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Abstract. The thermal state of permafrost affects Earth surface systems and human activity in the Arctic and has implications 

to global climate. Improved understanding of the local-scale variability in the global ground thermal regime is required to 10 

account for its sensitivity to changing climatic and geoecological conditions. Here, we statistically related observations of 

mean annual ground temperature (MAGT) and active-layer thickness (ALT) to high-resolution (~1 km2) geospatial data of 

climatic and local environmental conditions across the Northern Hemisphere. The aim was to characterize the relative 

importance of key environmental factors and the magnitude and shape of their effects. The multivariate models fitted well to 

MAGT and ALT observations with average R2 values being ~0.94 and 0.78, respectively. Corresponding predictive 15 

performances in terms of root mean square error were ~1.31 °C and 87 cm. Freezing (FDD) and thawing (TDD) degree-days 

were key factors for MAGT inside and outside the permafrost domain with average effect sizes of 6.7 °C and 13.6 °C, 

respectively. Soil properties had marginal effect on MAGT (effect size = 0.4–0.7 °C). For ALT rainfall (effect size = 181 cm) 

and solar radiation (161 cm) were most influential. Variable importance analysis further underlined the dominance of climate 

for MAGT and highlighted the role of solar radiation for ALT. Most response shapes for MAGT≤0 °C and ALT were non-linear 20 

indicating thresholds for the covariation. It is suggested that the factors with large global variation (i.e. climate) suppressed 

the effect of local-scale factors (i.e. soil properties and vegetation) owing to the extensive study area and limited representation 

of soil organic matter. Our approach facilitates hemispheric-scale cryospheric studies by offering new insights into the factors 

affecting the ground thermal regime at a 1-km scale.  

 25 

1 Introduction 

In the face of changing Arctic, it is crucial to understand the mechanisms that drive the current geocryological dynamics of the 

region. Thaw of permafrost is expected to significantly attribute to hydrological and geoecological alterations in landscapes 

(Jorgenson et al., 2013; Liljedahl et al., 2016). In addition, greenhouse gas emissions from thawing permafrost soils have a 

potential to affect the global climate system (e.g. Grosse et al., 2016). Permafrost temperature and the depth of the overlying 30 

seasonally thawed layer, i.e. active layer, are key components of the ground thermal regime that govern various 

geomorphological and ecological processes (Frauenfeld et al., 2007; Aalto et al., 2017), as well as human activity in permafrost 

regions (Callaghan et al., 2011; Vincent et al., 2017; Hjort et al., 2018). Outside the permafrost domain, extensive regions 

undergo seasonal freezing, which in itself affects many aspects of natural and human activities (e.g. Shiklomanov, 2012; 

Westermann et al., 2015). 35 

Climatic conditions account for large-scale spatial variation in mean annual ground temperature (MAGT) and active-layer 

thickness (ALT) (Bonnaventure and Lamoureux, 2013; Streletskiy et al., 2015; Westermann et al., 2015). From regional to 

local scales, topography-induced solar radiation input (Etzelmüller, 2013) and intercepting layers of snow, soil and vegetation 

mediate their effect (e.g. Osterkamp, 2007; Fisher et al., 2016; Gruber et al., 2017; Aalto et al., 2018a; Zhang et al., 2018). 

Soils have different heat conductivities between frozen or thawed states, which can result in notable temperature differences 40 

between ground surface and top of permafrost, i.e. thermal offset (e.g. Smith and Riseborough, 1996). Winter temperatures 
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have been suggested to be most important for permafrost temperature (Smith and Riseborough, 1996; Etzelmüller et al., 2011), 

while ALT is essentially dependent on summer temperatures (Oelke et al., 2003; Melnikov et al., 2004; Luo et al., 2016). In 

wintertime, snow layer insulates the ground from cold air causing surface offset, i.e. ground is warmer than air (e.g. Aalto et 

al., 2018b; Zhang et al., 2018). Rainfall alters the thermal conductivity of near-surface layers through its control on, e.g., soil 45 

water balance (Smith and Riseborough, 1996; Callaghan et al., 2011; Marmy et al., 2013). Arguably, the responsiveness of the 

hemispheric ground thermal regime to atmospheric forcing also depends on its initial thermal state. In permafrost conditions, 

temperature changes are lagged by the higher demand of energy for phase changes of water in the active layer (i.e. latent-heat 

exchange), whereas in temperate soils climate signal affects the ground thermal regime more directly (Romanovsky et al., 

2010; Kurylyk et al., 2014). In addition to the effect of ground ice content on heat transfer, its development is an important 50 

geomorphic factor (e.g. Liljedahl et al., 2016). 

Improved knowledge on hemispheric-scale permafrost dynamics is required to understand various geoecological interactions 

and feedbacks associated with warming Arctic (e.g. Wu et al., 2012; Grosse et al., 2016; Yi et al., 2018). Such information is 

useful for climate change assessments (Zhang et al., 2005, Smith et al., 2009), infrastructure design and maintenance, as well 

as for adaptation to changing conditions (Romanovsky et al., 2010, Streletskiy et al., 2015; Hjort et al., 2018). Physically based 55 

ground thermal models can account for various biogeophysical processes acting in vegetation, snow and soil layers (e.g. 

Lawrence and Swenson, 2011) but are not applicable at high spatial resolutions over large areas owing to their tedious model 

parameterizations (Chadburn et al., 2017). For example, commonly used circumpolar 0.5° latitude/longitude resolution has 

been considered insufficient in characterizing spatial variation in soil properties and vegetation, thus leading to large mismatch 

between the simulations and observations (Park et al., 2013). Recently, Peng et al. (2018) assessed spatio-temporal long-term 60 

trends in circumpolar ALT with a large observational dataset stressing that ALT strongly depends on local topo-edaphic factors 

(e.g. Harlan and Nixon, 1978) and that thorough analyses of environmental factors controlling ALT at varying scales are 

urgently required. 

Here, we use a statistical modelling framework employing multiple algorithms from regression to machine learning to examine 

the factors contributing to the spatial variation in the hemispheric ground thermal regime. More specifically, we aim to (1) 65 

calibrate realistic models of the ground thermal conditions utilizing field observations of MAGT and ALT (the response 

variables) and geospatial data on climatic and local conditions (the predictors) across the Northern Hemisphere land areas, and 

(2) examine the relative importance, magnitude of effect, and response shapes of environmental factors at 1-km resolution. 

The focus of this study is on MAGT and ALT in permafrost regions but the analyses are also performed for sites with MAGT 

above 0 °C to compare factor importances, effect sizes and response shapes between the thermal regimes.   70 

2 Methods 

2.1 Study area and observational data 

We compiled MAGT and ALT observations from the period 2000–2014 over the Northern Hemisphere land areas north of the 

30th parallel (Fig.1). To examine possible differences in the contribution of environmental factors between permafrost and non-

permafrost conditions we used two separate MAGT datasets; observed MAGT at or below 0 °C, i.e. permafrost, (MAGT≤0 °C, 75 

n = 469) and above 0 °C (MAGT>0 °C, n = 315). For each MAGT and ALT site, averages over the study period were then 

calculated from available annual averages or suitable single measurements. The observations were standardized by requiring 

that MAGT was recorded at or near the depth of zero annual amplitude (ZAA) where annual temperature variation was less 

than 0.1 °C, and that ALT (n = 298) values represented the maximum thaw depth of a given year based on mechanical probing 

or derived from ground temperature measurements or thaw tubes (Brown et al., 2000; Aalto et al., 2018a). When ZAA depth 80 

was not reported or not retrievable from numeric data, we used the value at the depth of 15 m, where annual temperature 
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fluctuation in most conditions is negligible (see French, 2007), although in thermally highly diffusive subsurface materials, 

such as bedrock, the depth can be greater (e.g. Throop et al. 2012). With some MAGT observations, ZAA depth was reportedly 

not reached but we chose to include these cases assuming that annual means calculated from year-round records from one or 

multiple years were representative of long-term thermal state. MAGT measured at less than two metres below the surface were 85 

excluded unless reported to be at the depth of ZAA. 

The Global Terrestrial Network for Permafrost database (GTN-P, Biskaborn et al., 2015) was the principal constituent of our 

datasets (~60 % of MAGT and ~67 % of ALT observations). Additionally, data were gathered from open Internet databases 

(e.g. Roshydromet, meteo.ru; Natural Resources Canada, GEOSCAN database; National Geothermal Data System) and 

previous studies to cover a maximal range of climatological and environmental conditions (see Table S1 and S2 for sources) 90 

A minimum geopositional location precisions of two decimal degrees (~1,110 m at the Equator) for MAGT and a commonly 

used arc minute (~1,800 m) for often less accurately geopositioned ALT sites were adopted both to ascertain adequate spatial 

match with geospatial data layers and to moderate the need to exclude lower precision observations. Nonetheless, almost 90 

% of MAGT and more than two-thirds of ALT observations had a precision of at least three decimal degrees (~110 m at the 

Equator). Further exclusions were made when the ground thermal regime was evidently disturbed by recent forest fire, 95 

anthropogenic heat source, large water bodies or the effect of geothermal heat in temperature-depth curve (Jorgenson et al., 

2010; Woo, 2012) as revealed by source data or cartographical examination of the site. 

2.2 Predictor variables 

Nine geospatial predictors representing climatic (air temperature and precipitation) and local (potential incident solar radiation, 

vegetation and soil properties) conditions at 30 arc-second spatial resolution were selected to examine their potential effects 100 

on MAGT and ALT at the hemispheric scale (e.g. Brown et al., 2000; French, 2007; Jorgenson et al., 2010; Bonnaventure & 

Lamoureux, 2013; Streletskiy et al., 2015). Climatic parameters were derived from the WorldClim dataset (Hijmans et al., 

2005). The temporal coverage of WorldClim is 1950–2000, so we adjusted the data to match our study period of 2000–2014 

using the Global Meteorological Forcing Dataset for land surface modelling (GMFD, Version 2, Sheffield et al., 2006) at a 

0.5-degree resolution (see Aalto et al., 2018a). Monthly averages over this 15-year period were then used to derive the 105 

following climate parameters. 

Previous studies have suggested that using indices representing the length or magnitude of thawing and freezing season could 

be more suitable than annual mean of air temperature (e.g. Zhang et al., 1997; Smith et al., 2009). Thus, thawing (TDD) and 

freezing (FDD) degree-days were determined as cumulative sums of mean monthly air temperatures above and below 0 °C, 

respectively. Frauenfeld et al. (2007) showed that their use instead of daily temperatures accounted for less than 5 % error for 110 

most high-latitude land areas. Since available global data on snow thickness or snow-water equivalency have relatively coarse 

spatial resolutions (Bokhorst et al., 2016), we examined the snow cover’s contribution indirectly using derivatives of the 

climate data. We estimated annual precipitation as water droplets (hereafter rainfall) or snow particles (snowfall) by summing 

up precipitation (mm) for months with mean monthly temperature below and above 0 °C, respectively (Zhang et al., 2003). 

MODIS Terra-based normalized difference vegetation indices (NDVI, Didan, 2015) at a 1-km resolution were used to assess 115 

the amount of photosynthetic vegetation. We averaged monthly summertime (June to August) NDVI values over the study 

period of 2000–2014 and screened for only high-quality pixels based on the MODIS pixel reliability attribute. Potential 

incident solar radiation, computed after McCune and Keon (2002, Equation 2, p. 605) utilizing slope angle and aspect, along 

with latitude, was used to estimate the potential incident solar radiation (PISR, W cm-1 a-1) that affects the energy balance of 

the ground thermal regime (e.g. Hasler et al., 2015; Streletskiy et al., 2015). To account for the thermal offset dictated by soil 120 

properties (e.g., Smith and Riseborough 1996, 2002; Kurylyk et al., 2014) we extracted soil organic carbon content (SOC, g 
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kg–1), and fractions of coarse (CoarseSed, > 2 mm) and fine sediments (FineSed, ≤ 50 μm) for 0–200 cm subsurface from 

SoilGrids database (Hengl et al., 2017).  

 

2.3 Statistical modelling 125 

2.3.1 Calibration of MAGT and ALT models 

We used four statistical techniques, namely generalized linear modelling (GLM, McCullagh and Nelder, 1989), generalized 

additive modelling (GAM, Hastie and Tibshirani, 1990), and regression-tree based machine-learning methods generalized 

boosting method (GBM, Friedman et al., 2000) and random forest (RF, Breiman 2001) to calibrate MAGT and ALT models 

by using the nine geospatial predictors. Multi-model framework was adopted to control for uncertainties related to the choice 130 

of modeling algorithm (e.g. Marmion et al., 2009). GLM is an extension of linear regression capable of handling non-linear 

relationships with an adjustable link function between the response and explanatory variables. The GLM models were fitted 

including quadratic terms for each predictor. In GAM, alongside linear and polynomial terms, smoothing splines can be applied 

for more flexible handling of non-linear relationships. For smoothing spline, a maximum of three degrees of freedom were 

specified, which was further optimized by the model fitting function. To examine the direction and possible non-linearity of 135 

the relationship between predictors and responses, we used GAM to plot model-based response curves. The curves show 

smoothed fit between response and a predictor while all other predictors are fixed at their average (Hjort and Luoto, 2011). 

Both GLM and GAM were fitted without interactions between predictors using a Gaussian error distribution with an identity 

link function. 

GBM was specified with the following parameters: number of trees = 3,000, interaction depth = 6, shrinkage = 0.001. Bagging 140 

fraction was set to 0.75 to select a random subset of 75 % of the observations at each step, without replacement. As for RF, 

500 trees, each with a minimum node size of five were grown. The final prediction is the average of individual tree predictions. 

Both GBM and RF automatically consider interaction effects between predictors (Friedman et al., 2000). All statistical analyses 

were executed in R (R Core team, 2015) using auxiliary R packages; mgcv (Wood, 2011) for GAM, dismo (Hijmans et al., 

2016) for GBM, and randomForest for RF (Liaw and Wiener, 2002). 145 

2.3.2 Model evaluation 

To evaluate the models, we split the response data randomly into calibration (70 % of the observations) and evaluation (30 %) 

datasets (Heikkinen et al., 2006). This was repeated 100 times, at each step fitting models with the calibration data and then 

using them to predict to both the calibration and evaluation datasets. Model performance was assessed with adjusted coefficient 

of determination (R2) and root mean square error (RMSE) between observed and predicted values in these datasets. 150 

2.3.3 Variable importance computation 

A measure of variable importance was computed to determine the relative importance of each predictor to the models´ 

predictive performance (Breiman, 2001). In the computation, each modelling technique was first used to fit models with the 

MAGT and ALT datasets using all the nine predictors. The variable importance was then computed based on Pearson’s 

correlation between predictions from two models produced with the fitted model; one with unchanged variables, and another 155 

where the values of one variable were randomized while others remained intact. In the procedure, each predictor was 

randomized in successive model runs. The measure of variable importance was computed as follows: 

Variable importance = 1 – corr(Predictionintact variables, Prediction one variable randomized) (1) 

On a range from 0 to 1, high variable importance value, i.e. high individual contribution to MAGT or ALT, was returned when 

any randomized predictor had a substantial impact on the model’s predictive performance, and consequently resulted low 160 
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correlation with predictions from the model with intact variables (Thuiller et al., 2009). Each modelling method was run 100 

times for each response with each predictor shuffled separately. For each run, different subsample from the original data was 

randomly bootstrapped with replacement. 

2.3.4 Effect size statistics 

Effect sizes for each predictor were determined based on the range between the predicted minimum and maximum MAGT and 165 

ALT values over the observation data while controlling for the influence of other predictors by fixing them at their mean values 

(see Nakagawa and Cuthill, 2007). The procedure was repeated with each dataset and modelling method. 

3 Results 

MAGT in permafrost conditions was on average –3.1 °C while the minimum was –15.5 °C. MAGT>0 °C had an average of 8.0 

°C and a maximum of 23.2 °C. ALT had an average of 141 cm and ranged from 23 to 733 cm. The extreme values, apart from 170 

the ALT maximum, were based on one year of measurements. Pairwise correlations and the scatter plots revealed a strong 

association between MAGT and air temperature (see Smith and Burgess, 2000; Smith and Riseborough, 2002; Throop et al., 

2012), especially in MAGT>0 °C (Fig. 2a–b, d). In contrast to MAGT, ALT was not significantly correlated with TDD, but had 

stronger associations with soil properties (Fig. 2c). Coarse sediments and SOC, especially, were important and showed clear, 

yet non-linear, responses to ALT. Statistical descriptives of the predictors in respective datasets are presented in Fig. S1.  175 

3.1 Model performance 

MAGT>0 °C models had the highest R2 values between predicted and observed MAGT (Table 1). In permafrost conditions, all 

the models had high R2 values for MAGT, whereas in case of ALT between-model variation was large and R2 on average 

lower. A decrease in the fit was identified when predicting ALT to evaluation datasets, especially with GBM and RF, whereas 

MAGT models retained their high performance. On average, RMSEs were low (~1 °C) in MAGT≤0 °C and MAGT>0 °C 180 

calibration datasets. When predicted over evaluation datasets, the average increased slightly more in non-permafrost 

conditions. A similar increase of 40 % was documented with ALT. For each response, GBM and RF had lower RMSEs (i.e. 

higher predictive performance) than GLM and GAM, but also larger change between calibration and evaluation datasets, 

indicating that GLM and GAM produced more robust predictions. 

3.2 Relative importance of individual predictors 185 

FDD and TDD were the most important factors affecting MAGT; FDD (variable importance score = 0.27) where permafrost 

was present, TDD (0.53) in non-permafrost conditions (Fig. 3a–b). Precipitation predictors, especially rainfall, had a moderate 

importance (0.10) on MAGT≤0 °C but were marginal when permafrost was not present (0.01). Climatic factors were followed 

by solar radiation (0.02, both MAGT datasets) and finally by NDVI and soil properties with minimal importance (each ≤0.01). 

The importance of both rainfall and snowfall was higher in permafrost conditions. 190 

Solar radiation was the most important predictor (0.37) explaining variation in ALT (Fig. 3c). Rainfall had second highest 

importance (0.05) followed by soil properties SOC (0.04) and coarse sediments (0.03). The remaining climate variables 

(snowfall, TDD and FDD) had low importance scores that were comparable to those of NDVI (each 0.01–0.02).  

3.3 Effect size of individual predictors 

FDD had the highest individual effect size of 6.7 °C averaged over the four methods in case of MAGT≤0 °C, whereas in MAGT>0 195 

°C dataset TDD accounted for a dominant 13.6 °C effect (Table 2). Precipitation had the second highest effect, albeit snowfall 

was less effective in non-permafrost conditions. Considering the remaining predictors, clear differences were observed in cases 
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of SOC and NDVI, both higher in MAGT>0 °C dataset. In case of ALT, rainfall exerted the greatest effect (181 cm) despite 

large between-model variation. In contrast to variable importance results (Fig. 3c), snowfall had a larger average effect than 

coarse sediments and SOC, both of which nevertheless had a considerable effect. Solar radiation had a central role with a 200 

highly non-linear shape of response (Fig. 4c). A varying degree of non-linearity is also visible in the responses between 

MAGT≤0 °C and the key predictors, whereas in case of MAGT>0 °C the responses are more often linear (Fig. 4a–b). 

4 Discussion  

4.1 Factors affecting MAGT and ALT 

Our results are in line with previous understanding that climatic conditions are the primary factors affecting the long-term 205 

averages of MAGT across the Northern Hemisphere at 1-km resolution but also indicate that the effects of TDD and FDD on 

MAGT are dependent on permafrost presence or absence. As anticipated, FDD has higher influence on MAGT in permafrost 

conditions where strong freezing occurs (e.g. Smith & Riseborough, 1996). At sites without permafrost, TDD has a nearly 

linear dominant (Fig. 4b) effect, which is suggested to be mostly attributed to the lack of the buffering effect of the freeze-

thaw processes and latent-heat exchange in the active layer (e.g. Osterkamp, 2007), and to the absence of seasonal snow cover 210 

in the warmest parts of the study region. In permafrost conditions, the warming effect of TDD and especially the cooling effect 

of FDD on MAGT show flattening in response shapes where MAGT is close to 0 °C owing to the latent-heat effects associated 

with thawing and freezing of water in the active layer (Fig. 4a). 

The minimal effect of TDD on ALT contradicts with the documented strong regional scale (spatio)temporal connection (e.g. 

Zhang et al., 1997; Oelke et al., 2003; Frauenfeld et al., 2004; Melnikov et al., 2004; Yi et al., 2018). According to our results, 215 

the spatial linkage is more elusive at a broader scale and could be attributed to the great hemispheric variation in ALT. The 

majority of high-Arctic sites locate on low-lying tundra overlaid by mineral and organic soil layers, whereas mid-latitude sites 

predominantly locate in mountains (the Alps, central Asian mountain ranges) with thin soils and thermally diffusive bedrock. 

This difference partly explains generally small and large ALT within the respective regions notwithstanding that they can have 

similar average climatic conditions (e.g. TDD, see Fig. 2d). Moreover, large inconsistencies between observed ALT and 220 

climate-warming trends have been documented (e.g. Wu et al., 2012; Gangodagamage et al., 2014). Although temporal 

dynamics of ALT are beyond our analyses, this suggests that thaw depth and air temperatures are, to a degree, decoupled by 

local conditions. 

Recent warming trends in the atmosphere (Guo et al., 2017) are already well visible in circumpolar permafrost temperature 

observations (Romanovsky et al., 2017) implying that the permafrost system will remain dynamic in future’s changing climate. 225 

Warmer air temperatures will occur mostly during winters (AMAP, 2017; Guo et al., 2017), which, given the presented high 

contribution of FDD on MAGT, suggests that changes are foreseeable. Projected warmer winters can also affect ALT through 

changing snow conditions and subsequent changes in hydrology and vegetation (Park et al., 2013; Atchley et al., 2016; Peng 

et al., 2018). 

In line with new studies (Peng et al., 2018; Zhang et al., 2018), our results highlight the notable role of rainfall on both MAGT 230 

and ALT. Projected greater proportion of rainfall (e.g. AMAP, 2017; Bintanja and Andry, 2017) potentially has a direct effect 

on the ground thermal regime through its influence on latent heat exchange (Westermann et al., 2011), and convective warming 

during spring (Kane et al., 2001) and summertime (Melnikov et al., 2004; Marmy et al., 2013). However, abundant summer 

rains arguably also cool the ground surface through increased evaporation and heat capacity, and thus limit the heat conduction 

into the ground (Zhang et al., 1997, 2005; Frauenfeld et al., 2004; Park et al., 2013).  235 

The dominant contribution of rainfall over snowfall observed here contradicts with some previous regional scale studies (e.g., 

Zhang et al., 2003, 2005). However, the elevated effect of snowfall on MAGT in permafrost conditions (effect size of 2.3 °C 
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compared to 0.8 °C in non-permafrost conditions) underlines the role of snow cover’s control over the ground thermal regime. 

Similarly, Zhang et al. (2018) found that the offset between air and surface temperatures was weaker in temperate regions 

(mean annual air temperature >0 °C) than in low-Arctic and boreal permafrost regions, although also high-Arctic had small 240 

surface offsets owing to small amount of snow. Despite the complexity involved in the role of snow conditions (e.g. Fiddes et 

al., 2015; Aalto et al., 2018b), thick snow cover has been shown to increase also ALT at site (Atchley et al., 2016), regional 

(Zhang et al., 1997; Frauenfeld et al., 2004) and circumpolar scale (Park et al., 2013). 

Incoming solar energy can be considered central for soil thawing (see Biskaborn et al., 2015), but the high contribution of solar 

radiation on ALT stands out. Arguably, the effect is emphasized because ALT observation sites in cold permafrost conditions 245 

are mostly sparse in vegetation and lack tree canopy (Zhang et al., 2003; Biskaborn et al., 2015). Moreover, most of the ALT 

sites have been established on flat terrain (Biskaborn et al., 2015), meaning that local topographic shading is less significant. 

Thus, ALT is suggested to follow poleward decrease in solar radiation and associated shorter thaw seasons (see Luo et al., 

2016). The weaker association of solar radiation with MAGT suggests that its direct effect is limited to the near-surface 

permafrost, i.e. intensified thawing during thawing seasons, and that the influence to deeper temperatures is more indirect and 250 

associated with the relationship between annual solar radiation and air temperatures. Moreover, given that MAGT sites are 

usually located in more topographically heterogeneous terrain than ALT sites, the local exposure to solar radiation is suggested 

to be more important than the latitudinal trend (e.g. Romanovsky et al. 2010). 

The weak connection between TDD and ALT is additionally explained by soil factors that influence the heat transfer between 

the lower atmosphere and the ground (Smith et al., 2009). According to the response shapes from GAM, coarse sediments 255 

increase ALT when enough prevalent (~25 % fraction) in the soils. The effect of soil texture on ALT has been implied to occur 

largely through its effects on hydrological conditions (Zhang et al., 2003; Yin et al., 2017) and conductivity (Callaghan et al., 

2011). More efficient water transfer in coarse-grained material could impose convective heat into soils during the thawing 

season or promote latent-heat effect during the freeze-up, which both contribute to deeper thaw (see Romanovsky and 

Osterkamp, 2000; Frauenfeld et al., 2004). Thermal insulation by soil organic layers has been demonstrated to effectively 260 

decouple air-permafrost connection resulting in thinner active layer and lower soil temperatures (e.g. Johnson et al., 2013; 

Atchley et al., 2016). The GAM response shape illustrates a thinning of ALT with increasing SOC until ~150 g kg–1, after 

which additional organic carbon does not attribute to enhanced insulation. It should be noted that the used variable depicts 

SOC in fine earth fraction and does not explicitly address incompletely decomposed or fresh organic matter, which are one of 

the central components of the thermal offset. However, suitable gridded data on soil organic matter content are not available, 265 

and physical fractionation of SOC has been commonly used as its correlative proxy owing to more straightforward 

measurement procedures (Bailey et al., 2017). 

NDVI has a small contribution on ALT and MAGT in permafrost conditions, but outside the permafrost region it has a 

moderate cooling effect. The low contribution of NDVI in permafrost conditions could be attributed to the intra- and inter-

seasonal differences in the effects of different vegetation canopy configurations. In wintertime, vegetation (e.g. tall shrubs) 270 

traps snow and thereby enhances insulation of the ground (Morse et al., 2012). Taller tree canopies of evergreen boreal forests, 

in turn, intercept snow and allow more heat loss from the ground in winter, while in summer their shading cools the ground 

surface (Lawrence and Swenson, 2011; Fisher et al., 2016).  

4.2 Uncertainties 

Large-scale scrutinization of factors affecting ground thermal dynamics is often hindered by data deficiencies or unavailability. 275 

More precisely, many data lack adequate spatial or temporal accuracy, geographical consistency, methodological robustness 

or thematic detail (Bartsch et al., 2016; Chadburn et al., 2017). Some of these shortcomings are exacerbated in remote 

permafrost regions with low-density observational networks of, e.g., climatic parameters (Hijmans et al., 2005) or soil profiles 
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(Hengl et al., 2017). The fine-scale spatial variability of ALT and MAGT called for a high spatial resolution data to assess the 

local factors that mediate the atmospheric forcing. Here, the availability of geospatial data largely determined the resolution 280 

of 30 arc seconds, which could be considered the highest currently attainable resolution at a near-global scale. While not 

adequate to account for all potential sources of sub-grid spatial heterogeneity in, e.g. microclimatic conditions, especially in 

topographically complex conditions (Fiddes et al., 2015; Aalto et al., 2018b; Yi et al., 2018), the implemented resolution is a 

step forward in making a distinction in between-site conditions and revealing local relationships relevant at the hemispheric-

scale.  285 

In general, the sensitivity of MAGT to the climatic parameters along with the minimal role of soil and vegetation properties 

suggests that future MAGT is more feasible to predict than ALT, even without addressing, for example, future vegetation or 

soil organic carbon content, whose response to climate change is extremely challenging to project (Jorgenson et al., 2013). 

This is incongruent with previous studies showing the high importance of soil properties for MAGT (e.g. Zhang et al., 2003; 

Throop et al., 2012). The discrepancies are argued to be partly attributed to the hemispheric study extent; large spatial variation 290 

in climatic parameters is suggested to have suppressed the effect of soil and vegetation properties locally. It is also possible 

that the used SOC data could not fully address the thermal offset albeit ALT modelling showed realistic and moderately strong 

effects. However, the effects of soil properties on MAGT have been shown to be statistically significant when predicting future 

hemispheric ground thermal conditions (Aalto et al., 2018a), and should thus be considered. Given the pronounced role of 

precipitation, more direct information on fine-scale soil moisture conditions controlled by local soil and land surface properties 295 

(see Kemppinen et al., 2018), as well as more comprehensive and finer resolution data on global snow thickness are required 

for improved ground thermal regime modelling. Fine-scale biophysical factors affecting drainage conditions and distribution 

of wind-drifted snow (e.g. vegetation and small topographic depressions) are largely averaged-out and cannot be accounted 

for at 1-km resolution. 

Although the main factors were identified as important and effective by each modelling technique, notable inter-modal 300 

variability suggested that using only one method could have led to disputable results. A multi-model approach was in this 

sense safer, although not all the methods may have worked optimally with the present observational and environmental data 

owing to their different abilities to handle collinearity, spatial autocorrelation or non-linearity. For example, interactions 

between variables were not included in regression-based modelling (GLM and GAM), while being intrinsically considered by 

tree-based methods (GBM and RF) (Friedman et al., 2000). Differences such as this could have attributed to the dissimilar 305 

performances of the models; GBM and RF were overall less stable when comparing R2 and RMSE values between the observed 

and predicted values in calibration and evaluation settings. 

5 Conclusions  

We statistically related observations of MAGT and ALT to high-resolution (~1 km2) geospatial data of climatic and local 

environmental conditions to explore the factors affecting the ground thermal regime across the Northern Hemisphere. Our 310 

modelling framework efficiently captured the multi-variate nature of ground thermal regime and highlighted the difference 

between the contributions of climatic factors on MAGT inside and outside the permafrost domain. In permafrost conditions, 

climate was paramount and soil properties showed marginal role for MAGT, while precipitation factors and topography-

controlled solar radiation were emphasized for ALT. Where permafrost was not present, precipitation was less influential and 

MAGT was predominantly controlled by air temperatures above 0 °C. 315 

The relatively minor role of soil properties (especially organic carbon content) on MAGT and ALT may stem from the lack of 

global data with high local accuracy. The results also revealed distinct non-linear relationships and thresholds between the 

ground thermal regime and environmental factors, especially in permafrost-affected regions. At sites without permafrost, 
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responses were more often linear. In addition to providing these insights about effective magnitudes and response shapes of 

the key contributing factors at hemispheric scale, it is concluded that multi-variate modelling frameworks capable of employing 320 

high-resolution geospatial data will be valuable for the spatio-temporal prediction of ground thermal regimes from local to 

global scale.  

Author contribution 

OK, ML and JH developed the original idea. OK led the compilation of observational data and geospatial data processing with 

contributions from all the authors. ML, OK and JA performed the statistical analyses. OK wrote the manuscript with 325 

contributions from all the authors. 

Acknowledgements. This study was funded by the Academy of Finland (grants 285040 and 286950). 

Competing interests 

The authors declare that they have no conflict of interest. 

References 330 

Aalto, J., Harrison, S., and Luoto, M.: Statistical modelling predicts almost complete loss of major periglacial processes in 

Northern Europe by 2100, Nat. Commun., 8, 515, https://doi.org/10.1038/s41467-017-00669-3, 2017. 

Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical forecasting of current and future circum-Arctic ground 

temperatures and active layer thickness, Geophys. Res. Lett., 45, 4889–4898, https://doi.org/10.1029/2018GL078007, 

2018a. 335 

Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., and Luoto, M.: Biogeophysical controls on soil-atmosphere thermal differences: 

implications on warming Arctic ecosystems, Environ. Res. Lett., 13, 074003, https://doi.org/10.1088/1748-

9326/aac83e, 2018b. 

AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Arctic Monitoring and 

Assessment Programme (AMAP), Oslo, Norway, 2017. 340 

Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R., and Wilson, C. J.: Influences and interactions of inundation, peat, 

and snow on active layer thickness, Geophys. Res. Lett., 43, 5116–5123, https://doi.org/10.1002/2016GL068550, 

2016. 

Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. P., 

Sulman, B. N., Todd-Brown, K. E. O., and Wallenstein, M. D.: Soil carbon cycling proxies: understanding their 345 

critical role in predicting climate change feedbacks. Glob. Change Biol., 24, 895–905, 

https://doi.org/10.1111/gcb.13926, 2017. 

Bartsch, A., Höfler, A., Kroisleitner, C., and Trofaier, A. M.: Land cover mapping in northern high latitude permafrost 

regions with satellite data: achievements and remaining challenges, Remote Sens., 8, 979, 

https://doi.org/10.3390/rs8120979, 2016. 350 

Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic. Nat. Clim. Change, 7, 263–267, 

https://doi.org/10.1038/nclimate3240, 2017. 

Biskaborn, B. K., Lanckman, J.–P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new 

database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data 7, 245–259, 

https://doi.org/10.5194/essd-7-245-2015, 2015. 355 

Bokhorst, S., Højlund Pedersen, S., Brucker, L., Anisimov, O., Bjerke, J. W., Brown, R. D., Ehrich, D., Essery, R. L. H., 

Heilig, A., Ingvander, S., Johansson C., Johansson, M., Jónsdóttir, I. S., Inga, N., Luojus, K., Macelloni, G., Mariash, 



10 

 

H., McLennan, D., Rosqvist, G. N., Sato, A., Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S. A., Terzago, S., 

Vikhamar-Schuler, D.,Williamson, S., Qiu, Y., and Callaghan, T. V.: Changing Arctic snow cover: a review of recent 

developments and assessment of future needs for observations, modelling, and impacts, Ambio, 45, 360 

https://doi.org/10.1007/s13280-016-0770-0, 2016. 

Bonnaventure, P. P. and Lamoureux, S. F.: The active layer: a conceptual review of monitoring, modelling techniques and 

changes in a warming climate, Prog. Phys. Geog., 37, 352–376, https://doi.org/10.1177/0309133313478314, 2013. 

Breiman, L.: Random forests, Machine Learning 45, 5–32, 2001. 

Brown, J., Hinkel, K. M., and Nelson, F. E.: The circumpolar active layer monitoring (CALM) program: research designs 365 

and initial results, Polar Geography, 24, 165–258, 2000. 

Callaghan, T. V., Johansson, M., Anisimov, O., Christiansen, H. H., Instanes, A., Romanovsky, V. E., and Smith, S.: 

Changing permafrost and its impacts, in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change 

and the Cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2011. 

Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., and Westermann, S.: An observation-based 370 

constraint on permafrost loss as a function of global warming, Nat. Clim. Change, 7, 340–344, 

https://doi.org/10.1038/nclimate3262, 2017. 

Didan, K.: MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006. NASA EOSDIS LP 

DAAC. https://doi.org/10.5067/MODIS/MOD13A2.006, 2015. 

Etzelmüller, B.: Recent advances in mountain permafrost research, Permafrost Periglac., 24, 99–107, 375 

https://doi.org/10.1002/ppp.1772, 2013. 

Etzelmüller, B., Schuler, T. V., Isaksen, K., Christiansen, H. H., Farbrot, H., and Benestad, R.: Modeling the temperature 

evolution of Svalbard permafrost during the 20th and 21st century, Cryosphere, 5, 67–79, https://doi.org/10.5194/tc-

5-67-2011, 2011. 

Fiddes, J., Endrizzi, S., and Gruber, S.: Large-area land surface simulations in heterogeneous terrain driven by global data 380 

sets: application to mountain permafrost, Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, 2015. 

Fisher, J. P., Estop-Aragonés, C., Thierry, A., Charman, D. J., Wolfe, S. A., Hartley, I. P., Murton, J. B., Williams, M., and 

Phoenix, G. K.: The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in 

boreal forest, Glob. Change Biol., 22, 3217–3140, https://doi.org/10.1111/gcb.13248, 2016. 

Frauenfeld, O. W., Zhang, T., and Barry, R. G.: Interdecadal changes in seasonal freeze and thaw depths in Russia, J. 385 

Geophys. Res., 109, D05101, https://doi.org/10.1029/2003JD004245, 2004. 

Frauenfeld, O. W., Zhang, T. and McCreight J. L.: Northern hemisphere freezing/thawing index variations over the twentieth 

century, Int. J. Climatol., 27, 47–63, https://doi.org/10.1002/joc.1372, 2007. 

French, H. M.: The Periglacial Environment, 3rd Edn, Wiley, 2007. 

Friedman, J., Hastie, T., and Tibshirani, R.: Additive logistic regression: a statistical view of boosting, The Annals of 390 

Statistics, 28, 337–407, 2000. 

Gangodamage, C., Rowland, J. C., Hubbard, S. S., Brumby, S. P., Liljedahl, A. K., Wainwright, H., Wilson, C. J., Altmann, 

G. L., Dafflon, B., Peterson, J., Ulrich, C., Tweedie, C. E., and Wullschleger, S. D.: Extrapolating active layer 

thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets, Water Resour. Res., 50, 

6339–6357, https://doi.org/10.1002/2013WR014283, 2014. 395 

Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. and Schuur, E. A. G.: Changing permafrost in a warming world 

and feedbacks to the Earth system, Environ. Res. Lett., 11, 040201, https://doi.org/10.1088/1748-9326/11/4/040201, 

2016. 

https://doi.org/10.1088/1748-9326/11/4/040201


11 

 

Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M.-O., Stumm, D., Wester, P., Zhang, Y., and Zhao, L.: Review 

article: inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region, Cryosphere 400 

11, 81–99, https://doi.org/10.5194/tc-11-81-2017, 2017. 

Guo, D., Li, D., and Hua, W.: Quantifying air temperature evolution in the permafrost region from 1901 to 2014, Int. J. 

Climatol., 38, 66–76, https://doi.org/10.1002/joc.5161, 2017. 

Harlan, R. L. and Nixon J. F.: Ground thermal regime, in: Geotechnical Engineering for Cold Regions, Andersland, O.B. and 

Anderson, D.M. (Eds.), McGraw-Hill, New York, 103–163, 1978.  405 

Hasler, A., Geertsema, M., Foord, V., Gruber, S., and Noetzli, J.: The influence of surface characteristics, topography and 

continentality on mountain permafrost in British Columbia, Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-

1025-2015, 2015. 

Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, CRC Press, 1990. 

Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., and Sykes, M. T.: Methods and uncertainties in 410 

bioclimatic envelope modelling under climate change, Prog. Phys. Geog., 30, 751–777, 

https://doi.org/10.1177/0309133306071957, 2006. 

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., 

Wright, M. N., Geng, X., Bauer-Marschallinger, B., Antonio Guevara, M., Vargas, R., MacMillan, R. A., Batjes, N. 

H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m –global gridded soil 415 

information based on machine learning, PLoS ONE 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 

2017. 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces 

for global land areas, Int. J Climatol., 25, 1965–1978, 2005. 

Hijmans, R. J., Phillips S., Leathwick, J., and Elith, J.: dismo: Species Distribution Modeling. R package version 1.1-1. 420 

http://cran.r-project.org/web/packages/dismo/index.html, 2016. 

Hjort, J. and Luoto, M.: Novel theoretical insights into geomorphic process–environment relationships using simulated 

response curves, Earth Surf. Process. Landforms, 36, 363–371, https://doi.org/10.1002/esp.2048, 2011. 

Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson, F. E., Etzelmüller, B., and Luoto, M.: 

Degrading permafrost puts Arctic infrastructure at risk by mid-century, Nat. Commun., in press. 425 

Johnson, K. D., Harden, J. W., McGuire, A. D., Clark, M., Yuan, F., and Finley, A. O.: Permafrost and organic layer 

interactions over a climate gradient in a discontinuous permafrost zone, Environ. Res. Lett., 8, 035028, 

https://doi.org/10.1088/1748-9326/8/3/035028, 2013. 

Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J., Schuur, E. A. G., Kanevskiy, M., and Marchenko, 

S.: Resilience and vulnerability of permafrost to climate change, Can. J. For. Res., 40, 1219–1236, 430 

https://doi.org/10.1139/X10-060, 2010. 

Jorgenson, M. T., Harden, J., Kanevskiy, M., O’Donnell, J., Wickland, K., Ewing, S., Manies, K., Zhuang, Q., Shur, Y., 

Striegl, R., and Koch, J.: Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across 

heterogeneous boreal landscapes, Environ. Res. Lett., 8, 035017, https://doi.org/10.1088/1748-9326/8/3/035017, 

2013. 435 

Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and Outcalt, S. I.: Non-conductive heat transfer associated with 

frozen soils, Glob. Planet. Change, 29, 275–292, https://doi.org/10.1016/S0921-8181(01)00095-9, 2001. 

Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling soil moisture in a high-latitude landscape using 

LiDAR and soil data, Earth Surf. Process. Landforms, 43, 1019–1031, https://doi.org/10.1002/esp.4301, 2018. 



12 

 

Kurylyk, B. L., MacQuarrie, K. T. B., and McKenzie, J. M.: Climate change impacts on groundwater and soil temperatures 440 

in cold and temperature regions: implications, mathematical theory, and emerging simulation tools, Earth-Sci. Rev., 

138, 313–334, https://doi.org/10.1016/j.earscirev.2014.06.006, 2014. 

Lawrence, D. M. and Swenson, S. C.: Permafrost response to increasing Arctic shrub abundance depends on the relative 

influence of shrubs on local soil cooling versus large-scale climate warming, Environ. Res. Lett., 6, 045504, 

https://doi.org/10.1088/1748-9326/6/4/045504, 2011. 445 

Liaw, A. and Wiener, M.: Classification and regression by randomForest, R news 2, 18–22, 2002. 

Liljedahl, A. K., Boike J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. 

C., Matveyeva, N., Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D., Walker, D. A., 

Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence 

on tundra hydrology, Nat. Geosci., 9, https://doi.org/10.1038/ngeo2674, 2016. 450 

Luo, D., Wu, Q., Jin, H., Marchenko, S. S., Lü, L., and Gao, S.: Recent changes in the active layer thickness across the 

northern hemisphere, Environ. Earth Sci., 75, 555, https://doi.org/10.1007/s12665-015-5229-2, 2016. 

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., and Thuiller, W.: Evaluation of consensus methods in predictive 

species distribution modelling, Divers. Distrib., 15, 59–69, https://doi.org/10.1111/j.1472-4642.2008.00491.x, 2009. 

Marmy, A., Salzmann, N., Scherler, M., and Hauck, C.: Permafrost model sensitivity to seasonal climatic changes and 455 

extreme events in mountainous regions, Env. Res. Lett., 8, 035048, https://doi.org/10.1088/1748-9326/8/3/035048, 

2013. 

McCullagh, P. and Nelder, J.: Generalized Linear Models, 2nd edn, Chapman-Hall, London, 1989. 

McCune, B. and Keon, D.: Equations for potential annual direct incident radiation and heat load, J. Veg. Sci., 13, 603–606, 

https://doi.org/10.1111/j.1654-1103.2002.tb02087.x, 2002. 460 

Melnikov, E. S., Leibman, M. O., Moskalenko, N. G., and Vasiliev, A. A.: Active-layer monitoring in the cryolithozone of 

West Siberia, Polar Geography, 28, 267–285, https://doi.org/10.1080/789610206, 2004. 

Morse, P. D., Burn, C. R., and Kokelj, S. V.: Influence of snow on near-surface ground temperatures in upland and alluvial 

environments of the outer Mackenzie Delta, Northwest Territories, Can. J. Earth Sci., 49, 895–913, 

https://doi.org/10.1139/E2012-012, 2012. 465 

Nakagawa, S. & Cuthill, I. C.: Effect size, confidence interval and statistical significance: a practical guide for biologists, 

Biol. Rev., 82, 591–605, https://doi.org/10.1111/j.1469-185X.2007.00027.x, 2007. 

Oelke, C., Zhang, T., Serreze, M. C., and Armstrong, R. L.: Regional-scale modeling of soil freeze/thaw over the Arctic 

drainage basin, J. Geophys. Res., 108, 4314, https:/doi.org/10.1029/2002JD002722, 2003. 

Osterkamp, T. E.: Characteristics of the recent warming of permafrost in Alaska, J. Geophys. Res., 112, F02S02, 470 

https://doi.org/10.1029/2006JF000578, 2007. 

Park, H., Walsh, J., Fedorov, A. N., Sherstiukov, A. B., Iijima, Y., and Ohata, T.: The influence of climate and hydrological 

variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds, 

Cryosphere, 7, 631–645, https://doi.org/10.5194/tc-7-631-2013, 2013. 

Peng, X., Zhang, T., Frauenfeld, O. W., Wang, K., Luo, D., Cao, B., Su, H., Jun, H., and Wu, Q.: Spatiotemporal changes in 475 

active layer thickness under contemporary and projected climate in the Northern Hemisphere, J. Clim., 31, 251–266, 

https://doi.org/10.1175/JCLI-D-16-0721.1, 2018. 

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria, https://www.r-project.org/, 2015. 

Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on heat and mass transport processes in the active layer 480 

and permafrost, Permafrost Periglac., 11, 219–239, 2000. 

https://doi.org/10.1088/1748-9326/6/4/045504
https://doi.org/10.1088/1748-9326/8/3/035048


13 

 

Romanovsky, V. E., Smith, S. L. and Christiansen, H. H.: Permafrost thermal state in the polar northern hemisphere during 

the International Polar Year 2007–2009: a synthesis, Permafrost Periglac., 21, 106–116, 

https://doi.org/10.1002/ppp.689, 2010. 

Romanovsky, V.E., Smith, S.L., Shiklomanov, N.I., Streletskiy, D.A., Isaksen, K., Kholodov, A.L., Christiansen, H.H., 485 

Drozdov, D.S., Malkova, G.V. and Marchenko, S.S.: Terrestrial permafrost, Bulletin of the American Meteorological 

Society, 98, 147–149, https://doi.org/10.1175/2017BAMSStateoftheClimate.1, 2017. 

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological 

forcings for land surface modeling, J. Clim., 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006. 

Shiklomanov, N. I.: Non-climatic factors and long-term, continental-scale changes in seasonally frozen ground. Environ. 490 

Res. Lett., 7, 011003, https://doi.org/10.1088/1748-9326/7/1/011003, 2012. 

Smith, M. W. and Riseborough, D. W.: Permafrost monitoring and detection of climate change, Permafrost and Periglac., 7, 

301–309, 1996. 

Smith, S. and Burgess, M.: Ground temperature database for Northern Canada, Geological Survey of Canada, Open File 

Report 3954, https://doi.org/10.4095/211804, 2000. 495 

Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: a zonal analysis, Permafrost and Periglac., 13, 

1–15, https://doi.org/10.1002/ppp.410, 2002. 

Smith, S. L., Wolfe, S. A., Riseborough, D. W., and Nixon, M.: Active-layer characteristics and summer climate indices, 

Mackenzie Valley, Northwest Territories, Canada, Permafrost Periglac., 20, 201–220, 

https://doi.org/10.1002/ppp.651, 2009. 500 

Streletskiy, D. A., Anisimov, O., and Vasiliev, A.: Permafrost degradation, in: Snow and ice-related hazards, risks and 

disasters, Haeberli, W. and Whiteman, C. (Eds.), Elsevier, 303–344, 2015. 

Throop, J., Lewkowicz, A. G., and Smith, S. L.: Climate and ground temperature relations at sites across the continuous and 

discontinuous permafrost zones, northern Canada, Can. J. Earth Sci., 49, 865–876, https://doi.org/10.1139/e11-075, 

2012. 505 

Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – a platform for ensemble forecasting of species 

distribution, Ecography, 32, 369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009. 

Vincent, W. F., Lemay, M., and Allard, M.: Arctic permafrost landscapes in transition: towards integrated Earth system 

approach, Arctic Science 3, 39–64, https://doi.org/10.1139/as-2016-0027, 2017. 

Westermann, S., Boike, J., Langer, M., Schuler, T. V., and Etzelmüller, B.: Modeling the impact of wintertime rain events on 510 

the thermal regime of permafrost, Cryosphere, 5, 945–959, https://doi.org/10.5194/tc-5-945-2011, 2011. 

Westermann, S., Duguay, C. R., Grosse, G., and Kääb, A.: Remote sensing of permafrost and frozen ground, in: Remote 

Sensing of the Cryosphere, Tedesco, M. (ed.), Wiley, 307–344, 2015. 

Woo, M.: Permafrost Hydrology, Springer-Verlag, Berlin Heidelberg, 2012. 

Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized 515 

linear models, J. R. Statist. Soc. B (Statistical Methodology), 73, 3–36, 2011. 

Wu, Q., Zhang, T., and Liu, Y.: Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway 

from 2006 to 2010, Cryosphere, 6, 607–612, https://doi.org/10.5194/tc-6-607-2012, 2012. 

Zhang, T., Osterkamp, T. E., and Stamnes, K.: Effects of climate on the active layer and permafrost on the North Slope of 

Alaska, U.S.A., Permafrost Periglac., 8, 45–67, 1997. 520 

Zhang, T., Chen, W., Smith, S. L., Riseborough, D. W., and Cihlar, J.: Soil temperature in Canada during the twentieth 

century: complex responses to atmospheric climate change, J. Geophys. Res, 110, D03112, 

https://doi.org/10.1029/2004JD004910, 2005. 



14 

 

Zhang, Y., Chen, W., and Cihlar, J.: A process-based model for quantifying the impact of climate change on permafrost 

thermal regimes, J. Geophys. Res., 108, 4695, https://doi.org/10.1029/2002JD003354, 2003. 525 

Zhang, Y., Sherstiukov, A. B., Qian, B., Kokelj, S. V., & Lantz, T. C.: Impacts of snow on soil temperature observed across 

the circumpolar north, Environ. Res. Lett., 13, 044012, https://doi.org/10.1088/1748-9326/aab1e7, 2018. 

Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., Reichle, R. H., Mishra, U., Zona, D., and Oechel, W. C.: 

Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska, 

Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, 2018. 530 

Yin, G., Niu, F., Lin, Z., Luo, J., and Liu, M.: Effects of local factors and climate on permafrost conditions and distribution 

in Beiluhe basin, Qinghai-Tibet Plateau, China, Sci. Total Environ., 581-582, 472–485, 

https://doi.org/10.1016/j.scitotenv.2016.12.155, 2017. 



15 

 

Table 1: Adjusted coefficient of determination (R2) and root mean square error (RMSE) between observed and predicted mean 535 
annual ground temperature (MAGT) and active-layer thickness (ALT) in calibration and evaluation (in brackets) datasets averaged 

over 100 permutations.  

 

 MAGT≤0 °C MAGT>0 °C  ALT 

Method R2 RMSE (°C) R2 RMSE (°C) R2 RMSE (cm) 

GLM 0.86 (0.83) 1.24 (1.33)  0.95 (0.92) 1.20 (1.44) 0.65 (0.50) 80 (93) 

GAM 0.88 (0.84)  1.17 (1.29)  0.95 (0.92) 1.18 (1.37) 0.70 (0.54) 74 (89) 

GBM 0.93 (0.86)  0.88 (1.22)  0.97 (0.92) 0.91 (1.37) 0.84 (0.59) 55 (84) 

RF 0.98 (0.87)  0.51 (1.17)  0.99 (0.93) 0.55 (1.27) 0.93 (0.62) 36 (82) 

Average 0.91 (0.85) 0.95 (1.25)  0.96 (0.92) 0.96 (1.36) 0.78 (0.56) 61 (87) 
GLM = generalized linear modelling, GAM = generalized additive modelling, GBM = generalized boosting method and RF = random forest. 

 540 

Table 2: The effect size of individual predictors and their four-model averages (see Sect. 2.2 for abbreviations) in the original scale 

of the responses, °C for (mean annual ground temperature) MAGT and cm for active-layer thickness (ALT).  

 MAGT≤ 0°C (°C) MAGT> 0°C (°C) ALT (cm) 

 GLM GAM GBM RF Avg GLM GAM GBM RF Avg GLM GAM GBM RF Avg 

FDD 8.6 10.7 4.3 3.2 6.7 3.8 4.3 2.6 2.8 3.4 117 86 15 36 64 

TDD 7.1 6.6 2.4 2.8 4.7 19.1 19.5 9.0 6.6 13.6 30 23 19 31 26 

Rainfall 1.6 2.6 4.3 3.0 2.9 4.8 3.6 0.2 0.7 2.3 372 249 28 74 181 

Snowfall 4.4 4.4 0.1 0.2 2.3 0.8 1.4 0.3 0.5 0.8 195 146 44 94 120 

SolarRad 2.6 2.5 0.2 0.3 1.4 2.0 2.3 0.9 1.6 1.7 135 193 178 139 161 

CoarseSed 0.8 1.8 0.1 0.2 0.7 0.6 2.6 0.1 0.3 0.9 129 137 69 65 100 

FineSed 0.5 0.7 0.2 0.4 0.4 0.6 0.7 0.1 0.1 0.4 17 20 7 9 13 

SOC 0.5 0.4 0.3 0.8 0.5 1.7 1.4 0.1 0.6 0.9 121 129 30 28 77 

NDVI 0.4 0.3 0.1 0.8 0.4 2.6 2.3 0.2 0.1 1.3 68 36 15 34 38 
The values are shaded with increasing blue (MAGT≤0 °C), red (MAGT>0 °C) and yellow (ALT) hues relative to the magnitude of the effect. GLM = 

generalized linear modelling, GAM = generalized additive modelling, GBM = generalized boosting method and RF = random forest. See Sect. 2.2 

for predictor abbreviations. 545 

 



16 

 

 

Figure 1: The observational network of the used mean annual ground temperature (MAGT) and active-layer thickness (ALT) across 

the circumpolar region. Blue symbols indicate the locations of boreholes where MAGT (averaged over the period 2000–2014) was 550 
at or below 0 °C and red symbols for those above 0 °C. White symbols depict the ALT measurements sites. The underlying 

permafrost zonation is from Brown et al. (2002). 
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Figure 2: Spearman rank-order correlations between the predictor variables (see Sect. 2.2 for abbreviations) and MAGT≤0 °C (mean 555 
annual ground temperature) (a), MAGT>0 °C (b) and ALT (active-layer thickness) (c). Red hue stands for positive correlations, blue 

for negative, and white indicates non-significant (p > 0.01) correlations. Panel (d) shows MAGT and ALT observations plotted 

against the climatic predictors. 

 

 560 
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Figure 3: Variable importance values in MAGT≤0 °C (mean annual ground temperature) (a) and MAGT>0 °C (b) datasets arranged in 

the descending order of four-model average in MAGT≤0 °C conditions, and for ALT (active-layer thickness) (c), arranged likewise 

based on ALT results. The whiskers depict 95 % confidence intervals (over 100 bootstrapping rounds). GLM = generalized linear 

modelling, GAM = generalized additive modelling, GBM = generalized boosting method and RF = random forest. See Sect. 2.2 for 565 
predictor abbreviations. 
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Figure 4: Response shapes of the five predictors with most contribution in MAGT≤0 °C (a) (mean annual ground temperature, blue 

curves), MAGT>0 °C (b) (red curves) and ALT (c) (active-layer thickness, yellow curves) datasets obtained from generalized additive 570 
modelling (GAM). Response shapes for the remaining predictors are illustrated in Figure S2. Predictors (see Sect. 2.2 for 

abbreviations) are presented in the descending order of their effect size in respective datasets. X-axis units appear in the original 

scale of the predictors. Y-axis displays partial residuals and labels the estimated degrees of freedom used in fitting the respective 

predictors to a response. Shaded areas depict 95 % confidence limits.  
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