
Dear Dr. Nitze, 

 

Thank you very much for your review or our article and suggestions for 

improvement. To address several of your major concerns, we have entirely re-written 

the results and conclusion section of the manuscript, incorporating a quantitative 

evaluation of algorithm performance. At the request of the other reviewer, we have 

also extended the spatial extent of our analysis, and included a detailed comparison 

with a similarly focused study published in the last several weeks. Additionally, we 

have constructed a flow chart for our methods (Fig. 1) and provided the editor with a 

repository of our code and data, which we understand will be forwarded to you and 

the other referee. Please find attached our response (in bold) to the remainder of 

your comments (copied here in italics), followed by our revised manuscript and 

supplementary information. 

 

-Chuck Abolt 

 

General summary: The manuscript with the title “Rapid machine learning-based extraction 

and measurement of ice wedge polygons in airborne lidar data” describes the application of 

novel convolutional neural network (CNN) image recognition concepts for the delineation of 

ice-wedge polygons from DEM data. The methodology was tested in two different sites in 

northern Alaska. The application of state-of-the-art image recognition methods is a rather 

new and unexplored approach in remote sensing applications of the cryosphere. The paper 

has a strong technical focus and describes the methods thoroughly. Delineating ice-wedge 

polygon networks is an essential task for quantifying ground ice, predicting the resilience 

against degradation and understanding local scale hydrology. In contrast to the positive 

novelty of the paper, this paper lacks several major points. The authors remain very vague 

in the results sections, with practically no quantification or accuracy assessment of the 

results. To the reader it is hard to estimate the accuracy strengths and weaknesses of the 

method, as the results are presented rather qualitatively. Furthermore, the title suggests 

that the authors used Lidar data as their key input. This is somewhat misleading, as they 

used DEMs, which are based on Lidar data, but could be technically processed from other 

sources. As this manuscript has a technical focus I would really like to see a flowchart in 

this paper, as this will help to follow the processing chain much better. Furthermore, the 

authors did not mention any software (programming languages, packages) they used, which 

might be interesting for the readers. For the review process I am interested to see the code 

and the data. Overall I see a good potential for publication due to the interesting application 

of novel image recognition methods for delineating IW-polygons. However, the manuscript 

needs improvement in several sections, particularly in the results and discussion section. 

Therefore I recommend a major revision. Specific comments are stated below. 



1. Title: The title is somewhat misleading as you used a high-resolution DEM instead of 
Lidar data. The source data for the DEM creation was Lidar, but not not essential for your 
study, therefore I recommend to change the title. 
 
We have changed the title to “Rapid machine learning-based extraction and 
measurement of ice wedge polygons in high-resolution digital elevation models” 
(1:3). We have also changed the text in several spots to be more general, describing 
the source data as high-resolution DEMs rather than airborne lidar data. 
 
2. 1:17. The first sentence is in my opinion out of place and it would be better to state 
the objective of the study after introducing the general problem. 
 
We have re-worded most of the first paragraph to focus generally on the problem 
before introducing our approach (1:20-2:3) 
 

3. 2:8. Landsat8→Landsat 8 (add space) 

 
Thank you. We have made the correction (2.20). 
 
4. 2:18. It might be necessary to use the full name (Alaska) first and introduce the 
abbreviation. Adding the country name might be helpful for readers that are not familiar with 
US state abbreviations. 
 
We now use the full name (Alaska) throughout the text. 
 
5. 2:24. You did not analyze Lidar imagery. It is a DEM derived from Lidar data. 
 
We have changed this wording throughout the text. 
 
6. 2:31. Before you used AK, here you write Alaska. Please try to be consistent or introduce 
the abbreviation at the first instance. 
 
We now use the full name (Alaska) throughout the text. 
 
7. Section2 (2:30 ff). Fig S1: Can you provide a more detailed map (e.g. aerial/satellite 
image + bounding box) of the processed tile locations and probably some coordinates? 
Currently it is not possible to easily find your processed areas. 
 
At the current time we do not have permission to reveal the precise coordinates of 
the tiles from Prudhoe Bay. However, we have provided a more detailed map with 
bounding boxes of both airborne lidar surveys in Figure S1, which we hope will be 
useful for locating the general area of the analysis. 
 
8. Section2 (2:30 ff). Could you provide more detail about the types of polygons? This 
information would be a good fit in this section. The Alaskan Arctic Coastal Plain Polygonal 
Geomorphology Map (Lara, 2015) + your own observations could be a good source for that. 
 



We agree this information is useful and we have included descriptions of polygon 
geomorphology from both landscapes (4:1-2, 14-15). This section now includes a 
blend of our own observations and the classification performed by Lara et al. (2018).  
 
9. 3:23. You use the term “trough”. This term might work well for HCP, but LCPs also have 
rims. Using trough may not work well for the general variety of ice-wedge polygons and 
implies that you can only detect edges of HCP. Do the LCP still have small troughs between 
the rims? It seems so for at least some of the Polygons in your figures. 
 
To improve clarity we have replaced references to “trough” and “non-trough” pixels 
throughout the text with the terms “boundary” and “non-boundary.” We previously 
used the word “trough” almost synonymously with “polygonal boundary,” as nearly 
all LCPs in our survey area are bound by shallow troughs, which are visible in the 
DEMs at 50 cm resolution.  
 
10. 3:24. “assigned a negative intensity proportional to its Euclidean distance from the 
closest trough”. As this is a “distance transform” (to my knowledge) you could name it in 
parentheses. This would enhance the understanding of this part. 
 
Thank you. We now describe this procedure as a distance transform (4:29-30), (7:1), 
(7:31). 
 
11. 4:2 Here you use both units (meters and pixels) in other cases you use only one of 
these. Please check if you could be somewhat more consistent. 
 
To make our description more general, we now opt to use meters throughout the 
Methods section. The one exception is when we describe the size of the thumbnail 
images processed by the CNN, which we describe in both units for clarity (5:13-15). 
 
12. 5:17 Double negation (“would not delineate any polygon whose center did not include”) 
should be avoided. 
 
We have rephrased this sentence to avoid the double negative (7:7-9). 
 
13. 6:8 It would help if you could show you the location/extent of training data visually in 
your figures. 
 
We now provide a more detailed map of the lidar survey areas in the supplement 
(Fig. S1). 
 
14. 6:12 “several iterations”. Please be more specific. 
 
We now specify that it took four iterations to complete the bulk of the training at sites 
Barrow-1 and Prudhoe-1, then one more to “fine-tune” the CNN with additional 
examples of boundary and non-boundary features from each site (8:12-16), and 
another iteration to extend it across our remaining sites. 
 
15. 6:17. “we calculated the relative elevations of polygon centers at the Prudhoe Bay 
training site”. Why not both? I do not see the reason not doing it for Barrow. 



 
We now include calculations from both sites in Fig. 3. 
 
16. 6:20 Section 4: The entire section is very vague and too qualitative. It completely lacks 
quantification of your results. Please add quantitative results and a proper accuracy 
assessment with independent training and validation areas to this section. The discussion is 
ok, but probably need some relation to similar studies and how your method performs in 
comparison with similar studies. Furthermore, it would be nice if you could discuss the 
transferability of your method to DEMs of other origin or spatial resolution. 
 
We have entirely re-written this section and included a manual validation procedure 
to quantitatively evaluate our results. We also extensively compare our CNN with a 
similarly focused study which was just published, and conduct an analysis 
comparing results using our approach to analyze DEMs at 25, 50, and 100 cm 
resolution (9:8 – 11:30). 
 
17. 7:28. Here again, you are using DEM rather than Lidar 
 
We have corrected this throughout the text. 
 
18. 7:30 “using a training workflow that can be completed in a single afternoon”. One could 
argue if this sentence sounds quite sloppy. Maybe you could improve the style. 
 
We have eliminated this phrase. 
 
19. Please check the formal requirements if all sub-figures need to get enumerated instead 
of A/ and left/right 
 
We have now added letters designating subfigures to all four panels of Fig. 3. 
 
20. Figure 3: Do the colorized edges add any information? It clearly makes sense for 
polygons, but rather not for lines. 
 
We have gotten rid of the graphic showing colorized edges, and replaced the 
randomly colorized polygons in Fig. 3 in the main manuscript with polygons whose 
color designates relief.  
 
21. Figure 3: Legend/Colorbar: Adding the polygon type, LCP for negative, HCP for positive 
values (if I understand correctly) would help to understand Fig 3A more quickly. 
 
We have added these labels to the color bar on the right side of Fig. 3. 
 
22. Figure 3: “A” is hard to read with the colorful background. I suggest to either change the 
font color or add a box (or similar) in the background. 
 
We have condensed the previous Figs. 2 and 3 into one figure, and added white 
boxes to make the letters in Fig. 3 easier to read.  
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Abstract. We present a workflow for rapid delineation and microtopographic characterization of ice wedge polygons within 10 

high-resolution digital elevation models. At the core of the workflow is a convolutional neural network used to detect pixels 

representing polygon boundaries. The workflow, which is extensible to other forms of remotely sensed imagery, incorporates 

a convolutional neural network to detect pixels representing troughs. A watershed transformation is then subsequently used to 

segment imagery into discrete polygons. Fast training times (<5 minutes) permit an iterative approach to improvinge sskill 

improvement as the routine is applied across broad landscapes. Regions of non-polygonal terrain are partitioned out using a 15 

simple post-processing procedure. Results from training and validationstudy sites nearat Barrow and Prudhoe Bay, Alaska 

demonstrate robust performance in diverse tundra landscapessettings. The methodology permits fastprecise, spatially extensive 

measurements of polygonal microtopography and trough network geometry. 

1 Introduction and Background 

This research paper addresses the problem of delineating and measuring ice wedge polygons within high-resolution 20 

digital elevation models (DEMs). The objective of this research is to develop and report on a workflow for rapid delineation 

and microtopographic analysis of ice wedge polygons in airborne lidar data. Ice wedge polygons are the surface expression of 

ice wedges, a form of ground ice nearly ubiquitous to coastal tundra environments in North America and Eurasia (Leffingwell, 

1915; Lachenbruch, 1962). High resolution inventories of ice wedge polygon microtopography are of hydrologic and ecologic 

interest, because decimetere-scale variability in polygonal relief can drive pronounced changes to soil drainage (Liljedahl et 25 

al., 2016), and surface emissions of CO2 and CH4 (Lara et al., 2015; Wainwright et al., 2015). At typical sizes, several thousand 

ice wedge polygonsSeveral thousand ice wedge polygons of typical size may occupy a single square kilometer of terrain, 

motivating our development of an automated approach to map polygonal boundariesmapping. The key innovation in our 

method is the use of a convolutional neural network (CNN), a variety of machine learning algorithm, to identify troughs (i.e., 

polygonal boundaries) within lidar-derived imagerypixels representing polygon boundaries. The same techniques could be 30 
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applied to any form of remotely sensed data with sufficient spatial resolution; however, using a digital elevation model (DEM) 

as input, our approachIntegrated within a set of common image processing operations, this approach permits the extraction of 

microtopographic attributes from entire populations of ice wedge polygons at the kilometer scale or greater.  

 Previous geospatial surveys of polygonal microtopography have often aimed to map the occurrence of two 

geomorphic endmembers: basin-shaped low-centered polygons (LCPs), which are characterized by rims of soil at the 5 

perimeters, and hummock-shaped high-centered polygons (HCPs), which often are associated with permafrost degradation. 

Several recent aAnalyses of historic aerial photography have demonstrated a pan-Arctic acceleration since 1989 in rates of 

LCP conversion into HCPsHigh-resolution inventories of polygon geomorphology are of hydrologic and ecologic interest 

because decimeter-scale variability in polygon microtopography can drive pronounced changes to soil drainage (Liljedahl et 

al., 2016) and surface emissions of CO2 and CH4 (Lara et al., 2015; Wainwright et al., 2015). Several previous geospatial 10 

analyses of polygon geomorphology have been motivated by a recent acceleration in the rates at which low-centered polygons 

(LCPs) are converted into high-centered polygons (HCPs), a process driven by permafrost degradation which improves soil 

aeration drainage and stimulates enhanced emissions of CO2 (Jorgenson et al., 2006; Raynolds et al., 2014; Jorgenson et al., 

2015; Liljedahl et al., 2016). In these prior studies, the most common form of imagery used to demonstrate this transformation 

has been historic aerial photography. Thus far, analysis of available datasets has demonstrated a consistent uptick, beginning 15 

around 1989, in landscape-scale HCP formation throughout the high Arctic; howeverNonetheless, precise rates of geomorphic 

change have been difficult to quantify, as the surveys primarily havethese surveys typically have relied on proxy indicators, 

such as the presence of ponded water in deepening HCP troughs (Steedman et al., 2017). In a related effort to characterize 

contemporary polygon microtopography, a landcover map of LCP and HCP occurrence across the Arctic coastal plain of 

northern Alaska was recently developed using multispectral imagery from the Landsat 8 satellite at 30 m resolution (Lara et 20 

al., 2018). This dataset offers a static estimate of variation in polygonal form over unprecedented spatial scales; however, 

geomorphology was inferred from the characteristics of pixels larger than typical polygons, preventing inspection of individual 

features. 

 Higher-resolution approaches to explicitly segment imagery into discrete ice wedge polygons have often typically 

been motivated by efforts to analyzeanalyse trough trough network geometry. On both Earth and Mars, for example, paleo-25 

environmental conditions in remnant polygonal landscapes have been inferred by comparing parameters such as trough 

boundary spacing and orientation with systems in modern periglacial terrain (e.g., Pina et al., 2008; Levy et al., 2009; Ulrich 

et al., 2011; Ewertowski et al., 2017)). An early semi-automated approach to delineating Martian polygons from satellite 

imagery was developed by Pina et al. (2006), who first usedemployed morphological image processing operations to emphasize 

polygonal boundariestroughs, then applied a watershed transformation (discussed in Section 4.1.3) to identify discrete 30 

polygons. This workflow was later applied to lidar-derived imagery DEMs from a landscape outside Barrow, AlaskaK by 

Wainwright et al. (2015), but in their experience and our own, robust results at spatial scales approaching a square kilometer 

or greater were elusive. 
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 Our application of CNNs to the task of identifying polygonal troughs was inspired by the remarkable solutions that 

CNNs recently have permitted to previously intractable image processing problems. . Aided by advances in the performance 

of graphics processing units (GPUs) over the last decade, CNNs have demonstrated unprecedented skill at tasks analogous to 

ice wedge polygon delineation, such as cell membrane identification in biomedical images (Ciresan et al., 2012). Motivated 

by this potential, an exploratory study was recently conducted by Zhang et al. (2018), who demonstrated that a sophisticated 5 

neural network, the Mask R-CNN of He et al. (2017), is capable of end-to-end extraction of ice wedge polygons from satellite-

based optical imagery, capturing ~79% of ice wedge polygons across a >134 km2 field site and classifying each as HCP or 

LCP. The authors concluded that the method has potential for pan-Arctic mapping of polygonal landscapes. Here we explore 

an alternative approach, using a less complex CNN paired with a set of post-processing operations, to extract ice wedge 

polygons from high-resolution DEMs derived from airborne Lidar surveys. An advantage to this method is that training the 10 

CNN is rapid (~5 minutes or less on a personal laptop), permitting an iterative workflow, in which supplementary data can 

easily be incorporated to boost skill in targeted areas. We demonstrate the suitability of this approach to extract ice wedge 

polygons with very high accuracy (up to 96% at the kilometer scale), applying it to ten field sites of 1 km2 outside Barrow and 

Prudhoe Bay, Alaska. Because our method operates on high resolution elevation data, it enables direct measurement of 

polygonal microtopography, and we anticipate that, in the future, the method it will permit precise monitoring of surface 15 

deformation in landscapes covered by repeat airborne surveys.As the performance of graphics processing units (GPUs) has 

steadily improved over the last decade, CNNs have demonstrated unprecedented skill at tasks analogous to trough delineation, 

such as cell membrane identification in biomedical images (Ciresan et al., 2012) or road extraction from satellite imagery 

(Kestur et al., 2018). In training a CNN to analyze lidar imagery from polygonal terrain, our goal was to improve the speed 

and accuracy of automated polygon delineation in modern tundra environments. Because our method extracts polygons from 20 

a high resolution DEM, in enables thorough, landscape-scale inventories of polygonal microtopography, and we anticipate that 

it will permit precise monitoring of contemporary surface deformation in landscapes covered by repeat airborne surveys.  

2 Study areas and data acquisition 

 To demonstrate the flexibility of our approach, we applied it simultaneously at study sitesat two clusters of study sites  

near Barrow and Prudhoe Bay, Alaska, two settingsettings with highly divergent ice wedge polygon geomorphology, ~300 km 25 

distant from one another (Fig S1). 

2.1 Barrow 

The first cluster of study sites (Figs. S2-S3) The first study site is located within 10 km of the Beaufort Sea coast (Fig 

S1A) in the Barrow Environmental Observatory, operated by the National Environmental Observatory Network (NEON). 

Mean elevation is less than 5 m above sea level, and vegetation consists of uniformly low-growing grasses and sedges. 30 

Mesoscale topography is mostly flat but marked by depressions up to 2 m deep associated with draws and drained lake beds 
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(Fig S1B). In the landcover map of Lara et al. (2018), the area is characterized by extensive coverage by both LCPs and HCPs, 

with occasional lakes and patches of non-polygonal meadow. Microtopography at the sites reflects nearly ubiquitous ice wedge 

development, which becomes occluded in some of the depressions. Ice wedge polygons are of complex geometry and highly 

variable area, ranging from ~10  m2 to >2000 m2. An airborne lidar survey was flown in August 2012 as part of the U.S. 

Department of Energy’s Next Generation Ecosystems Experiment-Arctic program (https://ngee-arctic.ornl.gov/). The resulting 5 

point cloud was processed into a 2505 cm horizontal resolution DEM digital elevation model (DEM) with an estimated vertical 

accuracy of 0.145 m (Wilson et al., 2012). In the present study, to compare algorithm performance on data of variable spatial 

resolution, the 25 cm DEM was resampled at 50 cm and 100 cm resolution. Two sites of 1 km2, here referred to as Barrow-1 

and Barrow-2, were extracted from the DEMs and processed using our workflow. 

2.2 Prudhoe Bay 10 

The second cluster of sites (Figs. S4-S11) The second site is approximately 300 km east of the first and farther inland, 

located ~40 km south of Prudhoe Bay, AK (Fig S1A). As at Barrow, vegetation consists almost exclusively of low and even-

growing grasses and sedges. Mesoscale topography is extremelygenerally flat, with a slight (<4%) dip toward the northwest 

(Fig S1C). In the landcover map of Lara et al. (2018), the area is primarily characterized by HCPs, with smaller clusters of 

LCPs, patches of non-polygonal meadow, and occasional lakes. Ice wedge troughs are apparent throughout the training site, 15 

demarcating polygons polygons are generally of more consistent area than those of Barrow, ~400-800 m2. Airborne lidar data 

was acquired in August 2012 by the Bureau of Economic Geology at the University of Texas at Austin (Paine et al., 2015) and 

subsequently processed into 25 cm, 50 cm, and 100 cm resolution DEMsa 50 cm resolution DEM (Paine et al., 2015). Vertical 

accuracy was estimated at 0.10 m.  As the Prudhoe Bay survey area is substantially larger than the survey area at Barrow, eight 

sites of 1 km2, here referred to as Prudhoe-1 through Prudhoe-8, were extracted from the DEMs and processed using our 20 

workflow. 

3 Methods 

3.1 Polygon delineation algorithm 

A chart summarizing our iterative workflow is presented in Fig. 1, and several intermediate stages in the polygon 

delineation algorithm are illustrated in Fig. 2.A high-level summary of our workflow is presented in Fig 1, using a sample of 25 

the data from Barrow. In the first (pre-processing) stage, regional trends were removed from a DEM (Fig. S212), generating 

an image of polygonal microtopography (Fig. 21A). Next, the microtopographic information was processed by a CNN, which 

was trained to use the 27×27 neighborhood surrounding each pixel to assign a label of “troughboundary” or “not 

troughboundary” (Fig. 21B). A distance transformation was then applied, (i.e., each non-boundary pixel was assigned a 

negative intensity proportional to its Euclidean distance from the closest boundary), Each non-trough pixel was then assigned 30 

a negative intensity proportional to its Euclidean distance from the closest trough, generating a grayscale image analogous to 
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a DEM of isolated basins, in which the polygonal troughs boundaries appear as ridges (Fig. 21C). Subsequently, a watershed 

transform was applied to segment the image into discrete ice wedge polygons (Fig. 21D). These steps, and a post-processing 

algorithm used to remove non-polygonal terrain from the final image, are described in detail below. 

3.1.1 Pre-processing 

In the pre-processing stage, regional topographic trends were estimated by processing the DEM with a 2D filter, 5 

which assigned to each pixel the mean elevation within a 20 m (40 pixel) radius. This radius was chosen such that the area 

over which elevation was averaged would be larger than a typical ice wedge polygon. Polygon-scale Mmicrotopography was 

then estimated by subtracting theis regional topography from the DEM (Fig S212). In preparation for passing the data to the 

CNN, microtopography was then subsequently converted to 8-bit gray- scale imagery. The minimum intensity (0) was assigned 

to depressions of 0.7 m or greater, and the maximum intensity (255) was assigned to ridges of 0.7 m or greater. ., as tThese 10 

bounds captured >99% of pixel values at each study site. Finally, one thumbnail-sized image was created for each pixel in the 

microtopography raster, capturing the immediate neighbourhood surrounding it. These thumbnail images were the direct input 

to the CNN. The CNN required the width in pixels of each thumbnail to be an odd multiple of 9; therefore, at 50 cm resolution 

the thumbnails were assigned a width of 27 pixels (13.5 m), at 25 cm resolution a width of 45 pixels (11.25 m), and at 100 cm 

resolution a width of 27 pixels (27 m). The width of these thumbnails was chosen such that each image would contain sufficient 15 

spatial context for a human observer to distinguish easily between polygonal boundaries, which typically were demarcated by 

inter-polygonal troughs, and other microtopographic depressions such as LCP centers. 

3.1.2 Convolutional neural network 

The function of the CNN in our workflow was to identify pixels likely to represent troughsboundaries. Conceptually, 

a CNN is a classification tool that which accepts images of a fixed size (in our case, the thumbnails described in the previous 20 

section27×27 grayscale arrays) as input and generates categorical labels as output. The CNN determines decision criteria 

through training with a set of manually- labeled images. The architecture of a CNN consists of a user-defined sequence of 

components, or layers, which take inspiration from the neural connections of the visual cortex. We developed our CNN in 

MATLAB (R2017b) using the Image Processing, Parallel Computing, and Neural Network toolboxes. We Our CNN was 

purposefully constructed the CNN with an architecture of minimal complexity, to maximize the efficiency of training and 25 

application. Here we briefly summarize describe the function of each layer in our CNN; for more detailed description, the 

reader is directed to Ciresan et al. (2012).  

 Summarized in Table S1, tThe most important components of our CNN were a single convolutional layer, a max-

pooling layer, and two fully connected layers (Table S1). In the convolutional layer, a set of 2D filters was applied to the input 

image, generating intermediate images in which features including concavities, convexities, or linear edges were detected. The 30 

max-pooling layer downsized the height and width of thesese intermediate images by a factor of three, from 27×27 to 9×9 

arrays by selecting the highest intensity pixel in a moving 3×3 window with a stride of 3 pixels. Each pixel in the downsized 
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intermediate images was then passed as an input signal to the fully connected layers, which functioned identically to standard 

neural networks. Two additional components of our CNN were Rectified Linear Unit (ReLU) layers, which enhance non-

linearity by reassigning a value of zero to any negative signals output by a preceding layer, and a softmax layer, which 

converted the output from the final fully connected layer into a probability for each categorical label (i.e., trough boundary or 

not trough boundary).  5 

 During training, the weights of the 2D filters in the convolutional layer and the activation functions of the neurons in 

the fully connected layers were optimized to correctly predict the labels in a training deck of images. Our workflow was 

designed to generate the training deck primarily by processing square tiles of manually-labeled imagery with 100 m  (200 

pixel) edges. In each of these tiles, trough boundary pixels were delineated by hand in a standard raster graphics editor, a 

process that required ~1 hour per tile at 50 cm resolution (Fig. S133A). Our algorithm imported these tiles, identified the 10 

geographic coordinates of each pixel identified as a troughboundary, then extracted the 27×27 neighborhood surrounding each 

trough pixelcreated a thumbnail image centered on that pixel from the 8-bit microtopographic imagery. This procedure 

generated several thousand thumbnail-sized  images centered on a troughboundaries from each manually delineated tile. 

Subsequently, an equal number of pixels not labeled as troughs boundaries were selected at random, and the thumbnail image 

extraction procedure was repeated., to generatinge a set of non-boundary images for the training deck. Finally, for more 15 

targeteding training that did not require full delineation of a 100 m tile, individual instances of boundary or non-boundary 

features could also be added to supplement the training deck, based again on manual delineation (Fig. S13B). Just prior to 

training, 25% of the training deck assembled by these methods was set aside to be used for validation. 

 Once trained, the CNN was executed to assign a label of “boundary” or “not boundary” to the thumbnail image 

corresponding to each pixel of a study site. These labels were then reassembled into a binary image of polygon boundaries 20 

(Fig. 2B), which was further processed to extract discrete ice wedge polygons.Due to the compact architecture of our CNN, 

training and execution speeds were rapid. Processing information from ~30,000 images, classification accuracies >99% on the 

training deck and >98% on the validation deck were obtained in less than ten minutes on a single GPU. Application of the 

trained CNN to a square kilometer of gridded lidar data required ~90 seconds. This speed permitted us to iteratively train the 

CNN, identify regions of the survey area where it performed poorly, and supplement the training data with labeled imagery 25 

from those regions. Optionally, our workflow at this stage also permitted supplementation of the training deck with individual 

instances of problematic features, such as LCP centers or especially narrow troughs (Fig S3B). This permitted us to increase 

the skill of the CNN in a targeted manner without the time requirements of manually labeling a full 100 m tile of imagery.  

3.1.3 Polygon extraction 

After applying the CNN to classify all pixels at a site as troughboundary or not troughboundary, we extracted discrete 30 

ice wedge polygons by through applying ication of several standard image processing operations. The first step was elimination 

of “salt and pepper” noise in the binary image, which we accomplished by eliminating all contiguous sets of troughboundary-

identified pixels with an area <  20 m2. This threshold was selected based on the reasoning that most true boundary pixels 
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should be part of a continuous network, covering an area arbitrarily larger than 20 m2, while most false detections should occur 

in smaller clusters. Next, we applied a distance transform, assigninged to every non-trough boundary pixel a negative intensity 

equal to its Euclidean distance from the nearest boundarytrough. This created an intermediate image in which each ice wedge 

polygon appeared as a valley, surrounded on all or most sides by ridges representing the troughice wedge network (Fig. 21C). 

At this stage, to prevent over-segmentation, valleys with maximum depths of three pixel-widths or fewer1.5 meters or less 5 

were then identified and merged with the closest neighbour through morphological reconstruction (Soille, 1992). The effect of 

this procedure was to ensure that the algorithm would only delineate polygons whose centers contained at least one point 

greater than 1.5 m from the boundaries, as field observations indicate that ice wedge polygons tend measure at least several 

meters across (Leffingwell, 1915; Lachenbruch, 1962)not delineate any polygon whose center did not include a point greater 

than 1.5 m from the troughs. Next, watershed segmentation was then applied to divide the valleys into discrete polygons (Fig. 10 

2D). Our use of this operation was inspired by its incorporation in the polygon delineation method developed by Pina et al. 

(2006). Conceptually, this procedure was analogous to identifying the up-gradient region or area of attraction surrounding each 

local minimum. 

3.1.4 Partitioning of non-polygonal ground 1 Post-processing 

In the final stage of delineation, we partitioned out regions of a survey area that had been segmented using the 15 

techniques described above, but were unlikely to represent true ice wedge polygons. For example, polygons were eliminated 

from the draw in the southern half of Barrow-1 the Barrow training site (Fig. S32A1B), where microtopography wais too 

occluded to permit accurate delineation. Toward this aim, our algorithm tabulated within the boundaries of each delineated 

polygonanalysed individually each boundary between two polygons (black lines segments in Fig. 21D), tabulating the number 

of pixels that had been identified positively by the CNN as troughs (white pixels in Fig. 21B). It then dissolved all boundaries 20 

in which less than half the pixels had been classified positively, merging adjacent polygons. In practice, this procedure resulted 

in areas of non-polygonal terrain being demarcated by unusually large “polygons.”. We removed these areas by partitioning 

out any polygon with an area greater than 10,000 m2, a threshold selected to be arbitrarily larger than most real ice wedge 

polygons. It then eliminated contiguous regions greater than 10,000 m2 (representing the area of several large polygons) where 

less than half the boundary pixels of the contained polygons had been labeled as troughs. This procedure had the strengths of 25 

being conceptually simple and providing a deterministic means of partitioning non-polygonal terrain from the rest of a survey 

area.  

3.2 Microtopographic analysis 

To demonstrate the our workflow’s capabilities of our workflow for microtopographic analysis, we developed a 

simple method for measuring the relative elevation at the center of each delineated polygon. This served as, serving as a rough 30 

proxy for LCP or HCP form. In each polygon, we first applied a distance transform, calculating the distance from the closest 

boundary of all interior pixels. We then divided the area of the polygon in half at the median distance from boundaries, 
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designating a ring of “outer” pixels and an equally sized core of center pixels. Microtopographic relief was then estimated as 

the difference in mean elevation between the center and outer pixels.calculated the Euclidean distance from the trough network 

of all interior pixels, then identified the pixel most distal from a trough. Elevation was extracted from this pixel and compared 

with mean elevation in the troughs surrounding the polygon. We thus assigned a number to each polygon which consistently 

was lower in LCPs and higher in HCPs.  5 

3.3 Case study experimental design 

The case study was first conducted using topographic data at 50 cm resolution, then repeated at 25 cm and 100 cm 

resolution. Training was focused primarily on sites Prudhoe-1 and Barrow-1. We conducted our case study in two phases: 

calibration and validation. Calibration was performed at two 1 km2 sites, sampled from the Barrow and Prudhoe Bay DEMs. 

Leveraging the rapid training and application times of our CNN, we manually delineated one 100 m tile of imagery at a time 10 

from either site, trained the CNN, extracted results from both sites, then introduced additional training data from regions of 

poor performance to improve skill (Fig. 1). After four iterations of this approach, the CNN incorporated training data from 

three fully-delineated tiles at Barrow-1 and one at Prudhoe-1, representing 3% and 1% of the sites, respectively. From this 

point, we opted to “fine-tune” the CNN by supplementing the training deck directly with instances of problematic features, 

rather than using information from fully-delineated tiles. Several examples of boundary and non-boundary features were 15 

included from Barrow-1 and Prudhoe-1. Next, to test its extensibility, the CNN was applied across the remaining sites, and re-

trained once more. In this final iteration, several instances of boundary and non-boundary features (but no fully delineated 

tiles) were incorporated into the training deck from sites Prudhoe-2, Prudhoe-3, and Prudhoe-4. No training data at all were 

incorporated from sites Prudhoe-5 through Prudhoe-8 or Barrow-2. (All training data used in the final iteration of our workflow 

can be viewed in the data and code repository accompanying this article.) Once this procedure was complete at 50 cm 20 

resolution, training decks at 25 cm and 100 cm resolution were prepared. To generate CNNs comparable to the network trained 

on 50 cm data, Tthe 25 cm and 100 cm training decks were constructed using data sampled from identical geographic locations, 

but manual labeling was performed without reference to the labeled 50 cm resolution data. 

After the CNN was trained and applied across all study sites, we quantified the performance of the polygon delineation 

algorithm through manual validation. At each site, we first calculated the total area and number of polygons extracted from 25 

the landscape. We then randomly sampled 500 of the computer-delineated polygons, and classified each as either whole, 

fragmentary, conglomerate, or false. Fragmentary polygons were defined as computer-delineated polygons that which included 

less than 90% of one real polygon; conglomerate polygons were defined as computer-delineated polygons comprising parts of 

two or more real polygons; and false polygons were defined as computer-delineated polygons occupying terrain in which no 

polygonal pattern was deemed visible to the human evaluator. The percentage of computer-delineated polygonal terrain 30 

corresponding to each class was then calculated by number of polygons and by area. This procedure was completed for all ten 

study sites at 50 cm data resolution, and for sites Prudhoe-1 and Barrow-1 at 25 cm and 100 cm resolution.took an iterative 

approach to extracting polygons from both sites: after training and applying an initial model, new training data were introduced 
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from regions of poor performance to improve skill. After several iterations, our final CNN was trained using manually labeled 

data from three 100 m tiles at the Barrow training site and one at the Prudhoe Bay site, representing 3% and 1% of the training 

plots, respectively. The non-trough training data were also supplemented with some additional examples of LCP centers from 

Barrow, to discourage inaccurate labeling as troughs (Fig S3B). After training the CNN, we tested its extensibility by applying 

it at two validation sites, also 1 km2 in area, selected from the same landscapes. Once delineation was complete, to illustrate 5 

capabilities for microtopographic analysis, we calculated the relative elevations of polygon centers at the Prudhoe Bay training 

site, which was chosen for the tendency of its polygons to cluster into areas with high concentrations of either LCPs or HCPs. 

4 Results and discussion  

4.1 Training speed and accuracy 

 Due to the compact architecture of our CNN, training speeds at 50 cm resolution and 100 cm resolution were rapid. 10 

At 50 cm resolution, the training procedure operated on a deck of ~36,000 thumbnail images. Executed on a personal laptop 

with an Intel i7 CPU and a single GeForce MX150 GPU, accuracies >97% on the training deck and >95% on the validation 

deck of thumbnails were achieved in less than five minutes. At 100 cm resolution, the procedure operated on ~12,000 thumbnail 

images, achieving comparable levels of accuracy within 90 seconds. These speeds enable the iterative approach to training on 

which our workflow is based (Fig. 1), as the CNN can be re-trained quickly to incorporate new data when applied across 15 

increasingly large areas.  

 Using 25 cm resolution data, the training procedure operated on a set of ~115,000 thumbnail images. Accuracies 

>97% on the training deck and >95% on the validation deck were once more obtained, but training required just under one 

hour on the same computer. This substantial increase to training time is attributable to the facts that more thumbnail images 

were processed, and the number of pixels in each thumbnail was larger, making execution of the CNN more computationally 20 

expensive.  

4.2 Delineation speed and validation 

 Operating at 50 cm resolution, delineation of ice wedge polygons within a 1 km2 field site required ~2 minutes, 

including application of the CNN and subsequent post-processing. Results generally were very accurate; across study sites, 

~1000-5000 ice wedge polygons were detected per square kilometer, of which 85-96% were estimated as “whole” during 25 

manual validation, representing 70-96% of the polygonal ground by area (Table 1). The most common type of error at all sites 

with <95% accuracy was incorrect aggregation of several real ice wedge polygons into a single feature. Unsurprisingly, 

performance was strongest highest at sites with clearly defined polygon boundaries and relatively simple polygonal geometry, 

such as Prudhoe-1, Prudhoe-7, and Prudhoe-8 (Figs. S43, S10, S11). In contrast, performance was weakest at sites such as 

Barrow-2 or Prudhoe-6 (Figs. S2, S9), where considerable swaths of terrain are characterized by faint microtopography, as; , 30 

in which ice wedge polygons appear to grade into non-polygonal terrain. In such locations, polygonal boundaries frequently 
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went undetected, resulting in the delineation of unrealistically large conglomerate polygons. In general, the results of the 

delineation clearly illustrate that the polygonal network at Barrow possesses more complex geometry than Prudhoe Bay, with 

many instances where secondary or tertiary ice wedges appear to subdivide larger ice wedge polygons. 

 Although simple, our post-processing procedure for partitioning out non-polygonal ground from the results was 

generally accurate. Examples of features successfully removed from the 50 cm resolution DEMs included thaw lakes (Figs. S6-5 

S10), drained thaw lake basins (Fig. S2), stream beds (Figs. S5, S9), non-polygonal marsh (Figs. S3, S7, S9), shallow ponds 

(Fig. S7), and the flood plain of a braided stream (Fig. S10). Because the partitioning procedure worked by removeding areas 

with a low density of boundaries identified by the CNN, we found that it could be efficiently trainedtrained efficiently by 

supplementing the training deck with extra examples of “non-boundary” thumbnails extracted from these regions. Across the 

study sites, we encountered almost no cases where in which well-defined polygons were mistakenly partitioned out of the 10 

results by the computer. Instances of non-polygonal ground mistakenly being classified as polygonal accounted for less than 

1% of machine-delineated polygons by area.  

 When the delineation algorithm was repeated using data at 100 cm resolution, delineation speeds increased somewhat, 

but performance dropped significantly, with greater declines occurring in the challenging environment of Barrow (Table S2). 

We attribute declines in performance to an obscuration of fainter polygonal boundaries that at this resolution, and to that 15 

decreases in the amount of contextual information that can be derived from the neighbourhood of any given pixel, reducing 

the capacity for the algorithm computer to distinguish between polygonal troughs and other microtopographic depressions 

(Fig. S14). Somewhat surprisingly, performance also declined somewhat using data at 25 cm resolution, with larger fractions 

of fragmentary and false polygons accounting for most of the increases in errors (Table S2). We attribute these mistakes to the 

larger number of distinguishable features fact that, as more features become distinguishable in the higher resolution data, 20 

leading the algorithm computer appears to more frequently mistake features not encountered in the training dataset as boundary 

pixels. As the imagery is nonetheless crisper, we anticipate that, with augmentations to the training dataset, performance at 25 

cm resolution could improve and even exceed performance at 50 cm resolution; nonetheless, performance speeds were 

generally inhibitory to our workflow, as delineation required ~50 minutes per square kilometer. We therefore conclude that 50 

cm resolution data is optimal for our analysis.   25 

4.3 Measurement of polygonal microtopography 

 The time required to execute our procedure for measuring polygonal microtopography varied from ~10-30 seconds 

per square kilometer at 50 cm resolution, depending on the number of polygons delineated. A comparison of calculated relief 

at polygon centers between Prudhoe-1 and Barrow-1 reveals that both sites are characterized by the prevalence of HCPs, which 

surround smaller clusters of LCPs (Fig. 3). Relief tends to be more extreme at Barrow, with the relative elevation of polygon 30 

centers commonly approaching 20-30 cm. Our automated calculations of relief align well with visual inspection of the DEMs, 

as rimmed LCPs are consistently assigned a negative center elevations. To our knowledge, our results represent the first direct 

measurement of polygonal relief at the kilometer-scale, demonstrating a spectrum of center elevations rather than a binary 
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classification into LCP or HCP. We anticipate these measurements may be useful for further investigations into relationships 

between microtopography, soil moisture, and carbon fluxes (e.g., Wainwright et al., 2015). 

4.4 Comparison with Mask R-CNN and future applications 

 Several key differences are apparent between the workflow presented in this paper (hereafter termed the CNN-

watershed approach) and a recent implementation of Mask R-CNN for mapping of ice wedge polygons (Zhang et al., 2018), 5 

revealing relative strengths to each approach. An advantage of the CNN-watershed approach, stemming from its sparse neural 

architecture, is that training times are extremely rapid, facilitating iterative improvements to skill (Fig. 1). In contrast, although 

inference times using the CNN-watershed approach are reasonable, extraction of ice wedge polygons over broad landscapes 

is several times faster using Mask R-CNN, with a reported time of ~21 minutes for inference over 134 km2 of terrain (Zhang 

et al., 2018). Because the CNN-watershed approach operates on high-resolution DEMs, it enables direct quantification of 10 

polygonal relief, whereas Mask R-CNN instead produces a binary classification of each polygon as either LCP or HCP. The 

CNN-watershed approach is therefore useful for generating unique datasets summarizing polygonal geomorphology, 

demonstrating high-performance at spatial scales typical of airborne surveys using lidar or photogrammetry to produce high-

resolution DEMs. In comparison, because Mask R-CNN has been trained to operate on satellite-derived optical imagery with 

global coverage, it is uniquely well-suited for application across very broad regions, with potential to generate pan-Arctic maps 15 

of land cover by polygon type. Because of differences in training times, inference procedures, and the spatial scales at which 

they ideally operate, the training data requirements and accuracy of the two approaches are difficult to compare directly; 

nonetheless, in several aspects, performance appears to be similar (Text S1). 

 Because the CNN-watershed approach generates direct measurements of polygonal microtopography, one application 

to which it is uniquely amenable is precise monitoring of microtopopographic deformation in areas covered by repeat airborne 20 

surveys. Through such analysis, we anticipate that it will permit polygon-level quantification of ground subsidence over 

timespans of years, potentially yielding new insights into the vulnerability of various landscape units to thermokarst. An 

additional research problem, to which the CNN-watershed approach is well-suited, is quantifyingication of fication of 

polygonal network parameters, such as boundary spacing and orientation, to explore relationships to with environmental 

factors such as climate (e.g., Pina et al., 2008; Ulrich et al., 2011). These boundaries (black line segments in Figs 2D, 3B, 3D) 25 

are naturally delineated through implementation of the watershed transformation. We acknowledge that, because the surface 

expression of ice wedges is sometimes subtle or non-existent, ground-based delineation methods are the highest-accuracy 

approach to mapping ice wedge networks (Lousada et al., 2018). Nonetheless, by segmenting machine-delineated networks 

into individual boundaries, our workflow permits the estimation of network statistics at spatial scales unattainable through on-

site surveying. 30 

Results from the Barrow training site demonstrate the capability of our workflow to extract polygons of highly 

variable geometry (Fig 2A). The results also demonstrate success of our post-processing workflow in partitioning out a 

streambed traversing the southern half of the site and a lakebed in the northeast quadrant. The final delineation makes 
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immediately apparent the complex distribution of polygon type at the kilometer scale. For example, just above the draw in the 

southwest quadrant is a cluster of comparatively small HCPs that stands in stark contrast to the larger LCPs and intermediate 

polygons dispersed elsewhere. The complexity of the delineated network underscores the value of an automated approach to 

polygon extraction, as the manual processing necessary to achieve similar results would require prohibitively large amounts 

of time. Moreover, the site contains several areas in which larger polygons typically are subdivided by secondary and tertiary 5 

ice wedges. Although polygonal boundaries are somewhat ambiguous in such situations, our algorithm provides a consistent, 

deterministic method of interpretation, which is set by the user’s delineation of troughs in the training dataset. 

 Results from the Prudhoe Bay training site, using the same CNN, demonstrate the ease with which our workflow can 

be extended across diverse landscapes. We note that, while we had initially trained our CNN using three tiles of manually 

labeled data from Barrow, successful extension to Prudhoe Bay required incorporation of only one additional tile, from a 10 

region in the southeast quadrant characterized by LCPs with exceptionally narrow troughs. The final delineation (Fig 2B) 

emphasizes the far more consistent size and geometry of polygons relative to Barrow, which may be associated with the simpler 

mesoscale topography (Lachenbruch, 1962). The ice wedge network at Prudhoe Bay appears to be less riddled with secondary 

ice wedges than at Barrow, but some examples are evident in HCPs.  

 Results from the validation sites demonstrate similar skill in polygon delineation without incorporation of any new 15 

training data. At the Barrow validation site (Fig S4A), the algorithm partitioned out another stream bed and three regions where 

surface inundation prevented accurate delineation of polygonal microtopography. Elsewhere, a mixture of LCPs, HCPs, and 

intermediate polygons reminiscent of the training site was successfully delineated. At the Prudhoe Bay validation site 

(Fig S4B), the algorithm partitioned out a thaw lake and the flood plain of a braided stream, in which no ice wedge troughs are 

present. It also partitioned out a zone just north of the lake where ice wedges may be present in the subsurface, but 20 

microtopography is difficult to distinguish. Through the remainder of the area, the algorithm delineated a set of LCPs and 

HCPs of similar size and geometry to the training site, but with somewhat subtler troughs. 

 The capacity of our workflow for high-resolution microtopographic analysis is demonstrated in estimates of relief at 

the polygon centers at the Prudhoe Bay training site (Fig 3A). Through relatively simple calculations, we highlight the presence 

of a distinct cluster of LCPs in the southeast quadrant, which emerges from the mixture of HCPs and intermediate polygons 25 

present through the remainder of the site. Using this approach, our procedure provides a means to estimate polygonal 

geomorphology with unprecedented detail at the kilometer scale, which may improve predictions of soil wetness and polygon-

scale fluxes of CO2 and CH4 (Lara et al., 2015; Wainwright et al., 2015). Simultaneously, the delineation performed at the 

same site provides a means to analyze trough geometric parameters, such as spacing and orientation. We acknowledge that, 

because the surface expression of ice wedges is sometimes subtle or non-existent, ground-based methods remain the highest-30 

accuracy approach to mapping ice wedge networks (Lousada, 2018). Nonetheless, by segmenting machine-delineated 

polygonal boundaries into individual troughs (Fig 3B), very large datasets can rapidly be generated to estimate statistics at 

spatial scales unattainable through on-site surveying. 
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5 Conclusions 

A relatively simple CNN is capable of extracting polygons of highly variable size and geometry from high-resolution 

DEMs of diverse tundra landscapesConvolutional neural networks enable rapid delineation of ice wedge networks at 

unprecedented spatial scales using airborne lidar datasets. Successful application of the CNNs is facilitated by employing 

relatively simpleits sparse neural architecture, which permits rapid training, testing, and incorporation of new data to improve 5 

skill. The optimal spatial resolution for DEMs processed using the workflow is ~50 cm. A single CNN is capable of extracting 

polygons of highly variable area and geometry from diverse tundra landscapes, using a training workflow that can be completed 

in a single afternoon. Potential applications for the technology include: generation of high-resolution maps of land cover by 

polygon type, precise quantification of microtopographic deformation in areas covered by repeat airborne surveys, and rapid 

extraction of center elevations and trough boundary parameters including spacing and orientation. These capabilities can 10 

improve understanding of environmental influences on network geometry and facilitate assessments of contemporary 

landscape evolution in the Arctic. 
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Figure 1.  Schematic of our iterative workflow for polygon delineation.  
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Figure 12.  High-level schematic of our workflowIllustration of several intermediate stages in our workflow. The CNN processes 

information stored in . The input to the CNN is 8-bit grayscale imagery representing microtopography (A), estimated by 

removing regional trends from the lidar DEM (Fig S2). The CNN identifies pixels likely to represent troughs (B). Each 5 

non-trough pixel is assigned a negative intensity equal to its distance from a trough (C) and a watershed transformation 

is applied to segment the image into discrete polygons (D) (colors randomly applied to emphasize polygonal boundaries). 
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Table 1.   Results of manual validation at 50 cm data resolution.  
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Barrow-1 2555 68.3 94.2 2.2 2.2 1.4 86.9 1.4 7.5 4.2 

Barrow-2 2613 68.8 91.6 2.8 5.6 0.0 79.9 3.6 16.5 0.0 

Prudhoe-1 3227 99.9 95.6 2.8 1.4 0.2 96.3 2.2 1.4 0.0 

Prudhoe-2 4685 94.5 91.6 1.4 7.0 0.0 87.7 1.7 10.6 0.0 

Prudhoe-3 1112 48.2 91.2 3.6 5.2 0.0 82.3 4.2 13.4 0.0 

Prudhoe-4 1956 60.4 88.2 4.2 7.2 0.4 81.4 3.2 14.9 0.5 

Prudhoe-5 2969 77.9 91.8 4.0 4.2 0 87.7 1.7 10.6 0 

Prudhoe-6 1605 65.5 85.8 5.4 8.2 0.4 69.5 4.8 22.1 3.4 

Prudhoe-7 1348 47.3 94.0 2.2 3.6 0.2 90.5 1.7 7.9 0.0 

Prudhoe-8 3288 100 96.0 2.2 1.6 0.2 95.2 1.5 3.2 0.0 

 



 

Figure S1. Bounding boxes of airborne lidar surveys in Alaska Albers (NAD83) projection.  
 
 
  



 
 

Figure S2.  50 cm DEM (a) and polygon delineation (b) at site Barrow-1. 

  



 
 

Figure S3.  50 cm DEM (a) and polygon delineation (b) at site Barrow-2. 

  



 
 

Figure S4.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-1. 

  



 
 

Figure S5.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-2. 

  



 
 

Figure S6.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-3. 

  



 
 

Figure S7.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-4.  

  



 
 

Figure S8.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-5. 

  

  



 

 

Figure S9.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-6. 

  



 
 
 

Figure S10.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-7.  

  



 
 

Figure S11.  50 cm DEM (a) and polygon delineation (b) at site Prudhoe-8.  

 

 

 



 
Figure S12. 50 cm DEM of the Prudhoe Bay training site before (a) and after (b) removing 

regional trends to isolate microtopography. 
 
   



 

 

Figure S13. Samples of manually delineated data used to train the CNN, including a tile in 
which troughs are fully delineated (a) and a tile used to supplement the training 
deck with extra examples of non-trough pixels (b). 

 

   



 

 

Figure S14.  Delineation algorithm performance on the same ice wedge polygon at 100 cm 
(a), 50 cm (b), and 25 cm (c) resolution. Each image is 40 m across. Note that 
anomalously low pixels in the polygon center in (a) are mistaken as polygon 
boundaries, incorrectly fragmenting the polygon.  

 

  



Text S1.  Comparison of training requirements and accuracy between CNN-watershed and 
Mask R-CNN algorithms. 

 
 

 Due to differences in the training and inference procedures used by each algorithm, 
training data requirements and accuracy are difficult to compare directly. Nonetheless, in 
several aspects, performance appears to be similar. In the present study, the CNN-watershed 
approach is trained initially on data derived from four manually-labeled 100 m tiles, representing 
0.04 km2. This training data is supplemented with extra examples of boundary and non-
boundary features, the convex hulls of which sum to ~0.07 km2, and the trained model is 
extrapolated across 10 km2. The training to application ratio is therefore ~0.011, or 1.1%. In 
comparison, Mask R-CNN was trained on data from 340 90 m tiles, or ~2.75 km2, then 
extrapolated across ~134 km2, resulting in a training to application ratio of ~0.020 or 2.0% 
(Zhang et al., 2018). In general, within the area across which the CNN-watershed approach was 
applied, it was less likely than Mask R-CNN to fail to detect polygonal terrain, but more prone to 
mistakenly aggregate multiple ice wedge polygons into a single unit. These errors were 
particularly common at sites characterized by transitional terrain where ice wedge polygons 
grade into non-polygonal ground. It is reasonable to expect such mistakes in these areas, as 
microtopography is typically faint and polygons often appear to be bound incompletely by 
troughs. At one such site (Prudhoe-6), the number of incorrect conglomerate polygons by area 
delineated by the CNN-watershed algorithm was ~22% (Table 1). This number closely 
resembles the 21% of human-delineated polygons estimated to go undetected by Mask R-CNN 
in satellite-based optical imagery (Zhang et al., 2018). 
 

   



Table S1.  Architecture of our CNN. 
 
 

Layer Type Neurons 

1 Convolutional 8 arrays of 27×27 

2 ReLU† 8 arrays of 27×27 

3 Max-pooling 8 arrays of 9×9 

4 ReLU 8 arrays of 9×9 

5 Fully-connected 64 

6 ReLU 64 

7 Fully-connected 2 

8 ReLU 2 

9 Softmax 2 

 
 † - ReLu – rectified linear unit 
 



Table 2.  Results of manual validation at 100 cm and 25 cm resolution. 

 

   % of polygons by instance % of polygons by area 

Site 
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Barrow-1 (100 cm) 3058 74.3 73.4 18.6 6.2 1.8 65.5 16.6 13.4 4.1 

Prudhoe-1 (100 cm) 3019 100 85.6 11.8 2.6 0.0 88.0 79.7 4.0 0.0 

Barrow-1 (25 cm) 2870 71.6 89.0 3.8 3.4 3.8 83.4 2.0 9.7 4.8 

Prudhoe-1 (25 cm) 3193 100 93.6 3.4 2.4 0.6 94.0 1.6 4.3 0.1 
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