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Abstract. The thermal dynamics of permafrost shape Earth surface systems and human activity in the Arctic and have 

implications to global climate. Improved understanding of the fine-scale variability in the circumpolar ground thermal regime 10 

is required to account for its sensitivity to changing climatic and geoecological conditions. Here, we statistically related 

circumpolar observations of mean annual ground temperature (MAGT) and active-layer thickness (ALT) to high-resolution 

(~1 km2) geospatial data to identify their key environmental drivers. The multivariate models fitted well to MAGT and ALT 

observations with average R2 values being ~0.94 and 0.78, respectively. Corresponding predictive performances in terms of 

root mean square error were ~1.31 °C and 87 cm. Freezing air temperatures were the main driver of MAGT in permafrost 15 

conditions while thawing temperatures dominated when permafrost was not present. ALT was most strongly related to solar 

radiation and precipitation with an important influence from soil properties. Our findings suggest that in addition to climatic 

factors, initial ground thermal conditions and local-scale topography-soil-driven variability need to be considered in order to 

realistically assess the impacts of climate change on cold-climate geoecosystems. 

1 Introduction 20 

In the face of changing Arctic, it is crucial to understand the mechanisms that drive the current geocryological development of 

the region. Thaw of permafrost is expected to significantly attribute to hydrological and geoecological alterations in landscapes 

(Jorgenson et al., 2013; Liljedahl et al., 2016). In addition, greenhouse gas emissions from thawing permafrost soils have a 

potential to affect the global climate system (e.g. Grosse et al., 2016). Permafrost temperature and the depth of the overlying 

seasonally thawed layer, i.e. active layer, are key components of the ground thermal regime that govern various 25 

geomorphological and ecological processes (Frauenfeld et al., 2007; Aalto et al., 2017), as well as human activity in permafrost 

regions (Callaghan et al., 2011; Vincent et al., 2017). Outside the permafrost domain, extensive regions undergo seasonal 

freezing, which in itself affects many aspects of natural and human activity (e.g. Shiklomanov, 2012; Westermann et al., 2015). 

Air temperature and precipitation account for large-scale spatial variation in mean annual ground temperature (MAGT) and 

active-layer thickness (ALT) (Bonnaventure and Lamoureux, 2013; Streletskiy et al., 2015; Westermann et al., 2015). From 30 

regional to local scales, topography-induced solar radiation input (Etzelmüller, 2013) and intercepting layers of soil, vegetation 

and snow mediate their effect (e.g. Osterkamp, 2007; Fisher et al., 2016; Gruber et al., 2017; Aalto et al., 2018a; Zhang et al., 

2018). Winter temperatures have been suggested to be most important for permafrost temperature (Smith and Riseborough, 

1996; Etzelmüller et al., 2011), while ALT is essentially dependent on summer temperatures (Oelke et al., 2003; Melnikov et 

al., 2004; Luo et al., 2016). In wintertime, snow layer insulates the ground from cold air causing an offset, i.e. ground 35 

temperatures are higher than air (e.g. Aalto et al., 2018b; Zhang et al., 2018). Water precipitation alters the thermal conductivity 

of near-surface layers through its control on, e.g., soil water balance (Smith and Riseborough, 1996; Callaghan et al., 2011; 

Marmy et al., 2013). Arguably, the responsiveness of the circumpolar ground thermal regime to atmospheric forcing also 
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depends on its initial thermal state. In permafrost conditions, temperature changes are lagged by the higher demand of energy 

for phase changes of water in the active layer (i.e. latent-heat exchange), whereas in temperate soils climate signal affects more 40 

directly (Kurylyk et al., 2014; Ekici et al., 2015).  

Improved knowledge on permafrost dynamics is required to understand various geoecological interactions and feedbacks 

associated with warming Arctic (e.g. Wu et al., 2012; Grosse et al., 2016; Yi et al., 2018). Such information is useful for 

climate change assessments (Zhang et al., 2005, Smith et al., 2009), infrastructure design and maintenance, as well as for 

adaptation to changing conditions (Romanovsky et al., 2010, Streletskiy et al., 2015). Despite the increased availability of 45 

MAGT and ALT measurements (Biskaborn et al., 2015) and global geospatial data, fine-scale analyses of the environmental 

drivers over the circumpolar area are largely lacking. Physically based ground thermal models can account for various 

biogeophysical processes acting in vegetation, snow and soil layers (e.g. Lawrence and Swenson, 2011) but are not applicable 

at fine spatial resolutions for large areas owing to their tedious model parameterizations (Chadburn et al., 2017). For example, 

commonly used circumpolar 0.5° latitude/longitude resolution has been considered insufficient in characterizing spatial 50 

variation in soil properties and vegetation, thus leading to large mismatch between the simulations and observations (Park et 

al., 2013). Peng et al. (2018) assessed long-term trends in circumpolar ALT with a large observational dataset stressing that 

ALT strongly depends on local topo-edaphic factors and that thorough analyses of environmental factors controlling ALT are 

urgently required. 

Here, we use a statistical modelling framework employing multiple algorithms from regression to machine learning to examine 55 

the drivers controlling the spatial variation in the circumpolar ground thermal regime. More specifically, we aim to (1) calibrate 

realistic models of MAGT and ALT (the responses) utilizing geospatial data on climatic and local conditions (the predictors), 

and (2) assess the relative contribution of the drivers in both permafrost and non-permafrost conditions using geographically 

comprehensive datasets of field-quantified MAGT (n = 784) and ALT (n = 298) observations. 

2 Methods 60 

2.1 Study area and observational data 

We compiled MAGT and ALT observations from the period 2000–2014 over the Northern Hemisphere land areas north of the 

30th parallel (Fig.1). To examine possible variation in the contribution of environmental factors between permafrost and non-

permafrost conditions we used two separate MAGT datasets; observed MAGT at or below 0 °C, i.e. permafrost, (MAGT≤0 °C, 

n = 469) and above 0 °C (MAGT>0 °C, n = 315).  The observations were standardized by requiring that MAGT was recorded 65 

at or near the depth of zero annual amplitude (ZAA) where annual temperature variation was less than 0.1 °C, and that ALT 

was measured at the end of thawing season during the maximum thaw (Brown et al., 2000; Aalto et al., 2018a). When ZAA 

depth was not reported or not retrievable from numeric data, we used the value at the depth of 15 m, where annual temperature 

fluctuation is negligible (see French, 2007). With some MAGT observations, ZAA depth was reportedly not reached but we 

chose to include these cases assuming that annual means calculated from year-round records from one or multiple years were 70 

representative of long-term thermal state. MAGT values shallower than two meters below the surface were systematically 

excluded unless reported to be at the depth of ZAA. 

The Global Terrestrial Network for Permafrost database (GTN-P, Biskaborn et al., 2015) was the principal constituent of our 

datasets (~60 % of MAGT and ~67 % of ALT observations). Additionally, data were gathered from open Internet databases 

(e.g. Roshydromet, meteo.ru; Natural Resources Canada, GEOSCAN database; National Geothermal Data System) and 75 

previous studies to cover a maximal range of climatological and environmental conditions (see Table S1 and S2 for sources) 
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A minimum geopositional location precisions of two decimal degrees (~1,110 m at the Equator) for MAGT and a commonly 

used arc minute (~1,800 m) for often less accurately geopositioned ALT sites were adopted both to ascertain adequate spatial 

match with geospatial data layers and to moderate the need to exclude lower precision observations. Nonetheless, almost 90 

% of MAGT and more than two-thirds of ALT observations had a precision of at least three decimal degrees (~110 m at the 80 

Equator). Further exclusions were made when the ground thermal regime was evidently disturbed by recent forest fire, 

anthropogenic heat source, large water bodies or the effect of geothermal heat in temperature-depth curve (Jorgenson et al., 

2010; Woo, 2012) as revealed by source data or cartographical examination of the site. 

2.2 Predictor variables 

Nine geospatial predictors presenting climatic (air temperature and precipitation) and local (potential incident solar radiation, 85 

vegetation and soil properties) conditions at 30 arc-second spatial resolution were selected to examine their potential effects 

on MAGT and ALT (e.g. Brown et al., 2000; French, 2007; Jorgenson et al., 2010; Bonnaventure & Lamoureux, 2013;  

Streletskiy et al., 2015). Climatic parameters were derived from the WorldClim dataset (Hijmans et al., 2005). The temporal 

coverage of WorldClim is 1950–2000, so we adjusted the data to match our study period of 2000–2014 using the Global 

Meteorological Forcing Dataset for land surface modelling (GMFD, Version 2, Sheffield et al., 2006) at a 0.5-degree resolution 90 

(see Aalto et al., 2018a). 

Previous studies have suggested that using indices representing the length or magnitude of thawing and freezing season could 

be more suitable than annual mean of air temperature (e.g. Zhang et al., 1997; Smith et al., 2009). Thus, thawing (TDD) and 

freezing (FDD) degree-days were determined as cumulative sums of mean monthly air temperatures above and below 0 °C, 

respectively (Frauenfeld et al., 2007). Since available global data on snow thickness or snow-water equivalency have relatively 95 

coarse spatial resolutions (Bokhorst et al., 2016), we examined the snow cover’s contribution indirectly using derivatives of 

the climate data. We estimated annual snow and rainfall by summing up precipitation (mm) for months with mean monthly 

temperature below and above 0 °C, respectively (Zhang et al., 2003). 

MODIS Terra-based normalized difference vegetation indices (NDVI, Didan, 2015) at a 1-km resolution were used to assess 

the amount of photosynthetic vegetation. We averaged monthly summertime (June to August) NDVI values over the study 100 

period of 2000–2014 and screened for only high-quality pixels based on the MODIS pixel reliability attribute. Potential 

incident solar radiation, computed after McCune and Keon (2002, Equation 2, p. 605) utilizing slope angle and aspect, along 

with latitude, was used to estimate the potential incident solar radiation (PISR) that affects the energy balance of the ground 

thermal regime (e.g. Hasler et al., 2015; Streletskiy et al., 2015). Soil organic carbon content (SOC, g kg–1), and fractions of 

coarse (CoarseSed, > 2 mm) and fine sediments (FineSed, ≤ 50 μm) for 0–200 cm subsurface, were extracted from SoilGrids 105 

database (Hengl et al., 2017).  

2.3 Statistical modelling 

2.3.1 Calibration of MAGT and ALT models 

We used four statistical techniques, namely generalized linear modelling (GLM, McCullagh and Nelder, 1989), generalized 

additive modelling (GAM, Hastie and Tibshirani, 1990), and regression-tree based machine-learning methods generalized 110 

boosting method (GBM, Friedman et al., 2000) and random forest (RF, Breiman 2001) to calibrate MAGT and ALT models 

by using the nine geospatial predictors. Multi-model framework was adopted to control for uncertainties related to the choice 

of modeling algorithm (e.g. Heikkinen et al., 2006). GLM is an extension of linear regression capable of handling non-linear 

relationships with an adjustable link function between the response and explanatory variables. The GLM models were fitted 

including quadratic terms for each predictor. In GAM, alongside linear and polynomial terms, smoothing splines can be applied 115 
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for more flexible handling of non-linear relationships. For smoothing spline, a maximum of three degrees of freedom were 

specified, which was further optimized by the model fitting function. To examine the direction and possible non-linearity of 

the relationship between predictors and responses, we used GAM to plot model-based univariate response curves. Both GLM 

and GAM were fitted without interactions between predictors using a Gaussian error distribution with an identity link function. 

GBM was specified with the following parameters: number of trees = 3,000, interaction depth = 6, shrinkage = 0.001. Bagging 120 

fraction was set to 0.75 to select a random subset of 75 % of the observations at each step, without replacement. As for RF, 

500 trees, each with a minimum node size of five were grown. The final prediction is the average of individual tree predictions. 

Both GBM and RF automatically consider interaction effects between predictors (Friedman et al., 2000). All statistical analyses 

were executed in R (R Core team, 2015) using auxiliary R packages; mgcv (Wood, 2011) for GAM, dismo (Hijmans et al., 

2016) for GBM, and randomForest for RF (Liaw and Wiener, 2002). 125 

2.3.2 Model evaluation 

To evaluate the models, we split the response data randomly into calibration (70 % of the observations) and evaluation (30 %) 

datasets (Heikkinen et al., 2006). This was repeated 100 times, at each step fitting models with the calibration data and then 

using them to predict to both the calibration and evaluation datasets. Model performance was assessed with adjusted coefficient 

of determination (R2) and root mean square error (RMSE) between observed and predicted values in these datasets. 130 

2.3.3 Variable importance computation 

A measure of variable importance was computed to determine the relative importance of each predictor to the models´ 

predictive performance (Breiman, 2001). In the computation, each modelling technique was first used to fit models with the 

MAGT and ALT datasets using all the nine predictors. The variable importance was then computed based on Pearson’s 

correlation between predictions from two models produced with the fitted model; one with unchanged variables, and another 135 

where the values of one variable were randomized while others remained intact (Breiman, 2001). In the procedure, each 

predictor was randomized in successive model runs. The measure of variable importance was computed as follows: 

Variable importance = 1 – corr(Predictionintact variables, Prediction one variable randomized) (1) 

On a range from 0 to 1, high variable importance value, i.e. high individual contribution to MAGT or ALT, was returned when 

any randomized predictor had a substantial impact on the model’s predictive performance, and consequently resulted low 140 

correlation with predictions from the model with intact variables (Thuiller et al., 2009). Each modelling method was run 100 

times for each response with each predictor shuffled separately. For each run, different subsample from the original data was 

randomly bootstrapped with replacement. 

2.3.4 Effect size statistics 

Effect sizes for each predictor were determined based on the range between the predicted minimum and maximum MAGT and 145 

ALT values over the observation data while controlling for the influence of other predictors by fixing them at their mean values 

(see Nakagawa and Cuthill, 2007). The procedure was repeated with each dataset and modelling method. 

3 Results 

MAGT in permafrost conditions was on average –3.1 °C while the minimum was –15.5 °C. MAGT>0 °C had an average of 8.0 

°C and a maximum of 23.2 °C. ALT had an average of 141 cm and ranged from 23 to 733 cm. The extreme values, apart from 150 

the ALT maximum, were based on one year of measurements. Pairwise correlations and the scatter plots revealed a strong 
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association between MAGT and air temperature, especially in MAGT>0 °C (Fig. 2a–b, d). In contrast to MAGT, ALT was not 

significantly correlated with TDD, but had stronger associations with soil properties (Fig. 2c). Statistical descriptives of the 

predictors in respective datasets are presented with box-plots (Fig. S1).  

3.1 Model performance 155 

MAGT>0 °C models had the highest R2 values between predicted and observed MAGT (Table 1). In permafrost conditions, all 

the models had high R2 values for MAGT, whereas in case of ALT between-model variation was large and R2 on average 

lower. A decrease in the fit was identified when predicting ALT to evaluation datasets, especially with GBM and RF, whereas 

MAGT models retained their high performance. According to changes in RMSE between calibration and evaluation datasets, 

GLM and GAM produced more accurate predictions than GBM and RF for each response. 160 

3.2 Relative importance of individual variables 

FDD and TDD were the most important drivers of MAGT; FDD (0.27) where permafrost was present, TDD (0.53) in non-

permafrost conditions (Fig. 3a–b). Precipitation predictors, especially water precipitation, had a moderate importance (0.10) 

on MAGT≤0 °C but were marginal when permafrost was not present (0.01). Climatic drivers were followed by solar radiation 

(0.02, both MAGT datasets) and finally by NDVI and soil properties with minimal importance (each ≤0.01). The importance 165 

of both water and snow precipitation was higher in permafrost conditions. 

Solar radiation was the most important predictor (0.37) explaining variation in ALT (Fig. 3c). Water precipitation had second 

highest importance (0.05) followed by soil properties SOC (0.04) and coarse sediments (0.03). The remaining climate variables 

(snow precipitation, TDD and FDD) had low importance scores that were comparable to those of NDVI (each 0.01–0.02).  

3.3 Effect size of individual variables 170 

FDD had the highest individual effect size of 6.7 °C averaged over the four methods in case of MAGT≤0 °C, whereas in MAGT>0 

°C dataset TDD accounted for a dominant 13.6 °C effect (Table 2). Precipitation had the next highest effect, albeit snow 

precipitation was less effective in non-permafrost conditions. In case of ALT, water precipitation exerted the greatest effect 

(181 cm) despite large between-model variation. Solar radiation had a central role with a highly non-linear shape of response 

(Fig. 4c). A varying degree of non-linearity is visible in the responses between MAGT≤0 °C and the key predictors, whereas in 175 

case of MAGT>0 °C the responses are more linear (Fig. 4a–b). 

4 Discussion  

4.1 Circumpolar drivers of MAGT and ALT 

Our results show that climatic conditions are the primary drivers of long-term averages of circumpolar MAGT but also indicate 

that the effects of TDD and FDD are dependent on initial ground thermal conditions. FDD has higher influence on MAGT in 180 

permafrost conditions where strong freezing leads to negative surface energy balance and occurrence of permafrost (e.g. Smith 

& Riseborough, 1996). At sites without permafrost, TDD has the dominant effect, which is suggested to be mostly attributed 

to the lack of the buffering effect of the freeze-thaw processes and latent-heat exchange in the active layer (e.g. Osterkamp, 

2007), and to the absence of seasonal or permanent snow cover in the warmest parts of the study region. In permafrost 

conditions, the warming effect of TDD and especially the cooling effect of FDD on MAGT show flattening in response shapes 185 

where MAGT is close to 0 °C owing to the latent-heat effects associated with thawing and freezing of water in the active layer 

(Fig. 4a). 
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The minimal effect of TDD on ALT contradicts with the documented strong regional scale (spatio)temporal connection (e.g. 

Zhang et al., 1997; Oelke et al., 2003; Frauenfeld et al., 2004; Melnikov et al., 2004; Yi et al., 2018). According to our results, 

the spatial linkage is more elusive at a broader scale and could be attributed to the great circumpolar variation in ALT; high-190 

Arctic sites have decimeter thaw depths, while ALT in similar average climatic conditions can be several meters in 

mountainous areas (e.g. Bonnaventure and Lamoureux, 2013; Luo et al., 2016). Moreover, large inconsistencies between 

observed ALT and climate-warming trends have been documented (e.g. Wu et al., 2012; Gangodagamage et al., 2014).  

Recent warming trends in the atmosphere (Guo et al., 2017) are already well visible in circumpolar permafrost temperature 

observations (Romanovsky et al., 2017) implying that the permafrost system will remain dynamic in future’s changing climate. 195 

Warmer air temperatures will occur mostly during winters (AMAP, 2017; Guo et al., 2017), which, given the presented high 

contribution of FDD on MAGT, suggests that changes are foreseeable. Projected warmer winters can also affect ALT through 

changing snow conditions and subsequent changes in hydrology and vegetation (Park et al., 2013; Atchley et al., 2016; Peng 

et al., 2018). 

According to Kurylyk et al. (2014), permafrost studies often consider only conductive heat propagation in the ground. Vincent 200 

et al. (2017), however, stress the need to acknowledge processes associated with liquid water and advective heat in efforts to 

understand rapidly changing cryosphere. In line with new studies (Peng et al., 2018; Zhang et al., 2018), our results highlight 

the notable role of water precipitation on both MAGT and ALT. Projected greater proportion of liquid precipitation (e.g. 

AMAP, 2017; Bintanja and Andry, 2017) potentially has a direct effect on the ground thermal regime through convective 

warming during spring (Kane et al., 2001) and summertime (Melnikov et al., 2004; Marmy et al., 2013). However, abundant 205 

summer rains arguably also cool the ground surface through increased evaporation and heat capacity, and thus limit the heat 

conduction into the ground (Zhang et al., 1997, 2005; Frauenfeld et al., 2004; Park et al., 2013). Moreover, extreme climatic 

events, such as wintertime rain events can have a distinct effect on soil temperature (Westermann et al., 2011) although the 

long-term sensitivity of permafrost to them is not fully clear yet (Marmy et al., 2013). 

The dominant contribution of water precipitation over snowfall observed here contradicts with some previous regional scale 210 

studies (e.g., Zhang et al., 2003, 2005). However, the elevated effect of snowfall on MAGT in permafrost conditions (2.3 °C 

compared to 0.8 °C in non-permafrost conditions) underlines the role of snow cover’s control over the ground thermal regime. 

Similarly, Zhang et al. (2018) found that the offset between air and surface temperatures was weaker in temperate regions 

(mean annual air temperature >0 °C) than in low-Arctic and boreal permafrost regions, although also high-Arctic had small 

offsets owing to small amount of snow. Despite the complexity involved in snow’s role (e.g. Fiddes et al., 2015; Aalto et al., 215 

2018b), thick snow cover has been shown to increase also ALT at site (Atchley et al., 2016), regional (Zhang et al., 1997; 

Frauenfeld et al., 2004) and circumpolar scale (Park et al., 2013). 

Incoming solar energy can be considered central for soil thawing (see Biskaborn et al., 2015), but the high contribution of solar 

radiation on ALT stands out as well. Arguably, the effect is emphasized because ALT observation sites in cold permafrost 

conditions are mostly sparse in vegetation and lack tree canopy (Zhang et al., 2003; Biskaborn et al., 2015). Moreover, most 220 

of the ALT sites have been established on flat terrain (Biskaborn et al., 2015), meaning that local topographic shading is less 

significant. Thus, ALT is suggested to follow poleward decrease in solar radiation and associated shorter thaw seasons (see 

Luo et al., 2016). The weaker association of solar radiation with MAGT suggests that its direct effect is limited to the near-

surface permafrost, i.e. intensified thawing during thawing seasons, and that the influence to deeper temperatures is more 

indirect and associated with the relationship between annual solar radiation and air temperatures.  225 

The weak connection between TDD and ALT is additionally explained by soil factors that influence the heat transfer between 

the lower atmosphere and the ground (Smith et al., 2009). According to the response shapes from GAM, coarse sediments 
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increase ALT when enough prevalent (~25 % fraction) in the soils. The effect of soil texture on ALT has been implied to occur 

largely through its effects on hydrological conditions (Zhang et al., 2003; Yin et al., 2017) and conductivity (Callaghan et al., 

2011). More efficient water transfer in coarse-grained material could impose convective heat into soils during the thawing 230 

season or promote latent-heat effect during the freeze-up, which both contribute to deeper thaw (see Romanovsky and 

Osterkamp, 2000; Frauenfeld et al., 2004). Insulation by soil organic layers has been demonstrated to effectively decouple air-

permafrost connection resulting in thinner active layer and lower soil temperatures (e.g. Johnson et al., 2013; Atchley et al., 

2016). The GAM response shape illustrates a thinning of ALT with increasing SOC until ~150 g kg–1, after which additional 

organic material does not attribute to enhanced insulation.  235 

NDVI has a small contribution on ALT and MAGT in permafrost conditions, but outside the permafrost region it has a 

moderate cooling effect. The low contribution of NDVI in permafrost conditions could be attributed to the intra- and inter-

seasonal differences in the effects of vegetation. In wintertime, low vegetation traps snow and thereby enhances insulation of 

the ground. Taller tree canopies of evergreen boreal forests, in turn, intercept snow and allow more heat loss from the ground 

in winter, while in summer their shading cools the ground surface (Lawrence and Swenson, 2011; Fisher et al., 2016).  240 

4.2 Uncertainties 

Large-scale scrutinization of factors affecting ground thermal dynamics is often hindered by data deficiencies or unavailability. 

More precisely, many data lack adequate spatial or temporal accuracy, geographical consistency, methodological robustness 

or thematic detail (Bartsch et al., 2016; Chadburn et al., 2017). Some of these shortcomings are exacerbated in remote 

permafrost regions with low-density observational networks of, e.g., climatic parameters (Hijmans et al., 2005) or soil profiles 245 

(Hengl et al., 2017). The fine-scale spatial variability of ALT and MAGT called for a high spatial resolution data to assess the 

local factors that mediate the atmospheric forcing. Here, the availability of geospatial data largely determined the resolution 

of 30 arc seconds, which could be considered the highest currently attainable resolution at a near-global scale. While not 

adequate to account for all potential sources of sub-grid spatial heterogeneity in, e.g. microclimatic conditions, especially in 

topographically complex conditions (Fiddes et al., 2015; Aalto et al., 2018b; Yi et al., 2018), the implemented resolution is a 250 

step forward in making a distinction in between-site conditions and revealing local relationships relevant at the circumpolar 

scale.  

In general, the sensitivity of MAGT to the climatic parameters along with the minimal role of soil and vegetation properties 

suggests that circumpolar future predictions of MAGT are more applicable than those of ALT, even without addressing, for 

example, future vegetation or soil organic carbon content, whose response to climate change is extremely challenging to project 255 

(Jorgenson et al., 2013). Given the pronounced role of precipitation, more direct information on fine-scale soil moisture 

conditions controlled by local soil and land surface properties (see Kemppinen et al., 2018), as well as more comprehensive 

and finer resolution data on circumpolar snow thickness are required for improved ground thermal regime modelling.  

Although the main drivers were identified as important and effective by each modelling technique, notable inter-modal 

variability suggested that using only one method could have led to disputable results. A multi-model approach was in this 260 

sense safer, although not all the methods may have worked optimally with the present observational and environmental data 

owing to their different abilities to handle collinearity, spatial autocorrelation or non-linearity. For example, interactions 

between variables were not included in regression-based modelling (GLM and GAM), while being intrinsically considered by 

tree-based methods (GBM and RF) (Friedman et al., 2000). Differences such as this could have attributed to the dissimilar 

performances of the models; GBM and RF were overall less stable when comparing R2 and RMSE values between the observed 265 

and predicted values in calibration and evaluation settings. 
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5 Conclusions  

We assessed the drivers of the circumpolar ground thermal regime at an unprecedentedly fine 1-km spatial resolution using 

comprehensive field-quantified observational datasets. Our statistical modelling framework efficiently captured the multi-

variate nature of MAGT and ALT and highlighted the difference between the contributions of climatic factors on MAGT 270 

inside and outside the permafrost domain. The findings imply that, in addition to reliably addressing the key climatic factors, 

realistic future climate change assessments of Earth surface systems should take into account initial ground thermal conditions. 

Furthermore, the thermal state of permafrost in terms of MAGT and ALT was controlled by distinctive factors. Although of 

little importance for MAGT, soil properties had a momentous effect on ALT and should thus be accounted for in simulations 

of permafrost thaw. In addition to providing theoretical insights, multi-variate modelling frameworks capable of employing 275 

global geospatial data at fine spatial resolution, are valuable for the Arctic research, e.g. greenhouse gas emissions from 

thawing permafrost soils. 
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Table 1: Adjusted coefficient of determination (R2) and root mean square error (RMSE) between observed and predicted mean 455 
annual ground temperature (MAGT) and active-layer thickness (ALT) in calibration and evaluation (in brackets) datasets averaged 

over 100 permutations. GLM = generalized linear modelling, GAM = generalized additive modelling, GBM = generalized boosting 

method and RF = random forest. 

 

 MAGT≤0 °C MAGT>0 °C  ALT 

Method R2 RMSE (°C) R2 RMSE (°C) R2 RMSE (cm) 

GLM 0.86 (0.83) 1.24 (1.33)  0.95 (0.92) 1.20 (1.44) 0.65 (0.50) 80 (93) 

GAM 0.88 (0.84)  1.17 (1.29)  0.95 (0.92) 1.18 (1.37) 0.70 (0.54) 74 (89) 

GBM 0.93 (0.86)  0.88 (1.22)  0.97 (0.92) 0.91 (1.37) 0.84 (0.59) 55 (84) 

RF 0.98 (0.87)  0.51 (1.17)  0.99 (0.93) 0.55 (1.27) 0.93 (0.62) 36 (82) 

Average 0.91 (0.85) 0.95 (1.25)  0.96 (0.92) 0.96 (1.36) 0.78 (0.56) 61 (87) 

 460 

Table 2: The effect size of individual predictors and their four-model averages (see Sect. 2.2 for abbreviations) in the original scale 

of the responses, °C for (mean annual ground temperature) MAGT and cm for active-layer thickness (ALT). The values are shaded 

with increasing blue (MAGT≤0 °C), red (MAGT>0 °C) and yellow (ALT) hues relative to the magnitude of the effect. GLM = generalized 

linear modelling, GAM = generalized additive modelling, GBM = generalized boosting method and RF = random forest.  See Sect. 

2.2 for predictor abbreviations. 465 

 MAGT≤ 0°C (°C) MAGT> 0°C (°C) ALT (cm) 

 GLM GAM GBM RF Avg GLM GAM GBM RF Avg GLM GAM GBM RF Avg 

FDD 8.6 10.7 4.3 3.2 6.7 3.8 4.3 2.6 2.8 3.4 117 86 15 36 64 

TDD 7.1 6.6 2.4 2.8 4.7 19.1 19.5 9.0 6.6 13.6 30 23 19 31 26 

PrecipWater 1.6 2.6 4.3 3.0 2.9 4.8 3.6 0.2 0.7 2.3 372 249 28 74 181 

PrecipSnow 4.4 4.4 0.1 0.2 2.3 0.8 1.4 0.3 0.5 0.8 195 146 44 94 120 

SolarRad 2.6 2.5 0.2 0.3 1.4 2.0 2.3 0.9 1.6 1.7 135 193 178 139 161 

CoarseSed 0.8 1.8 0.1 0.2 0.7 0.6 2.6 0.1 0.3 0.9 129 137 69 65 100 

FineSed 0.5 0.7 0.2 0.4 0.4 0.6 0.7 0.1 0.1 0.4 17 20 7 9 13 

SOC 0.5 0.4 0.3 0.8 0.5 1.7 1.4 0.1 0.6 0.9 121 129 30 28 77 

NDVI 0.4 0.3 0.1 0.8 0.4 2.6 2.3 0.2 0.1 1.3 68 36 15 34 38 
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Figure 1: The observational network of the used mean annual ground temperature (MAGT) and active-layer thickness (ALT) across 470 
the circumpolar region. Blue symbols indicate the locations of boreholes where MAGT (averaged over the period 2000–2014) was 

at or below 0 °C and red symbols for those above 0 °C. White symbols depict the ALT measurements sites. The underlying 

permafrost zonation is from Brown et al. (2002). 
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 475 

Figure 2: Spearman rank-order correlations between the predictor variables (see Sect. 2.2 for abbreviations) and MAGT≤0 °C (mean 

annual ground temperature) (a), MAGT>0 °C (b) and ALT (active-layer thickness) (c). Red hue stands for positive correlations, blue 

for negative, and white indicates non-significant (p > 0.01) correlations. Panel (d) shows MAGT and ALT observations plotted 

against the climatic predictors. 

 480 
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Figure 3: Variable importance values in MAGT≤0 °C (mean annual ground temperature) (a) and MAGT>0 °C (b) datasets arranged in 

the descending order of four-model average in MAGT≤0 °C conditions, and for ALT (active-layer thickness) (c), arranged likewise 

based on ALT results. The whiskers depict 95 % confidence intervals (over 100 bootstrapping rounds). GLM = generalized linear 

modelling, GAM = generalized additive modelling, GBM = generalized boosting method and RF = random forest.  See Sect. 2.2 for 485 
predictor abbreviations. 
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Figure 4: Response shapes of the five predictors with most contribution in MAGT≤0 °C (mean annual ground temperature, blue 

curves), MAGT>0 °C (red curves) and ALT (active-layer thickness, yellow curves) datasets obtained from generalized additive 

modelling (GAM). Response shapes for the remaining predictors are illustrated in Figure S2. Predictors (see Sect. 2.2 for 490 
abbreviations) are presented in the descending order of their effect size in respective datasets. X-axis units appear in the original 

scale of the predictors. Y-axis displays partial residuals and labels the estimated degrees of freedom used in fitting the respective 

predictors to a response. Shaded areas depict 95 % confidence limits.  
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