparison, because Mask R-CNN has been trained to operate on satellite-derived optical imagery with 

global coverage, it is uniquely well-suited for application across very broad regions, with potential to generate pan-Arctic maps 

of land cover by polygon type. Because of differences in training and inference procedures and the spatial scales at which they 

ideally operate, the training data requirements and accuracy of the two approaches are difficult to compare directly; 30 

nonetheless, in several aspects, performance appears to be similar (Text S1). 
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 Because the CNN-watershed approach generates direct measurements of polygonal microtopography, one application 

to which it is uniquely amenable is precise monitoring of microtopopographic deformation in areas covered by repeat airborne 

surveys. Through such analysis, we anticipate that it will permit polygon-level quantification of ground subsidence over 

timespans of years, potentially yielding new insights into the vulnerability of various landscape units to thermokarst. An 

additional research problem to which the CNN-watershed approach is well-suited is quantification of polygonal network 5 

parameters, such as boundary spacing and orientation, to explore relationships to environmental factors such as climate (e.g., 

Pina et al., 2008; Ulrich et al., 2011). These boundaries (black line segments in Figs 2D, 3B, 3D) are naturally delineated 

through implementation of the watershed transformation. We acknowledge that, because the surface expression of ice wedges 

is sometimes subtle or non-existent, ground-based delineation methods are the highest-accuracy approach to mapping ice 

wedge networks (Lousada et al., 2018). Nonetheless, by segmenting machine-delineated networks into individual boundaries, 10 

our workflow permits the estimation of network statistics at spatial scales unattainable through on-site surveying. 

5 Conclusions 

A relatively simple CNN paired with a set of common image processing techniques is capable of extracting polygons 

of highly variable size and geometry from high-resolution DEMs of diverse tundra landscapes. Successful application of the 

CNN is facilitated by its sparse neural architecture, which permits rapid training, testing, and incorporation of new data to 15 

improve skill. The optimal spatial resolution for DEMs processed using the workflow is ~50 cm. Potential applications for the 

technology include: generation of high-resolution maps of land cover by polygon type, precise quantification of 

microtopographic deformation in areas covered by repeat airborne surveys, and rapid extraction of center elevations and 

boundary parameters including spacing and orientation. These capabilities can improve understanding of environmental 

influences on network geometry and facilitate assessments of contemporary landscape evolution in the Arctic. 20 
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Figure 1.  Schematic of our iterative workflow for polygon delineation. 
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Figure 2.  Illustration of several intermediate stages in our workflow. The CNN processes information stored in 8-bit grayscale 

imagery representing microtopography (A), estimated by removing regional trends from the lidar DEM (Fig S2). The 

CNN identifies pixels likely to represent troughs (B). Each non-trough pixel is assigned a negative intensity equal to its 5 

distance from a trough (C) and a watershed transformation is applied to segment the image into discrete polygons (D) 

(colors randomly applied to emphasize polygonal boundaries). 
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Table 1.   Results of manual validation at 50 cm data resolution (sites are 1 km2).  
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Barrow-1 2555 68.3 94.2 2.2 2.2 1.4 86.9 1.4 7.5 4.2 

Barrow-2 2613 68.8 91.6 2.8 5.6 0.0 79.9 3.6 16.5 0.0 

Prudhoe-1 3227 99.9 95.6 2.8 1.4 0.2 96.3 2.2 1.4 0.0 

Prudhoe-2 4685 94.5 91.6 1.4 7.0 0.0 87.7 1.7 10.6 0.0 

Prudhoe-3 1112 48.2 91.2 3.6 5.2 0.0 82.3 4.2 13.4 0.0 

Prudhoe-4 1956 60.4 88.2 4.2 7.2 0.4 81.4 3.2 14.9 0.5 

Prudhoe-5 2969 77.9 91.8 4.0 4.2 0 87.7 1.7 10.6 0 

Prudhoe-6 1605 65.5 85.8 5.4 8.2 0.4 69.5 4.8 22.1 3.4 

Prudhoe-7 1348 47.3 94.0 2.2 3.6 0.2 90.5 1.7 7.9 0.0 

Prudhoe-8 3288 100 96.0 2.2 1.6 0.2 95.2 1.5 3.2 0.0 
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