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Abstract 11 
There is significant uncertainty regarding the spatiotemporal distribution of seasonal 12 
snow on glaciers, despite being a fundamental component of glacier mass balance. To 13 
address this knowledge gap, we collected repeat, spatially extensive high-frequency 14 
ground-penetrating radar (GPR) observations on two glaciers in Alaska during the spring 15 
of five consecutive years. GPR measurements showed steep snow water equivalent 16 
(SWE) elevation gradients at both sites; continental Gulkana Glacier’s SWE gradient 17 
averaged 115 mm 100 m–1 and maritime Wolverine Glacier’s gradient averaged 440 mm 18 
100 m–1 (over >1000 m). We extrapolated GPR point observations across the glacier 19 
surface using terrain parameters derived from digital elevation models as predictor 20 
variables in two statistical models (stepwise multivariable linear regression and 21 
regression trees). Elevation and proxies for wind redistribution had the greatest 22 
explanatory power, and exhibited relatively time-constant coefficients over the study 23 
period. Both statistical models yielded comparable estimates of glacier-wide average 24 
SWE (1 % average difference at Gulkana, 4 % average difference at Wolverine), 25 
although the spatial distributions produced by the models diverged in unsampled regions 26 
of the glacier, particularly at Wolverine. In total, six different methods for estimating the 27 
glacier-wide winter balance average agreed within ± 11 %. We assessed interannual 28 
variability in the spatial pattern of snow accumulation predicted by the statistical models 29 
using two quantitative metrics. Both glaciers exhibited a high degree of temporal 30 
stability, with ~85 % of the glacier area experiencing less than 25 % normalized absolute 31 
variability over this five-year interval. We found SWE at a sparse network (3 stakes per 32 
glacier) of long-term glaciological stake sites to be highly correlated with the GPR-33 
derived glacier-wide average. We estimate that interannual variability in the spatial 34 
pattern of winter SWE accumulation is only a small component (4–10 % of glacier-wide 35 
average) of the total mass balance uncertainty and thus, our findings support the concept 36 
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that sparse stake networks effectively measure interannual variability in winter balance 37 
on glaciers, rather than some temporally varying spatial pattern of snow accumulation.  38 
 39 
1. Introduction 40 

Our ability to quantify glacier mass balance is dependent on accurately resolving the 41 

spatial and temporal distributions of snow accumulation and snow/ice ablation. 42 

Significant advances in our knowledge of ablation processes have improved 43 

observational and modelling capacities (Hock, 2005; Huss and Hock, 2015; Fitzpatrick et 44 

al., 2017), yet comparable advances in our understanding of the distribution of snow 45 

accumulation have not kept pace (Hock et al., 2017). Reasons for this discrepancy are 46 

two-fold: (i) snow accumulation exhibits higher variability than ablation, both in 47 

magnitude and length scale, largely due to wind redistribution in the complex high-relief 48 

terrain where mountain glaciers are typically found (Kuhn et al., 1995) and (ii) 49 

accumulation observations are typically less representative (i.e., one stake in a few 50 

hundred meter elevation band) or less effective than comparable ablation observations 51 

(i.e., precipitation gage measuring snowfall vs. radiometer measuring short-wave 52 

radiation). This discrepancy presents a significant limitation to process-based 53 

understanding of mass balance drivers. Furthermore, a warming climate has already 54 

modified – and will continue to modify – the magnitude and spatial distribution of snow 55 

on glaciers through a reduction in the fraction of precipitation falling as snow and an 56 

increase in rain-on-snow events (Knowles et al., 2006; McAfee et al., 2013; Klos et al., 57 

2014; McGrath et al., 2017; Littell et al., 2018).  58 

 59 

Significant research has been conducted on the spatial and, to a lesser degree, the 60 

temporal variability of seasonal snow in mountainous and high-latitude landscapes (e.g., 61 

Balk and Elder, 2000; Molotch et al., 2005; Erickson et al., 2005; Deems et al., 2008; 62 

Sturm and Wagner, 2010; Schirmer et al., 2011; Winstral and Marks, 2014; Anderson et 63 

al., 2014; Painter et al., 2016). Although major advances have occurred in applying 64 

physically-based snow distribution models (i.e., iSnobal (Marks et al., 1999), SnowModel 65 

(Liston and Elder, 2006), Alpine 3D (Lehning et al., 2006)), the paucity of required 66 

meteorological forcing data proximal to glaciers limits widespread application. Many 67 

other studies have successfully developed statistical approaches that rely on the 68 
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relationship between the distribution of snow water equivalent (SWE) and physically-69 

based terrain parameters (also referred to as physiographic or topographic properties or 70 

variables) to model the distribution of SWE across entire basins (e.g., Molotch et al., 71 

2005; Anderson et al., 2014; Sold et al., 2013; McGrath et al., 2015). 72 

 73 

A major uncertainty identified by these studies is the degree to which these statistically 74 

derived relationships remain stationary in time. Many studies (Erickson et al., 2005; 75 

Deems et al., 2008; Sturm and Wagner, 2010; Schirmer et al, 2011; Winstral and Marks, 76 

2014; Helfricht et al., 2014) have found ‘time-stability’ in the distribution of SWE, 77 

including locations where wind redistribution is a major control on this distribution. For 78 

instance, a climatological snow distribution pattern, produced from the mean of nine 79 

standardized surveys, accurately predicted the observed snow depth in a subsequent 80 

survey in a tundra basin in Alaska (~4–10 cm root mean square error; Sturm and Wagner, 81 

2010). Repeat LiDAR surveys over two years at three hillslope-scale study plots in the 82 

Swiss Alps found a high degree of correlation (r=0.97) in snow depth spatial patterns 83 

(Schirmer et al., 2011). They found that the final snow depth distributions at the end of 84 

the two winter seasons were more similar than the distributions of any two individual 85 

storms during that two-year period (Schirmer et al., 2011). Lastly, an 11-year study of 86 

extensive snow probing (~1200 point observations) at a 0.36 km2 field site in 87 

southwestern Idaho found consistent spatial patterns (r=0.84; Winstral and Marks, 2014). 88 

Collectively, these studies suggest that in landscapes characterized by complex 89 

topography and extensive wind redistribution of snow, spatial patterns are largely time-90 

stable or stationary, as long as the primary drivers are stationary.  91 

 92 

Even fewer studies have explicitly examined the question of interannual variability in the 93 

context of snow distribution on glaciers. Spatially-extensive snow probe datasets are 94 

collected by numerous glacier monitoring programs (e.g., Bauder et al., 2017; Kjøllmoen 95 

et al., 2017; Escher-Vetter et al., 2009) in order to calculate a winter mass balance 96 

estimate. Although extensive, such manual approaches are still limited by the number of 97 

points that can be collected and uncertainties in correctly identifying the summer surface 98 

in the accumulation zone, where seasonal snow is underlain by firn. One study of two 99 



 4 

successive end-of-winter surveys of snow depth using probes on a glacier in Svalbard 100 

found strong interannual variability in the spatial distribution of snow, and the 101 

relationship between snow distribution and topographic features (Hodgkins et al., 2006). 102 

Elevation was found to only explain 38–60 % of the variability in snow depth, and in one 103 

year, snow depth was not dependent on elevation in the accumulation zone (Hodgkins et 104 

al., 2006). Instead, aspect, reflecting relative exposure or shelter from prevailing winds, 105 

was found to be a significant predictor of accumulation patterns. In contrast, repeat 106 

airborne LiDAR surveys of a ~36 km2 basin (~50% glacier cover) in Austria over five 107 

winters found that the glacierized area exhibited less interannual variability (as measured 108 

by the interannual standard deviation) than the non-glacierized sectors of the basin 109 

(Helfricht et al., 2014). Similarly, a three-year study of snow distribution on 110 

Findelgletscher in the Swiss Alps using ground-penetrating radar (GPR) found low 111 

interannual variability, as 86 % of the glacier area experienced less than 25 % normalized 112 

relative variability (Sold et al., 2016). These latter studies suggest that seasonal snow 113 

distribution on glaciers likely exhibits ‘time-stability’ in its distribution, but few datasets 114 

exist to robustly test this hypothesis.  115 

 116 

The ‘time-stability’ of snow distribution on glaciers has particularly important 117 

implications for long-term glacier mass balance programs, as seasonal and annual mass 118 

balance solutions are derived from the integration of a limited number of point 119 

observations (e.g., 3 to 50 stakes), and the assumption that stake and snow pit 120 

observations accurately represent interannual variability in mass balance rather than 121 

interannual variability in the spatial patterns of mass balance. Previous work has shown 122 

‘time-stability’ in the spatial pattern of annual mass balance (e.g., Vincent et al., 2017) 123 

and while this is important for understanding the uncertainties in glacier-wide mass 124 

balance estimates, the relative contributions of accumulation and ablation to this stability 125 

are poorly constrained, thereby hindering a process-based understanding of these spatial 126 

patterns. Furthermore, accurately quantifying the magnitude and spatial distribution of 127 

winter snow accumulation on glaciers is a prerequisite for understanding the water budget 128 

of glacierized basins, with direct implications for any potential use of this water, whether 129 

that be ecological, agricultural, or human consumption (Kaser et al., 2010). 130 
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 131 

To better understand the ‘time-stability’ of the spatial pattern of snow accumulation on 132 

glaciers, we present five consecutive years of extensive GPR observations for two 133 

glaciers in Alaska. First, we use these GPR-derived SWE measurements to train two 134 

different types of statistical models, which were subsequently used to spatially 135 

extrapolate SWE across each glacier’s area. Second, we assess the temporal stability in 136 

the resulting spatial distribution in SWE. Finally, we compare GPR-derived winter mass 137 

balance estimates to traditional glaciological derived mass balance estimates and quantify 138 

the uncertainty that interannual variability in spatial patterns in snow accumulation 139 

introduces to these estimates. 140 

 141 

2. Study Area 142 

During the spring seasons of 2013–2017, we conducted GPR surveys on Wolverine and 143 

Gulkana glaciers, located on the Kenai Peninsula and eastern Alaskan Range in Alaska 144 

(Fig. 1). These glaciers have been studied as part of the U.S. Geological Survey’s 145 

Benchmark Glacier project since 1966 (O’Neel et al., 2014). Both glaciers are ~16 km2 in 146 

area and span ~1200 m in elevation (426 – 1635 m asl for Wolverine, 1163 – 2430 m asl 147 

for Gulkana). Wolverine Glacier exists in a maritime climate, characterized by warm air 148 

temperatures (mean annual temperature = –0.2 °C at 990 meters; median equilibrium line 149 

altitude for 2008 – 2017 is 1235 m asl) and high precipitation (median glacier-wide 150 

winter balance = 2.0 m water equivalent (m w.e.)), while Gulkana is located in a 151 

continental climate, characterized by colder air temperatures (mean annual temperature = 152 

–2.8 °C at 1480 meters; median equilibrium line altitude for 2008 – 2017 is 1870 m asl) 153 

and less precipitation (median glacier-wide winter balance = 1.2 m w.e.) (Fig. 2). The 154 

cumulative mass balance time series for both glaciers is negative (~ –24 m w.e. between 155 

1966–2016), with Gulkana showing a more monotonic decrease over the entire study 156 

interval, while Wolverine exhibited near equilibrium balance between 1966 and 1987, 157 

and sharply negative to present (O’Neel et al., 2014; O’Neel et al., 2018).  158 

 159 

3. Methods 160 
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The primary SWE observations are derived from a GPR measurement of two-way travel 161 

time (twt) through the annual snow accumulation layer. We describe five main steps to 162 

convert twt along the survey profiles to annual distributed SWE products for each glacier. 163 

These include (i) acquisition of GPR and ground-truth data, (ii) calculation of snow 164 

density and associated radar velocity, which are used to convert measured twt to annual 165 

layer depth and subsequently SWE, and (iii) application of terrain parameter statistical 166 

models to extrapolate SWE across the glacier area. We then describe approaches to (iv) 167 

evaluate the temporal consistency in spatial SWE patterns and (v) compare GPR-derived 168 

SWE and direct (glaciological) winter mass balances. 169 

 170 

3.1. Radar data collection and processing 171 

Common-offset GPR surveys were conducted with a 500 MHz Sensors and Software 172 

Pulse Ekko Pro system in late spring close to maximum end-of-winter SWE and prior to 173 

the onset of extensive surface melt. GPR parameters were set to a waveform-sampling 174 

rate of 0.1 ns, a 200-ns time window, and “Free Run” trace increments, where samples 175 

are collected as fast as the processor allows, instead of at uniform temporal or spatial 176 

increments. 177 

 178 

In general, GPR surveys were conducted by mounting a plastic sled behind a snowmobile 179 

and driving at a near-constant velocity of 15 km h–1 (Fig. 3, S1, S2), resulting in a trace 180 

spacing of ~20 cm. Coincident GPS data were collected using a Novatel Smart-V1 GPS 181 

receiver (Omnistar corrected, L1 receiver with root-mean-square accuracy of 0.9 m 182 

(Perez-Ruiz et al., 2011)). We collected a consistent survey track from year-to-year that 183 

minimized safety hazards (crevasses, avalanche runouts) but optimized the sampling of 184 

terrain parameter space on the glacier (e.g., range and distribution of elevation, slope, 185 

aspect, curvature, etc.). However, in 2016 at Wolverine Glacier, weather conditions and 186 

logistics did not allow for ground surveys to be completed. Instead, a number of radar 187 

lines were collected via a helicopter survey. To best approximate the ground surveys 188 

completed in other years, we selected a subset of helicopter GPR observations within 150 189 

m of the ground-based surveys. Previous comparisons between ground and helicopter 190 
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platforms found excellent agreement in SWE point observations (coefficient of 191 

determination (R2)=0.96, root mean square error=0.14 m; McGrath et al., 2015).  192 

 193 

Radargrams were processed using the ReflexW-2D software package (Sandmeier 194 

Scientific Software). All radargrams were corrected to time zero, taken as the first 195 

negative peak in the direct wave (Yelf and Yelf, 2006), and a dewow filter (mean 196 

subtraction) was applied over 2 ns. When reflectors from the base of the seasonal snow 197 

cover were insufficiently resolved, gain and band-pass filters were subsequently applied. 198 

Layer picking was guided by ground-truth efforts and done semi-automatically using a 199 

phase-following layer picker. For further details, please see McGrath et al. (2015). 200 

 201 

3.2. Ground truth observations 202 

We collected extensive ground-truth data to validate GPR surveys, including probing and 203 

snowpit/cores. In the ablation zone of each glacier, we probed the snowpack thickness 204 

every ~500 m along-track. In addition, we measured seasonal snow depth and density at 205 

an average of five locations (corresponding to the glaciological observations; see Section 206 

3.5) on each glacier in each year. Typically these locations include one or two in the 207 

ablation zone, one near the long-term ELA, and two or more in the accumulation zone. 208 

We measured snow density using a gravimetric approach in snowpits (at 10 cm intervals) 209 

and with 7.25 cm diameter cores (if total depth >2 m; at 10–40 cm intervals depending on 210 

natural breaks) to the previous summer surface. We calculated a density profile and 211 

column-average density, 𝜌"#$% , at each site.   212 

 213 

As snow densities did not exhibit a consistent spatial nor elevation dependency on the 214 

glaciers (e.g., Fausto et al., 2018), we calculated a single average density,	𝜌,	of all 𝜌"#$%  215 

on each glacier and each year, which was subsequently used to calculate SWE: 216 

 217 

𝑆𝑊𝐸 = ($-$
.
) ⋅ 𝑣" ⋅ 𝜌,         (1) 218 

 219 

where 𝑡𝑤𝑡 is the two-way travel time as measured by the GPR and 𝑣" is the radar 220 

velocity. 𝑣" was calculated for each glacier in each year as the average of two 221 
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independent approaches: (i) an empirical relationship based on the glacier-wide average 𝜌 222 

(Kovacs et al., 1995) and (ii) a least-squares regression between snow depth derived by 223 

probing and all radar 𝑡𝑤𝑡 observations within a 3-m radius of the probe site. An 224 

exception was made at Wolverine in 2016 as no coincident probe depth observations 225 

were made during the helicopter-based surveys. Instead, we estimated the second radar 226 

velocity by averaging radar velocities calculated from observed 𝑡𝑤𝑡 and snow depths at 227 

three snowpit/core locations. 228 

 229 

3.3. Spatial Extrapolation 230 

Extrapolating SWE from point measurements to the basin scale has been a topic of 231 

focused research for decades (e.g., Woo and Marsh, 1978; Elder et al., 1995; Molotch et 232 

al., 2005). Most commonly, the dependent variable SWE is related to a series of 233 

explanatory terrain parameters, which are proxies for the physical processes that actually 234 

control SWE distribution across the landscape. These include orographic gradient in 235 

precipitation (elevation), wind redistribution of existing snow (slope, curvature, drift 236 

potential), and aspect with respect to solar radiation and prevailing winds (eastness, 237 

northness). We derived terrain parameters from 10-m resolution digital elevation models 238 

(DEMs) sourced from the ArcticDEM project (Noh and Howat, 2015) for Gulkana and 239 

produced from airborne Structure from Motion photogrammetry at Wolverine (Nolan et 240 

al., 2015). Both DEMs were based on imagery from August 2015. Specifically, these 241 

parameters include elevation, surface slope, surface curvature, northness (Molotch et al., 242 

2005), eastness, and snow drift potential (Sb) (Winstral et al., 2002; Winstral et al., 2013; 243 

Fig. S3, S4). The Sb parameter is commonly used to identify locations where airflow 244 

separation occurs based on both near and far-field topography and are thus likely 245 

locations to accumulate snow drifts (Winstral et al., 2002). For specific details on this 246 

calculation, please refer to Winstral et al. (2002).  In the application of Sb here, we 247 

determined the principle direction by calculating the modal daily wind direction during 248 

the winter (October – May) when wind speeds exceeded 5 m s–1 (~minimum wind 249 

velocity for snow transport; Li and Pomeroy, 1997).  The length scales for curvature were 250 

found using an optimization scheme that identified the highest model R2.  251 

 252 
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Prior to spatial extrapolation, we aggregated GPR observations to the resolution of the 253 

DEM by calculating the median value of all observations within each 10 m pixel of the 254 

DEM. We then utilized two approaches to extrapolate GPR point observations across the 255 

glacier surface: (i) least-squares elevation gradient applied to glacier hypsometry and (ii) 256 

statistical models. For (i), we derived SWE elevation gradients in two ways; first, solely 257 

on observations that followed the glacier centerline and second, from the entire spatially-258 

extensive dataset. For (ii), we utilized both stepwise multivariable linear regressions and 259 

regression trees (Breiman et al., 1984). All of these approaches produced a spatially-260 

distributed SWE field over the entire glacier area. Individual points in this field are 261 

equivalent to point winter balances (bw; m w.e.). From the distributed bw field, we 262 

calculated a mean area-averaged winter balance (Bw; m w.e.). 263 

 264 

Additionally, we implemented a cross-validation approach to the statistical extrapolations 265 

(multivariable regression and regression tree), whereby 75 % of the aggregated 266 

observations were used for training and 25 % were used for testing. However, rather than 267 

randomly selecting pixels from across the entire dataset, we randomly selected a single 268 

pixel containing aggregated GPR observations and then extended this selection out along 269 

continuous survey lines until we reached 25 % of the total observational dataset, thus 270 

removing entire sections (and respective terrain parameters) from the analysis (Fig. S5). 271 

This approach provided a more realistic test for the statistical models, as the random 272 

selection of individual cells did not significantly alter terrain-parameter distributions. For 273 

each glacier and each year, we produced 100 training/test dataset combinations, but rather 274 

than take the single model with the highest R2 or lowest RMSE from the resulting test 275 

dataset, we produced a distributed SWE product by taking the median value for each 276 

pixel from all 100 model runs and a glacier-wide median value that is the median of all 277 

100 individual Bw estimates. We chose the median-value approach over a highest 278 

R2/lowest RMSE approach that is often utilized because, despite being randomly 279 

selected, some training datasets were inherently advantaged by a more complete 280 

distribution of terrain parameters. These iterations resulted in the highest R2/lowest 281 

RMSE when applied to the training dataset, but weren’t necessarily indicative of a better 282 

model.  283 
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 284 

3.3.2. Stepwise Multivariable Linear Regression 285 

We used a stepwise multivariable linear regression model of the form,  286 

𝑆𝑊𝐸(#,4) = 𝑐6𝑥6(#,4) + 𝑐.𝑥.(#,4)+	. . . +𝑐:𝑥:(#,4) + 𝜀(#,4),	           (2) 287 

where SWE(i,j) is the predicted (standardized) value at location i,j and c1, c2, cn are the beta 288 

coefficients of the model, x1, x2, xn are terrain parameters which are independent variables 289 

that have been standardized and 𝜀 is the residual. We applied the regression model 290 

stepwise and included an independent variable if it minimized the Akaike information 291 

criterion (AIC; Akaike, 1974). We present the beta coefficients from each regression 292 

(each year, each glacier) to explore the temporal stability of these terms.  293 

 294 

3.3.3. Regression Trees 295 

Regression trees (Breiman et al., 1984) provide an alternative statistical approach for 296 

extrapolating point observations by recursively partitioning SWE into progressively more 297 

homogenous subsets based on independent terrain parameter predictors (Molotch et al., 298 

2005; Meromy et al., 2013; Bair et al., 2018). The primary advantage of the regression 299 

tree approach is that each terrain parameter is used multiple times to partition the 300 

observations, thereby allowing for non-linear interactions between these terms. In 301 

contrast, the MVR only allows for a single “global” linear relationship for each parameter 302 

across the entire parameter-space. We implemented a random forest approach (Breiman, 303 

2001) of repeated regression trees (100 learning cycles) in Matlab, using weak learners 304 

and bootstrap aggregating (bagging; Breiman, 1996). Each weak learner omits 37% of 305 

observations, such that these “out-of-bag” observations are used to calculate predictor 306 

importance. The use of this ensemble/bagging approach reduces overfitting and thus 307 

precludes having to subjectively prune the tree and provides more accurate and unbiased 308 

error estimates (Breiman, 2001). Prior to implementing the regression tree, we removed 309 

the SWE elevation gradient from the observations using a least-squares regression. As 310 

described in the results, elevation is the dominant independent variable and as our 311 

observations (particularly at Wolverine) did not cover the entire elevation range, the 312 

regression tree approach was not well suited to predicting SWE at elevations outside of 313 

the observational range.  314 
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 315 

3.4. Interannual variability in spatial patterns 316 

We quantified the stability of spatial patterns in SWE across the five-year interval using 317 

two approaches: (i) normalized range and (ii) the coefficient of determination. In the first 318 

approach, we first divided each pixel in the distributed SWE fields by the glacier-wide 319 

average, Bw, for each year and each glacier, and then calculated the range in these 320 

normalized values over the entire five-year interval. For example, if a cell has normalized 321 

values of 84 %, 92 %, 106 %, 112 % and 120 %, the normalized range would be 36 %. A 322 

limitation of this approach is that it is highly sensitive to outliers, such that a single year 323 

can substantially increase this range. This is similar to an approach presented by Sold et 324 

al. (2016), but unlike their calculation (their Fig. 9), the normalized values reported here 325 

have not been further normalized by the normalized mean of that pixel over the study 326 

interval. Thus, the values reported here are an absolute normalized range, whereas Sold et 327 

al. (2016) report a relative normalized range. In the coefficient of determination (R2) 328 

approach, we computed the least-squares regression correlation between the SWE in each 329 

pixel and the glacier-wide average, Bw, derived from the MVR model over the five-year 330 

period. For this approach, cells with a higher R2 scale linearly with the glacier-wide 331 

average, while those with low R2 do not.   332 

 333 

3.5. Glaciological mass balance 334 

Beginning in 1966, glacier-wide seasonal (winter, Bw; summer, Bs) and annual balances (Ba) 335 

were derived from glaciological measurements made at three fixed locations on each glacier. 336 

The integration of these point measurements was accomplished using a site-index method – 337 

equivalent to an area-weighted average (March and Trabant, 1996; van Beusekom et al., 2010). 338 

Beginning in 2009, a more extensive stake network of seven to nine stakes was established on 339 

each glacier, thereby facilitating the use of a balance profile method for spatial extrapolation 340 

(Cogley et al., 2011). Systematic bias in the glaciological mass balance time-series is removed 341 

via a geodetic adjustment derived from DEM differencing over decadal timescales (e.g., 342 

O’Neel et al., 2014). For this study, glaciological measurements were made within a day of the 343 

GPR surveys, and integrated over the glacier hypsometry using both the historically applied 344 

site-index method (based on the long-term three stake network) and the more commonly 345 
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applied balance profile method (based on the more extensive stake network). We utilized a 346 

single glacier hypsometry, derived from the 2015 DEMs, for each glacier over the entire five-347 

year interval. Importantly, in order to facilitate a more direct comparison to the GPR-derived 348 

Bw estimates, we used glaciological Bw estimates that have not been geodetically calibrated.  349 

 350 

4. Results 351 

4.1.  General accumulation conditions 352 

Since 1966, Wolverine Glacier’s median Bw (determined from the stake network) exceeds 353 

Gulkana’s by more than a factor of two (2.3 vs. 1.1 m w.e.), and exhibits greater 354 

variability, with an interquartile range more than twice as large (0.95 m w.e. vs. 0.4 m 355 

w.e.). Over the five-year study period, both glaciers experienced accumulation conditions 356 

that spanned their historical ranges, with one year in the upper quartile (including the 5th 357 

greatest Bw at Wolverine in 2016), one year within 25% of the median, and multiple years 358 

in the lower quartile (2017 at Gulkana and 2014 at Wolverine had particularly low Bw 359 

values) (Fig. 2). In all years, Bw at Wolverine was greater, although in 2013 and 2014, the 360 

difference was only 0.1 m w.e.  361 

 362 

Average accumulation season (taken as October 1 – May 31) wind speeds over the study 363 

period were stronger (~7 m s–1 vs. ~3 m s–1) and from a more consistent direction at 364 

Wolverine than Gulkana (northeast at Wolverine, southwest to northeast at Gulkana) 365 

(Fig. S6). On average, Wolverine experienced ~50 days with wind gusts >15 m s–1 each 366 

winter, while for Gulkana, this only occurred on ~7 days. Over the five-year study period, 367 

interannual variability in wind direction was very low at Wolverine (2016 saw slightly 368 

greater variability, with an increase in easterly winds). In contrast, at Gulkana, winds 369 

were primarily from the northeast to east in 2013–2015, from the southwest to south in 370 

2016–2017, and experienced much greater variability during any single winter.  371 

 372 

4.2. In situ and GPR point observations 373 

Glacier-averaged snow densities across all years were 440 kg m–3 (range 414–456 kg m–374 
3) at Wolverine and 362 kg m–3 (range 328–380 kg m–3) at Gulkana (Table S1). Average 375 

radar velocities were 0.218 m ns–1 (range 0.207–0.229 m ns–1) at Wolverine and 0.223 m 376 
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ns–1 (0.211–0.231 m ns–1) at Gulkana. Over this five-year interval, the GPR point 377 

observations revealed a general pattern of increasing SWE with elevation, along with 378 

fine-scale variability due to wind redistribution (e.g., upper elevations of Wolverine) and 379 

localized avalanche input (e.g., lower west branch of Gulkana) (Fig. S1, S2). The 380 

accumulation season (hereafter, winter) SWE elevation gradient was steeper (~440 vs. 381 

~115 mm 100 m–1) and more variable in its magnitude at Wolverine than Gulkana. 382 

Gradients ranged between 348 – 624 mm 100 m–1 at Wolverine, and 74 – 154 mm 100 m–383 
1 at Gulkana (Fig. 4). Over all five years at both glaciers, elevation explained between 50 384 

% and 83 % of the observed variability in SWE (Fig. 4). 385 

 386 

4.3. Model performance 387 

To evaluate model performance in unsampled locations of the glacier, both extrapolation 388 

approaches were run 100 times for each glacier and each year, each time with a unique, 389 

randomly selected training (75 % of aggregated observations) and test (remaining 25 % 390 

of aggregated observations) dataset. The median and standard deviation of the 391 

coefficients of determination (R2) from these 100 models runs are shown in Fig. 5. Model 392 

performance ranged from 0.25 to 0.75, but on average, across both glaciers and all years, 393 

was 0.56 for the MVR approach and 0.46 for the regression tree. Model performance was 394 

higher and more consistent at Wolverine, whereas 2015 and 2017 at Gulkana had test 395 

dataset R2 of ~0.4 and 0.3, likely reflecting the lower winter SWE elevation gradients and 396 

coefficients of determination with elevation during these years (Fig. 4). The wide range 397 

in R2 across the 100 model runs reflects the variability in training and test datasets that 398 

were randomly selected. When the test dataset terrain parameter space was captured by 399 

the training dataset, a high coefficient of determination resulted, but when the test dataset 400 

terrain parameter space was exclusive, e.g., contained only a small elevation range, the 401 

model performance was typically low. This further highlights the importance of elevation 402 

as a predictor for these glaciers. 403 

 404 

At Gulkana, the model residuals (Fig. S1) exhibited spatiotemporal consistency, with 405 

positive residuals (i.e., observed SWE exceeded modeled SWE by ~0.2 m w.e.) at mid-406 

elevations of the west branch, and at the very terminus of the glacier. The largest negative 407 
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residuals typically occurred at the highest elevations. In both cases, these locations 408 

deviated from the overall SWE elevation gradient. At Wolverine, observations at the 409 

highest elevations typically exceeded the modeled SWE, particularly in the northeast 410 

quadrant of the glacier where wind drifting is particularly prevalent (Fig. S2). Elsewhere 411 

at Wolverine, the residuals often alternated between positive and negative values over 412 

length scales of 10s to 100s of meters (Fig. S2), which we interpret as zones of scour/drift 413 

that were better captured by the regression tree models. 414 

 415 

The beta coefficients of terrain parameters from the MVR were fairly consistent from 416 

year-to-year at both glaciers (Fig. 6). At Wolverine, elevation was the largest beta 417 

coefficient, followed by Sb and curvature. At Gulkana, elevation was also the largest beta 418 

coefficient, followed by curvature. Gulkana experiences much greater variability in wind 419 

direction during the winter months (Fig. S6), possibly explaining why Sb was either not 420 

included or had a very low beta coefficient in the median regression model. As our 421 

surveys were completed prior to the onset of ablation, terrain parameters related to solar 422 

radiation gain (notably the terms that include aspect: northness and eastness) had small 423 

and variable beta coefficients.  424 

 425 

4.4. Spatial Variability 426 

A common approach for quantifying snow accumulation variability across a range of 427 

means is the coefficient of variation (CoV), calculated as the ratio of the standard 428 

deviation to the mean (Liston et al., 2004; Winstral and Marks, 2014). The mean and 429 

standard deviation of CoVs at Wolverine were 0.42 ± 0.03 and at Gulkana, 0.29 ± 0.05, 430 

indicating relatively lower spatial variability in SWE at Gulkana (Fig. 7). CoVs were 431 

fairly consistent across all five years, although 2017 saw the largest CoVs at both 432 

glaciers. Interestingly, 2017 had the lowest absolute spatial variability (i.e., lowest 433 

standard deviation), but also the lowest glacier-wide averages during the study period, 434 

resulting in greater CoVs. 435 

 436 

Qualitatively, both Wolverine and Gulkana glaciers exhibited consistent spatiotemporal 437 

patterns in accumulation across the glacier surface, with elevation exerting a first-order 438 
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control (Fig. 8, S7, S8). Overlaid on the strong elevational gradient are consistent 439 

locations of wind scour and deposition, reflecting the interaction of wind redistribution 440 

and complex – albeit relatively stable year to year – surface topography (consisting of 441 

both land and ice topography). For instance, numerous large drifts (~2 m amplitude, ~200 442 

m wavelength) occupy the northeast corner of Wolverine Glacier, where prevailing 443 

northeasterly winds consistently redistributed snow into sheltered locations in each year 444 

of the study period (Fig. 8). The different statistical extrapolation approaches produced 445 

nearly identical Bw estimates (4 % difference on average at Wolverine and 1 % difference 446 

on average at Gulkana) (Fig. 9). The MVR Bw estimate was larger in 4 out of 5 years at 447 

Wolverine (Fig. 9), while neither approach exhibited a consistent bias at Gulkana. 448 

 449 

Although the glacier-wide averages between these approaches showed close agreement, 450 

we explored the differences in spatial patterns by calculating a mean SWE difference 451 

map for each glacier by differencing the five-year mean SWE produced by the 452 

regressi0on tree model from the same produced by the MVR model (Fig. 10). As such, 453 

locations where the MVR exceeded the regression tree are positive (yellow). At Gulkana, 454 

where the two approaches showed slightly better glacier-wide Bw agreement, the 455 

magnitude in individual pixel differences were substantially less than at Wolverine (e.g., 456 

color bar scales range ± 0.2 m at Gulkana vs. ± 0.5 m at Wolverine). At Wolverine 457 

Glacier, there were three distinct elevation bands where the MVR approach predicted 458 

greater SWE, namely the main icefall in the ablation zone, a region of complex 459 

topography centered around a normalized elevation of 0.65, and lastly, at higher 460 

elevations, where both approaches predicted a series of drift and scour zones, although in 461 

sum, the MVR model predicted greater SWE. 462 

 463 

We used two different approaches to quantify the ‘time-stability’ of spatial patterns 464 

across these glaciers. By the first metric, normalized range, we found that both glaciers 465 

exhibited very similar patterns (Fig. 11), with either ~65 or 85 % (regression tree and 466 

MVR, respectively) of the glacier area experiencing less than 25 % absolute normalized 467 

variability (Fig. 12). The R2 approach provides an alternative way of assessing the time 468 

stability of SWE, essentially determining whether SWE at each location scales with the 469 
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glacier-wide value. By this metric, 80 % of the glacier area at Wolverine and 96 % of the 470 

glacier area at Gulkana had a coefficient of determination greater than 0.8 (Fig. 12), 471 

suggesting that most locations on the glacier have a consistent relationship with the mean 472 

glacier-wide mass balance. By both metrics, the MVR output suggests greater ‘time-473 

stability’ (e.g., lower normalized range or higher R2) compared to the regression tree. 474 

 475 

4.5. Winter mass balance 476 

In order to examine systematic variations between the approaches we outlined in Section 477 

3 for calculating the glacier-wide winter balance, Bw, we first calculated a yearly mean 478 

from the six approaches (including four based on the GPR observations: MVR, 479 

regression tree, elevation gradient derived from centerline only observations, elevation 480 

gradient derived from all point observations, and two based on the in situ stake network: 481 

site-index and profile). In general, Gulkana exhibited greater agreement (4 % average 482 

difference) among the approaches, with most approaches agreeing within 5 % of the six-483 

approach mean (Fig. 13; Table S2). Wolverine showed slightly less agreement (7 % 484 

average difference), as the two terrain parameters statistical extrapolations (MVR and 485 

regression tree) produced Bw estimates ~9 % above the mean, while the two stake derived 486 

estimates were ~7 % less than the mean. On average across all five years at Wolverine, 487 

the MVR approach was the most positive, while the glaciological site-index approach 488 

was always the most negative (Fig. 13). At both glaciers, the estimates using elevation as 489 

the only predictor yielded Bw estimates on average within 3 % of the six-method mean, 490 

with the centerline only based estimate being slightly negatively biased, and the complete 491 

observations being slightly positively biased. 492 

 493 

To examine the systematic difference between the glaciological site-index method and 494 

GPR-based MVR approach, we compared stake-derived 𝑏w values from the three long-495 

term stakes to all GPR-based MVR 𝑏w values within that index zone (Fig. 14). Both the 496 

stakes and the GPR-derived 𝑏w values have been normalized by the glacier-wide value to 497 

make these results comparable across years and glaciers. It is apparent that Wolverine 498 

experienced much greater spatial variability in accumulation, with larger interquartile 499 

ranges and a large number of positive outliers in all index zones. Importantly, the stake 500 
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weight in the site-index solution is dependent on the hypsometry of the glacier, and for 501 

both glaciers, the upper stake accounts for ~65 % of the weighted average. In years that 502 

the misfit between GPR Bw and site-index Bw was largest (2015 and 2016 at Gulkana, 503 

2013 and 2017 at Wolverine), the stake-derived 𝑏w at the upper stake was in the lower 504 

quartile of all GPR-derived 𝑏w values, explaining the significant difference in Bw 505 

estimates in these years. Potential reasons for this discrepancy are discussed in Section 506 

5.3. 507 

 508 

In situ stake and pit observations traditionally serve as the primary tool for deriving 509 

glaciological mass balances. However, in order for these observations to provide a 510 

systematic and meaningful long-term record, they need to record interannual variability 511 

in mass balance rather than interannual spatial variability in mass balance. To assess the 512 

performance of the long-term stake sites, we examined the interannual variability metrics 513 

for the stake locations. By both metrics (normalized absolute range and R2), the middle 514 

and upper elevation stakes at both glaciers appear to be in locations that achieve this 515 

temporal stability, having exhibited ~10 % range and R2>0.95 over the five-year interval. 516 

The lower elevation stake was less temporally stable and exhibited opposing behavior at 517 

each glacier. At Gulkana, this stake had a high R2 (0.93) and moderate normalized 518 

variability (26 %), which in part, reflects the lower total accumulation at this site and the 519 

ability for a single uncharacteristic storm to alter this total amount significantly. In 520 

contrast, Wolverine’s lowest site exhibited both low R2 (<0.01) and normalized range (2 521 

%), a somewhat unlikely combination. The statistical extrapolation approaches frequently 522 

predicted zero or near-zero cumulative winter accumulation at this site (i.e., mid-winter 523 

rain and/or ablation is common at this site), so although the normalized range was quite 524 

low, predicted SWE values were uncorrelated with Bw over the study interval. 525 

 526 

Discussion 527 

5.1. Interannual variability in spatial patterns 528 

Each glacier exhibited consistent normalized SWE spatial patterns across the five-year 529 

study, reflecting the strong control of elevation and regular patterns in wind redistribution 530 

in this complex topography (Fig. 11, S7, S8). This is particularly notable given the highly 531 
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variable magnitudes of accumulation over the five-year study and the contrasting climate 532 

regions of these two glaciers (wet, warm maritime and cold, dry continental), with unique 533 

storm paths, timing of annual accumulation, wind direction and wind direction 534 

variability, and snow density. At both glaciers, the lowest interannual variability was 535 

found away from locations with complex topography and elevated surface roughness, 536 

such as crevassed zones, glacier margins, and areas near peaks and ridges.   537 

 538 

In the most directly comparable study using repeat GPR surveys at Switzerland’s 539 

Findelgletscher, 86 % of the glacier area experienced less than 25 % range in relative 540 

normalized accumulation over a three-year interval (Sold et al., 2016). As noted in 541 

Section 3.4., we reported an absolute normalized range, whereas Sold et al. (2016) 542 

reported a relative normalized range. Following their calculation, we found that 81 and 543 

82 % of Wolverine and Gulkana’s area experienced a relative normalized range less than 544 

25 %. Collectively, our results add to the growing body of evidence (e.g., Deems et al., 545 

2008; Sturm and Wagner, 2010; Schirmer et al., 2011; Winstral and Marks, 2014) 546 

suggesting ‘time-stability’ in the spatial distribution of snow in locations that span a 547 

range of climate zones, topographic complexity, and relief. While the initial effort 548 

required to constrain the spatial distribution over a given area can be significant, the 549 

benefits of understanding the spatial distribution are substantial and long-lasting, and 550 

have a wide range of applications.  551 

 552 

5.1.1 Elevation  553 

Elevation explained between 50 and 83 % of the observed SWE variability at Gulkana 554 

and Wolverine, making it the most significant terrain parameter at both glaciers every 555 

year (Fig. 4, 6). Steep winter SWE gradients characterized both glaciers throughout the 556 

study period (115 – 440 mm 100 m-1). Such gradients are comparable to previous results 557 

for glaciers in the region (Pelto, 2008; Pelto et al., 2013; McGrath et al., 2015), but 558 

exceed reported orographic precipitation gradients in other mountainous regions by a 559 

factor of 2–3 (e.g., Anderson et al., 2014; Grünewald and Lehning, 2011). These steep 560 

gradients are likely the result of physical processes beyond just orographic precipitation, 561 

including storm systems that deliver snow at upper elevations and rain at lower elevations 562 
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(common at both Wolverine and Gulkana) and mid-winter ablation at lower elevations (at 563 

Wolverine). These processes have also been shown to steepen observed SWE gradients 564 

relative to orographic precipitation gradients in a mid-latitude seasonal snow watershed 565 

(Anderson et al., 2014). Unfortunately, given that we solely sampled snow distribution at 566 

the end of the accumulation season, the relative magnitude of each of these secondary 567 

processes is not constrained.  568 

 569 

Wolverine and Gulkana glaciers exhibited opposing SWE gradients at their highest 570 

elevations, with Wolverine showing a sharp non-linear increase in SWE, while Gulkana 571 

showed a gradual decrease. This non-linear increase was also noted at two maritime 572 

glaciers (Scott and Valdez) in 2013 (McGrath et al., 2015), and perhaps reflects an 573 

abundance of split precipitation phase storms in these warm coastal regions. The cause of 574 

the observed reverse gradient at Gulkana may be the result of wind scouring at the 575 

highest and most exposed sections of the glacier, or in part, a result of where we were 576 

able to safely sample the glacier. For instance, in 2013, when we were able to access the 577 

highest basin on the glacier, the SWE elevation gradient remained positive (Fig. 4). 578 

Reductions in accumulated SWE at the highest elevations have also been observed at 579 

Lemon Creek Glacier in southeast Alaska and Findel Glacier in Switzerland (Machguth 580 

et al., 2006), presumably related to wind scouring at these exposed elevations.  581 

 582 

5.1.2. Wind redistribution 583 

Both statistical extrapolation approaches found terrain parameters Sb and curvature, 584 

proxies for wind redistribution, to have the largest beta coefficients after elevation (Fig. 585 

6, S9). The spatial pattern of SWE estimated by each model clearly reflects the dominant 586 

influence of wind redistribution and elevation (Fig. 8), as areas of drift and scour are 587 

apparent, especially at higher elevations. However, these terms do not fully capture the 588 

redistribution process, as the model residuals (Fig. S1, S2) show sequential positive and 589 

negative residuals associated with drift/scour zones. There are a number of reasons why 590 

this might occur, including variable wind directions transporting snow (this is likely a 591 

more significant issue at Gulkana, which experiences greater wind direction variability 592 

(Fig. S6)), complex wind fields that are not well represented by a singular wind direction 593 
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(Dadic et al., 2010), changing surface topography (the glacier surface is dynamic over a 594 

range of temporal scales, changing through both surface mass balance processes and ice 595 

dynamics), and widely varying wind velocities. This is particularly relevant at Wolverine, 596 

where wind speeds regularly gust over 30 m s-1 during winter storms, speeds that result in 597 

variable length scales of redistribution that would not be captured by a fixed length scale 598 

of redistribution. All of these factors influence the redistribution of snow and limit the 599 

predictive ability of relatively simple proxies. Significant effort has gone into developing 600 

physically-based snow-distribution models (e.g., Alpine3D and SnowModel), however, 601 

high-resolution meteorological forcing data requirements generally limit the application 602 

of these models in glacierized basins. Where such observations do exist, previous studies 603 

have illuminated how the final distribution of snow is strongly correlated to the complex 604 

wind field, including vertical (surface normal) winds (Dadic et al., 2010).  605 

 606 

5.1.3. Differences with non-glaciated terrain 607 

Although our GPR surveys did not regularly include non-glaciated regions of these 608 

basins, a few key differences are worth noting. First, the length scales of variability on 609 

and off the glacier were distinctly different, with shorter scales and greater absolute 610 

variability (snow-free to >5 m in less than 10 m distance) off-glacier (Fig. S10). This 611 

point has been clearly shown using airborne LiDAR in a glaciated catchment in the 612 

Austrian Alps (Helfricht et al., 2014). The reduced variability on the glacier is largely due 613 

to surface mass balance and ice flow processes that act to smooth the surface, leading to a 614 

more spatially consistent surface topography, and therefore a more spatially consistent 615 

SWE pattern. For this reason, establishing a SWE elevation gradient on a glacier is likely 616 

much less prone to terrain-induced outliers compared to off-glacier sites, although the 617 

relationship of this gradient to off-glacier gradients is generally unknown.  618 

 619 

5.2. Spatial differences between statistical models 620 

The two statistical extrapolation approaches yielded comparable large-scale spatial 621 

distributions and glacier-wide averages, although there were some notable spatial 622 

differences (Fig. 10). The systematic positive bias of the MVR approach over the 623 

regression tree at Wolverine was due to three sectors of the glacier with both complex 624 
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terrain (i.e., icefalls) and large data gaps (typically locations that are not safe to access on 625 

ground surveys). The difference in predicted SWE in these locations is likely due to how 626 

the two statistical extrapolation approaches handle unsampled terrain parameter space. 627 

The MVR extrapolates based on global linear trends, while the regression tree assigns 628 

SWE from terrain that most closely resembles the under-sampled location. Anecdotally, 629 

it appears that the MVR may overestimate SWE in some of these locations, which is most 630 

evident in Wolverine’s lower icefall, where bare ice is frequently exposed at the end of 631 

the accumulation season (Fig. S11) in locations where the MVR predicted substantial 632 

SWE. Likewise, the regression tree models could be underestimating SWE in these 633 

regions, but in the absence of direct observations the errors are inherently unknown. The 634 

regression tree model captures more short length scale variability while the MVR model 635 

clarifies the larger trends. Consequently, smaller drifts and scours are captured well by 636 

the regression tree model in areas where the terrain parameter space is well surveyed, but 637 

the results become progressively less plausible as the terrain becomes more different 638 

from the sampled terrain parameter space. In contrast, the MVR model appears to give 639 

more plausible results at larger spatial scales. This suggests that there is some theoretical 640 

threshold where the regression tree is more appropriate if the terrain parameter space is 641 

sampled sufficiently, but that for many glacier surveys the MVR model would be more 642 

appropriate.  643 

 644 

5.3. Winter mass balance comparisons 645 

On average, all methods for estimating Bw were within ± 11 % of the six-method mean, 646 

(Fig. 13). The agreement (as measured by the average percent difference from the mean) 647 

between estimates was slightly better at Gulkana than Wolverine, likely reflecting the 648 

overall lower spatial variability at Gulkana and the greater percentage of the glacier area 649 

where bw correlates well with the glacier-wide average (Fig. 11 e, f). At both glaciers, Bw 650 

solutions based solely on elevation showed excellent agreement to the six-method mean, 651 

suggesting that this simple approach is a viable means for measuring Bw on these glaciers.   652 

The biggest differences occurred between the GPR-forced MVR model and the 653 

glaciological site-index method, which we’ve shown is attributed to the upper stake (with 654 

the greatest weight) underestimating the median SWE for that index zone (Fig. 14). The 655 
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upper stake location was established in 1966 at an elevation below the median elevation 656 

of that index zone, which given the strong elevation control on SWE, is a likely reason 657 

for the observed difference. At Gulkana, the relationship between the upper index site 658 

and the GPR-forced MVR model is more variable in large part due to observed 659 

differences in the accumulation between the main branch (containing the index site) and 660 

the west branch of the glacier (containing additional stakes added in 2009). Such basin-661 

scale differences are likely present on many glaciers with complex geometry, and thus 662 

illustrate potential uncertainties of using a small network of stakes to monitor the mass 663 

balance of these glaciers. In the context of the MVR model, this manifests as a change in 664 

sign in the eastness coefficient (which separates the branches in parameter space; Fig. 665 

S4). Notably, in the two years where the site-index estimate was most negatively biased 666 

at Gulkana (2015 and 2016), the glaciological profile method, relying on the more 667 

extensive stake network (which includes stakes in the west branch of the glacier), yielded 668 

Bw estimates within a few percent of the GPR-derived MVR estimate.  669 

 670 

These GPR-derived Bw results have important implications for the cumulative 671 

glaciological (stake-derived) mass balance time-series (currently only based on the site-672 

index method), which is calibrated with geodetic observations (O’Neel et al., 2014). It is 673 

important to remember that the previous comparisons (e.g., Fig. 13) were based on 674 

glaciological Bw values that have not had a geodetic calibration applied. At Wolverine, 675 

the cumulative annual glaciological mass balance solutions are positively biased 676 

compared to the geodetic mass balance solutions over decadal timescales, requiring a 677 

negative calibration (−0.43 m w.e. a–1; O’Neel et al., 2014) to be applied to the 678 

glaciological solutions. The source of this disagreement is some combination of the 679 

stake-derived winter and summer balances being too positive relative to the geodetic 680 

solution. On average, the GPR-derived Bw results were ~0.4 m w.e. more positive than the 681 

site-index Bw results at Wolverine, which would further increase the glaciological-682 

geodetic solution difference and suggest that the stake-derived glaciological solutions are 683 

underestimating ablation (Bs) by ~0.8 m w.e. a–1. Preliminary observations at Wolverine 684 

using ablation wires show that some sectors of the glacier experience very high ablation 685 

rates that are not captured by the stake network (e.g., crevassed zones through enhanced 686 
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shortwave solar radiation gain (e.g., Pfeffer and Bretherton, 1987; Cathles et al., 2011; 687 

Colgan et al., 2016), and/or increased turbulent heat fluxes due to enhanced surface 688 

roughness), and/or ice margins (through enhanced longwave radiation from nearby snow-689 

free land cover)). However, these results are not universal, as the assimilation of 690 

distributed GPR observations at Findelgletchter significantly improved the comparison 691 

between geodetic and modeled mass balance estimates (Sold et al., 2016), suggesting 692 

multiple drivers of glaciologic-geodetic mismatch for long-term mass balance programs. 693 

 694 

5.3.1. Implications for stake placement 695 

Understanding the spatiotemporal distribution of SWE is useful for informing stake 696 

placements and also for quantifying the uncertainty that interannual spatial variations in 697 

SWE introduce to historic estimates of glacier-wide mass balance, particularly when 698 

long-term mass balance programs rely on limited numbers of point observations (e.g., 699 

USGS and National Park Service glacier monitoring programs; O’Neel et al., 2014; 700 

Burrows, 2014). Our winter balance results illustrate that stakes placed at the same 701 

elevation are not directly comparable, and hence are not necessarily interchangeable in 702 

the context of a multi-year mass balance record. Most locations on the glacier exhibit bias 703 

from the average mass balance at that elevation and our results suggest interannual 704 

consistency in this bias over sub-decadal time scales. As a result, constructing a balance 705 

profile using a small number of inconsistently located stakes is likely to introduce large 706 

relative errors from one year to the next. 707 

 708 

Considering this finding, the placement of stakes to measure snow accumulation is 709 

dependent on whether a single glacier-wide winter mass balance value (Bw) or a spatially 710 

distributed SWE field is desired as a final product. For the former, a small number of 711 

stakes can be distributed over the glacier hypsometry in areas where interannual 712 

variability is low. Alternatively, if a distributed field is desired, a large number of stakes 713 

can be widely distributed across the glacier, including areas where the interannual 714 

variability is higher. In both cases it is important to have consistent locations from year to 715 

year, although as the number of stakes increases significantly, this becomes less critical. 716 

 717 
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We assess the uncertainty that interannual variability in the spatial distribution of SWE 718 

introduces to the historic index-method (March and Trabant, 1996) mass balance 719 

solutions by first calculating the uncertainty,	𝜎, contributed by each stake as: 720 

𝜎"$?@% = 𝜎ABC%D	E%"#CF?D" 	+	 (1 − 𝑟.) ∙ 𝑢 ,      (3) 721 

where 𝜎ABC%D	E%"#CF?D"  is the standard deviation of MVR model residuals over all five 722 

years within ± 30 meters of the index site, u is the mean bw within ± 30 meters of the 723 

index site, and R2 is the coefficient of determination between bw and Bw over the five-year 724 

period (Fig. 11). The first term on the right hand side of Eq. 3 accounts for both the 725 

spatial and temporal variability in the observed bw as compared to the model, and the 726 

second term accounts for the variability of the model as compared to Bw. The glacier-727 

wide uncertainty from interannual variability is then: 728 

𝐺𝑙𝑎𝑐𝑖𝑒𝑟	𝜎 = P∑ (𝜎"$?@% ∙ 𝑤"$?@%).?DD	"$?@%" ,     (4) 729 

where 𝑤"$?@%  is the weight function from the site-index method (which depends on stake 730 

location and glacier hypsometry). By this assessment, interannual variability in the spatial 731 

distribution of SWE at stake locations introduced minor uncertainty, on the order of 0.11 732 

m w.e. at both glaciers (4 % and 10 % of Bw at Wolverine and Gulkana, respectively). 733 

This suggests that the original stake network design at the benchmark glaciers does 734 

remarkably well at capturing the interannual variability in glacier-wide winter balance. 735 

The greatest interannual variability at each glacier is found at the lowest stake sites, but 736 

because bw and the stake weights are both quite low at these sites, they contribute only 737 

slightly to the overall uncertainty. Instead, the middle and upper elevation stakes 738 

contribute the greatest amount to the glacier-wide uncertainty.     739 

 740 

6. Conclusions 741 

We collected spatially extensive GPR observations at two glaciers in Alaska for five 742 

consecutive winters to quantify the spatiotemporal distribution of SWE. We found good 743 

agreement of glacier-average winter balances, Bw, among the four different approaches 744 

used to extrapolate GPR point measurements of SWE across the glacier hypsometry. 745 

Extrapolations relying only on elevation (i.e., a simple balance profile) produced Bw 746 

estimates similar to the more complicated statistical models, suggesting that this is an 747 

appropriate method for quantifying glacier-wide winter balances at these glaciers. The 748 
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more complicated approaches, which allow SWE to vary across a range of terrain-749 

parameters based on DEMs, show a high degree of temporal stability in the pattern of 750 

accumulation at both glaciers, as ~85 % of the area on both glaciers experienced less than 751 

25 % normalized absolute variability over the five-year interval. Elevation and the 752 

parameters related to wind redistribution had the most explanatory power, and were 753 

temporally consistent at each site. The choice between MVR and regression tree models 754 

should depend on both the range in terrain-parameter space that exists on the glacier, 755 

along with how well that space is surveyed.  756 

 757 

In total, six different methods (four based on GPR measurements and two based on stake 758 

measurements) for estimating the glacier-wide average agreed within ± 11 %. The site-759 

index glaciological Bw estimates were negatively biased compared to all other estimates, 760 

particularly when the upper-elevation stake significantly underestimated SWE in that 761 

index zone. In contrast, the profile glaciological approach, using a more extensive stake 762 

network, showed better agreement with the other approaches, highlighting the benefits of 763 

using a more extensive stake network.  764 

 765 

We found the spatial patterns of snow accumulation to be temporally stable on these 766 

glaciers, which is consistent with a growing body of literature documenting similar 767 

consistency in a wide variety of environments. The long-term stake locations experienced 768 

low interannual variability in normalized SWE, meaning that stake measurements tracked 769 

the interannual variability in SWE, rather than interannual variability in spatial patterns. 770 

The uncertainty associated with interannual spatial variability is only 4–10 % of the 771 

glacier-wide Bw at each glacier. Thus, our findings support the concept that sparse stake 772 

networks can be effectively used to measure interannual variability in winter balance on 773 

glaciers. 774 

 775 

Data Availability. The GPR and associated observational data used in this study can be 776 

accessed on the USGS Glaciers and Climate Project website 777 

(https://doi.org/10.5066/F7M043G7). The Benchmark Glacier mass balance input and 778 

output can be accessed at: https://doi.org/10.5066/F7HD7SRF (O’Neel et al., 2018). The 779 
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Gulkana DEM is available from the ArcticDEM project website 780 

(https://www.pgc.umn.edu/data/arcticdem/) and the Wolverine DEM is available at 781 

ftp://bering.gps.alaska.edu/pub/chris/wolverine/. A generalized version of the SWE 782 

extrapolation code is available at: https://github.com/danielmcgrathCSU/Snow-783 

Distribution. 784 
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 35 

Figure 1. Map of southern Alaska with study glaciers marked by red outline. All glaciers 1055 
in the region are shown in white (Pfeffer et al., 2014).  1056 

 1057 
 1058 
 1059 
 1060 
 1061 
Figure 2. Boxplots of glacier-wide winter balance for Gulkana and Wolverine glaciers 1062 
between 1966 and 2017. Years corresponding to GPR surveys are shown with colored 1063 
markers. These values have not been adjusted by the geodetic calibration (see O’Neel et 1064 
al., 2014).  1065 
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 1067 
 1068 
 1069 



 36 

Figure 3. GPR surveys from 2015 at Gulkana (a) and Wolverine (c) glaciers and MVR 1070 
model residuals (b, d).  1071 

 1072 
 1073 
 1074 
Figure 4. SWE from GPR surveys as a function of elevation, along with least squares 1075 
regression slope and coefficient of determination for each year of the study period. 1076 
Wolverine is plotted in blue, Gulkana in red.  1077 
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 1079 



 37 

Figure 5. Median and standard deviation (error bars) of coefficient of determination 1080 
(from 100 model runs) for both extrapolation approaches (circles are MVR, triangles are 1081 
regression tree) developed on training datasets and applied to test datasets. Symbols and 1082 
error bars are offset from year for clarity.  1083 
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 1100 
 1101 

Figure 6. Terrain parameter beta coefficients for (a) Gulkana and (b) Wolverine for 1102 
multivariable linear regression for each year of the study interval.  1103 

 1104 
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Figure 7. Spatial variability in snow accumulation across the glacier quantified by the 1105 
coefficient of variation (standard deviation/mean) for each glacier across the five-year 1106 
interval based on MVR model output. 1107 
 1108 

 1109 
 1110 
Figure 8. Five-year mean of normalized distributed SWE for Gulkana (a,b) and 1111 
Wolverine (c,d) for multivariable regression (a,c) and regression tree (b,d). 1112 

 1113 



 39 

Figure 9. Comparing statistical models for GPR-derived glacier-wide winter balances for 1114 
both Wolverine (blue) and Gulkana (red) glaciers. For each year and each glacier, two 1115 
boxplots are shown. The first shows multivariable regression model (MVR) output and 1116 
the second shows regression tree output (tree). The Bw estimate from the glaciological 1117 
profile method is shown for each year and glacier as the filled circle.  1118 
 1119 
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 40 

Figure 10.  SWE differences between statistical models for Gulkana (a) and Wolverine 1131 
(b) calculated by differencing the regression tree five-year mean SWE from the 1132 
multivariable regression (MVR) five-year mean SWE. Yellow colors indicate regions 1133 
where MVR yields more SWE than decision tree and blue colors indicate the opposite. 1134 
Note different magnitude colorbar scales. c) Summed SWE difference between methods 1135 
in bins of 0.05 normalized elevation values.  1136 
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 41 

Figure 11. Interannual variability of the SWE accumulation field from 2013–2017, 1151 
quantified via normalized range (a-d) and R2 (e-h) approach for median distributed fields 1152 
from the multivariable regression (left column) and regression tree (right column) 1153 
statistical models. 1154 
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 42 

Figure 12.  Interannual variability of the SWE accumulation pattern as a function of 1157 
cumulative glacier area, shown as (a) normalized range and (b) and R2. Solid lines are for 1158 
multivariable regression (MVR) and dashed lines are regression tree.  1159 
 1160 
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 43 

Figure 13. Percent deviation for each estimate from the six-method mean of Bw. 1176 
Individual years for Gulkana Glacier are shown in panels a-e with the five-year mean 1177 
shown in f. Individual years for Wolverine Glacier are shown in panels g-k, with the five-1178 
year mean shown in l. 1179 
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 44 

Figure 14. Spatial variability in snow accumulation for individual years (2013-2017) by 1196 
elevation (lower, middle, upper) compared to stake measurements. Box plot of all 1197 
distributed SWE values (from multivariable regression) for each index zone of the glacier 1198 
for Gulkana (a-e) and Wolverine (f-j) for 2013-2017. The filled circles are the respective 1199 
stake observation for that index zone. SWE is expressed as a percentage of  the glacier-1200 
wide average, Bw, for that year and glacier.  1201 
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Figure 15. Interannual variability in the spatial pattern of snow accumulation at long-term 1222 
mass balance stake locations for Wolverine and Gulkana glaciers using a) normalized bw 1223 
range and b) coefficient of determination (from Figure 11; MVR model). 1224 
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