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Abstract. Basic statistical metrics such as autocorrelations and across-region lag correlations of 6 

sea ice variations provide benchmarks for the assessments of forecast skill achieved by other 7 

methods such as more sophisticated statistical formulations, numerical models, and heuristic 8 

approaches.  In this study we use observational data to evaluate the contribution of the trend to the 9 

skill of persistence-based statistical forecasts of monthly and seasonal ice extent on the pan-Arctic 10 

and regional scales.  We focus on the Beaufort Sea where the Barnett Severity Index provides a 11 

metric of historical variations in ice conditions over the summer shipping season.  The variance 12 

about the trend line differs little among various methods of detrending (piecewise linear, quadratic, 13 

cubic, exponential).  Application of the piecewise linear trend calculation indicates an acceleration 14 

of the winter and summer trends during the 1990s. Persistence-based statistical forecasts of the 15 

Barnett Severity Index as well as September pan-Arctic ice extent show significant statistical skill 16 

out to several seasons when the data include the trend.  However, this apparent skill largely 17 

vanishes when the data are detrended.  In only a few regions does September ice extent correlate 18 

significantly with antecedent ice anomalies in the same region more than two months earlier.  The 19 

springtime “predictability barrier” in regional forecasts based on persistence of ice extent 20 

anomalies is not reduced by the inclusion of several decades of pre-satellite data.  No region shows 21 

significant correlation with the detrended September pan-Arctic ice extent at lead times greater 22 

than a month or two; the concurrent correlations are strongest with the East Siberian Sea. The 23 

Beaufort Sea’s ice extent as far back as July explains about 20% of the variance of the Barnett 24 

Severity Index, which is primarily a September metric. The Chukchi Sea is the only other region 25 

showing a significant association with the Barnett Severity Index, although only at a lead time of 26 

a month or two.  27 
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1  Introduction 28 

         One of the most widely monitored variables in the climate system is Arctic sea ice.  By any 29 

measure, Arctic sea ice has decreased over the past few decades (Box et al., 2018).  September 30 

sea ice extent during the past 5-10 years has been approximately 50% of the mean for the 1979-31 

2000 period (AMAP, 2017). The recent decline is unprecedented in the satellite record, in the 32 

period of direct observations dating back to 1850 (Walsh et al., 2016), and in paleo 33 

reconstructions spanning more than 1400 years (Kinnard et al., 2011).  The recent reduction of 34 

sea ice has been less in winter and spring than in summer and autumn, resulting in a sea ice cover 35 

that is largely seasonal (AMAP, 2017).  The increasingly seasonal ice cover contrasts with the 36 

Arctic Ocean’s predominantly multiyear ice pack of the pre-2000 decades.  When compared to 37 

the reductions of the spatial extent of sea ice, the percentage reductions of ice volume and 38 

thickness are even larger.  Ice thickness decreased by more than 50% from 1958-1976 to 2003-39 

2008 (Kwok and Rothrock, 2009), and the percentage of the March ice cover made up of thicker 40 

multiyear ice (ice that has survived a summer melt season) decreased from 75% in the mid-1980s 41 

to 45% in 2011 (Maslanik et al., 2011). Laxon et al. (2013) indicate a decrease of 64% in autumn 42 

sea ice volume from 2003-08 to 2012.  The portion of the Arctic sea ice cover comprised of older 43 

thicker ice has decreased from 45% in 1985 to 21% in 2017 (NOAA, 2018). 44 

         While the loss of sea ice is generally presented in terms of pan-Arctic metrics, regional 45 

trends can be quite different from the pan-Arctic trends.  The Bering Sea, for example, showed a 46 

positive trend of coverage (fewer open water days) from 1979 through 2012 (Parkinson, 2014), 47 

However, the positive trend of Bering Sea ice largely vanishes when the most recent winters 48 

(especially 2017-18) are included.  By contrast, the Chukchi and Beaufort Seas to the north of 49 

the Bering Sea have shown some of the largest decreases of summer ice coverage in the entire 50 

Arctic (Onarheim et al., 2018).  Another area of strong decrease of ice coverage has been the 51 

Barents/Kara Sea region. 52 

        The Beaufort Sea serves as an illustrative example of the impacts of trends and variability 53 

of sea ice.  The number of open water days immediately offshore of the Beaufort coast has been 54 

60-120 in recent years.  Parkinson’s (2014) Figure 2 shows that the number of open water days 55 

increased by 20-30 days per decade over the period 1979-2013.  However, as recently as the 56 

1970s, there were summers with little or no open water in this region, as described by Crowley 57 

Maritime, one of the major barge operators in the Alaska region:   58 
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        “With pipeline construction well underway in 1975, the Crowley summer sealift 59 

flotilla to the North Slope faced the worst Arctic ice conditions of the century. In fleet 60 

size, it was the largest sealift in the project's history with 47 vessels amassed to carry 61 

154,420 tons of cargo, including 179 modules reaching as tall as nine stories and 62 

weighing up to 1,300 tons each. Vessels stood by for nearly two months waiting for the 63 

ice to retreat. Finally in late September the ice floe moved back and Crowley's tugs and 64 

barges lined up for the slow and arduous haul to Prudhoe Bay. When the ice closed again, 65 

it took as many as four tugs to push the barges, one at a time, through the ice”. 66 

                                       — From Crowley Maritime, 50 Years of Service in Alaska (2002) 67 

      As will be shown, the contrast between present-day ice conditions and the Crowley 68 

experience of the 1970s is largely a manifestation of the trend of Beaufort Sea ice cover.  69 

However, sea ice also exhibits large year-to-year variability, which has been superimposed on 70 

the recent trend towards less sea ice in the Arctic. This variability challenges users of coastal 71 

waters in various sectors and lies at the heart of the sea ice prediction problem.  While the 72 

climatological seasonal cycle and even observed trends provide an initial expectation for the sea 73 

ice conditions that will be present in a particular region at a particular time of year, the 74 

departures from the climatological mean, whether or not the mean is adjusted for a trend, is 75 

affected by the atmospheric forcing (winds, air temperatures, radiative fluxes) and oceanic 76 

forcing (currents, water temperatures) of the particular year in addition to antecedent ice 77 

conditions themselves. These departures have a large component of internal variability and hence 78 

are difficult to predict over monthly and seasonal timescales (Serreze et al., 2016), raising 79 

questions about the extent to which sea ice variations may be predictable.  Even ice-ocean 80 

models initialized to current sea ice and ocean conditions require atmospheric forcing in order to 81 

predict future ocean states.  Moreover, fully coupled models, which determine both the 82 

atmospheric and ocean/ice conditions prognostically, are now used increasing often for seasonal 83 

sea ice predictions.  Ensembles of coupled simulations are generally run because of the chaotic 84 

nature of the climate system. These models can be run for much longer time periods than the 85 

observational sea ice record, so they can provide statistics of sea ice persistence 86 

(autocorrelations) subject to the “perfect model” assumption.  Examples of studies employing the 87 

“perfect model” approach are Holland et al. (2011)  Blanchard-Wrigglesworth et al. (2011), Day 88 
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et al. (2014), Bushuk et al. (2017) and Bushuk et al. (2018).  In these model simulations, 89 

autocorrelation of sea ice anomalies tends to be greater in the model results than in observational 90 

data (e.g., Blanchard-Wrigglesworth et al., 2011, their Fig. 2; Day et al., 2014, their Fig. 1).  91 

      The skill of persistence-based statistical forecasts of sea ice variations beyond the mean 92 

seasonal cycle and ongoing trends is the main focus of this paper.  While various prior studies 93 

(cf. Section 2) have utilized broader approaches to evaluating sea ice predictability and the skill 94 

of forecasts, the present study is limited specifically to statistical predictions of regional (and 95 

pan-Arctic) September sea ice based on auto-correlation (anomaly persistence, often referred to 96 

as “memory”) and lagged cross-correlations between with other sea ice coverage quantities.  97 

Other approaches to sea ice predictability include the use of models, which can be initialized to 98 

obtain deterministic forecasts verifiable with observations or which can be run for long periods 99 

in a coupled mode to assess predictability of sea ice within the “model’s world” (irrespective of 100 

observations).  We also do not use atmospheric or oceanic predictors in our evaluation of 101 

persistence-based predictability.  Atmospheric predictors in the form of known teleconnection 102 

patterns have been used by Drobot (2003) and Lindsay et al. (2008), while Bushuk et al. (2017) 103 

have shown that ocean temperature initialization contributes to skill of seasonal forecasts of sea 104 

ice in the North Atlantic subarctic seas.  A review of the various approaches to sea ice prediction 105 

and sources of predictability has been provided by Guemas et al. (2016). 106 

       The present paper extends the temporal window of Drobot’s (2003) study of the 107 

predictability of Beaufort-Chukchi sea ice.  Drobot used data from 1979-2000 to assess 108 

predictability of a measure of Beaufort Sea summer ice severity (Section 3 below) based on 109 

antecedent sea ice conditions as well as several atmospheric indices. While the present study will 110 

not include the type of multiple-predictor evaluation carried out by Drobot, it will provide a more 111 

comprehensive and updated assessment of sea ice anomaly persistence in a predictive context. 112 

Drobot (2003) found that, in predictions based on indicators from the previous seasons, the 113 

limited sample of years used in developing the statistical models raises questions about broader 114 

applicability. In this regard, Drobot (2003, p. 1161) states “…if the Arctic climate changes, the 115 

methods described here will need to be altered”.  In fact, the Arctic climate and, in particular, its 116 

sea ice regime, have changed with the unprecedented retreat of sea ice in the post-2000 period.  117 

The impact of the trend on statistical predictability is a focus of the present paper. Another 118 

relevant study is that of Blanchard-Wrigglesworth et al. (2011), who found evidence that 119 
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persistence of ocean temperature anomalies across seasons has a detectable impact on sea ice 120 

variations, implying some predictability over seasonal timescales. 121 

      In the present paper, we use the autocorrelation statistic to quantify the skill of persistence as 122 

a control forecast of pan-Arctic and regional sea ice extent.  In addition to utilizing the more 123 

conventional metric of ice extent in regional and pan-Arctic domains, we include a regional sea 124 

ice index developed in the 1970s to capture interannual variations of marine access in the 125 

Beaufort Sea.  A primary focus of the evaluation is the method of detrending the data, as various 126 

alternative methods have not been fully explored in the literature. We show that the piecewise 127 

linear method generally results in the smallest residual variance about the trend line, and we then 128 

perform an across-region synthesis of information on the break-points of the two-piece linear 129 

trend lines in different seasons.  Our period of analysis extends back to 1953, which results in a 130 

considerably larger sample of years than the more commonly used satellite period (1979 131 

onward).  Finally, we examine lagged cross-correlations to determine whether pan-Arctic ice 132 

extent or Beaufort Sea summer ice conditions are foreshadowed in a statistical sense by 133 

antecedent ice conditions in particular subregions of the Arctic. 134 

        More generally, the results presented here can serve to provide a baseline for distinguishing 135 

contributions to seasonal sea ice forecast skill arising from climatological sea ice coverage, sea 136 

ice persistence, and sea ice trend.  This baseline can, in turn, serve as benchmarks for measuring 137 

improvements achieved by more sophisticated prediction approaches such as dynamical models, 138 

analog systems, neural networks and other more comprehensive statistical methods. The Sea Ice 139 

Outlook, coordinated by the Sea Ice Prediction Network now in its Phase 2 140 

(https://www.arcus.org/sipn/sea-ice-outlook, accessed 27 Dec 2018)), provides an annual 141 

compilation of seasonal sea ice forecasts, which are grouped into three categories: 142 

physical/dynamical models, statistical methods, and heuristic approaches. While the 143 

methodology used in this paper falls into the statistical category, the distinctions between (a) 144 

pan-Arctic and regional skill and (b) trend-derived and interannual forecast skill are relevant to 145 

all three approaches to sea ice prediction. 146 

 147 

2.  Previous work 148 

https://www.arcus.org/sipn/sea-ice-outlook


6 

 

The baseline for persistence-based predictions have been established in previous studies 149 

(e.g., Blanchard-Wrigglesworth et al., 2011; Day et al., 2014; Bushuk et al., 2017, 2018). These 150 

studies have generally focussed on the post-1979 period of satellite data, while the present study 151 

a longer record length (back to 1953 rather than 1979).  The main intent of the paper is to show 152 

how detrending is a key step in the depiction of persistence-based statistical predictions.  We 153 

illustrate the effect of detrending for both pan-Arctic ice extent and regional metrics in order to 154 

show that predictive applications on both scales must address detrrending in a rigorous way, and 155 

that there are various alternatives for detrending.  While these alternative detrending strategies 156 

are known, the relative effectiveness of the various alternatives has not been addressed in 157 

previous studies.  Goldstein et al. (2016; 2018) come closest by comparing representations based 158 

on linear trends and discontinuities in the mean. An additional novel outcome of the present 159 

study is the synthesis of break-point information. 160 

The extension back to 1953 is especially noteworthy because of the recent reduction of 161 

Arctic sea ice coverage has occurred almost entirely in the post-1978 period of satellite coverage.  162 

On both pan-Arctic and regional scales, ice extent was relatively stable during the 1950s, 1960s 163 

and 1970s, although interannual variations were still a prominent feature of the time series 164 

(Walsh et al., 2016).  While Drobot (2003) and Lindsay et al. (2008) made use of sea ice data 165 

extending back to the 1950s, there has been no systematic comparison of sea ice anomaly 166 

persistence during the satellite era with anomaly persistence over longer time periods.   167 

3.  Metrics of sea ice coverage 168 

        Historical variations of sea ice are documented using various metrics, including sea ice 169 

extent, ice-covered area, and thickness.  Sea ice extent is the total area within the ice edge, which 170 

is typically taken to be the 15% contour of sea ice concentration.  Ice extent is readily obtainable 171 

from satellite measurements, as is the actual ice-covered area if the open water within the ice 172 

edge is accurately depicted.  Surface-based observations from ships or coastal locations typically 173 

capture only the ice edge and are therefore useful primarily in the mapping of ice extent.  While 174 

digitized records of ice extent exist back to the 1800s, there are no such historical products for 175 

ice thickness.  In situ measurements of ice thickness are sparse in space and time, as are 176 

submarine sonar measurements, which are not only sparse but often remain unavailable.  177 

Satellite-derived estimates of ice thickness are subject to considerable uncertainty and have only 178 
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recently come into use (e.g., CryoSat), while dynamic-thermodynamic model-based 179 

reconstructions of historical sea ice thickness variations have only recently been attempted 180 

(Schweiger et al., 2018). 181 

       To explore the statistical skill that may be inherent in the spatial distribution of sea ice, we 182 

compute ice extent using the gridded Arctic-wide sea ice concentration product known as 183 

“Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward (Walsh et al., 2015), referred 184 

to in the National Snow and Ice Data Center (NSIDC) catalog as G10010.  This dataset is based 185 

on observations from approximately 15 historical sources between 1850 and 1978: the earliest 186 

are whaling records, and the most complete, in terms of coverage, are the Arctic-wide analyses 187 

that the U.S. National Ice Center (NIC) began in the early 1970s.  Beginning in 1979, sea ice 188 

concentrations from passive microwave data are used exclusively in G10010. Ice concentration 189 

fields on the 15th of each month are taken from the NOAA/NSIDC Climate Data Record of 190 

Passive Microwave Sea Ice Concentration, Version 2 (Meier et al., 2013).  191 

       Prior to the 1950s, most observations were from near or just within the ice edge.  If only the 192 

ice edge position was known, a gradient of ice concentration within the edge was imposed in 193 

order to integrate the observations into G10010.  The gradient was based on a climatology 194 

constructed from the passive microwave data.  Spatial and temporal gaps in observations were 195 

filled using an analog technique that is described in the data product documentation.  Each 196 

month’s sea ice concentration field in G10010 is an estimate of conditions at one time in the 197 

month, nominally the 15th day of the month (or as close to the 15th as data were available). The 198 

fields are at quarter-degree resolution. From these fields one can derive monthly sea ice extent 199 

values.  Sea ice extent is computed as the area, in sq km, covered by all cells that contain ice in 200 

any concentration greater than 15%.  Sea ice extent is always greater than or equal to the actual 201 

ice-covered area, which excludes the area of open water within the main ice pack. 202 

       Various studies (e.g. Partington et al., 2003; Agnew and Howell 2002) have shown that 203 

passive microwave-derived sea ice data tend to underestimate ice concentration when compared 204 

with operational analyses.  The Climate Data Record of Passive Microwave Sea Ice 205 

Concentration is a blend of output from two algorithms that results in higher ice concentrations 206 

overall for a better match with the operational analyses that predate the satellite record.   Even 207 

so, one might expect to see a discontinuity in the G10010 time series of ice extent when the 208 

passive microwave record starts in 1979, but this is not evident (see Fig. 10 in Walsh et al., 209 
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2016).  While G10010 gives a record of ice extent that has realistic variability back to 1850, it is 210 

difficult to assign an uncertainty to the concentration fields and ice extent values derived from 211 

them. Ice extent will be more accurate than actual ice-covered area because there are many more 212 

observations of the ice edge than of the concentrations within interior pack.  For this reason, we 213 

base our analysis on ice extent.  It should be noted, however, that persistence time-scales of pan-214 

Arctic sea ice area have been shown in previous studies (e.g., Blanchard-Wrigglesworth et al., 215 

2011) to be longer than those of pan-Arctic sea ice extent because high-frequency forcing can 216 

change ice extent more than it changes ice area (i.e., by converging or diverging ice floes in the 217 

absence of ridging or melt). 218 

       G10010 was used to compute the time series of monthly sea ice extent for the pan-Arctic 219 

domain and various Arctic subregions in which sea ice is at least a seasonal feature. The 220 

regionalization adopted here follows that of the MASIE (Multisensor Analyzed Sea Ice Extent) 221 

product available from the National Snow and Ice Data Center 222 

(http://nsidc.org/data/masie/browse_regions, accessed 27 Dec 2018).  MASIE (NIC and NSIDC, 223 

2010) is produced in cooperation with the NIC, and its regions are defined on the basis of NIC 224 

operational analyses areas.  We use the following MASIE regions: (1) Beaufort Sea, (2) Chukchi 225 

Sea, (3) East Siberian Sea, (4) Laptev Sea, (5) Kara Sea, (6) Barents Sea, (7) East Greenland Sea, 226 

(8) Baffin Bay/Davis Strait, (9) Canadian Archipelago, (10) Hudson Bay, (11) central Arctic 227 

Ocean and (12) Bering Sea.  There are several other MASIE regions (Baltic Sea, Yellow Sea, 228 

Cook Inlet) that are not used here because they are not geographically connected with the main 229 

Arctic sea ice cover. Figure 1 shows the regions.  230 

       We also make use of the long ice extent record provided by G10010 to investigate the extent 231 

to which the Barnett Severity Index, or BSI, may be statistically predictable from antecedent ice 232 

extent.  The BSI is directly relevant to offshore navigation applications in the Beaufort Sea.  It is 233 

a metric of the severity of ice conditions, such as conditions encountered by barges resupplying 234 

the North Slope. The BSI is determined once per year, at the end of the summer shipping season, 235 

by analysts at the NIC.  It is a unit-less linear combination of five parameters: 1) the distance in 236 

nautical miles from Point Barrow northward to the ice edge on 15 September, 2) the distance 237 

from Point Barrow northward to the 4/8th ice concentration line on 15 September, 3) the number 238 

of days the entire sea route from the Bering Strait to Prudhoe Bay is ice-free in a calendar year, 239 

4) the number of days the entire sea route to Prudhoe Bay is less than or equal to 4/8th ice 240 

http://nsidc.org/data/masie/browse_regions,%20accessed%2027%20Dec%202018)
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concentration in a calendar year, and 5) the temporal length of the navigable season, defined as 241 

the time period from the initial date the entire sea route is less than 4/8th ice concentration to 1 242 

October (Barnett, 1980).  Figure 2 is a time series of the BSI reconstructed from gridded sea ice 243 

concentration data (see Appendix).  Higher values indicate less severe ice conditions. 244 

4  Methods 245 

       As shown in Figure 3, Arctic sea ice extents have generally been decreasing over the post-246 

1953 period of this study.  The Beaufort Sea is a prime example of a region in which summer 247 

and autumn sea ice coverage has been decreasing, although winter (March) sea ice extent in the 248 

Beaufort Sea shows no trend or variability because the ice edge extends to the coastline in March 249 

of every year, essentially eliminating year-to-year variations. Consistent with the September 250 

decrease of Beaufort ice extent, the BSI has been increasing over the past few decades (Figure 251 

2). Two time series containing trends over time can show a correlation simply because the trends 252 

are present in the time series.  A trend can be used as a predictive tool by assuming its 253 

continuation into the future. However, a trend can inflate persistence-based forecast skill when a 254 

variable is used to predict itself (assuming the historical trend continues into the future). Indeed, 255 

depictions of time-variations of a quantity such as sea ice extent are often shown as departures 256 

from a trend line in order to highlight the interannual variations. One of our main interests in this 257 

study is whether or not interannual variations of preceding regional ice extents correlate with 258 

later BSI values.  In order to exclude the effect of the overall trends in the correlation of these 259 

time series, we detrend the data and explore various methods for doing so.  260 

       The choice of a function with which to de-trend the time series should be determined by 261 

features of the series itself.  The detrended time series should exclude the general tendency to 262 

change over time, but preserve a measure of the year-to-year variability of the series. The 263 

previous studies cited in Section 2 (e.g., Blanchard-Wrigglesworth et al., 2011; Sigmund et al., 264 

2013; Day et al., 2014; Bushuk et al., 2017, 2017) have generally relied on least-squares linear 265 

fits for detrending.  Goldstein et al. (2016, 2018), by contrast, showed that discontinuous changes 266 

in the mean better captured time series (such as open water area) characterized by abrupt 267 

changes. In the spirit of the Goldstein et al. studies, we explore various options for detrending a 268 

time series such as those in Figures 2 and 3, for which the changes are more pronounced in 269 
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recent decades than in earlier decades.  In such cases, a single multi-decadal trend line cannot be 270 

expected to optimally represent the historical evolution.   271 

       We explored several functional forms which fit the time series, including linear, quadratic, 272 

cubic, and exponential functions.   We found that a simple two-piece linear function – wherein 273 

the data are modeled by two line segments that intersect at a ‘break-point’ year – had the lowest 274 

average RMS difference between the time series and the fitted function, although fits using other 275 

functions had only slightly larger RMS differences.  This choice of the detrending fit has the 276 

additional feature of giving a sense of when the ice extent began to change more rapidly.   277 

          The two-piece linear fits were obtained by using standard statistical algorithms.  A 278 

function defined by two intersecting half-lines can be specified by the coordinates of one point 279 

on each half-line and the intersection point.  With the x-axis as time, and the y-axis as the value 280 

of the sea ice extent, the x-values of the non-intersecting points can be chosen to be 1953 and 281 

2013, the first and last years of the BSI dataset.  This leaves four values for the function to fit: 282 

the series value in 1953, the series value in 2013, and the year and value at the intersection point, 283 

also referred to here as the break-point.  We note that the break-point is not specified by the user 284 

but is determined by the algorithm so that the fit to the time series is optimized. The “curve_fit” 285 

function is defined in lines 504-794 of the file 286 

https://github.com/scipy/scipy/blob/master/scipy/optimize/minpack.py  This function performs a 287 

least-squares fit to the function by modifying the function's parameters.  A starting "guess" of the 288 

function parameters is provided by the user.  The linear algebra methods of the scipy numerical 289 

library is then used.    290 

        The two-piece linear fit was generated by allowing the SciPy ‘curve_fit’ routine (Jones et 291 

al., 2001) to iterate to a solution.  The “curve_fit” function is defined in lines 504-794 of the 292 

minpack.py routine (https://github.com/scipy/scipy/blob/master/scipy/optimize/minpack.py, 293 

accessed 27 Dec 18). This function performs a least-squares fit to the function by modifying the 294 

function's parameters.  A starting "guess" of the function parameters is provided by the user.  The 295 

linear algebra methods of the scipy numerical library are then used to detrend the BSI values as 296 

well as the time series of the regional and pan-Arctic ice extents.  In Figure 4, we show the 297 

piecewise linear fit together with quadratic, cubic and exponential fits to the time series of the 298 

BSI and the September Beaufort Sea ice extent.  In the case of the two-piece linear fit, the break-299 

point (chosen to minimize the departures from trend) is in the early 1990s for both sea ice 300 

https://github.com/scipy/scipy/blob/master/scipy/optimize/minpack.py
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metrics.  It is visually apparent from Figure 4 that all four fits are comparable in terms of the 301 

overall magnitudes of the departures from the trend lines.  The root-mean-square departures from 302 

the various trend lines indeed differed by less than 10%. Given the small differences between the 303 

fits, we choose the two-piece linear for the remainder of this study.  Because the break-points are 304 

computed separately for each region, the use of the two-piece linear fit allows comparisons of the 305 

timing of the break-points across the various subregiona.   306 

       After using the ‘linregress’ method from the SciPy (Jones et al., 2001) software library to fit 307 

a line to regional monthly extent values and the BSI, we computed correlations between the 308 

departures of the two time series from their respective two-piece trend lines.  For comparison, we 309 

also computed correlations between the “raw” (with trends) time series.  The square of the 310 

Pearson correlation coefficient (R2) was computed using the ‘stats’ method from the SciPy 311 

package and was used to determine whether and how strongly the two time-series are correlated 312 

with each other. 313 

 314 

5  Results 315 

As noted in Section 2, previous studies (e.g., Bushuk et al., 2018) have evaluated the 316 

persistence of regional ice extent over the post-1978 period of satellite observations.  Here we 317 

extend this evaluation to encompass a longer period dating back to 1953 in order to assess the 318 

stability of the persistence statistics.  Specifically, for each region in Figure 1, we have correlated 319 

the September ice extent with the ice extent of antecedent months for the 1953-2013 and 1979-320 

2013 periods.  Figure 5 compares these persistence values (autocorrelations at multimonth lags), 321 

for the antecedent months of March, May and July in a subset of regions. Because the regions 322 

chosen were those that have interannually varying ice cover in September, regions such as the 323 

Bering Sea, Hudson Bay, the Sea of Okhotsk and the Baltic Sea were excluded.  The correlations 324 

were computed before and after a detrending of the data, although only the results for the non-325 

detrended data are shown in Figure 5.  For most of the regions, the inclusion of the earlier 326 

decades does not have a notable impact on the persistence from July to September.  However, the 327 

March-to-September and May-to-September correlations change substantially in a few regions.  328 

The Baffin Bay March-to-September correlations increase from 0.00 to 0.34 when the earlier 329 

decades are eliminated, largely as a result of the post-1979 trend: the post-1979 correlation is 330 

statistically significant (p < 0.05), while the corresponding correlation based on detrended data is 331 
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not significant.  The pan-Arctic correlations for all three antecedent months also increase when 332 

the earlier decades are eliminated. In the Greenland Sea, the correlations from March and May 333 

decrease substantially and lose statistical significance when the earlier decades are eliminated.  334 

In this case the March-to-September and May-to-September correlations are again reduced to 335 

insignificance by detrending.  Although the results for the detrended data are not shown 336 

graphically, the detrending generally reduces the significance of the correlations between 337 

September and the  earlier months, both for the longer post-1953 periods and the shorter post-338 

1979 periods: The March-to-September correlations based on the detrended data for the 339 

longer/shorter periods are: -0.05/0.20 for Baffin Bay, 0.20/0.13 for the Barents Sea, 0.00/0.00 for 340 

the Beaufort Sea (no March variance), 0..00/0/00 for the Canadian Archipelago (no March 341 

variance), -0.15/0.00 for the Chukchi Sea, 0.07/0.21 for the East Siberian Sea, 0.25/-0.03 for the 342 

Greenland Sea, 0.03/0.03 for the Kara Sea, and 0.07/0.18 for the Laptev Sea.  The corresponding 343 

5% significant levels are 0.26/0.33.  Evidently, the springtime “predictability barrier” (Lindsay et 344 

al., 2008; Day et al., 2014; Bushuk et al., 2018) in regional forecasts based on persistence of ice 345 

extent anomalies is not reduced by the inclusion of several decades of pre-satellite data.  346 

Because changes of trend have not been addressed systematically in previous evaluations of 347 

Arctic sea ice trends, we synthesized the break-point information across all regions and calendar 348 

months (January-September) included in our study.  The synthesis was limited to only those 349 

regions and calendar months in which the two-piece linear fit reduced the root-mean-square 350 

residual by at least 5% relative to the one-piece linear best fit.  Figure 6 groups the break-points 351 

into five year periods ending in 1955, 1960,…, 2015.  In order to capture the seasonality of the 352 

break-points, we present separate plots for (a) the entire January-September period, (b) January-353 

March (winter), (c) April-June (spring), and July-September (summer).  As shown in panel ((a), 354 

nearly all the break-points occur in the second half of the study period, with a maximum in 1991-355 

1995.  The 1991-1995 period has the most break points of any 5-year period, and the 1990s have 356 

nearly as many break points as all the other decades combined.  The winter and summer seasons 357 

are the primary contributors to the maximum in the 1990s, as the spring break points are evenly 358 

distributed through the latter half of the study period.  However, spring has the fewest (12) 359 

break-points overall, while the summer has the most (26). The break-points for our focal metrics, 360 

the BSI and September pan-Arctic ice extent, are 1991 and 1996, respectively, consistent with 361 

the distribution in Figure 6. These two metrics are included in the results summarized in Figure 362 
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6.  One may conclude that the 1990s, and to a lesser early 2000s, represent the shift to a more 363 

rapid rate of sea ice loss.  If one is to argue for a “regime shift” in Arctic sea ice loss (Lenton, 364 

2012), this period would be the leading candidate.  365 

        In order to illustrate the effect of the detrending and to show which regions contribute the 366 

most explained variance to pan-Arctic sea ice extent, Figure 7 shows the squares of the 367 

correlations (R2) between September pan-Arctic ice extent and the concurrent ice extent in each 368 

of the subregions. The R2 metric is used rather than R because R2 corresponds to the explained 369 

variance.  The figure shows values of R2 before detrending (upper numbers, regular font) and 370 

after detrending (lower numbers, bold font). With the trend included, the R2 values are relatively 371 

high in most regions (except for the Bering Sea), ranging from 0.32 to 0.71; the corresponding 372 

correlations (R) range from 0.57 to 0.84. These correlations all exceed the 95% significance 373 

thresholds, which range from 0.26 (R2 = 0.07) for a 60-year sample with no autocorrelation to 374 

0.38 (R2 = 0.14) for a 60-year sample with an autocorrelation of 0.4.  None of the regional or 375 

pan-Arctic ice extent autocorrelations exceeded 0.40.  Because these correlations are dominated 376 

by the trend, the larger values appear in the regions with trends that are most similar to the pan-377 

Arctic trend.  When the data are detrended, the correlations are much smaller (R2 values in bold 378 

font in Figure 7) although still larger than the 95% significance thresholds for a 60-year sample 379 

(R = 0.26, R2 = 0.07). These smaller values indicate the relative contributions of regional 380 

variations to the interannual variations of pan-Arctic ice extent.  According to Figure 7, the 381 

regions contributing most strongly to September pan-Arctic sea ice variations  (including trends) 382 

are the Beaufort, Chukchi and East Siberian Seas.  After the data are detrended, the regions 383 

contributing most to September pan-Arctic sea ice variations are the East Siberian and Laptev 384 

Seas.  The somewhat surprisingly large contribution of the Laptev Sea is consistent with the 385 

“dynamical preconditioning” hypothesis of Williams et al. (2016).  The variances of the 386 

detrended September extents of East Siberian and Laptev Seas are indeed among the largest of 387 

all the regions, although the Chukchi Sea’s interannual variance is essentially as large.      388 

Figure 8 shows the squares of the correlations between the annual BSI and regional 389 

September ice extent before the detrending of both variables (top numbers) and after detrending 390 

(bottom numbers).  While the actual correlations between the BSI and regional extent are 391 

generally negative, the R2 values plotted in Figure 8 are positive.  Large values of R2 appear in 392 

most regions when the trend is included (upper numbers) because the BSI has a strong positive 393 
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trend over time while September ice extent in most regions has a negative trend.  The R2 values 394 

are much weaker in regions away from the Beaufort Sea when the trends are removed (lower 395 

numbers in Fig. 8). The detrended R2 values show the spatial representativeness of the BSI as a 396 

measure of interannual variations. Figure 8 shows that the regions of significant explained 397 

variance include the Canadian Archipelago to the east as well as the Chukchi Sea to the west.  398 

However, the “scale of influence”, if measured by the area of significant correlation, is smaller 399 

for the BSI in Fig. 8 than for pan-Arctic ice extent in Fig. 7.   400 

Because the potential for seasonal predictions is a key motivation for this study, we 401 

examine cross-correlations in which the predictands (pan-Arctic ice extent and the BSI) lag 402 

potential predictors (regional ice extents) by intervals ranging from zero (no lag) to several 403 

seasons.  Cross-correlations between non-detrended and detrended September pan-Arctic and 404 

regional ice extents are summarized in Tables 1 and 2 respectively. Cross-correlations between 405 

non-detrended and detrended BSI and regional ice extent are given in Tables S1 and S2 406 

respectively. In all cases, the numerical values are the R2 values.  In order to illustrate the 407 

contribution of the trend to the apparent forecast skill, we present these correlations graphically 408 

for the regions which show the strongest associations with the September predictands.  Figure 9 409 

shows the R2 values for cases in which September pan-Arctic ice extent lags by 0, 1, 2,…,8 410 

months the ice extent in four subregions: the Beaufort, Chukchi, East Siberian and Barents Seas. 411 

The red bars correspond to correlations computed from the data with the trends included. Not 412 

surprisingly, the R2 values are largest at zero lag.  The rates at which the correlations decrease 413 

with increasing lag vary regionally, reaching zero by 3-4 months for the Beaufort, Chukchi, and 414 

East Siberian Seas. The zero-month lag values are quite large for the Beaufort, Chukchi, and East 415 

Siberian regions, where they exceed R2  = 0.7 (R = 0.84). 416 

          However, after detrending (using the two-piece linear best fits), most of the apparent forecast 417 

skill is lost. As shown by the blue bars in Figure 9, nearly all the predictability from the Barents 418 

and Chukchi Seas vanishes with the detrending, while only small fractions of explained variance 419 

remain at non-zero lags when sea ice extents for the Beaufort and East Siberian Seas are the 420 

predictors.  For example, when the regional extent leads by two months (July), the fractions of 421 

explained variance are approximately 0.16 and 0.10 (R  0.40 and 0.32) for the East Siberian and 422 

Beaufort Seas, respectively.  The implication is that the persistence of interannual variations about 423 

the trend line makes only small contributions to interannual variations of pan-Arctic sea ice extent, 424 
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and that these small contributions result mainly from the Pacific sector of the Arctic. As indicated 425 

by Figure 9, the pan-Arctic extent of July and August correlates more highly than any regional 426 

extent with September pan-Arctic ice extent in both the non-detrended and the detrended data (see 427 

also Tables 1 and 2). The finding that the lagged pan-Arctic correlations exceed the lagged regional 428 

vs. pan-Arctic correlations is consistent with the perfect-model results in Bushuk et al.’s (2017) 429 

Figure 2, although this comparison is not apples-vs.-apples: Bushuk et al. show the skill of 430 

predictions of regional extent (not pan-Arctic extent) in their regional panels.  The same is true for 431 

Day et al.’s (2014) Fig. 11 and for Bushuk et al.’s (2018) Figs. 6, 9, 10 and 11. 432 

        The lagged R2 values relevant to predictions of the Barnett Severity Index are shown in 433 

Figure 10.  Because the BSI is based primarily on ice conditions in the Beaufort Sea in August 434 

and September, it is not surprising that the correlation is largest for the Beaufort’s ice extent in 435 

September, when the R2 value is approximately 0.8 for data that are not detrended.  The August 436 

and September values for the Chukchi are essentially as large as the corresponding Beaufort 437 

values, indicating a spatial coherence of the variations (with trends included) in the two regions.  438 

The antecedent extents in the East Siberian and Barents regions also explain significant fractions 439 

of the variance when the trends are included.   440 

      The blue bars in Figure 10 are the lagged R2 values based on the detrended data. Because the 441 

trend’s contribution to the forecast skill has been removed, these correlations provide the most 442 

meaningful assessment of the seasonal forecast skill if the BSI based on antecedent ice 443 

conditions.  The largest correlations are for the Beaufort Sea, where the explained variances 444 

decrease from about 0.55 (R  0.74) in September to about 0.10 (R  0.32) in June. The 445 

correlations for the Chukchi are only slightly smaller, but the BSI variance explained by all other 446 

regions is less than 10%.  The percentage of explained variance is less than one might have 447 

anticipated, given that the BSI includes information on the length of the navigation season, 448 

which can begin well before September, i.e., as early as July in some years. 449 

 450 

6  Conclusion 451 

The substantial decrease of Arctic sea ice over the past several decades is well documented 452 

(Cavalieri and Parkinson, 2012; Parkinson, 2014; Onarheim et al., 2018).  Of all the regions 453 

considered here, only the Bering Sea does not show a negative trend (Onarheim et al., 2018, their 454 

Table 1), although the extreme minima of Bering Sea ice during the past two winters (2016-17 455 



16 

 

and 2017-18) are starting to bring the Bering’s trend into alignment with the other regions of the 456 

Arctic.  457 

The prominence of the trends in the time series of regional as well as pan-Arctic ice extent 458 

makes it important to distinguish the contribution of the trend from other sources of forecast 459 

skill.  In this study we explored the use of several methods of detrending in order to evaluate the 460 

use of ice anomaly persistence (autocorrelation) and regional cross-correlations as predictors of 461 

ice variations.  The two-piece linear trend evaluations generally have break-points in the 1990s, 462 

indicating that the rate of ice loss has been greater in the past two decades than in the earlier 463 

portion of the satellite era that began in 1979. 464 

Based on the raw (not detrended) time series, the antecedent ice extents in a substantial 465 

fraction of the Arctic regional seas provide significant predictive skill for September pan-Arctic 466 

ice extent as well as for the Barnett Severity Index, which is more specific to the Beaufort Sea.  467 

Significant portions of variance of both September metrics are explained by the regional ice 468 

extents of prior seasons.  However, this predictive “skill” is attributable primarily to the trends in 469 

the data.  Removal of the trend leaves little forecast skill beyond a month or two when the 470 

forecast method is limited to the relatively simple statistical correlations utilized here.  The low 471 

skill for the detrended September pan-Arctic ice extent is consistent with the findings of Stroeve 472 

et al. (2014) based on the Sea Ice Outlook as part of the Study of Environmental Arctic Change 473 

(SEARCH).  Moreover, our inclusion of data back to the early 1950s shows that springtime 474 

“predictability barrier” in regional forecasts based on persistence of ice extent anomalies is not 475 

reduced by the inclusion of several decades of pre-satellite data.   476 

       It must be noted that other sea ice prediction approaches have outperformed persistence 477 

(e.g., Tivy et al.,2007; Shröder et al., 2014; Yuan et al., 2016; Petty et al., 2017; and Bushuk et 478 

al., 2018).  These studies have either used other predictors or made use of the perfect model 479 

approach. With regard to the latter, persistence-derived predictability is greater in perfect models 480 

than in corresponding operational forecasts, as even some of the perfect-model studies show 481 

(Blanchard-Wrigglesworth et al., 2011; Bushuk et al., 2018). With regard to the former, the SIPN 482 

is the acid test of the current state of sea ice prediction (at least for September pan-Arctic ice 483 

extent) because many contributions utilized predictors other than persistence. A compilation of 484 

SIPN results from 2008-2018 shows that, on balance, the SIPN consensus forecasts outperform 485 

detrended anomaly persistence by only a small amount. (In this case, persistence was evaluated 486 
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from the yearly September mean ice extents in the National Snow and Ice Data Center’s 487 

G02135_v3.0: ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/seaice_analysis/, accessed 488 

27 Dec 2018). The mean absolute error of the median SIPN forecasts issued in July of 2008-489 

2018 is 0.32 million km2, while the error of a forecast of persistence of the previous September’s 490 

deviation from the trend line is 0.37 million km2.  Simple persistence of the previous year’s 491 

actual value has an error of 0.40 million km2.  The corresponding root-mean-square errors are 492 

0.57, 0.68 and 0.67 million km2.  While those persistence metrics are based on year-to-year 493 

September variations, the SIPN forecasts for September are made in June, July and August -- 494 

less than a season prior to September, and on the favorable side of the springtime “prediction 495 

barrier”. At least in this particular application, which represents the state of the art in seasonal 496 

sea ice forecasting, sea ice anomaly persistence is a challenging control forecast and may even be 497 

regarded as a respectable competitor. 498 

While there is statistical significance in the trend-derived skill at lead times of several 499 

seasons and also in the remaining (detrended) skill at lead times of a month or two, statistical 500 

significance does not equate to usefulness. Potential users of sea ice forecasts include local 501 

communities engaging in offshore subsistence and travel activities, marine transport companies, 502 

offshore resource extraction, and the tourism industry.  The relatively small fractions of variance 503 

predictable several months in advance using detrended data (Figures 6-9) will likely leave 504 

uncertainties that are too great for many users.  However the trend-derived skill, which can 505 

represent 50% or more of the variance, may enable decisions if the interannual variations 506 

superimposed on the trend represent acceptable risks for users of sea ice forecasts.   507 
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Appendix.  Reconstruction of the Barnett Severity Index, 1953-2013 623 

 624 

As described in Section 2, the Barnett Severity Index (BSI) is a combination of five metrics of ice 625 

coverage in the Beaufort Sea.  Drobot et al. (2003) used the BSI through 2000 in their evaluation 626 

of predictability based on multilinear regression against various measures of sea ice cover.  In 627 

order to update the BSI for use in this study, we base a reconstruction on the digital grids of sea 628 

ice concentration in the Historical Sea Ice Atlas (HSIA) for Alaska (http://seaiceatlas.snap.uaf.edu/ 629 

accessed 27 Dec 2018).  As with the regional ice extent calculations using G10010 (Section 3), we 630 

use the HSIA because it extends the record 26 years back in time before the start of the satellite 631 

passive microwave record.  While the sources of the ice concentration data in the HSIA are the 632 

same as in G10010, a notable advantage of the HSIA is its weekly temporal resolution (vs. the 633 

monthly resolution of G10010).  The HSIA also has a spatial resolution of ¼° latitude by ¼° degree 634 

longitude.  Because of the weekly time resolution, the distance metrics (3)-(5) of the BSI are 635 

truncated to the nearest week.  Similarly, the distance metrics (1) and (2) are truncated to the 636 

nearest 27.8 km (15 n mi).  One of the within-month dates of the HSIA grids is the 15th of each 637 

month, so no temporal interpolation is necessary for metrics (1) and (2).  The reconstructed values 638 

of the BSI are listed in Table A1. 639 

 640 

 641 
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 643 

Figure 1.  The MASIE subregions used in the study (NIC and NSIDC, 2010). 644 
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 646 

Figure 2.  Time series of the Barnett Severity Index (BSI), 1953-2013. 647 
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 652 

Figure 3.  (a) Total Arctic sea ice extent and (b) the extent of ice in the Beaufort Sea during   653 

March( solid lines) and September (dashed lines) . 654 

 655 

 656 
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  657 

 Figure 4.  Examples of different fit methods (see legend) applied to the BSI (upper panel) and 658 

the September Beaufort ice extent time series (lower panel). 659 

 660 
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 661 

Figure 5.  Correlations of September ice extents in individual seas with ice extent in the same 662 

region in March (green bars), May (blue bars) and July (red bars).  Correlations are also shown for 663 

Pan-Arctic extent (far right).  The correlations are based on non-detrended data. In each case, light-664 

colored bars are for 1953-2013 and dark-colored bars are for 1979-2013. The absence of a bar 665 

indicates a correlation of zero. 666 

 667 
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 668 

 669 

Figure 6.  The distribution of break-point years across all regions for (a) January-September and 670 

its three subperiods: (b) January-March, (c) April-June, (d) July-September). Only 671 

cases for which detrending using two lines, rather than one, reduced the rms error by 672 

5% or more are included.  Note that y-axes have different scales. 673 
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 676 

 677 

Figure 7.   Squares of correlations (R2) between September pan-Arctic ice extent and September  678 

regional ice extent based on ice extents including trends (upper numbers in normal 679 

font) and detrended (lower numbers, bold font). 680 
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 682 

 683 

Figure 8.  As in Figure 7, but for squares of correlations between the annual BSI and September 684 

regional ice extents based on raw (not detrended) time series (upper numbers) and 685 

detrended time series (lower numbers, bold font). 686 
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 688 

Figure 9. Examples of variances of September pan-Arctic ice extent and explained by correlations 689 

with antecedent regional ice extent in individual calendar months from September back 690 

to January (pan-Arctic extent lagging by 0, 1, 2, …, 8 months).  Correlations are plotted 691 

as fractions of explained variance (squares of correlations).  Red bars are correlations 692 

with trends included, blue bars are correlations after removal of trends.     693 
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  695 

 696 

Figure 10.  Examples of variances explained by correlations between the Barnett Severity Index 697 

and regional ice extent in individual calendar months from September back to January 698 

(BSI lagging by 0, 1, 2, …, 8 months).  Correlations are plotted as fractions of 699 

explained variance (squares of correlations).  Red bars are correlations with trends 700 

included, blue bars are correlations after removal of trends.  701 
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 704 

 705 

Table 1. Correlations between monthly regional ice extent and pan-Arctic ice extent expressed 706 

as explained variance (R2).  Cases where at least 10%  of the variance in pan-Arctic ice extent is 707 

explained by regional ice extent in a given antecedent month are highlighted with bolded region 708 

names. Levels of shading of boxes denote values exceeding 0.10, 0.20, 0.30,… 709 

 710 

 711 

 712 

 713 

 714 
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 716 

 717 

Table 2.   Correlations between detrended monthly regional ice extent and detrended September 718 

pan-Arctic ice extent expressed as explained variance (R2). Cases where at least 10% of the 719 

variance in September pan-Arctic ice extent is predictable by regional ice extent in a given 720 

antecedent month are highlighted with bolded region names. Shading of boxes is as in Table 1. 721 
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1953 7 

1954 213 

1955 0 

1956 0 

1957 117 

1958 356 

1959 163 

1960 0 

1961 289 

1962 195 

1963 66 

1964 7 

1965 10 

1966 167 

1967 3 

1968 412 

1969 1 

1970 0 

1971 34 

1972 90 

1973 240 

1974 22 

1975 0 

1976 13 

1977 247 

1978 46 

1979 368 

1980 3 

1981 74 

1982 170 

               1983 0 

 

 

                 

1984 95 

1985 24 

1986 178 

1987 216 

1988 0 

1989 402 

1990 278 

1991 3 

1992 0 

1993 434 

1994 1 

1995 211 

1996 206 

1997 407 

1998 895 

1999 685 

2000 513 

2001 471 

2002 770 

2003 827 

2004 731 

2005 490 

2006 819 

2007 1119 

2008 12239 

2009 12989 

2010 1112 

2011 1219 

2012 1298 

2013 611 

 

Table A1.  Yearly values of the Barnett Severity Index (BSI).  Source:  Rebecca Rolph, Geophysical  

                   Institute, University of Alaska, Fairbanks. 
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