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Response to referee comments 

(Referee comments are shown in black, our response in blue and changes in manuscript in red. See 
also attached revised manuscript with highlighted changes.) 

Anonymous Referee #1  

Response: First, we would like to thank the reviewer for the time spent on our study and the 5 
thoughtful comments. 

General comments:  

GC1: The authors assume that CS2 estimates are unbiased towards thicker sea ice and superior to CICE 
in general, and that there is a negative sea ice thickness bias in CICE estimates. Given the substantial 
uncertainties in CS2 estimates, it would be better to phrase comparisons with ambiguity regarding 10 
which is more accurate: e.g. “Comparing the CICE simulation with CS2 reveals that CICE default 
underestimates the mean monthly sea ice thickness” would become “Comparing the CICE simulation 
with CS2 reveals that CICE default produces thinner mean monthly sea ice”. Furthermore, given the 
importance of CS2 estimates, its uncertainty and bias should be quantitatively described, early in the 
paper, for each of the five sea ice thickness classes used. As shown in Tilling et al. (2018), CS2 biases 15 
for ice < 1.4 m are generally positive, whereas for ice > 3.6 m biases are generally negative; and Ricker 
et al. (2017) provide an assessment of relative error by thickness. The uncertainties and biases, as a 
factor of ice thickness, should be more prominent in discussions of the results.  

Response: In Tilling et al. (2018) CS-2 thicknesses were compared with ice thickness from three 
different independent datasets and they concluded that there is no significant bias between satellite 20 
data and in situ measurements. The absolute differences between CS2 derived thickness and 
independent observations may arise through uncertainties in either data sets, as the in-situ 
measurements are still a derived product with their own associated uncertainties. Therefore, it is not 
possible to say what dataset causes the slight variation in bias with ice thickness, and we cannot 
assume it is CS2.   25 

Ricker et al (2017) showed that sea ice thickness uncertainty increases over thin ice, with a rapid 
increase at ~0.5 m. However, these thicknesses are not included in our analysis, as already stated in 
the manuscript (Section 2). Tilling et al (2018) quote a general grid cell uncertainty of 25%.  

Based on the assessment of the relative error depending on ice thickness by Ricker et al. (2017), we 
decided not to include grid cells with a mean ice thickness below 0.5 m. We discuss uncertainties of 30 
CS2 estimates in Section 2 and Section 4.1 in detail and provide numbers for impact of error of 
assumed snow depth. Our selected region and the mean over the CS2 period are aimed to reduce the 
impact of these uncertainties. The difference in monthly mean ice thickness over our selected region 
and over the CS2 period of 0.8 m between CS2 and CICE-default cannot be explained by CS2 
uncertainties. Therefore, the differences must be caused to a large extent by model errors. We are not 35 
comparing two different thickness products with similar accuracy. CS2 thickness estimates are more 
accurate than CICE-default for our comparison. 

Suggested change in manuscript: We add the 25% value in grid cell uncertainty when introducing 
CPOM data in Section 2. 

GC2: The region (grid cells) chosen for CICE - CS2 comparison is an area usually dominated by 40 
multiyear sea ice. This is evident in Figure 1 where the ice does not melt fully during the summer, 
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indicating primarily multiyear sea ice. This is also evident in that the September model results for the 
grid cells show a mean ice thickness > 1.57 m (Table 4). Please describe the proportions of multiyear 
versus first-year sea ice that make up the comparison grid cells. If first-year sea ice constitutes a 
significant proportion, the vertical shift in the scattering horizon due to snow salinity (Nandan et al., 
2017) could account for most of the 0.8 m CICE - CS2 difference observed. However, for multiyear sea 5 
ice with its non-saline snow this would not apply. If the analysis is primarily limited to multiyear sea 
ice, this should be reflected throughout the paper. Please include a figure showing the frequency 
distributions of ice thickness in November and in April.  

Response: The field data used in the Nandan et al (2017) study were collected over the late winter 
season (April and May) in the Canadian Archipelago. We would expect the saline properties of snow 10 
on sea ice to differ throughout the season and with location, even just over FYI. Therefore, we do not 
wish to assume that the impact of salinity found in the study is applicable Arctic-wide, and indeed 
across our whole study region. In any case, Nandan et al (2017) found the impact of salinity was to 
shift the scattering horizon by 0.07 m. This would lead to an overestimate in ice thickness of about 35 
cm for a typical FYI freeboard and snow thickness. Our selected region combines multi-year ice and 15 
first-year sea ice. The mean first-year fraction in April amounts to 35 %, so the mean bias caused by 
salinity would amount to 0.35 x 0.35 m = 0.1225 cm – clearly less than 0.8 m. Thus, we can exclude 
that snow salinity effect could account for a large part of the 0.8 m CICE-default - CS2 difference.  

Suggested change in manuscript: We add statement about the impact of salinity and the ratio first-
year vs multi-year ice for our selected region in Section 4.1 and 4.4. We also add a new table showing 20 
the area fraction for each of the 5 ice thickness categories. In November 25 % of the region are 
covered by ice which is thinner than 1.4 m and 4 % by ice which is thicker than 3.6 m according to CS2. 
In April the thin ice fraction reduced to 12 % and thick ice fraction increased to 22 %. While the mean 
ice thickness between CICE-best-ini and CS2 is very similar, the thickness distribution is a bit narrower 
in CICE in April: 6 % of area thinner than 1.4 m and 10 % thicker than 3.6 m. 25 

Table 4: Mean area fraction of sea ice per category according to CS2 and CICE-best-ini (over region 
shown in Fig. 3 and period 2010 to 2017). 

Ice thickness (h) 
category 

CS2          
Nov 

CS2                 
April 

CICE-best-
ini April 

1 (h < 0.6 m) 8 5 2 
2 (0.6 m < h < 1.4 
m) 

17 7 4 

3 (1.4 m < h < 2.4 
m) 

43 23 30 

4 (2.4 m < h < 3.6 
m) 

27 42 54 

5 (h > 3.6 m) 4 22 10 

GC3: The authors attempt to force the model to fit the CS2 estimates by making cumulative changes to 
the model that are biased towards thickening the sea ice. While these are reasonable for assessing 
which variables may be incorrectly parameterized, they are not really sensitivity studies; they are 30 
rather specific model perturbations intended to produce thicker sea ice. A terminology other than 
“sensitivity study” should be used.  

Suggested change in manuscript: Following your suggestion, we change the header for Section 3.3 
“Sensitivity simulations” to “Simulations with perturbed physical parameterizations and sensitivity 
simulations” and modify text at several places within the manuscript accordingly. 35 
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GC4: When comparing the CICE-mw-form-e-sd and subsequent models with CS2 estimates, the snow 
distributions will be different, assuming W99 is used for CS2 estimates. W99 for the comparison grid 
cells in April is approximately 30 cm, whereas Figure 7b suggest values of half that thickness; the 
resulting CS2 sea ice thickness estimates would be substantially thicker. If the substantially thinner 
snow cover distribution (as per Figure 7b) were to be used for the CS2 estimates, then a direct 5 
comparison would be more valid.  

Response: CPOM and AWI use W99 snow depth for multi-year ice, but they halve W99 snow depth 
over first-year ice (see Section 2). The resulting snow depth is actually closer to our reduced snow 
depth (CICE-mw-form-e-sd) than to our original snow depth (CICE-default). The mean April snow 
depth (2011-2017) over our selected region for modified W99 as applied for CS-2 estimates (28 cm) is 10 
only 1 cm thicker than in CICE-mw-form-e-sd (27 cm), but 6 cm thinner than in CICE-default (34 cm). 
The snow depth has been larger over the last years. We acknowledge the suggestion by the reviewer 
to use simulated snow depth to derive ice thickness from CS2 freeboard for future studies. 

Suggested change in manuscript: In the modified manuscript we now present the mean April snow 
depth over the more relevant period from 2011 to 2017 instead of 2005 to 2014 in Fig.7. 15 

Specific comments:  

P2, L3: Please include a short description of CICE, with references.  

Suggested change in manuscript: We added a few general sentences in Section 3.1. Be aware that 
applied physical options are mentioned in Section 3.2 and references given. 

P2, L20: Discrimination of sea ice type is also a principle challenge (in order to assign ice densities and 20 
snow loads); especially when the effects of snow salinity for first-year sea ice are also considered.  

Suggested change in manuscript: Thank you. Added. 

P2, L32: Can it be called a “full ice thickness distribution” if values < 0.5 m are not included?  

Response: Yes. We do exclude grid points with mean ice thickness below 0.5 m, but if the mean value 
is above 0.5 m, we include all single data points (full range). 25 

P2, L35: Given that “A realistic ITD is critical for simulating ice growth and ice melt rates correctly”, an 
explanation should be included here on the impact of omitting thin ice points.  

Response: Misunderstanding. See above. 

P3, L31: In order to compare the uncertainties of CS2 estimates with the uncertainties of CICE model 
results, please summarize previously reported (if any) uncertainties and biases, for sea ice thickness, 30 
of CICE-default.  

Response: We agree that it would be nice to have quantitative information about uncertainties in CICE 
model results. Unfortunately, this is not possible. Physical and empirical parameters are nor very well 
constrained for many parameterizations in sea ice models and there are uncertainties due to the 
coupling with the atmospheric and oceanic forcing. Modifying these parameters within their range of 35 
uncertainty can result in mean ice thickness changes of more than 1 m. See e.g. a study by Kim, J. G., E. 
C. Hunke, and W. H. Lipscomb (2006): A sensitivity analysis and parameter tuning scheme for global 
sea-ice modeling, Ocean Modell.,14, 61–80.  
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P4, L3: See GC3.  

Suggested change in manuscript: Changed. 

P4, L25: Multiyear sea ice is mentioned, but please include a statement regarding the accuracy of 
snow on first-year sea ice.  

Suggested change in manuscript: We added a statement saying that climatology is likely to be an 5 
overestimate over FYI (Kurtz and Farrell, 2011; Webster et al., 2014). 

P4, L26: In “Therefore, we apply a climatology for the CS2 period 2010 to 2017”, what is meant by “a 
climatology”? Is this W99 as per P2, L23?  

Response: No, we compare multi-year monthly means of sea ice thickness (Fig. 1 + 5).  

Suggested change in manuscript: Text changed to: “Therefore, we will compare multi-year monthly 10 
means over the CS2 period 2010 to 2017”. 

P5, L10: The language used is too strong: e.g. “This indicates that the winter ice growth is 
underestimated in the model.” See GC1. Recommend: “This suggests that the winter ice growth may 
be underestimated in the model.”  

Response: Our statement is justified. See our response to GC1.  15 

P5, L10: If the CS2 ice thickness is overestimated when thinner and more-accurately estimated (or 
underestimated) when thicker (as per Tilling et al., 2018) then this may mitigate the CICE April 
“underestimation”.  

Response: See our response to GC1. Overall, Tilling et al (2018) found that there was no significant bias 
in CS2 estimates of sea ice thickness when compared with independent datasets. As all are derived 20 
products it is not possible to say what dataset causes the slight variation in bias with ice thickness, and 
we cannot assume it’s CS2.   

P5, L29: This statement is rather broad, given that only air temperature and incoming longwave were 
assessed, and then only for two specific perturbations. Please reword.  

Response: Atmospheric forcing consists of air temperature and humidity, incoming longwave and 25 
shortwave radiation, wind vector and precipitation. Shortwave radiation is negligible in winter, the 
impact of errors in air humidity and wind vector on ice growth is small. Thus, air temperature and 
incoming longwave radiation are the main atmospheric drivers. Our perturbations (-2 K and -15 Wm-2 
everywhere and over the whole model period) are large and represent the full atmospheric impact 
apart from snowfall.  30 

Suggested change in manuscript: We reword our statement that “the underestimation of winter ice 
growth cannot be explained by errors in atmospheric forcing data” to “the underestimation of winter 
ice growth cannot be explained by errors in the surface energy balance associated with atmospheric 
forcing data”. 

P6, L11 and Table 1: For CICE-mw-form-e, what is the justification for increasing the longwave 35 
emissivity of sea ice from 0.95 to 0.976.  
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Response: The observed values of longwave emissivity of sea ice ranges from 0.95 to 0.99. The value 
of 0.976 has recently been applied by Ridley et al. (GMD, 2018) for climate simulations. E.g. the sea ice 
model LIM uses a value of 0.97. 

Technical corrections:  

Figure 1 caption: “(mean values for November to April vary between 99.4 and 998. %.” Is missing a “)” 5 
and 998 is likely 99.8%.  

Suggested change in manuscript: Thank you. Modified. 

Figure 3: Change North pole latitude to 90, or omit. In the caption, would not “grid cells” be more 
accurate than “region”.  

Suggested change in manuscript: Thank you. Changed in all figures. 10 

P3, L26: Define “SIT”. 

Suggested change in manuscript: We use full word now: sea ice thickness. 

 
Table 1 caption: “. . .model changes. . .” 

Suggested change in manuscript: Thank you. Done. 15 

Table 1: surfaceaography = surface topography?  

Suggested change in manuscript: Yes. Changed. 

 

Anonymous Referee #2  

General Comments  20 

In this paper, the authors evaluate the ice thickness from a standalone CICE model forced with NCEP-2 
Reanalysis atmospheric forcing against CryoSat-2-derived ice thickness during 2010-2017 to determine 
the cause of the model’s underestimation of the central Arctic winter ice thickness. A multi-year 
simulation is performed (CICE-free) for the period of 1980-2017 on a 40 km CICE (v5.1.2) grid using a 
simple mixed layer ocean model where the ocean temperature is restored to climatology on 20-day 25 
restor- ing time scale and utilizes monthly mean climatological ocean currents. Model defaults include 
a prognostic melt pond, elastic anisotropic rheology, ridging and the Delta- Eddington radiation 
scheme. Comparisons against CryoSat-2 (CS2) sea ice thickness from CPOM, AWI, and NASA for the 
months of November – April all reveal a significant under-prediction in the winter Central Arctic ice 
thickness. The CS2 data is binned into five CICE model ice thickness categories ranging from the first 30 
category with < 0.6 m of ice to the fifth category with ice > 3.6 m on a rectangular 50 km grid and used 
to initialize a series of experiments. The paper discusses the treatment of snow for each CS2 dataset in 
deriving the ice thickness. In their study, the authors chose a region in the Central Arctic (Fig. 3) with a 
minimum ice thickness of 0.5 m and a region where ice growth is dominant over the impact of sea ice 
dynamics. A series of 7 studies are performed for the multi-year periods beginning in November of 35 
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2010 and continuing for 15 months and repeated through 2016/2017. Experiment are initialized with 
all three CS2 ice thickness fields and use different CICE options documented in Table 1.  

An experiment was performed by decreasing the longwave radiation by 15 w/m2 and reducing the air 
temperature by 2 K everywhere and for all times. They found some differences in the mean 
September ice thickness, but little change in winter ice thick- ness; concluding that the under-5 
prediction in winter ice growth can not be explained by errors in forcing data.  

Experiments were conducted which studied the impact of increased total ice surface albedo by 
releasing more melt water into ocean; thus reducing ponded water over the surface of ice. This study 
(CICE-mw) only revealed a small improvement in winter ice thickness.  

Another set of experiments applied the form drag parameterization of Tsamados et al. (2014) to 10 
investigate sea ice advection and turbulent heat fluxes (CICE-mw-form). They found a small ice 
thickness increase attributed to a reduce ice drift speed resulting in a weaker ocean-ice heat flux. 
Another set of experiments increased the emissivity of snow from 0.95 to 0.976 (CICE-mw-form-e) 
impacting the longwave radiation budget. They found that the summer melt was reduced by only a 
few cm, but no noticeable change was found in winter.  15 

The most significant improvement was found with the implementation of a snow drift scheme based 
on Lecomte et al. (2014) which reduced the snow depth by 20-40% (CICE-mw-form-e-sd) which 
lowered the winter ice thickness errors from 0.8 to 0.25 m. They found that the reduction of snow led 
to larger winter ice growth as well as an increase in the summer melt due to the earlier disappearance 
of snow. A final set of studies (CICE-mw-form-e-sd-bubbly) increased the conductivity for colder 20 
temperatures (Pringle et al., 2007) and further reduced the errors to less than 0.1m. This configuration 
is referred to as “CICE-best”.  

Using the CICE-best configuration, the authors studied the length of the melt season and found a 7-
day reduction from 107 to 100 days versus the “observed” value of 94 days. They performed studies 
using “cold forcing from the 1980’s” which led to an increase in the September ice thickness of 0.8 m, 25 
but only 0.11 m in April.  

The authors conclude that warm winters are not responsible for the observed sea ice thinning in the 
Central Arctic over the past decade; rather it depends strongly on atmospheric conditions from May to 
June in particular, with the start of the melt season and formation of melt ponds, thus preconditioning 
the strength of the positive albedo feed- back. They found that the recommended improvements to 30 
the CICE model outweigh the impact of initialization with CS2 ice thickness fields.  

This is a very well written and thorough paper with carefully designed model experiments. I highly 
recommend it for publication.  

Response: We would like to thank the reviewer for the comprehensive summary and the positive 
feedback. 35 

Specific Comments  

Throughout the paper your refer to 1-year experiments with the CS2 data, but your time series plots 
look like the experiments run from (for example) Nov 2010 – January 2012, so a 15-month 
experiment?  
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Response: Ini-runs were performed over 1-year. In Fig. 1b and 5 results from November to October are 
shown. November to February results have just been repeated to visualize annual cycle. 

Suggested change in manuscript: We added note in figure caption. 

The CICE tripole grid has a resolution of ∼40 km. Why wasn’t the CS2 data interpolated onto that same 
40km grid (instead of 50 km)?  5 

Response: CS2 ice thickness distribution has first been interpolated on a regular 50 km grid to facilitate 
usage of other groups and afterwards re-gridded on ORCA1deg grid. The Impact of grid transformation 
on results is marginal. 

Please review the use of colors chosen for Figures 1, 5, 8, 10, and 11. Some colors are a bit difficult to 
differentiate. Perhaps including dashed lines and reducing the number of colors could help.  10 

Suggested change in manuscript: Line colour and style have been adjusted for all these Figures. 

Technical Corrections  

Page 2 line 2: replace “Blockley et al” to “Blockley and Peterson”  

Suggested change in manuscript: Thank you. Done. 

Page 2 line 28: Spell out ORCA  15 

Response: ORCA refers to the grid defined in Madec, G. and M. Imbard (1996), “A global ocean mesh 
to overcome the north pole singularity”, Climate Dynamics, Vol. 12, p381-388, but no information 
about meaning available in literature. 

Page 2 lines 33,34: replace “Libscomp” to “Lipscomb”  

Suggested change in manuscript: Thank you. Corrected. 20 

Page 5 line 20: add “by 2 K during the whole simulation. . .”  

Suggested change in manuscript: Added. 

Page 6 line 2: replace “satellite products” to “satellite products (not shown)”  

Suggested change in manuscript: Added. 

Page 8 line 21: should be “Maaß”  25 

Suggested change in manuscript: Thank you. Corrected. 

Page 13 Table 1 caption: should be “Note that all model changes. . .”  

Suggested change in manuscript: Thank you. Corrected. 

Page 15 Figure 1 caption: replace “998.” With “99.8%”  
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Suggested change in manuscript: Thank you. Corrected. 

Page 22: Why are AWI/NASA both showing up as solid grey lines? Can one be shown as dashed?  

Suggested change in manuscript: Yes. Adjusted. 

Page 24, 25: same question as above 

Suggested change in manuscript: Yes. Adjusted. 5 
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New insight from CryoSat-2 sea ice thickness for sea ice modelling 
David Schröder1, Danny L. Feltham1, Michel Tsamados2, Andy Ridout2 and Rachel Tilling3 
1Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, RG6 6BB, U.K. 
2Centre for Polar Observation and Modelling, Department of Earth Sciences, University College London, London, WC1E 
6BT, U.K. 5 
3Centre for Polar Observation and Modelling, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, U.K. 

Correspondence to: David Schröder (D.Schroeder@reading.ac.uk) 

Abstract. Estimates of Arctic sea ice thickness are available from the CryoSat-2 (CS2) radar altimetry mission during ice 

growth seasons since 2010. We derive the sub-grid scale ice thickness distribution (ITD) with respect to 5 ice thickness 

categories used in a sea ice component (CICE) of climate simulations. This allows us to initialize the ITD in stand-alone 10 

simulations with CICE and to verify the simulated cycle of ice thickness. We find that a default CICE simulation strongly 

underestimates ice thickness, despite reproducing the inter-annual variability of summer sea ice extent. We can identify the 

underestimation of winter ice growth as being responsible and show that increasing the ice conductive flux for lower 

temperatures (bubbly brine scheme) and accounting for the loss of drifting snow results in the simulated sea ice growth being 

more realistic. Sensitivity studies provide insight into the impact of initial and atmospheric conditions and, thus, on the role of 15 

positive and negative feedback processes. During summer, atmospheric conditions are responsible for 50% of September sea 

ice thickness variability through the positive sea ice and melt pond albedo feedback. However, atmospheric winter conditions 

have little impact on winter ice growth due to the dominating negative conductive feedback process: the thinner the ice and 

snow in autumn, the stronger the ice growth in winter. We conclude that the fate of Arctic summer sea ice is largely controlled 

by atmospheric conditions during the melting season rather than by winter temperature. Our optimal model configuration does 20 

not only improve the simulated sea ice thickness, but also summer sea ice concentration, melt pond fraction, and length of the 

melt season. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model physics. 

1 Introduction 

Historical observations of sea ice thickness have been limited due to their sparse spatial and temporal coverage of, and 

uncertainties in, measurements. Prior to the launch of the European Space Agency’s (ESA) first European Remote Sensing 25 

satellite (ERS-1) in 1991, most data were collected from submarines operating beneath the Arctic pack ice. Upward-looking 

sonars measure the submerged portion of the ice (draft), which can be converted to thickness by making assumptions about 

the snow depth and the densities of ice, snow and water. Based on sea ice draft observations from 34 US Navy submarines, a 

decrease of mean autumn sea ice thickness from 2.8 m to 1.6 m could be identified over the period 1975 to 2000 within the 

central Arctic Ocean (Rothrock et al., 2008). While the accuracy and the spatial coverage was sufficient to give evidence of 30 

sea ice thinning in the Arctic and to provide a basis for simulating the trend, these data are of limited use for evaluating the 

spatial and temporal variability of sea ice across the Arctic, and in climate models. More recently, cryosphere-focused satellite 

altimeters such as the NASA Ice, Cloud, and land Elevation Satellite (ICESat) and ESA CryoSat-2 (CS2) have allowed 

estimation of sea ice thickness across the Arctic (Giles et al., 2007 & 2008, Kwok and Rothrock, 2009, Laxon et al., 2013).  

The performance of sea ice models in climate models is most commonly evaluated by using Arctic- and Antarctic-wide sea 35 

ice extent and sea ice area data from passive microwave data and Arctic sea ice volume from the Pan-Arctic Ice Ocean 

Modeling and Assimilation System PIOMAS (Zhang and Rothrock, 2003; e.g. Massonnet et al., 2012; Stroeve et al., 2012; 

Rae et al., 2014; Shu et al., 2015; Ridley et al., 2018). PIOMAS is a reanalysis product, which does not include ice thickness 

observations. Stroeve et al. (2014) combined submarine, aircraft and satellite data to evaluate sea ice thickness in climate 

model simulations. Their assessment revealed shortcomings regarding spatial patterns of sea ice thickness that were larger 40 
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than uncertainties in the verification data. CS2 sea ice thickness data have recently been used to initialize sea-ice ocean and 

climate models to improve seasonal predictions (Allard et al., 2018; Blockley and Petersonet al., 2018).  

In this study, we aim to improve sea ice physics and to calibrate poorly constrained parameters in the sea ice model CICE 

using the CS2 ice thickness data. Given CS data are available from October to April, our focus lies on processes controlling 

winter ice growth. We note that several factors contribute to CS2-derived sea ice thickness uncertainties, including the 5 

assumption that the radar return is from the snow/ice interface (Willat et al., 2011), snow depth departures from climatology, 

and the use of fixed snow and ice densities. To enable a meaningful comparison of sea ice thickness between CICE and CS2, 

we consider the strengths and weaknesses of the model and the data. We design sensitivity experiments with perturbed physical 

parameterizations to close the gap between our default CICE simulation and CS2 as well as to investigate the impact of initial 

conditions and atmospheric forcing data. The latter experiments address questions regarding the impact of the last three 10 

exceptionally warm Arctic winters on the sea ice decline (Stroeve et al., 2018) and gives new insight into the strengths of 

positive and negative feedback mechanisms that govern the evolution of sea ice. 

2 Ice Thickness Distribution from CryoSat-2 

The CS2 radar altimetry mission was launched in April 2010, providing estimates of ice thickness during the ice growth season 

from October to April. During summer the formation of melt ponds interferes with the radar signal retarding accurate 15 

measurements. As for the derivation of sea ice thickness from ice draft using submarine data, the freeboard (the height of sea 

ice above the water surface) is estimated from the satellite data and can be converted to thickness by assuming hydrostatic 

equilibrium and applying values for the densities of ice, snow and water as well as the snow depth. The principal challenges 

in deriving an accurate sea ice thickness using satellite altimetry are the discrimination of ice and open water, the discrimination 

of ice type, retracking radar waveforms to obtain height estimates, constructing sea surface height beneath the ice, and 20 

estimating the depth of the snow cover. Ice thickness is retrieved from freeboard by processing CS2 Level 1B data, with a 

footprint of approximately 300 m by 1700 m (Wingham et al., 2006), and assuming snow density and snow depth from the 

Warren et al. (1999) climatology (hereafter W99), modified for the distribution of multi-year versus first-year ice (see Laxon 

et al., 2013 and Tilling et al., 2018 for data processing details). 

In this study, we bin the individual thickness point measurements provided by the Centre for Polar Observation and Modelling 25 

(CPOM) into 5 CICE thickness categories, (1) ice thickness h < 0.6 m, (2) 0.6 m < h < 1.4 m, (3) 1.4 m < h < 2.4 m, (4) 2.4 m 

< h < 3.6 m, (5) h > 3.6 m, on a rectangular 50 km grid for each month. The mean area fraction and mean thickness is derived 

for each thickness category and these values are interpolated on the ORCA tripolar 1deg grid used by CICE (~40km grid 

resolution). Tilling et al. (2018) derived a general grid cell ice thickness uncertainty of 25%. Grid cells points with less than 

100 individual measurements and a grid-cell mean sea ice thickness of less than 0.5 m are omitted due to their increased 30 

uncertainty (Ricker et al., 2017). Otherwise, all the whole range of individual observations from applied grid points are 

included. Negative thickness values are retained in the CS2 processing to prevent statistical positive bias of the thinner ice and 

are added to category 1. This approach allows us to initialize the CICE model with the full ice thickness distribution (ITD) 

rather than to derive the ITD from the mean sea ice thickness (Hunke et al., 2015). A realistic ITD is critical for simulating ice 

growth and ice melt rates correctly:  given the identical mean ice thickness, a wider distribution leads to an increase of ice 35 

growth in winter, because ice growth mainly takes place over the thinner ice; whereas during summer, the thinner ice melting 

away increases the lead fraction, resulting in a warmer ocean mixed-layer temperature, thus accelerating the sea ice melt. 

In addition to CPOM CS2, we include sea ice thickness data provided by the Alfred Wegener Institute AWI (Hendricks et al., 

2016) and the National Aeronautics and Space Administration NASA (Kurtz and Harbeck, 2017). The comparison of the three 

CS2 data sets illustrates a part of their uncertainty and helps us to assess the robustness of model-CS2 ice thickness differences. 40 

While all three data providers rely on W99 for snow depth and density, there is variation in how it is applied. CPOM spatially 
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average the W99 snow depth and then halve it over first-year ice (Tilling et al., 2018), AWI and NASA also halve W99 snow 

depth over first-year ice but discard measurements in lower latitude regions (Ricker et al., 2014; Hendricks et al., 2016; Kurtz 

et al., 2013)), and NASA produce a blended snow depth dataset by also including satellite, reanalysis, and airborne estimates 

(Kurtz et al., 2013). Each institution also processes the radar returns differently. When estimating ice freeboard the range to 

the main scattering horizon of the radar return is obtained using a retracker algorithm. CPOM use a Gaussian-exponential 5 

retracker for ocean waveforms and a threshold first maximum retracker algorithm (TFMRA) with 70% threshold for sea ice 

waveforms (Tilling et al., 2018), AWI apply a 50% TFMRA to all waveforms (Ricker et al., 2014; Hendricks et al., 2016), 

and the NASA estimates rely on a physical model to best fit each waveform (Kurtz et al., 2014; Kurtz and Harbeck, 2017). 

This could lead to ice thickness differences based on different retrackers and thresholds applied.  

CS2 ice thickness data for October appear to be less robust as indicated by large differences between the three products for 10 

thin first-year ice (not shown) and by large differences in comparison with ESA’s Soil Moisture and Ocean Salinity (SMOS) 

sea ice data (Wang et al., 2016), so we only include CS data from November to April in our study. 

3 Model setup und simulations 

3.1 Setup 

CICE is a dynamic-thermodynamic sea-ice model designed for inclusion within a global climate model. The sea ice velocity 15 

is calculated from a momentum balance equation that accounts for air drag, ocean drag, Coriolis force, sea surface tilt, and the 

internal ice stress. The CICE model solves one-dimensional vertical heat balance equations for each ice thickness category. 

See Hunke et al. (2015) for a detailed description of the CICE model. Here, we perform stand-alone (fully forced) CICE 

simulations with version 5.1.2 for a pan-Arctic region (~40 km grid resolution). CICE contains a simple mixed-layer ocean 

model with a prognostic ocean temperature. To account for heat transport in the ocean, we restore the mixed-layer ocean 20 

temperature and salinity to climatological monthly means from MYO-WP4-PUM-GLOBAL-REANALYSIS-PHYS-001-004 

(Ferry et al., 2011) with a restoring timescale of 20 days. We apply a climatological ocean current (monthly means) from the 

same ocean reanalysis product. NCEP Reanalysis-2 (NCEP2) atmospheric reanalysis data (Kanamitsu et al., 2002, updated 

2017) are used as atmospheric forcing. We perform a multi-year simulation from 1980 to 2017 which does not utilise CS2 ice 

thickness data (referred to as CICE-free) and seven, 1-year long simulations which are initialized with CS2 ice thickness data 25 

(referred to as CICE-ini) starting in mid-November and running until the end of November of the following year for the 7 

winter periods from 2010/2011 to 2016/2017. The initial thickness and concentration for each of the 5 ice categories is taken 

from the CPOM CS2 ITD November mean thickness fields. For grid points without CS2 data, and for all other variables (e.g. 

temperature profiles, snow volume), results from the free CICE simulation are applied. In this way, CICE simulations cover 

the pan-Arctic region, but in regions where no CS2 are available, we restart with SIT ice thickness values from the free CICE 30 

model run. While this approach would be problematic in a coupled model, in a stand-alone sea ice simulation the model 

adjustment to the new conditions is smooth and the impact of using the vertical temperature profile from the free simulation 

only affects sea ice thickness on the order of millimeters. 

3.2 Reference simulation (CICE-default) 

Our reference simulation includes a prognostic melt pond model (Flocco et al., 2010 & 2012) and the elastic anisotropic plastic 35 

rheology (Wilchinski and Feltham, 2006; Tsamados et al., 2013; Heorton et al., 2018). Otherwise, default CICE settings are 

chosen: 7 vertical ice layers, 1 snow layer, linear remapping ITD approximation (Lipbscomp and Hunke, 2004), Bitz and 

Libscomp (1999) thermodynamics, Maykut and Untersteiner (1971) conductivity, Rothrock (1975) ridging scheme with a Cf 

value of 12 (empirical parameter that accounts for frictional energy dissipation) and the Delta-Eddington radiation scheme 

(Briegleb and Light, 2007). 40 
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3.3 Simulations with perturbed physical parameterizations and sensitivity simulations Sensitivity simulations 

3.3.1 Improving sea ice thickness 

Comparing the CICE simulation with CS2 reveals that CICE default underestimates the mean monthly sea ice thickness by 

about 0.8 m (see Fig. 1a and discussion in Section 4). This motivates sensitivity experiments with perturbed physical 

parameterizations with the aiming to increase ice thickness. All sensitivity additional simulations are listed and described in 5 

Table 1. They have been performed as multi-year simulations (1980 to 2017, CICE-free) and seven 1-year-long simulations 

initialized with CS2 ice thickness (CICE-ini). 

3.3.2 Uncertainty in atmospheric forcing data 

We perform two sensitivity experiments to explore the impact of uncertainty in atmospheric forcing on simulated sea ice 

conditions: decrease of incoming longwave radiation by 15% and decrease of 2m-air temperature by 2 K during the whole 10 

simulation. For both experiments seven 1-year-long simulations are performed which are initialized with CS2 ice thickness 

(CICE-ini) in mid-November. The setup of the reference run has been applied (CICE-default). See Table 2 for details. 

3.3.3 Impact of initial conditions and atmospheric forcing data 

We perform additional sensitivity experiments to explore the impact of initial and forcing conditions. Therefore, we conduct 

simulations with climatological initial and forcing conditions. For each experiment seven, 1-year-long simulations are 15 

performed that are initialized with CS2 ice thickness (CICE-ini) in mid-November. The setup of the most realistic 

configuration has been applied (CICE-best). See Table 3 for details and Section 4.4 for deriving our most realistic 

configuration. 

4 Results 

4.1. Defining region for comparing model sea ice thickness with CryoSat-2 data 20 

Several factors lead to errors in ice thickness retrieval from CS2, in particular the assumption of a climatological snow depth. 

The resulting ice thickness error is about 5 times larger than the error in snow depth, e.g. an underestimation in snow depth of 

0.1 m leads to an underestimation in ice thickness of 0.5 m for a typical ice freeboard of 0.2 m (Tilling et al., 2015).  

To enable a meaningful comparison of simulated sea ice thickness between CICE and CS2, we have to reduce the impact of 

errors. While for individual years and regions the W99 snow load can differ from reality by more than 0.1 m (Warren et al., 25 

1999), the average snow conditions are accurately represented at least over multi-year ice (e.g. Haas et al., 2017). Over first-

year ice, snow depth is overestimated (Kurtz and Farrell, 2011; Webster et al., 2014), hence CS2 retrievals halve W99 snow 

depth (Section 1). WTherefore, we will compare multi-year monthly means over apply a climatology for the CS2 period 2010 

to 2017. Further, we compare spatial averages of ice thickness to reduce the impact of random errors. A recent study by Nandan 

et al. (2017) showed that a vertical shift in the scattering horizon due to snow salinity could lead to an overestimation of CS2 30 

ice thickness over first-year ice. Our region combines multi-year ice and first-year sea ice with a ratio of 65:35. 

We select a region over which to compare model simulations with CS2 data, for which CS2 data exist for all winter periods 

with at least 100 single observations per month and grid cell, and a minimum mean ice thickness of 0.5 m. Focusing on winter 

ice growth, we limit the region even further to grid cells in which ice growth is dominating over the impact of dynamics on 

sea ice thickness change. The mean simulated ice growth from November to April (2010 to 2016, see Fig. 2a) varies between 35 

0.6 and 1.0 m in the Central Arctic and can reach values of more than 2 m in the polynya regions along the Siberian coast 

(Dmitrenko et al., 2009; Bauer et al., 2013). Ice thickness is also modified by dynamical processes such as advection, 

convergence and ridging. While the total impact is below +/- 0.25 m in the Central Arctic, more than 2 m of ice is exported on 
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average from some coastal regions and transported to the Fram Strait (see Fig. 2b). For our region of interest, we only select 

grid cells in which the impact of dynamics on sea ice thickness change during winter is less than 0.25 m in magnitude. The 

resulting comparison region restricted by CS2 observations and dynamical sea ice change is shown in Fig. 3. We use this 

region for the rest of the paper. 

4.2 Comparison of default CICE simulation with CryoSat-2 data 5 

The mean annual cycle of ice thickness over our region of interest is compared in Fig. 1 with CS2. CICE-free-default 

underestimates the mean monthly sea ice thickness by about 0.8 m. It is noteworthy that this simulation is generally realistic 

in comparison to SSM/I sea ice extent (see Fig. 4) and represents the inter-annual variability of e.g. the September ice extent. 

The magnitude of the ice thickness difference of 0.8 m cannot be explained by the uncertainty of the CS2 ice thickness alone 

(Tilling et al, 2016; Stroeve et al., 2018) and so indicates a model error.  10 

CS2 ITD can be applied to initialize a CICE simulation with the observed ice thickness and CS2 data enable us to trace the ice 

thickness continuously through the whole winter until April. We apply the mean November CS2 ITD to initialize the CICE 

simulations in mid-November for the years from 2010 to 2016. Starting in mid-November, the mean simulated April ice 

thickness from CICE-ini-default is about 0.25 m too thin (Fig. 1b). This indicates that the winter ice growth is underestimated 

in the model. To explore the reasons for the underestimation, we will first examine the impact of atmospheric forcing data 15 

(Section 4.3) and then the impact of the physical processes involved and how they are represented in CICE (Section 4.4). 

4.3 Impact of uncertainty in atmospheric forcing data 

CICE ice growth in the central Arctic mainly depends on atmospheric forcing (in particular incoming longwave radiation and 

air temperature), the parameterization of the turbulent atmospheric heat fluxes (heat transfer coefficients) and the conductive 

heat fluxes within the ice and snow layers. While the impact of the turbulent ocean heat flux under the ice can be large in the 20 

marginal ice zone, the ocean temperature is generally close to the freezing temperature in the central Arctic during winter. 

To explore to what extent the underestimation of ice thickness can be attributed to errors in the surface energy balance 

associated with in atmospheric forcing data, we performed two sensitivity studies in which we decreased (1) the incoming 

longwave radiation by 15 W m-2 (CICE-Ldown15-ini) and (2) the 2m-air-temperature (CICE-Tair2-ini) during the whole 

simulation period and for every location (see Table 2). We have chosen these values as estimates for potential total systematic 25 

atmospheric errors (e.g. Chaudhuri et al., 2014). The impact of these atmospheric perturbations on ice growth is small (see. 

Fig. 5) and the gap between CS2 ice thickness and CICE-default ice thickness can only be reduced marginally. The reduced 

longwave radiation and air temperature lead to a reduction of ice surface temperature in the range of 2 to 3 K and only increase 

ice growth by about 5% each. This is due to the fact that surface temperatures are around -30 °C during winter and the 

conductivity of the snow layer is low. Winter ice growth is not strongly affected by errors in atmospheric conditions. This is 30 

fundamentally different during the melting season. Fig. 5 reveals that the sea ice would be 0.9 m thicker in September due to 

the reduction of incoming longwave radiation and 1.4 m thicker due to the decrease of 2m-air-temperature starting with the 

same initial conditions in the November of the previous year. These sensitivity studies reveal that the underestimation of winter 

ice growth cannot be explained by errors in the surface energy balance associated with in atmospheric forcing data. 

4.4 Improving CICE simulation by varying model physics 35 

In the sea ice model, local ice thickness changes are calculated by thermodynamic processes (ice growth and melt) and dynamic 

processes (advection and ridging). The thermodynamic change depends on the energy balance at the interfaces between 

atmosphere, snow, ice and ocean derived from the shortwave and longwave radiation fluxes, the turbulent heat fluxes and the 

conductive heat flux through the ice and snow. Addressing the individual contributions systematically, we alter model physics 
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within their range of uncertainty with the aim to increase sea ice thickness. Our model changes are presented in a cumulative 

way.  

The shortwave radiation budget strongly depends on the surface albedo parameterization. Here, we indirectly increase the total 

ice surface albedo (accounting for snow and pond covered as well as bare ice) by releasing more melt water into the ocean, 

and hence reducing the formation of ponded (darker) water over the surface of the ice (CICE-mw, see Table 1). While there 5 

are several possibilities to increase albedo values, we selected the release of melt water because of its impact on the albedo 

feedback mechanism and the poor knowledge about realistic assumptions. The impact on the simulated melt pond fraction can 

be seen in Fig. 6 for July 2012. Comparing our simulated melt pond fraction with satellite products (not shown) shows that the 

mean July pond fraction of CICE-mw (25 %) is closer to the mean values based on MERIS (Istomina et al., 2015) and MODIS 

data (Roesel et al., 2012) (24 % for both) than the mean pond fraction of CICE-default (28 %). Furthermore, the RMS error 10 

with respect to MERIS is reduced from 16 % (CICE-default) to 14 % (CICE-mw) justifying our increased release of melt 

water. Fig. 1a shows the thickness error is marginally reduced by CICE-mw: from about 0.8 m to 0.7-0.75 m. As expected 

there is no impact during winter for the initialized simulation, but the summer ice is 0.2 m thicker (Fig. 1b). 

In the next sensitivity experiment, we address the sea ice advection and the turbulent heat fluxes. We apply the form drag 

parameterization of Tsamados et al., (2014) in addition to the release of more melt water (CICE-mw-form). Ice thickness 15 

increased slightly with respect to CICE-mw due to a reduced ice drift speed resulting in a weaker ocean-ice heat flux and less 

ice export. In addition, increasing the emissivity of snow and ice from 0.95 to 0.976 (CICE-mw-form-e) affects the longwave 

radiation budget. The increase reduces summer melt by a few centimeters, but no impact during winter is visible. 

Due its low conductivity snow depth controls the conductive heat flux. Here, we implement a snow drift scheme based on 

Lecomte et al. (2014) which reduces the snow depth by 20 to 40% (CICE-mw-form-e-sd, see Fig. 7) and has the biggest impact 20 

on sea ice thickness from all individual changes. With respect to CICE-default, the thickness error has been reduced from 0.8 

m to 0.25 m (see CICE-mw-form-e-sd-free in Fig. 1a). The reduction of snow depth leads to a strong increase in ice growth in 

winter, but also to a moderate increase of summer melt due to an earlier disappearance of snow. This can be seen comparing 

CICE-mw-form-e-sd-ini with CICE-mw-form-e-ini in Fig. 1b. The reduction of snow leads to an increase of May ice thickness 

of 0.12 m and to a decrease of September ice thickness of 0.06 m. Applying an increased conductivity coefficient for colder 25 

temperature (Pringle et al., 2007, CICE-mw-form-e-sd-bubbly) in addition reduces the error for CICE-free and CICE-ini to 

less than 0.1 m. This modification increases winter ice growth, but it has no impact during summer. 

Our selected region for comparing CICE and CS2 ice thickness consists of 35 % first-year and 65 % multi-year ice. The area 

fraction for each of the 5 ice thickness categories is shown in Table 4. In November 25 % of the region are covered by ice 

which is thinner than 1.4 m and 4 % by ice which is thicker than 3.6 m according to CS2. In April the thin ice fraction reduced 30 

to 12 % and thick ice fraction increased to 22 %. While the mean ice thickness between CICE-best-ini and CS2 is very similar, 

the thickness distribution is a bit narrower in CICE in April: 6 % of area thinner than 1.4 m and 10 % thicker than 3.6 m. 

So far, we compared the mean annual cycle of sea ice thickness over the period from 2010 to 2017. Fig. 8 compares times 

series of the individual years from free and initialized CICE simulations with three different CS2 products provided by CPOM, 

AWI and NASA. For all years, CICE-best-free is much closer to CS2 than CICE-default-free. It is striking that differences 35 

between CICE-best-free and CICE-best-ini are small. This is a remarkable result from a modelling point of view, because it 

means that CICE-best is so realistic that assimilation of sea ice thickness would not result in substantial changes. This 

agreement increases the confidence in our new model setup.  

Naturally differences between CS2 and CICE-best remain. In November 2012, simulated ice is about 0.5 m thinner than in 

CS2. During winter 2013/14 the CS2-CPOM ice growth is stronger than in CICE-best-ini with large differences between the 40 

three CS2 products. These differences can be caused either by model errors or by errors estimating sea ice thickness form CS2. 

As discussed in Section 4.1 using a climatological snow depth limits the applicability to derive inter-annual variability from 

CS2 ice thickness. For comparison, mean sea ice thickness from PIOMAS (Zhang and Rothrock, 2003) is added in Fig. 8. 
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Although no sea ice thickness observations are assimilated, PIOMAS is widely applied for verification of climate models. In 

spite of some differences between PIOMAS, CS2 and CICE-best in the sea ice thickness evolution, the general statement that 

CICE-best is more realistic than CICE-default is confirmed by PIOMAS. 

As the summer sea ice extent is quite realistic in CICE-default (Section 4.2), we investigate the impact of the strong ice 

thickness increase in CICE-best on sea ice concentration and extent. Fig. 4a reveals that the mean September sea ice extent 5 

over the period 2005 to 2014 is slightly underestimated in CICE-default with respect to SSM/I Bootstrap (Comiso, 1999). The 

impact of the strong thickness increase on sea ice extent is small, the ice extent is only marginally larger in CICE-best (Fig. 

4b), but nevertheless close to SSM/I Bootstrap. In contrast to ice extent, ice concentration is underestimated in CICE-default 

by 25% to 50% in large parts of the ice-covered Arctic Ocean. While apart from the ice edge, ice concentration is generally 

between 80% and 100% according to SSM/I Bootstrap, CICE-default frequently shows large areas with values below 50%. 10 

This discrepancy is strongly reduced in CICE-best with error values below 10% in the Canadian half and between 10% and 

30% in the Siberian half of the Arctic (Fig. 4b). It is worth mentioning that nearly all CMIP5 climate models underestimate 

Arctic summer sea ice concentration in their historical runs with respect to SSM/I Bootstrap (see e.g. Fig. 3 in Notz, 2014).  

CICE-best does not only improve the sea ice thickness, but also the summer sea ice concentration. 

We demonstrate the impact of our model changes on the timing of mean melt and freeze onset (2005-2014) between CICE-15 

best and CICE-default in Fig. 9. In CICE-best the melt onset day is later (0 – 4 days in the Central Arctic, up to 10 days in the 

Fram Strait) and the freeze onset is earlier (4 – 12 days in most areas) resulting in a shorter melting season. The simulated 

mean length of the melting season over the Arctic Basin reduces from 107 days (CICE-default) to 100 days (CICE-best). This 

is an improvement with respect to the observed value of 94 days. The observed number of 94 days is based on a mean value 

of 88 days for the period 1979 to 2012 and accounting for the trend of 3.7 days/decades (Stroeve et al., 2014). The impact of 20 

the model changes is remarkable given we apply the same 2m-air-temperature data (NCEP-2) as atmospheric forcing. Our 

examples indicate that the chosen model physics may be important for many climate related questions and how climate models 

predict future changes of summer melting season and sea ice decline. 

4.5 Impact of initial conditions and atmospheric forcing 

How strongly do the CICE simulations depend on sea ice initial conditions? Using the mean CS2 November sea ice thickness 25 

from 2010 to 2016 (CICE-climini, Table 3) instead of the annual values leads to positive or negative thickness anomalies 

which remain throughout the year, becoming only slightly weaker during winter (Fig. 10). The inter-annual variability of the 

simulated April ice thickness is reduced by 44 % (from 0.18 m to 0.10 m, Table 54) and the September ice thickness by 20 % 

(from 0.5 m to 0.4 m). 

Applying a mean atmospheric forcing for each year (CICE-climforcing-ini) does hardly affect the ice thickness during winter 30 

(with the exception of winter 2016/17), but it leads to strong anomalies during summer (Fig. 10). The mean September sea ice 

thickness is increased by 0.28 m and the inter-annual variability reduced from 0.5 to 0.25 m (Table 54). Applying the mean 

atmospheric forcing during winter only and the individual atmospheric forcing from May onwards (CICE-climforcing-winter-

ini), sea ice thickness during summer is nearly unchanged with respect to CICE-ini. While the atmospheric conditions during 

summer are decisive for summer ice melt and September sea ice thickness, the atmospheric winter conditions seem not to 35 

matter at all. 

The atmospheric conditions for the last 8 winters were all relatively warm with respect to the 1980 to 2010 climate. Is it 

possible that the small variability of these winter periods could cause the weak impact on sea ice thickness? To exclude this 

possibility, we perform additional sensitivity experiments in which we apply colder atmospheric conditions from the 80’s 

(CICE-80climforcing-ini). Fig. 11 and Table 3 reveal that the impact during winter is nevertheless small (mean thickness 40 

increase of 0.11 m), but huge in summer (+0.8 m). Interestingly, the impact of using the wind forcing from an anomalous year 

(2009/10, stronger transpolar-drift), CICE-climforcing-wind20100ini, is stronger on April ice thickness (-0.13 m) than from 
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the cold atmospheric conditions. This confirms the important role of sea ice dynamics and export through the Fram Strait in 

controlling the sea ice volume variability (Ricker et al., 2018). 

These sensitivity experiments demonstrate that the atmospheric winter conditions have very small impact on winter ice growth 

and thus on April ice thickness. September ice thickness depends strongly on atmospheric conditions from May to September. 

5 Conclusions 5 

We determined an optimal region for comparing sea ice thickness between simulations with the sea ice model CICE and CS2 

data by taking into account the strengths and weaknesses of both approaches. Since simulating dynamic processes can result 

in large model errors and can be proportionally less accurate, we exclude locations where sea ice dynamics (sea ice advection 

and ridging) make a strong contribution in modifying see ice thickness. We further exclude locations where the number of 

CS2 observations is limited and the sea ice is thin during winter (< 0.5 m). The resulting region includes most of the Central 10 

Arctic, but not the area of the thickest ice north of Canada or any of the shelf seas (see Fig. 3). 

Comparing the multi-year means reveals that CICE-default underestimates ice thickness over our comparison region by about 

0.8 m (see Fig. 1a). This discrepancy would not have been identified by comparing total Arctic ice volume. Due to 

overestimating ice thickness in the Canadian sector, Arctic ice volume from CICE-default is only slightly lower than estimates 

based on CS2 or PIOMAS. Deriving the sub-grid scale ice thickness distribution (ITD) from CS2 allows us to initialise CICE 15 

simulations with the identical ice thickness in November. Applying default settings CICE-ini underestimates mean ice 

thickness in the following April by 0.25 m (see Fig. 1b). This indicates that the winter ice growth is too weak in the model. 

What is the reason for the underestimation of ice growth? Our sensitivity experiments give evidence that uncertainty in 

atmospheric forcing cannot be the main reason. Impact of errors in air temperature and incoming longwave radiation on sea 

ice growth is rather small in winter (see Fig. 5). The turbulent ocean-ice heat flux is generally small in winter in the Central 20 

Arctic, thus, errors deriving from the turbulent ocean-ice heat flux cannot be responsible either. The ice-atmosphere heat fluxes 

depend on atmospheric forcing and the transfer coefficients. Varying the transfer coefficients does not result in major changes 

of sea ice growth. Initial conditions in autumn are important, but our initialized CICE simulations show that April ice thickness 

is still underestimated even when starting with the “correct” November ice thickness. Thus, by a process of exclusion, we 

conclude that sea ice physics related to the conductive flux must be responsible. 25 

The strongest contribution in simulating winter ice growth comes from implementing a snow drift scheme based on Lecomte 

et al. (2014). Although our implementation is simple and further work to improve the parameterization is required, it 

demonstrates the importance of including additional snow processes in sea ice models for climate applications (Vionnet et al., 

2012; Nandan et al., 2017; Liston et al., 2018). Such model development can also benefit recent Arctic wide snow products 

that rely on satellite observations (Maaßs et al., 2013; Guerreiro et al, 2016; Lawrence et al., 2018) or reanalysis precipitation 30 

fields on drifting sea ice (Kwok and Cunningham, 2008). 

Our sensitivity experiments modifying initial and atmospheric forcing data reveal that ice thickness anomalies in November 

decay over winter but are still present in the following April (see Fig. 10). Comparing interannual variability of April ice 

thickness between CICE-ini and CICE-climini (Table 54) show that half of the variability comes from the initial conditions. 

Atmospheric conditions during spring and summer are decisive for summer sea ice conditions, but atmospheric winter 35 

conditions have little impact on sea ice growth. Using “cold” forcing from the 80’s instead of the more recent winters leads to 

an increase in September sea ice thickness of 0.8 m, but only to an increase in April ice thickness of 0.11 m (see Fig. 11 and 

Table 54). This reflects the importance of feedback processes. During winter, the negative conductive feedback process (less 

ice, more growth) is dominating, while during summer the positive albedo feedback process determines sea ice changes. The 

impact of the negative winter feedback has been discussed in Stroeve et al. (2018). In their study a potential weakening of the 40 

feedback during the last years has been raised as a question. Here, we answer this question demonstrating that warm winters 
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are not important for observed sea ice thinning in the last decades, at least in the Central Arctic. The situation can be different 

in the marginal winter sea ice zone, where a warm winter can increase mixed-layer ocean temperature and delay ice growth. 

Our findings are in agreement with observations of the last years: In spite of the three warmest Arctic-wide winter air 

temperatures during 2014/2015, 2015/2016 and 2016/2017 on record (Stroeve et al., 2018), the September Arctic sea ice extent 

in 2015 (4.7 million km2), 2016 (4.7 million km2) and 2017 (4.9 million km2) has been larger than in 2012 (3.6 million km2), 5 

numbers based on SSM/I NASA-Team algorithm (Cavalieri et al. 1996, updated 2017). We conclude that the fate of Arctic 

summer sea ice depends largely on atmospheric spring and summer conditions, in particular May and June, when the melting 

season starts and melt ponds form, preconditioning the strength of the positive albedo feedback mechanism (Schröder et al., 

2014). 

Our optimal model configuration CICE-best does not only improve the simulation of mean sea ice thickness over the Central 10 

Arctic with respect to CS2, but also improves summer sea ice concentration (in comparison to SSM/I Bootstrap), the length 

of melt season (in comparison to Stroeve et al., 2014) and melt pond fraction (in comparison to MODIS and MERIS).  Recent 

studies demonstrated improvements for sea ice predictions up to 6 months initializing forecast models with CS-2 data (Allard 

et al., 2018; Blockley and Peterson, 2018). Here, we show that our improvements to the sea ice model CICE are so fundamental 

and consistent that any differences between CICE simulations initialized by CS2 ice thickness and those which do not utilize 15 

them are minimized. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model 

physics. 
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712. Table 1. Sensitivity Ssimulations with perturbed physical parameterizations improving 
sea ice thickness. Note that all model changes are cumulative. “Free” indicates multi-year 
simulations from 1980 to 2017; “ini” indicates seven 1-year-long simulations starting in mid-
November with CS2 sea ice thickness (2010/2011 to 2016/17).  

Run Name  Description  free  ini 
CICE-mw The maximum melt water added to melt ponds rfracmax is reduced from 100% to 

50%. The actual fraction of melt water rfrac is calculated as: rfrac = rfracmin + 
(rfracmax-rfracmin) * aice with rfracmin = 15%. This reduction accounts for the 
uncertainty in the fraction of melt water that collects in ponds versus being 
immediately released to the ocean. The impact of this change on the simulated 
melt pond fraction in July 2012 is demonstrated in Fig. 1. The melt pond fraction 
in the central Arctic is generally reduced by 5-10% ranging from 25 to 40% in the 
default simulation and from 20 to 35% in CICE mw. The new melt pond 
distribution is more realistic with respect to MODIS derived melt pond fractions 
(Roesel et al., 2012). 

Y Y  

CICE-mw-form Instead of a constant drag coefficient for the momentum fluxes between 
atmosphere and ice (CDa = 1.3 x 10-3) and between ice and ocean (CDo = 5.36 x 
10-3), the form drag parametrization of Tsamados et al. (2014) is applied 
accounting for the impact of pressure ridges, keels, ice floe and melt pond edges. 
Here, we modify the background drag coefficient for the atmosphere (csa = 0.01 
instead of 0.005) and the ocean (csw = 0.0005 instead of 0.02) and the parameters 
determining the impact of ridges and keels (cra = 0.1 instead of 0.2 and crw = 0.5 
instead of 0.2). These modifications increase ice drift over level ice and decrease 
ice drift over ridged ice resulting in a more realistic ice drift pattern in comparison 
to Pathfinder (not shown). 

Y  Y 

CICE-mw-form-e The longwave emissivity of sea ice is increased from 0.95 to 0.976. Y Y 
CICE-mw-form-e-sd Depending on wind speed, snow density and surface topaography, snow can be 

eroded from the sea ice surface, drift through air and be redistributed or lost in 
leads. The default CICE simulation does not account for these processes. Here, 
we parameterize the snow erosion rate following Lecomte et al. (2014): 

𝜕ℎ%
𝜕𝑡 = −

𝛾
𝜎+,-

(𝑉 − 𝑉∗)
𝜌%,456 − 𝜌%

𝜌%
 

with snow depth hs, mass flux tuning coefficient g = 10-5 kg m-2, current wind 
speed V, threshold wind speed V* = 3.5 m s-1, current snow density rs and 
maximum snow density rs,MAX, and standard deviation of ice thickness 
distribution sITD. Lacking information about the snow density distribution, we 
apply rs,MAX = 330 kg m3 (the constant snow density in CICE) and assume rs = 
240 kg m3. Regarding the ITD, we apply s values of 0.25 m for ice category 1 
(ice thickness h < 0.6 m), 0.5 m for category 2 (0.6 m < h < 1.4 m) and 1 m for 
category 3 1.4 m < h < 2.4 m). We assume that the whole amount of snow blown 
into the air will be released into the ocean. Estimating the error of this 
assumption, we calculate the net snow re-deposition rate. Snow which is blown 
into air, will be deposited at the surface and might be blown into the air again if 
the wind speed stays above the threshold value. Assuming an average friction 
velocity of 0.1 m s-1 and a total distance of 200 m, one cycle takes approximately 
30 min. For every cycle, the lead fraction defines the fraction of snow volume 
released into the ocean. Analyzing NCEP-2 wind fields, the average period the 
wind speed stays above the threshold value of 3.5 m s-2 ranges from 50 to 120 h 
over the Arctic sea ice with the lowest values close to coast of North Greenland. 
Thus, for most parts of the Arctic more than 90 % of the total snow blown into the 
air would be lost in leads. An error of less than 10 % justifies our simplification. 
The impact of our parameterization on the simulated snow depth can be seen in 
Fig. 2. Accounting for the loss of drifting snow reduces the snow depth between 
20 and 40 %. The larger differences occur over regions with strongest winds and 
the smallest differences north of Greenland and Canada. 

 

Y Y 

CICE-mw-form-e-sd-bubbly 
(CICE-best) 

We apply the bubbly conductivity formulation from Pringle et al. (2007) which 
results in larger thermal conductivity values for colder ice temperatures. 

Y Y 

 5 
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712. Table 2. Sensitivity simulations exploring the impact of uncertainty in atmospheric 
forcing data. “Free” indicates multi-year simulations from 1980 to 2017; “ini” indicates seven 1-
year-long simulations starting in mid-November with CS2 sea ice thickness (2010/2011 to 
2016/17).  

Run Name  Description  free  ini 
CICE-Ldown15 As CICE-default, but forcing field incoming longwave radiation has been 

decreased by 15 % everywhere and for all times. 
N Y  

CICE-Tair2 As CICE-default, but forcing field 2m-air temperature has been decreased by 2 K 
everywhere and for all times. 

N Y 

 5 

712.  
712.713. Table 3. Sensitivity simulations exploring the impact of initial and forcing conditions. 

“Free” indicates multi-year simulations from 1980 to 2017; “ini” indicates seven 1-year-long 
simulations starting in mid-November with CS2 sea ice thickness (2010/2011 to 2016/17). 
Model configuration for all simulation is CICE-best. 10 

Run Name  Description  free  ini 
CICE-climini The same climatological initial conditions from CS2 CPOM (mean over 2010-

2016) are applied for each November. 
N Y  

CICE-climforcing Climatological atmospheric forcing calculated over the period 2011 to 2017 is 
applied for air temperature, humidity, downward longwave and shortwave 
radiation, rainfall and snowfall. The real wind forcing is applied in all 
simulations. 

N Y 

CICE-climforcing-winter Climatological atmospheric forcing is applied from mid-November to April and 
real forcing afterwards (May to November). 

N Y 

CICE-80climforcing As CICE-climforcing, but climatological atmospheric forcing calculated over the 
period 1981 to 1987. 

N Y 

CICE-80climforcing-winter As CICE-climforcing winter, but climatological atmospheric forcing calculated 
over the period 1981 to 1987. 

N Y 

CICE-climforcing-wind2010 As CICE-climforcing, but using the wind forcing from 2009/10 instead of the real 
wind forcing. 

N Y 

 

 

712.  

713. Table 4: Mean area fraction of sea ice per category according to CS2 and CICE-best-ini 
(over region shown in Fig. 3 and period 2010 to 2017). 15 

Ice thickness (h) category CS2          
Nov 

CS2                 
April 

CICE-best-ini 
April 

1 (h < 0.6 m) 8 5 2 
2 (0.6 m < h < 1.4 m) 17 7 4 
3 (1.4 m < h < 2.4 m) 43 23 30 
4 (2.4 m < h < 3.6 m) 27 42 54 

5 (h > 3.6 m) 4 22 10 
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712. Table 54. Impact of initial November sea ice conditions and atmospheric forcing on mean sea ice 
thickness of subsequent April and September over region shown in Fig. 3 from 2011 to 2017. See Section 3.3 for 
explanation of CICE simulations. Inter-annual variability is given in parenthesis. 

Setup April-hi in m September-hi in m 

CICE-ini 2.70 (+/- 0.18) 1.62 (+/- 0.50) 

CICE-clim-ini 2.67 (+/- 0.10) 1.57 (+/- 0.40) 

CICE-climforcing-ini 2.70 (+/- 0.17) 1.90 (+/- 0.25) 

CICE-climforcing-winter-ini 2.70 (+/- 0.17) 1.62 (+/- 0.50) 

CICE-80climforcing-ini 2.81 (+/- 0.16) 2.37 (+/- 0.21) 

CICE-80climforcing-winter-ini 2.81 (+/- 0.16) 1.78 (+/- 0.49) 

CICE-climforcing-wind2010-ini 2.57 (+/- 0.17) 1.92 (+/- 0.17) 
 

 5 
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Figure 1: Impact of CICE setup on mean effective sea ice thickness over region shown in Fig. 3 and averaged over winter periods 
2010/2011 to 2016/2017: a) CICE-free simulations (multi-year runs from 1980 to 2017) and b) CICE-ini simulations (seven 1-year-
long runs starting in mid-November with CS2 sea ice thickness). Model results are compared with mean sea ice thickness from CS2 5 
CPOM and PIOMAS. Effective ice thickness (divided by ice concentration) is presented. For CS2 ice concentration is applied from 
CICE-default (mean values for November to April vary between 99.4 and 998. %.  See Section 3.3.1 for explanation of CICE 
sensitivity experiments. Note: Results for November, December, Januar, and February are shown twice for improved visualization 
of annual cycle. 

a 

b 



25 
 

 

 
Figure 2: Mean simulated sea ice thickness change from November to April (2010-2016) in CICE default: a) Sea ice growth in cm 
and b) Sea ice thickness change by dynamical processes dh_dyn in cm (advection, convergence and ridging). 

a 

b 
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Figure 3: Region for comparing CICE and CS2 sea ice thickness where impact of winter growth on thickness change dominates 
other factors and where CS2 data are most accurate (See Section 4.1 for more details).  
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Figure 4: Difference in mean September sea ice concentration (2005-2014) in % between CICE simulation and SSM/I Bootstrap 
data. Negative values mean lower ice concentration in CICE. Black line indicates mean SSM/I and red line mean CICE sea ice 5 
extent: a) CICE-default and b) CICE-best.   

a 

b 
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Figure 5: Impact of uncertainty in atmospheric forcing on simulated mean effective sea ice thickness over region shown in Fig. 3 
and averaged over winter periods 2010/2011 to 2016/2017.  CICE-ini simulations: default, default with increase of incoming 
longwave radiation of 15 Wm-2, default with increase of 2m air temperature of 2 K (everywhere and anytime), best. Model results 
are compared with mean sea ice thickness from CS2 CPOM. 5 
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Figure 6: Impact of reduced retained melt water fraction on simulated melt pond area fraction in July 2012: a) CICE-default and 
b) CICE-mw. 

5 

a 

b 
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Figure 7: Impact of snow erosion on simulated mean April snow depth (201005 to 20174): a) CICE-default and b) CICE-mw-from-
e-sd.  

a 

b 
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Figure 8: Mean effective sea ice thickness over region shown in Fig. 3. Verification of CICE-free default and best (thin lines) and 
CICE-ini default and best (thick lines) with CS2 CPOM, AWI and NASA and PIOMAS. 
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Figure 9: Difference in mean melt onset (a) and freeze onset (b) in days between CICE-best and CICE-default (201005-20174). 
Positive values mean later onset day in CICE-best. 

 5 

 

  

a 

b 



33 
 

 
Figure 10: Impact of climatological initial conditions (climini), climatological forcing (climforcing) and climatological forcing during 
winter only (November to April, climforcing winter). All CICE simulations from CICE-ini best. Mean effective sea ice thickness 
over region shown in Fig. 3. CS2 as in Fig. 7. The climatology is calculated over the period 2011 to 2017 for air temperature, humidity, 
downward longwave and shortwave radiation, rainfall and snowfall. The real wind forcing is applied in all simulations. 5 
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Figure 11: As Fig. 10, but applying a climatology calculated over the period 1981 to 1987.  

 


