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Abstract. Estimates of Arctic sea ice thickness are available from the CryoSat-2 (CS2) radar altimetry mission during ice 

growth seasons since 2010. We derive the sub-grid scale ice thickness distribution (ITD) with respect to 5 ice thickness 

categories used in a sea ice component (CICE) of climate simulations. This allows us to initialize the ITD in stand-alone 10 

simulations with CICE and to verify the simulated cycle of ice thickness. We find that a default CICE simulation strongly 

underestimates ice thickness, despite reproducing the inter-annual variability of summer sea ice extent. We can identify the 

underestimation of winter ice growth as being responsible and show that increasing the ice conductive flux for lower 

temperatures (bubbly brine scheme) and accounting for the loss of drifting snow results in the simulated sea ice growth being 

more realistic. Sensitivity studies provide insight into the impact of initial and atmospheric conditions and, thus, on the role of 15 

positive and negative feedback processes. During summer, atmospheric conditions are responsible for 50% of September sea 

ice thickness variability through the positive sea ice and melt pond albedo feedback. However, atmospheric winter conditions 

have little impact on winter ice growth due to the dominating negative conductive feedback process: the thinner the ice and 

snow in autumn, the stronger the ice growth in winter. We conclude that the fate of Arctic summer sea ice is largely controlled 

by atmospheric conditions during the melting season rather than by winter temperature. Our optimal model configuration does 20 

not only improve the simulated sea ice thickness, but also summer sea ice concentration, melt pond fraction, and length of the 

melt season. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model physics. 

1 Introduction 

Historical observations of sea ice thickness have been limited due to their sparse spatial and temporal coverage of, and 

uncertainties in, measurements. Prior to the launch of the European Space Agency’s (ESA) first European Remote Sensing 25 

satellite (ERS-1) in 1991, most data were collected from submarines operating beneath the Arctic pack ice. Upward-looking 

sonars measure the submerged portion of the ice (draft), which can be converted to thickness by making assumptions about 

the snow depth and the densities of ice, snow and water. Based on sea ice draft observations from 34 US Navy submarines, a 

decrease of mean autumn sea ice thickness from 2.8 m to 1.6 m could be identified over the period 1975 to 2000 within the 

central Arctic Ocean (Rothrock et al., 2008). While the accuracy and the spatial coverage was sufficient to give evidence of 30 

sea ice thinning in the Arctic and to provide a basis for simulating the trend, these data are of limited use for evaluating the 

spatial and temporal variability of sea ice across the Arctic, and in climate models. More recently, cryosphere-focused satellite 

altimeters such as the NASA Ice, Cloud, and land Elevation Satellite (ICESat) and ESA CryoSat-2 (CS2) have allowed 

estimation of sea ice thickness across the Arctic (Giles et al., 2007 & 2008, Kwok and Rothrock, 2009, Laxon et al., 2013).  

The performance of sea ice models in climate models is most commonly evaluated by using Arctic- and Antarctic-wide sea 35 

ice extent and sea ice area data from passive microwave data and Arctic sea ice volume from the Pan-Arctic Ice Ocean 

Modeling and Assimilation System PIOMAS (Zhang and Rothrock, 2003; e.g. Massonnet et al., 2012; Stroeve et al., 2012; 

Rae et al., 2014; Shu et al., 2015; Ridley et al., 2018). PIOMAS is a reanalysis product, which does not include ice thickness 

observations. Stroeve et al. (2014) combined submarine, aircraft and satellite data to evaluate sea ice thickness in climate 

model simulations. Their assessment revealed shortcomings regarding spatial patterns of sea ice thickness that were larger 40 
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than uncertainties in the verification data. CS2 sea ice thickness data have recently been used to initialize sea-ice ocean and 

climate models to improve seasonal predictions (Allard et al., 2018; Blockley and Peterson, 2018).  

In this study, we aim to improve sea ice physics and to calibrate poorly constrained parameters in the sea ice model CICE 

using the CS2 ice thickness data. Given CS data are available from October to April, our focus lies on processes controlling 

winter ice growth. We note that several factors contribute to CS2-derived sea ice thickness uncertainties, including the 5 

assumption that the radar return is from the snow/ice interface (Willat et al., 2011), snow depth departures from climatology, 

and the use of fixed snow and ice densities. To enable a meaningful comparison of sea ice thickness between CICE and CS2, 

we consider the strengths and weaknesses of the model and the data. We design experiments with perturbed physical 

parameterizations to close the gap between our default CICE simulation and CS2 as well as to investigate the impact of initial 

conditions and atmospheric forcing data. The latter experiments address questions regarding the impact of the last three 10 

exceptionally warm Arctic winters on the sea ice decline (Stroeve et al., 2018) and gives new insight into the strengths of 

positive and negative feedback mechanisms that govern the evolution of sea ice. 

2 Ice Thickness Distribution from CryoSat-2 

The CS2 radar altimetry mission was launched in April 2010, providing estimates of ice thickness during the ice growth season 

from October to April. During summer the formation of melt ponds interferes with the radar signal retarding accurate 15 

measurements. As for the derivation of sea ice thickness from ice draft using submarine data, the freeboard (the height of sea 

ice above the water surface) is estimated from the satellite data and can be converted to thickness by assuming hydrostatic 

equilibrium and applying values for the densities of ice, snow and water as well as the snow depth. The principal challenges 

in deriving an accurate sea ice thickness using satellite altimetry are the discrimination of ice and open water, the discrimination 

of ice type, retracking radar waveforms to obtain height estimates, constructing sea surface height beneath the ice, and 20 

estimating the depth of the snow cover. Ice thickness is retrieved from freeboard by processing CS2 Level 1B data, with a 

footprint of approximately 300 m by 1700 m (Wingham et al., 2006), and assuming snow density and snow depth from the 

Warren et al. (1999) climatology (hereafter W99), modified for the distribution of multi-year versus first-year ice (see Laxon 

et al., 2013 and Tilling et al., 2018 for data processing details). 

In this study, we bin the individual thickness point measurements provided by the Centre for Polar Observation and Modelling 25 

(CPOM) into 5 CICE thickness categories, (1) ice thickness h < 0.6 m, (2) 0.6 m < h < 1.4 m, (3) 1.4 m < h < 2.4 m, (4) 2.4 m 

< h < 3.6 m, (5) h > 3.6 m, on a rectangular 50 km grid for each month. The mean area fraction and mean thickness is derived 

for each thickness category and these values are interpolated on the ORCA tripolar 1deg grid used by CICE (~40km grid 

resolution). Tilling et al. (2018) derived a general grid cell ice thickness uncertainty of 25%. Grid cells  with less than 100 

individual measurements and a grid-cell mean sea ice thickness of less than 0.5 m are omitted due to their increased uncertainty 30 

(Ricker et al., 2017). Otherwise, all the whole range of individual observations from applied grid points are included. Negative 

thickness values are retained in the CS2 processing to prevent statistical positive bias of the thinner ice and are added to 

category 1. This approach allows us to initialize the CICE model with the full ice thickness distribution (ITD) rather than to 

derive the ITD from the mean sea ice thickness (Hunke et al., 2015). A realistic ITD is critical for simulating ice growth and 

ice melt rates correctly:  given the identical mean ice thickness, a wider distribution leads to an increase of ice growth in winter, 35 

because ice growth mainly takes place over the thinner ice; whereas during summer, the thinner ice melting away increases 

the lead fraction, resulting in a warmer ocean mixed-layer temperature, thus accelerating the sea ice melt. 

In addition to CPOM CS2, we include sea ice thickness data provided by the Alfred Wegener Institute AWI (Hendricks et al., 

2016) and the National Aeronautics and Space Administration NASA (Kurtz and Harbeck, 2017). The comparison of the three 

CS2 data sets illustrates a part of their uncertainty and helps us to assess the robustness of model-CS2 ice thickness differences. 40 

While all three data providers rely on W99 for snow depth and density, there is variation in how it is applied. CPOM spatially 
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average the W99 snow depth and then halve it over first-year ice (Tilling et al., 2018), AWI and NASA also halve W99 snow 

depth over first-year ice but discard measurements in lower latitude regions (Ricker et al., 2014; Hendricks et al., 2016; Kurtz 

et al., 2013). Each institution also processes the radar returns differently. When estimating ice freeboard the range to the main 

scattering horizon of the radar return is obtained using a retracker algorithm. CPOM use a Gaussian-exponential retracker for 

ocean waveforms and a threshold first maximum retracker algorithm (TFMRA) with 70% threshold for sea ice waveforms 5 

(Tilling et al., 2018), AWI apply a 50% TFMRA to all waveforms (Ricker et al., 2014; Hendricks et al., 2016), and the NASA 

estimates rely on a physical model to best fit each waveform (Kurtz et al., 2014; Kurtz and Harbeck, 2017). This could lead to 

ice thickness differences based on different retrackers and thresholds applied.  

CS2 ice thickness data for October appear to be less robust as indicated by large differences between the three products for 

thin first-year ice (not shown) and by large differences in comparison with ESA’s Soil Moisture and Ocean Salinity (SMOS) 10 

sea ice data (Wang et al., 2016), so we only include CS data from November to April in our study. 

3 Model setup und simulations 

3.1 Setup 

CICE is a dynamic-thermodynamic sea-ice model designed for inclusion within a global climate model. The sea ice velocity 

is calculated from a momentum balance equation that accounts for air drag, ocean drag, Coriolis force, sea surface tilt, and the 15 

internal ice stress. The CICE model solves one-dimensional vertical heat balance equations for each ice thickness category. 

See Hunke et al. (2015) for a detailed description of the CICE model. Here, we perform stand-alone (fully forced) CICE 

simulations with version 5.1.2 for a pan-Arctic region (~40 km grid resolution). CICE contains a simple mixed-layer ocean 

model with a prognostic ocean temperature. To account for heat transport in the ocean, we restore the mixed-layer ocean 

temperature and salinity to climatological monthly means from MYO-WP4-PUM-GLOBAL-REANALYSIS-PHYS-001-004 20 

(Ferry et al., 2011) with a restoring timescale of 20 days. We apply a climatological ocean current (monthly means) from the 

same ocean reanalysis product. NCEP Reanalysis-2 (NCEP2) atmospheric reanalysis data (Kanamitsu et al., 2002, updated 

2017) are used as atmospheric forcing. We perform a multi-year simulation from 1980 to 2017 which does not utilise CS2 ice 

thickness data (referred to as CICE-free) and seven, 1-year long simulations which are initialized with CS2 ice thickness data 

(referred to as CICE-ini) starting in mid-November and running until the end of November of the following year for the 7 25 

winter periods from 2010/2011 to 2016/2017. The initial thickness and concentration for each of the 5 ice categories is taken 

from the CPOM CS2 ITD November mean thickness fields. For grid points without CS2 data, and for all other variables (e.g. 

temperature profiles, snow volume), results from the free CICE simulation are applied. In this way, CICE simulations cover 

the pan-Arctic region, but in regions where no CS2 are available, we restart with ice thickness values from the free CICE 

model run. While this approach would be problematic in a coupled model, in a stand-alone sea ice simulation the model 30 

adjustment to the new conditions is smooth and the impact of using the vertical temperature profile from the free simulation 

only affects sea ice thickness on the order of millimeters. 

3.2 Reference simulation (CICE-default) 

Our reference simulation includes a prognostic melt pond model (Flocco et al., 2010 & 2012) and the elastic anisotropic plastic 

rheology (Wilchinski and Feltham, 2006; Tsamados et al., 2013; Heorton et al., 2018). Otherwise, default CICE settings are 35 

chosen: 7 vertical ice layers, 1 snow layer, linear remapping ITD approximation (Lipscomp and Hunke, 2004), Bitz and 

Libscomp (1999) thermodynamics, Maykut and Untersteiner (1971) conductivity, Rothrock (1975) ridging scheme with a Cf 

value of 12 (empirical parameter that accounts for frictional energy dissipation) and the Delta-Eddington radiation scheme 

(Briegleb and Light, 2007). 
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3.3 Simulations with perturbed physical parameterizations and sensitivity simulations  

3.3.1 Improving sea ice thickness 

Comparing the CICE simulation with CS2 reveals that CICE default underestimates the mean monthly sea ice thickness by 

about 0.8 m (see Fig. 1a and discussion in Section 4). This motivates experiments with perturbed physical parameterizations 

aiming to increase ice thickness. All additional simulations are listed and described in Table 1. They have been performed as 5 

multi-year simulations (1980 to 2017, CICE-free) and seven 1-year-long simulations initialized with CS2 ice thickness (CICE-

ini). 

3.3.2 Uncertainty in atmospheric forcing data 

We perform two sensitivity experiments to explore the impact of uncertainty in atmospheric forcing on simulated sea ice 

conditions: decrease of incoming longwave radiation by 15% and decrease of 2m-air temperature by 2 K during the whole 10 

simulation. For both experiments seven 1-year-long simulations are performed which are initialized with CS2 ice thickness 

(CICE-ini) in mid-November. The setup of the reference run has been applied (CICE-default). See Table 2 for details. 

3.3.3 Impact of initial conditions and atmospheric forcing data 

We perform additional sensitivity experiments to explore the impact of initial and forcing conditions. Therefore, we conduct 

simulations with climatological initial and forcing conditions. For each experiment seven, 1-year-long simulations are 15 

performed that are initialized with CS2 ice thickness (CICE-ini) in mid-November. The setup of the most realistic 

configuration has been applied (CICE-best). See Table 3 for details and Section 4.4 for deriving our most realistic 

configuration. 

4 Results 

4.1. Defining region for comparing model sea ice thickness with CryoSat-2 data 20 

Several factors lead to errors in ice thickness retrieval from CS2, in particular the assumption of a climatological snow depth. 

The resulting ice thickness error is about 5 times larger than the error in snow depth, e.g. an underestimation in snow depth of 

0.1 m leads to an underestimation in ice thickness of 0.5 m for a typical ice freeboard of 0.2 m (Tilling et al., 2015).  

To enable a meaningful comparison of simulated sea ice thickness between CICE and CS2, we have to reduce the impact of 

errors. While for individual years and regions the W99 snow load can differ from reality by more than 0.1 m (Warren et al., 25 

1999), the average snow conditions are accurately represented at least over multi-year ice (e.g. Haas et al., 2017). Over first-

year ice, snow depth is overestimated (Kurtz and Farrell, 2011; Webster et al., 2014), hence CS2 retrievals halve W99 snow 

depth (Section 1). We will compare multi-year monthly means over the CS2 period 2010 to 2017. Further, we compare spatial 

averages of ice thickness to reduce the impact of random errors. A recent study by Nandan et al. (2017) showed that a vertical 

shift in the scattering horizon due to snow salinity could lead to an overestimation of CS2 ice thickness over first-year ice. Our 30 

region combines multi-year ice and first-year sea ice with a ratio of 65:35. 

We select a region over which to compare model simulations with CS2 data, for which CS2 data exist for all winter periods 

with at least 100 single observations per month and grid cell, and a minimum mean ice thickness of 0.5 m. Focusing on winter 

ice growth, we limit the region even further to grid cells in which ice growth is dominating over the impact of dynamics on 

sea ice thickness change. The mean simulated ice growth from November to April (2010 to 2016, see Fig. 2a) varies between 35 

0.6 and 1.0 m in the Central Arctic and can reach values of more than 2 m in the polynya regions along the Siberian coast 

(Dmitrenko et al., 2009; Bauer et al., 2013). Ice thickness is also modified by dynamical processes such as advection, 

convergence and ridging. While the total impact is below +/- 0.25 m in the Central Arctic, more than 2 m of ice is exported on 
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average from some coastal regions and transported to the Fram Strait (see Fig. 2b). For our region of interest, we only select 

grid cells in which the impact of dynamics on sea ice thickness change during winter is less than 0.25 m in magnitude. The 

resulting comparison region restricted by CS2 observations and dynamical sea ice change is shown in Fig. 3. We use this 

region for the rest of the paper. 

4.2 Comparison of default CICE simulation with CryoSat-2 data 5 

The mean annual cycle of ice thickness over our region of interest is compared in Fig. 1 with CS2. CICE-free-default 

underestimates the mean monthly sea ice thickness by about 0.8 m. It is noteworthy that this simulation is generally realistic 

in comparison to SSM/I sea ice extent (see Fig. 4) and represents the inter-annual variability of e.g. the September ice extent. 

The magnitude of the ice thickness difference of 0.8 m cannot be explained by the uncertainty of the CS2 ice thickness alone 

(Tilling et al, 2016; Stroeve et al., 2018) and so indicates a model error.  10 

CS2 ITD can be applied to initialize a CICE simulation with the observed ice thickness and CS2 data enable us to trace the ice 

thickness continuously through the whole winter until April. We apply the mean November CS2 ITD to initialize the CICE 

simulations in mid-November for the years from 2010 to 2016. Starting in mid-November, the mean simulated April ice 

thickness from CICE-ini-default is about 0.25 m too thin (Fig. 1b). This indicates that the winter ice growth is underestimated 

in the model. To explore the reasons for the underestimation, we will first examine the impact of atmospheric forcing data 15 

(Section 4.3) and then the impact of the physical processes involved and how they are represented in CICE (Section 4.4). 

4.3 Impact of uncertainty in atmospheric forcing data 

CICE ice growth in the central Arctic mainly depends on atmospheric forcing (in particular incoming longwave radiation and 

air temperature), the parameterization of the turbulent atmospheric heat fluxes (heat transfer coefficients) and the conductive 

heat fluxes within the ice and snow layers. While the impact of the turbulent ocean heat flux under the ice can be large in the 20 

marginal ice zone, the ocean temperature is generally close to the freezing temperature in the central Arctic during winter. 

To explore to what extent the underestimation of ice thickness can be attributed to errors in the surface energy balance 

associated with atmospheric forcing data, we performed two sensitivity studies in which we decreased (1) the incoming 

longwave radiation by 15 W m-2 (CICE-Ldown15-ini) and (2) the 2m-air-temperature (CICE-Tair2-ini) during the whole 

simulation period and for every location (see Table 2). We have chosen these values as estimates for potential total systematic 25 

atmospheric errors (e.g. Chaudhuri et al., 2014). The impact of these atmospheric perturbations on ice growth is small (see. 

Fig. 5) and the gap between CS2 ice thickness and CICE-default ice thickness can only be reduced marginally. The reduced 

longwave radiation and air temperature lead to a reduction of ice surface temperature in the range of 2 to 3 K and only increase 

ice growth by about 5% each. This is due to the fact that surface temperatures are around -30 °C during winter and the 

conductivity of the snow layer is low. Winter ice growth is not strongly affected by errors in atmospheric conditions. This is 30 

fundamentally different during the melting season. Fig. 5 reveals that the sea ice would be 0.9 m thicker in September due to 

the reduction of incoming longwave radiation and 1.4 m thicker due to the decrease of 2m-air-temperature starting with the 

same initial conditions in the November of the previous year. These sensitivity studies reveal that the underestimation of winter 

ice growth cannot be explained by errors in the surface energy balance associated with atmospheric forcing data. 

4.4 Improving CICE simulation by varying model physics 35 

In the sea ice model, local ice thickness changes are calculated by thermodynamic processes (ice growth and melt) and dynamic 

processes (advection and ridging). The thermodynamic change depends on the energy balance at the interfaces between 

atmosphere, snow, ice and ocean derived from the shortwave and longwave radiation fluxes, the turbulent heat fluxes and the 

conductive heat flux through the ice and snow. Addressing the individual contributions systematically, we alter model physics 
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within their range of uncertainty with the aim to increase sea ice thickness. Our model changes are presented in a cumulative 

way.  

The shortwave radiation budget strongly depends on the surface albedo parameterization. Here, we indirectly increase the total 

ice surface albedo (accounting for snow and pond covered as well as bare ice) by releasing more melt water into the ocean, 

and hence reducing the formation of ponded (darker) water over the surface of the ice (CICE-mw, see Table 1). While there 5 

are several possibilities to increase albedo values, we selected the release of melt water because of its impact on the albedo 

feedback mechanism and the poor knowledge about realistic assumptions. The impact on the simulated melt pond fraction can 

be seen in Fig. 6 for July 2012. Comparing our simulated melt pond fraction with satellite products (not shown) shows that the 

mean July pond fraction of CICE-mw (25 %) is closer to the mean values based on MERIS (Istomina et al., 2015) and MODIS 

data (Roesel et al., 2012) (24 % for both) than the mean pond fraction of CICE-default (28 %). Furthermore, the RMS error 10 

with respect to MERIS is reduced from 16 % (CICE-default) to 14 % (CICE-mw) justifying our increased release of melt 

water. Fig. 1a shows the thickness error is marginally reduced by CICE-mw: from about 0.8 m to 0.7-0.75 m. As expected 

there is no impact during winter for the initialized simulation, but the summer ice is 0.2 m thicker (Fig. 1b). 

In the next experiment, we address the sea ice advection and the turbulent heat fluxes. We apply the form drag parameterization 

of Tsamados et al., (2014) in addition to the release of more melt water (CICE-mw-form). Ice thickness increased slightly with 15 

respect to CICE-mw due to a reduced ice drift speed resulting in a weaker ocean-ice heat flux and less ice export. In addition, 

increasing the emissivity of snow and ice from 0.95 to 0.976 (CICE-mw-form-e) affects the longwave radiation budget. The 

increase reduces summer melt by a few centimeters, but no impact during winter is visible. 

Due its low conductivity snow depth controls the conductive heat flux. Here, we implement a snow drift scheme based on 

Lecomte et al. (2014) which reduces the snow depth by 20 to 40% (CICE-mw-form-e-sd, see Fig. 7) and has the biggest impact 20 

on sea ice thickness from all individual changes. With respect to CICE-default, the thickness error has been reduced from 0.8 

m to 0.25 m (see CICE-mw-form-e-sd-free in Fig. 1a). The reduction of snow depth leads to a strong increase in ice growth in 

winter, but also to a moderate increase of summer melt due to an earlier disappearance of snow. This can be seen comparing 

CICE-mw-form-e-sd-ini with CICE-mw-form-e-ini in Fig. 1b. The reduction of snow leads to an increase of May ice thickness 

of 0.12 m and to a decrease of September ice thickness of 0.06 m. Applying an increased conductivity coefficient for colder 25 

temperature (Pringle et al., 2007, CICE-mw-form-e-sd-bubbly) in addition reduces the error for CICE-free and CICE-ini to 

less than 0.1 m. This modification increases winter ice growth, but it has no impact during summer. 

Our selected region for comparing CICE and CS2 ice thickness consists of 35 % first-year and 65 % multi-year ice. The area 

fraction for each of the 5 ice thickness categories is shown in Table 4. In November 25 % of the region are covered by ice 

which is thinner than 1.4 m and 4 % by ice which is thicker than 3.6 m according to CS2. In April the thin ice fraction reduced 30 

to 12 % and thick ice fraction increased to 22 %. While the mean ice thickness between CICE-best-ini and CS2 is very similar, 

the thickness distribution is a bit narrower in CICE in April: 6 % of area thinner than 1.4 m and 10 % thicker than 3.6 m. 

So far, we compared the mean annual cycle of sea ice thickness over the period from 2010 to 2017. Fig. 8 compares times 

series of the individual years from free and initialized CICE simulations with three different CS2 products provided by CPOM, 

AWI and NASA. For all years, CICE-best-free is much closer to CS2 than CICE-default-free. It is striking that differences 35 

between CICE-best-free and CICE-best-ini are small. This is a remarkable result from a modelling point of view, because it 

means that CICE-best is so realistic that assimilation of sea ice thickness would not result in substantial changes. This 

agreement increases the confidence in our new model setup.  

Naturally differences between CS2 and CICE-best remain. In November 2012, simulated ice is about 0.5 m thinner than in 

CS2. During winter 2013/14 the CS2-CPOM ice growth is stronger than in CICE-best-ini with large differences between the 40 

three CS2 products. These differences can be caused either by model errors or by errors estimating sea ice thickness form CS2. 

As discussed in Section 4.1 using a climatological snow depth limits the applicability to derive inter-annual variability from 

CS2 ice thickness. For comparison, mean sea ice thickness from PIOMAS (Zhang and Rothrock, 2003) is added in Fig. 8. 
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Although no sea ice thickness observations are assimilated, PIOMAS is widely applied for verification of climate models. In 

spite of some differences between PIOMAS, CS2 and CICE-best in the sea ice thickness evolution, the general statement that 

CICE-best is more realistic than CICE-default is confirmed by PIOMAS. 

As the summer sea ice extent is quite realistic in CICE-default (Section 4.2), we investigate the impact of the strong ice 

thickness increase in CICE-best on sea ice concentration and extent. Fig. 4a reveals that the mean September sea ice extent 5 

over the period 2005 to 2014 is slightly underestimated in CICE-default with respect to SSM/I Bootstrap (Comiso, 1999). The 

impact of the strong thickness increase on sea ice extent is small, the ice extent is only marginally larger in CICE-best (Fig. 

4b), but nevertheless close to SSM/I Bootstrap. In contrast to ice extent, ice concentration is underestimated in CICE-default 

by 25% to 50% in large parts of the ice-covered Arctic Ocean. While apart from the ice edge, ice concentration is generally 

between 80% and 100% according to SSM/I Bootstrap, CICE-default frequently shows large areas with values below 50%. 10 

This discrepancy is strongly reduced in CICE-best with error values below 10% in the Canadian half and between 10% and 

30% in the Siberian half of the Arctic (Fig. 4b). It is worth mentioning that nearly all CMIP5 climate models underestimate 

Arctic summer sea ice concentration in their historical runs with respect to SSM/I Bootstrap (see e.g. Fig. 3 in Notz, 2014).  

CICE-best does not only improve the sea ice thickness, but also the summer sea ice concentration. 

We demonstrate the impact of our model changes on the timing of mean melt and freeze onset (2005-2014) between CICE-15 

best and CICE-default in Fig. 9. In CICE-best the melt onset day is later (0 – 4 days in the Central Arctic, up to 10 days in the 

Fram Strait) and the freeze onset is earlier (4 – 12 days in most areas) resulting in a shorter melting season. The simulated 

mean length of the melting season over the Arctic Basin reduces from 107 days (CICE-default) to 100 days (CICE-best). This 

is an improvement with respect to the observed value of 94 days. The observed number of 94 days is based on a mean value 

of 88 days for the period 1979 to 2012 and accounting for the trend of 3.7 days/decades (Stroeve et al., 2014). The impact of 20 

the model changes is remarkable given we apply the same 2m-air-temperature data (NCEP-2) as atmospheric forcing. Our 

examples indicate that the chosen model physics may be important for many climate related questions and how climate models 

predict future changes of summer melting season and sea ice decline. 

4.5 Impact of initial conditions and atmospheric forcing 

How strongly do the CICE simulations depend on sea ice initial conditions? Using the mean CS2 November sea ice thickness 25 

from 2010 to 2016 (CICE-climini, Table 3) instead of the annual values leads to positive or negative thickness anomalies 

which remain throughout the year, becoming only slightly weaker during winter (Fig. 10). The inter-annual variability of the 

simulated April ice thickness is reduced by 44 % (from 0.18 m to 0.10 m, Table 5) and the September ice thickness by 20 % 

(from 0.5 m to 0.4 m). 

Applying a mean atmospheric forcing for each year (CICE-climforcing-ini) does hardly affect the ice thickness during winter 30 

(with the exception of winter 2016/17), but it leads to strong anomalies during summer (Fig. 10). The mean September sea ice 

thickness is increased by 0.28 m and the inter-annual variability reduced from 0.5 to 0.25 m (Table 5). Applying the mean 

atmospheric forcing during winter only and the individual atmospheric forcing from May onwards (CICE-climforcing-winter-

ini), sea ice thickness during summer is nearly unchanged with respect to CICE-ini. While the atmospheric conditions during 

summer are decisive for summer ice melt and September sea ice thickness, the atmospheric winter conditions seem not to 35 

matter at all. 

The atmospheric conditions for the last 8 winters were all relatively warm with respect to the 1980 to 2010 climate. Is it 

possible that the small variability of these winter periods could cause the weak impact on sea ice thickness? To exclude this 

possibility, we perform additional sensitivity experiments in which we apply colder atmospheric conditions from the 80’s 

(CICE-80climforcing-ini). Fig. 11 and Table 3 reveal that the impact during winter is nevertheless small (mean thickness 40 

increase of 0.11 m), but huge in summer (+0.8 m). Interestingly, the impact of using the wind forcing from an anomalous year 

(2009/10, stronger transpolar-drift), CICE-climforcing-wind20100ini, is stronger on April ice thickness (-0.13 m) than from 
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the cold atmospheric conditions. This confirms the important role of sea ice dynamics and export through the Fram Strait in 

controlling the sea ice volume variability (Ricker et al., 2018). 

These sensitivity experiments demonstrate that the atmospheric winter conditions have very small impact on winter ice growth 

and thus on April ice thickness. September ice thickness depends strongly on atmospheric conditions from May to September. 

5 Conclusions 5 

We determined an optimal region for comparing sea ice thickness between simulations with the sea ice model CICE and CS2 

data by taking into account the strengths and weaknesses of both approaches. Since simulating dynamic processes can result 

in large model errors and can be proportionally less accurate, we exclude locations where sea ice dynamics (sea ice advection 

and ridging) make a strong contribution in modifying see ice thickness. We further exclude locations where the number of 

CS2 observations is limited and the sea ice is thin during winter (< 0.5 m). The resulting region includes most of the Central 10 

Arctic, but not the area of the thickest ice north of Canada or any of the shelf seas (see Fig. 3). 

Comparing the multi-year means reveals that CICE-default underestimates ice thickness over our comparison region by about 

0.8 m (see Fig. 1a). This discrepancy would not have been identified by comparing total Arctic ice volume. Due to 

overestimating ice thickness in the Canadian sector, Arctic ice volume from CICE-default is only slightly lower than estimates 

based on CS2 or PIOMAS. Deriving the sub-grid scale ice thickness distribution (ITD) from CS2 allows us to initialise CICE 15 

simulations with the identical ice thickness in November. Applying default settings CICE-ini underestimates mean ice 

thickness in the following April by 0.25 m (see Fig. 1b). This indicates that the winter ice growth is too weak in the model. 

What is the reason for the underestimation of ice growth? Our sensitivity experiments give evidence that uncertainty in 

atmospheric forcing cannot be the main reason. Impact of errors in air temperature and incoming longwave radiation on sea 

ice growth is rather small in winter (see Fig. 5). The turbulent ocean-ice heat flux is generally small in winter in the Central 20 

Arctic, thus, errors deriving from the turbulent ocean-ice heat flux cannot be responsible either. The ice-atmosphere heat fluxes 

depend on atmospheric forcing and the transfer coefficients. Varying the transfer coefficients does not result in major changes 

of sea ice growth. Initial conditions in autumn are important, but our initialized CICE simulations show that April ice thickness 

is still underestimated even when starting with the “correct” November ice thickness. Thus, by a process of exclusion, we 

conclude that sea ice physics related to the conductive flux must be responsible. 25 

The strongest contribution in simulating winter ice growth comes from implementing a snow drift scheme based on Lecomte 

et al. (2014). Although our implementation is simple and further work to improve the parameterization is required, it 

demonstrates the importance of including additional snow processes in sea ice models for climate applications (Vionnet et al., 

2012; Nandan et al., 2017; Liston et al., 2018). Such model development can also benefit recent Arctic wide snow products 

that rely on satellite observations (Maaß et al., 2013; Guerreiro et al, 2016; Lawrence et al., 2018) or reanalysis precipitation 30 

fields on drifting sea ice (Kwok and Cunningham, 2008). 

Our sensitivity experiments modifying initial and atmospheric forcing data reveal that ice thickness anomalies in November 

decay over winter but are still present in the following April (see Fig. 10). Comparing interannual variability of April ice 

thickness between CICE-ini and CICE-climini (Table 5) show that half of the variability comes from the initial conditions. 

Atmospheric conditions during spring and summer are decisive for summer sea ice conditions, but atmospheric winter 35 

conditions have little impact on sea ice growth. Using “cold” forcing from the 80’s instead of the more recent winters leads to 

an increase in September sea ice thickness of 0.8 m, but only to an increase in April ice thickness of 0.11 m (see Fig. 11 and 

Table 5). This reflects the importance of feedback processes. During winter, the negative conductive feedback process (less 

ice, more growth) is dominating, while during summer the positive albedo feedback process determines sea ice changes. The 

impact of the negative winter feedback has been discussed in Stroeve et al. (2018). In their study a potential weakening of the 40 

feedback during the last years has been raised as a question. Here, we answer this question demonstrating that warm winters 
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are not important for observed sea ice thinning in the last decades, at least in the Central Arctic. The situation can be different 

in the marginal winter sea ice zone, where a warm winter can increase mixed-layer ocean temperature and delay ice growth. 

Our findings are in agreement with observations of the last years: In spite of the three warmest Arctic-wide winter air 

temperatures during 2014/2015, 2015/2016 and 2016/2017 on record (Stroeve et al., 2018), the September Arctic sea ice extent 

in 2015 (4.7 million km2), 2016 (4.7 million km2) and 2017 (4.9 million km2) has been larger than in 2012 (3.6 million km2), 5 

numbers based on SSM/I NASA-Team algorithm (Cavalieri et al. 1996, updated 2017). We conclude that the fate of Arctic 

summer sea ice depends largely on atmospheric spring and summer conditions, in particular May and June, when the melting 

season starts and melt ponds form, preconditioning the strength of the positive albedo feedback mechanism (Schröder et al., 

2014). 

Our optimal model configuration CICE-best does not only improve the simulation of mean sea ice thickness over the Central 10 

Arctic with respect to CS2, but also improves summer sea ice concentration (in comparison to SSM/I Bootstrap), the length 

of melt season (in comparison to Stroeve et al., 2014) and melt pond fraction (in comparison to MODIS and MERIS).  Recent 

studies demonstrated improvements for sea ice predictions up to 6 months initializing forecast models with CS-2 data (Allard 

et al., 2018; Blockley and Peterson, 2018). Here, we show that our improvements to the sea ice model CICE are so fundamental 

and consistent that any differences between CICE simulations initialized by CS2 ice thickness and those which do not utilize 15 

them are minimized. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model 

physics. 
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712. Table 1. Simulations with perturbed physical parameterizations improving sea ice 
thickness. Note that all model changes are cumulative. “Free” indicates multi-year simulations 
from 1980 to 2017; “ini” indicates seven 1-year-long simulations starting in mid-November 
with CS2 sea ice thickness (2010/2011 to 2016/17).  

Run Name  Description  free  ini 
CICE-mw The maximum melt water added to melt ponds rfracmax is reduced from 100% to 

50%. The actual fraction of melt water rfrac is calculated as: rfrac = rfracmin + 
(rfracmax-rfracmin) * aice with rfracmin = 15%. This reduction accounts for the 
uncertainty in the fraction of melt water that collects in ponds versus being 
immediately released to the ocean. The impact of this change on the simulated 
melt pond fraction in July 2012 is demonstrated in Fig. 1. The melt pond fraction 
in the central Arctic is generally reduced by 5-10% ranging from 25 to 40% in the 
default simulation and from 20 to 35% in CICE mw. The new melt pond 
distribution is more realistic with respect to MODIS derived melt pond fractions 
(Roesel et al., 2012). 

Y Y  

CICE-mw-form Instead of a constant drag coefficient for the momentum fluxes between 
atmosphere and ice (CDa = 1.3 x 10-3) and between ice and ocean (CDo = 5.36 x 
10-3), the form drag parametrization of Tsamados et al. (2014) is applied 
accounting for the impact of pressure ridges, keels, ice floe and melt pond edges. 
Here, we modify the background drag coefficient for the atmosphere (csa = 0.01 
instead of 0.005) and the ocean (csw = 0.0005 instead of 0.02) and the parameters 
determining the impact of ridges and keels (cra = 0.1 instead of 0.2 and crw = 0.5 
instead of 0.2). These modifications increase ice drift over level ice and decrease 
ice drift over ridged ice resulting in a more realistic ice drift pattern in comparison 
to Pathfinder (not shown). 

Y  Y 

CICE-mw-form-e The longwave emissivity of sea ice is increased from 0.95 to 0.976. Y Y 
CICE-mw-form-e-sd Depending on wind speed, snow density and surface topography, snow can be 

eroded from the sea ice surface, drift through air and be redistributed or lost in 
leads. The default CICE simulation does not account for these processes. Here, 
we parameterize the snow erosion rate following Lecomte et al. (2014): 

𝜕ℎ$
𝜕𝑡 = −

𝛾
𝜎*+,

(𝑉 − 𝑉∗)
𝜌$,345 − 𝜌$

𝜌$
 

with snow depth hs, mass flux tuning coefficient g = 10-5 kg m-2, current wind 
speed V, threshold wind speed V* = 3.5 m s-1, current snow density rs and 
maximum snow density rs,MAX, and standard deviation of ice thickness 
distribution sITD. Lacking information about the snow density distribution, we 
apply rs,MAX = 330 kg m3 (the constant snow density in CICE) and assume rs = 
240 kg m3. Regarding the ITD, we apply s values of 0.25 m for ice category 1 
(ice thickness h < 0.6 m), 0.5 m for category 2 (0.6 m < h < 1.4 m) and 1 m for 
category 3 1.4 m < h < 2.4 m). We assume that the whole amount of snow blown 
into the air will be released into the ocean. Estimating the error of this 
assumption, we calculate the net snow re-deposition rate. Snow which is blown 
into air, will be deposited at the surface and might be blown into the air again if 
the wind speed stays above the threshold value. Assuming an average friction 
velocity of 0.1 m s-1 and a total distance of 200 m, one cycle takes approximately 
30 min. For every cycle, the lead fraction defines the fraction of snow volume 
released into the ocean. Analyzing NCEP-2 wind fields, the average period the 
wind speed stays above the threshold value of 3.5 m s-2 ranges from 50 to 120 h 
over the Arctic sea ice with the lowest values close to coast of North Greenland. 
Thus, for most parts of the Arctic more than 90 % of the total snow blown into the 
air would be lost in leads. An error of less than 10 % justifies our simplification. 
The impact of our parameterization on the simulated snow depth can be seen in 
Fig. 2. Accounting for the loss of drifting snow reduces the snow depth between 
20 and 40 %. The larger differences occur over regions with strongest winds and 
the smallest differences north of Greenland and Canada. 

 

Y Y 

CICE-mw-form-e-sd-bubbly 
(CICE-best) 

We apply the bubbly conductivity formulation from Pringle et al. (2007) which 
results in larger thermal conductivity values for colder ice temperatures. 

Y Y 

 5 
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Table 2. Sensitivity simulations exploring the impact of uncertainty in atmospheric forcing data. 
“Free” indicates multi-year simulations from 1980 to 2017; “ini” indicates seven 1-year-long 
simulations starting in mid-November with CS2 sea ice thickness (2010/2011 to 2016/17).  

Run Name  Description  free  ini 
CICE-Ldown15 As CICE-default, but forcing field incoming longwave radiation has been 

decreased by 15 % everywhere and for all times. 
N Y  

CICE-Tair2 As CICE-default, but forcing field 2m-air temperature has been decreased by 2 K 
everywhere and for all times. 

N Y 

 

 5 

Table 3. Sensitivity simulations exploring the impact of initial and forcing conditions. “Free” 
indicates multi-year simulations from 1980 to 2017; “ini” indicates seven 1-year-long 
simulations starting in mid-November with CS2 sea ice thickness (2010/2011 to 2016/17). 
Model configuration for all simulation is CICE-best. 

Run Name  Description  free  ini 
CICE-climini The same climatological initial conditions from CS2 CPOM (mean over 2010-

2016) are applied for each November. 
N Y  

CICE-climforcing Climatological atmospheric forcing calculated over the period 2011 to 2017 is 
applied for air temperature, humidity, downward longwave and shortwave 
radiation, rainfall and snowfall. The real wind forcing is applied in all 
simulations. 

N Y 

CICE-climforcing-winter Climatological atmospheric forcing is applied from mid-November to April and 
real forcing afterwards (May to November). 

N Y 

CICE-80climforcing As CICE-climforcing, but climatological atmospheric forcing calculated over the 
period 1981 to 1987. 

N Y 

CICE-80climforcing-winter As CICE-climforcing winter, but climatological atmospheric forcing calculated 
over the period 1981 to 1987. 

N Y 

CICE-climforcing-wind2010 As CICE-climforcing, but using the wind forcing from 2009/10 instead of the real 
wind forcing. 

N Y 
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Table 4: Mean area fraction of sea ice per category according to CS2 and CICE-best-ini (over 
region shown in Fig. 3 and period 2010 to 2017). 

Ice thickness (h) category CS2          
Nov 

CS2                 
April 

CICE-best-ini 
April 

1 (h < 0.6 m) 8 5 2 
2 (0.6 m < h < 1.4 m) 17 7 4 
3 (1.4 m < h < 2.4 m) 43 23 30 
4 (2.4 m < h < 3.6 m) 27 42 54 

5 (h > 3.6 m) 4 22 10 
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Table 5. Impact of initial November sea ice conditions and atmospheric forcing on mean sea ice thickness of 
subsequent April and September over region shown in Fig. 3 from 2011 to 2017. See Section 3.3 for explanation of 
CICE simulations. Inter-annual variability is given in parenthesis. 

Setup April-hi in m September-hi in m 

CICE-ini 2.70 (+/- 0.18) 1.62 (+/- 0.50) 

CICE-clim-ini 2.67 (+/- 0.10) 1.57 (+/- 0.40) 

CICE-climforcing-ini 2.70 (+/- 0.17) 1.90 (+/- 0.25) 

CICE-climforcing-winter-ini 2.70 (+/- 0.17) 1.62 (+/- 0.50) 

CICE-80climforcing-ini 2.81 (+/- 0.16) 2.37 (+/- 0.21) 

CICE-80climforcing-winter-ini 2.81 (+/- 0.16) 1.78 (+/- 0.49) 

CICE-climforcing-wind2010-ini 2.57 (+/- 0.17) 1.92 (+/- 0.17) 
 

 5 
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Figure 1: Impact of CICE setup on mean effective sea ice thickness over region shown in Fig. 3 and averaged over winter periods 
2010/2011 to 2016/2017: a) CICE-free simulations (multi-year runs from 1980 to 2017) and b) CICE-ini simulations (seven 1-year-
long runs starting in mid-November with CS2 sea ice thickness). Model results are compared with mean sea ice thickness from CS2 5 
CPOM and PIOMAS. Effective ice thickness (divided by ice concentration) is presented. For CS2 ice concentration is applied from 
CICE-default (mean values for November to April vary between 99.4 and 998. %.  See Section 3.3.1 for explanation of CICE 
experiments. Note: Results for November, December, Januar, and February are shown twice for improved visualization of annual 
cycle. 

a 

b 
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Figure 2: Mean simulated sea ice thickness change from November to April (2010-2016) in CICE default: a) Sea ice growth in cm 
and b) Sea ice thickness change by dynamical processes dh_dyn in cm (advection, convergence and ridging). 

a 

b 
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Figure 3: Region for comparing CICE and CS2 sea ice thickness where impact of winter growth on thickness change dominates 
other factors and where CS2 data are most accurate (See Section 4.1 for more details).  
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Figure 4: Difference in mean September sea ice concentration (2005-2014) in % between CICE simulation and SSM/I Bootstrap 
data. Negative values mean lower ice concentration in CICE. Black line indicates mean SSM/I and red line mean CICE sea ice 5 
extent: a) CICE-default and b) CICE-best.   

a 

b 
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Figure 5: Impact of uncertainty in atmospheric forcing on simulated mean effective sea ice thickness over region shown in Fig. 3 
and averaged over winter periods 2010/2011 to 2016/2017.  CICE-ini simulations: default, default with increase of incoming 
longwave radiation of 15 Wm-2, default with increase of 2m air temperature of 2 K (everywhere and anytime), best. Model results 
are compared with mean sea ice thickness from CS2 CPOM. 5 
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Figure 6: Impact of reduced retained melt water fraction on simulated melt pond area fraction in July 2012: a) CICE-default and 
b) CICE-mw. 

5 

a 

b 
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Figure 7: Impact of snow erosion on simulated mean April snow depth (2010 to 2017): a) CICE-default and b) CICE-mw-from-e-
sd.  

a 

b 
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Figure 8: Mean effective sea ice thickness over region shown in Fig. 3. Verification of CICE-free default and best (thin lines) and 
CICE-ini default and best (thick lines) with CS2 CPOM, AWI and NASA and PIOMAS. 

  5 



24 
 

 

  
Figure 9: Difference in mean melt onset (a) and freeze onset (b) in days between CICE-best and CICE-default (2010-2017). Positive 
values mean later onset day in CICE-best. 

 5 
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Figure 10: Impact of climatological initial conditions (climini), climatological forcing (climforcing) and climatological forcing during 
winter only (November to April, climforcing winter). All CICE simulations from CICE-ini best. Mean effective sea ice thickness 
over region shown in Fig. 3. CS2 as in Fig. 7. The climatology is calculated over the period 2011 to 2017 for air temperature, humidity, 
downward longwave and shortwave radiation, rainfall and snowfall. The real wind forcing is applied in all simulations. 5 
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Figure 11: As Fig. 10, but applying a climatology calculated over the period 1981 to 1987.  

 


