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 2 
Dear authors,  3 
Thank you for your very thorough response to the reviewers’ comments. I have a few very 4 
minor points that I would like to see addressed before I can recommend your manuscript for 5 
publication.  6 
Thank you for your comments. 7 
 8 
- The use of R2 is a bit imprecise. Typically, the coefficient of determination is used as an 9 
indicator for the correlation between two datasets. However, in some places (e.g lines 590-10 
594, 719-723) the two datasets are not explicitly stated. Presumably, it is observations vs. 11 
model results but it would be a help to the reader if this was clarified (e.g. similar to what is 12 
stated in lines 643-646). 13 
We have clarified the datasets that are the basis for these R2 calculations. 14 
 15 
- The figures showing maps of the two glacier (Figs. 3, 8,10 and 11) would be easier to read if 16 
a “G” and “W” were added (if possible).  17 
We have added text labels “Wolverine and Gulkana” to Figure 3 to improve readability of this 18 
and subsequent figures. 19 
 20 
- In response to reviewer #1 ’s comment to line 642, please state that details on interpolation 21 
scheme and geodetic calibrations can be found in van Beusekom et al., 2010 and O’Neel et al., 22 
2014.  23 
We have added these references in the requested location. 24 
 25 
- I agree with M. Pelto’s request to line 387 re. mentioning how much the observed 26 
observations exceeded model results. In view of the large amount of data, it would be 27 
sufficient to give an example so the reader has an idea of the magnitude of the values. 28 
Something along the lines of “For example, in 2015 observed SWE exceeded modelled SWE by 29 
more/less than X amount for Y% of data points”.  30 
We have added the suggested calculation for a year as an example of the residual variability. 31 
 32 
I hope that you are willing to incorporate these changes so we can move forward with your 33 
interesting study. 34 
Best, 35 
Nanna 36 
 37 
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Abstract 59 
There is significant uncertainty regarding the spatiotemporal distribution of seasonal 60 
snow on glaciers, despite being a fundamental component of glacier mass balance. To 61 
address this knowledge gap, we collected repeat, spatially extensive high-frequency 62 
ground-penetrating radar (GPR) observations on two glaciers in Alaska during the spring 63 
of five consecutive years. GPR measurements showed steep snow water equivalent 64 
(SWE) elevation gradients at both sites; continental Gulkana Glacier’s SWE gradient 65 
averaged 115 mm 100 m–1 and maritime Wolverine Glacier’s gradient averaged 440 mm 66 
100 m–1 (over >1000 m). We extrapolated GPR point observations across the glacier 67 
surface using terrain parameters derived from digital elevation models as predictor 68 
variables in two statistical models (stepwise multivariable linear regression and 69 
regression trees). Elevation and proxies for wind redistribution had the greatest 70 
explanatory power, and exhibited relatively time-constant coefficients over the study 71 
period. Both statistical models yielded comparable estimates of glacier-wide average 72 
SWE (1 % average difference at Gulkana, 4 % average difference at Wolverine), 73 
although the spatial distributions produced by the models diverged in unsampled regions 74 
of the glacier, particularly at Wolverine. In total, six different methods for estimating the 75 
glacier-wide winter balance average agreed within ± 11 %. We assessed interannual 76 
variability in the spatial pattern of snow accumulation predicted by the statistical models 77 
using two quantitative metrics. Both glaciers exhibited a high degree of temporal 78 
stability, with ~85 % of the glacier area experiencing less than 25 % normalized absolute 79 
variability over this five-year interval. We found SWE at a sparse network (3 stakes per 80 
glacier) of long-term glaciological stake sites to be highly correlated with the GPR-81 
derived glacier-wide average. We estimate that interannual variability in the spatial 82 
pattern of winter SWE accumulation is only a small component (4–10 % of glacier-wide 83 
average) of the total mass balance uncertainty and thus, our findings support the concept 84 
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that sparse stake networks effectively measure interannual variability in winter balance 85 
on glaciers, rather than some temporally varying spatial pattern of snow accumulation.  86 
 87 
1. Introduction 88 

Our ability to quantify glacier mass balance is dependent on accurately resolving the 89 

spatial and temporal distributions of snow accumulation and snow/ice ablation. 90 

Significant advances in our knowledge of ablation processes have improved 91 

observational and modelling capacities (Hock, 2005; Huss and Hock, 2015; Fitzpatrick et 92 

al., 2017), yet comparable advances in our understanding of the distribution of snow 93 

accumulation have not kept pace (Hock et al., 2017). Reasons for this discrepancy are 94 

two-fold: (i) snow accumulation exhibits higher variability than ablation, both in 95 

magnitude and length scale, largely due to wind redistribution in the complex high-relief 96 

terrain where mountain glaciers are typically found (Kuhn et al., 1995) and (ii) 97 

accumulation observations are typically less representative (i.e., one stake in a few 98 

hundred meter elevation band) or less effective than comparable ablation observations 99 

(i.e., precipitation gage measuring snowfall vs. radiometer measuring short-wave 100 

radiation). This discrepancy presents a significant limitation to process-based 101 

understanding of mass balance drivers. Furthermore, a warming climate has already 102 

modified – and will continue to modify – the magnitude and spatial distribution of snow 103 

on glaciers through a reduction in the fraction of precipitation falling as snow and an 104 

increase in rain-on-snow events (McAfee et al., 2013; Klos et al., 2014; McGrath et al., 105 

2017; Beamer et al., 2017; Littell et al., 2018).  106 

 107 

Significant research has been conducted on the spatial and, to a lesser degree, the 108 

temporal variability of seasonal snow in mountainous and high-latitude landscapes (e.g., 109 

Balk and Elder, 2000; Molotch et al., 2005; Erickson et al., 2005; Deems et al., 2008; 110 

Sturm and Wagner, 2010; Schirmer et al., 2011; Winstral and Marks, 2014; Anderson et 111 

al., 2014; Painter et al., 2016). Although major advances have occurred in applying 112 

physically-based snow distribution models (i.e., iSnobal (Marks et al., 1999), SnowModel 113 

(Liston and Elder, 2006), Alpine 3D (Lehning et al., 2006)), the paucity of required 114 

meteorological forcing data proximal to glaciers limits widespread application. Many 115 

other studies have successfully developed statistical approaches that rely on the 116 
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relationship between the distribution of snow water equivalent (SWE) and physically-118 

based terrain parameters (also referred to as physiographic or topographic properties or 119 

variables) to model the distribution of SWE across entire basins (e.g., Molotch et al., 120 

2005; Anderson et al., 2014; Sold et al., 2013; McGrath et al., 2015). 121 

 122 

A major uncertainty identified by these studies is the degree to which these statistically 123 

derived relationships remain stationary in time. Many studies (Erickson et al., 2005; 124 

Deems et al., 2008; Sturm and Wagner, 2010; Schirmer et al, 2011; Winstral and Marks, 125 

2014; Helfricht et al., 2014) have found ‘time-stability’ in the distribution of SWE, 126 

including locations where wind redistribution is a major control on this distribution. For 127 

instance, a climatological snow distribution pattern, produced from the mean of nine 128 

standardized surveys, accurately predicted the observed snow depth in a subsequent 129 

survey in a tundra basin in Alaska (~4–10 cm root mean square error (RMSE); Sturm and 130 

Wagner, 2010). Repeat LiDAR surveys over two years at three hillslope-scale study plots 131 

in the Swiss Alps found a high degree of correlation (r=0.97) in snow depth spatial 132 

patterns (Schirmer et al., 2011). They found that the final snow depth distributions at the 133 

end of the two winter seasons were more similar than the distributions of any two 134 

individual storms during that two-year period (Schirmer et al., 2011). Lastly, an 11-year 135 

study of extensive snow probing (~1200 point observations) at a 0.36 km2 field site in 136 

southwestern Idaho found consistent spatial patterns (r=0.84; Winstral and Marks, 2014). 137 

Collectively, these studies suggest that in landscapes characterized by complex 138 

topography and extensive wind redistribution of snow, spatial patterns are largely time-139 

stable or stationary, as long as the primary drivers are stationary.  140 

 141 

Even fewer studies have explicitly examined the question of interannual variability in the 142 

context of snow distribution on glaciers. Spatially-extensive snow probe datasets are 143 

collected by numerous glacier monitoring programs (e.g., Bauder et al., 2017; Kjøllmoen 144 

et al., 2017; Escher-Vetter et al., 2009) in order to calculate a winter mass balance 145 

estimate. Although extensive, such manual approaches are still limited by the number of 146 

points that can be collected and uncertainties in correctly identifying the summer surface 147 

in the accumulation zone, where seasonal snow is underlain by firn. One study of two 148 
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successive end-of-winter surveys of snow depth using probes on a glacier in Svalbard 149 

found strong interannual variability in the spatial distribution of snow, and the 150 

relationship between snow distribution and topographic features (Hodgkins et al., 2006). 151 

Elevation was found to only explain 38–60 % of the variability in snow depth, and in one 152 

year, snow depth was not dependent on elevation in the accumulation zone (Hodgkins et 153 

al., 2006). Instead, aspect, reflecting relative exposure or shelter from prevailing winds, 154 

was found to be a significant predictor of accumulation patterns. In contrast, repeat 155 

airborne LiDAR surveys of a ~36 km2 basin (~50% glacier cover) in Austria over five 156 

winters found that the glacierized area exhibited less interannual variability (as measured 157 

by the interannual standard deviation) than the non-glacierized sectors of the basin 158 

(Helfricht et al., 2014). Similarly, a three-year study of snow distribution on 159 

Findelgletscher in the Swiss Alps using ground-penetrating radar (GPR) found low 160 

interannual variability, as 86 % of the glacier area experienced less than 25 % normalized 161 

relative variability (Sold et al., 2016). These latter studies suggest that seasonal snow 162 

distribution on glaciers likely exhibits ‘time-stability’ in its distribution, but few datasets 163 

exist to robustly test this hypothesis.  164 

 165 

The ‘time-stability’ of snow distribution on glaciers has particularly important 166 

implications for long-term glacier mass balance programs, as seasonal and annual mass 167 

balance solutions are derived from the integration of a limited number of point 168 

observations (e.g., 3 to 50 stakes), and the assumption that stake and snow pit 169 

observations accurately represent interannual variability in mass balance rather than 170 

interannual variability in the spatial patterns of mass balance. Previous work has shown 171 

‘time-stability’ in the spatial pattern of annual mass balance (e.g., Vincent et al., 2017) 172 

and while this is important for understanding the uncertainties in glacier-wide mass 173 

balance estimates, the relative contributions of accumulation and ablation to this stability 174 

are poorly constrained, thereby hindering a process-based understanding of these spatial 175 

patterns. Furthermore, accurately quantifying the magnitude and spatial distribution of 176 

winter snow accumulation on glaciers is a prerequisite for understanding the water budget 177 

of glacierized basins, with direct implications for any potential use of this water, whether 178 

that be ecological, agricultural, or human consumption (Kaser et al., 2010). 179 
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 180 

To better understand the ‘time-stability’ of the spatial pattern of snow accumulation on 181 

glaciers, we present five consecutive years of extensive GPR observations for two 182 

glaciers in Alaska. First, we use these GPR-derived SWE measurements to train two 183 

different types of statistical models, which were subsequently used to spatially 184 

extrapolate SWE across each glacier’s area. Second, we assess the temporal stability in 185 

the resulting spatial distribution in SWE. Finally, we compare GPR-derived winter mass 186 

balance estimates to traditional glaciological derived mass balance estimates and quantify 187 

the uncertainty that interannual variability in spatial patterns in snow accumulation 188 

introduces to these estimates. 189 

 190 

2. Study Area 191 

During the spring seasons of 2013 – 2017, we conducted GPR surveys on Wolverine and 192 

Gulkana glaciers, located on the Kenai Peninsula and eastern Alaskan Range in Alaska 193 

(Fig. 1). These glaciers have been studied as part of the U.S. Geological Survey’s 194 

Benchmark Glacier project since 1966 (O’Neel et al., 2014). Both glaciers are ~16 km2 in 195 

area and span ~1200 m in elevation (426 – 1635 m asl for Wolverine, 1163 – 2430 m asl 196 

for Gulkana). Wolverine Glacier exists in a maritime climate, characterized by warm air 197 

temperatures (mean annual temperature = –0.2 °C at 990 meters; median equilibrium line 198 

altitude for 2008 – 2017 is 1235 m asl) and high precipitation (median glacier-wide 199 

winter balance = 2.0 m water equivalent (m w.e.)), while Gulkana is located in a 200 

continental climate, characterized by colder air temperatures (mean annual temperature = 201 

–2.8 °C at 1480 meters; median equilibrium line altitude for 2008 – 2017 is 1870 m asl) 202 

and less precipitation (median glacier-wide winter balance = 1.2 m w.e.) (Fig. 2). The 203 

cumulative mass balance time series for both glaciers is negative (~ –24 m w.e. between 204 

1966–2016), with Gulkana showing a more monotonic decrease over the entire study 205 

interval, while Wolverine exhibited near equilibrium balance between 1966 and 1987, 206 

and sharply negative to present (O’Neel et al., 2014; O’Neel et al., 2018).  207 

 208 

3. Methods 209 
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The primary SWE observations are derived from a GPR measurement of two-way travel 210 

time (twt) through the annual snow accumulation layer. We describe five main steps to 211 

convert twt along the survey profiles to annual distributed SWE products for each glacier. 212 

These include (i) acquisition of GPR and ground-truth data, (ii) calculation of snow 213 

density and associated radar velocity, which are used to convert measured twt to annual 214 

layer depth and subsequently SWE, and (iii) application of terrain parameter statistical 215 

models to extrapolate SWE across the glacier area. We then describe approaches to (iv) 216 

evaluate the temporal consistency in spatial SWE patterns and (v) compare GPR-derived 217 

SWE and direct (glaciological) winter mass balances. 218 

 219 

3.1. Radar data collection and processing 220 

Common-offset GPR surveys were conducted with a 500 MHz Sensors and Software 221 

pulseEkko Pro system in late spring close to maximum end-of-winter SWE and prior to 222 

the onset of extensive surface melt. GPR parameters were set to a waveform-sampling 223 

rate of 0.1 ns, a 200-ns time window, and “Free Run” trace increments, where samples 224 

are collected as fast as the processor allows, instead of at uniform temporal or spatial 225 

increments. 226 

 227 

In general, GPR surveys were conducted by mounting a plastic sled behind a snowmobile 228 

and driving at a near-constant velocity of 15 km h–1 (Fig. 3, S1, S2), resulting in a trace 229 

spacing of ~20 cm. Coincident GPS data were collected using a Novatel Smart-V1 GPS 230 

receiver (Omnistar corrected, L1 receiver with root-mean-square accuracy of 0.9 m 231 

(Perez-Ruiz et al., 2011)). We collected a consistent survey track from year-to-year that 232 

minimized safety hazards (crevasses, avalanche runouts) but optimized the sampling of 233 

terrain parameter space on the glacier (e.g., range and distribution of elevation, slope, 234 

aspect, curvature, etc.). However, in 2016 at Wolverine Glacier, weather conditions and 235 

logistics did not allow for ground surveys to be completed. Instead, a number of radar 236 

lines were collected via a helicopter survey. To best approximate the ground surveys 237 

completed in other years, we selected a subset of helicopter GPR observations within 150 238 

m of the ground-based surveys. Previous comparisons between ground and helicopter 239 
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platforms found excellent agreement in SWE point observations (coefficient of 242 

determination (R2)=0.96, root mean square error=0.14 m; McGrath et al., 2015).  243 

 244 

Radargrams were processed using the ReflexW-2D software package (Sandmeier 245 

Scientific Software). All radargrams were corrected to time zero, taken as the first 246 

negative peak in the direct wave (Yelf and Yelf, 2006), and a dewow filter (mean 247 

subtraction) was applied over 2 ns. When reflectors from the base of the seasonal snow 248 

cover were insufficiently resolved, gain and band-pass filters were subsequently applied. 249 

Layer picking was guided by ground-truth efforts and done semi-automatically using a 250 

phase-following layer picker. For further details, please see McGrath et al. (2015). 251 

 252 

3.2. Ground truth observations 253 

We collected extensive ground-truth data to validate GPR surveys, including probing and 254 

snowpit/cores. In the ablation zone of each glacier, we probed the snowpack thickness 255 

every ~500 m along-track. In addition, we measured seasonal snow depth and density at 256 

an average of five locations (corresponding to the glaciological observations; see Section 257 

3.5) on each glacier in each year. Typically these locations include one or two in the 258 

ablation zone, one near the long-term ELA, and two or more in the accumulation zone. 259 

We measured snow density using a gravimetric approach in snowpits (at 10 cm intervals) 260 

and with 7.25 cm diameter cores (if total depth >2 m; at 10–40 cm intervals depending on 261 

natural breaks) to the previous summer surface. We calculated a density profile and 262 

column-average density, 𝜌"#$% , at each site.   263 

 264 

As snow densities did not exhibit a consistent spatial nor elevation dependency on the 265 

glaciers (e.g., Fausto et al., 2018), we calculated a single average density,	𝜌,	of all 𝜌"#$%  266 

on each glacier and each year, which was subsequently used to calculate SWE: 267 

 268 

𝑆𝑊𝐸 = ($-$
.
) ⋅ 𝑣" ⋅ 𝜌,         (1) 269 

 270 

where 𝑡𝑤𝑡 is the two-way travel time as measured by the GPR and 𝑣" is the radar 271 

velocity. 𝑣" was calculated for each glacier in each year as the average of two 272 
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independent approaches: (i) an empirical relationship based on the glacier-wide average 𝜌 273 

(Kovacs et al., 1995) and (ii) a least-squares regression between snow depth derived by 274 

probing and all radar 𝑡𝑤𝑡 observations within a 3-m radius of the probe site. An 275 

exception was made at Wolverine in 2016 as no coincident probe depth observations 276 

were made during the helicopter-based surveys. Instead, we estimated the second radar 277 

velocity by averaging radar velocities calculated from observed 𝑡𝑤𝑡 and snow depths at 278 

three snowpit/core locations. 279 

 280 

3.3. Spatial Extrapolation 281 

Extrapolating SWE from point measurements to the basin scale has been a topic of 282 

focused research for decades (e.g., Woo and Marsh, 1978; Elder et al., 1995; Molotch et 283 

al., 2005). Most commonly, the dependent variable SWE is related to a series of 284 

explanatory terrain parameters, which are proxies for the physical processes that actually 285 

control SWE distribution across the landscape. These include orographic gradient in 286 

precipitation (elevation), wind redistribution of existing snow (slope, curvature, drift 287 

potential), and aspect with respect to solar radiation and prevailing winds (eastness, 288 

northness). We derived terrain parameters from 10-m resolution digital elevation models 289 

(DEMs) sourced from the ArcticDEM project (Noh and Howat, 2015) for Gulkana and 290 

produced from airborne Structure from Motion photogrammetry at Wolverine (Nolan et 291 

al., 2015). Both DEMs were based on imagery from August 2015. Specifically, these 292 

parameters include elevation, surface slope, surface curvature, northness (Molotch et al., 293 

2005), eastness, and snow drift potential (Sb) (Winstral et al., 2002; Winstral et al., 2013; 294 

Fig. S3, S4). The Sb parameter is commonly used to identify locations where airflow 295 

separation occurs based on both near and far-field topography and are thus likely 296 

locations to accumulate snow drifts (Winstral et al., 2002). For specific details on this 297 

calculation, please refer to Winstral et al. (2002). In the application of Sb here, we 298 

determined the principle direction by calculating the modal daily wind direction during 299 

the winter (October – May) when wind speeds exceeded 5 m s–1 (~minimum wind 300 

velocity for snow transport; Li and Pomeroy, 1997). The length scales for curvature were 301 

found using an optimization scheme that identified the highest model R2.  302 

 303 
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Prior to spatial extrapolation, we aggregated GPR observations to the resolution of the 304 

DEM by calculating the median value of all observations within each 10 m pixel of the 305 

DEM. We then utilized two approaches to extrapolate GPR point observations across the 306 

glacier surface: (i) least-squares elevation gradient applied to glacier hypsometry and (ii) 307 

statistical models. For (i), we derived SWE elevation gradients in two ways; first, solely 308 

on observations that followed the glacier centerline and second, from the entire spatially-309 

extensive dataset. For (ii), we utilized two different models: stepwise multivariable linear 310 

regressions and regression trees (Breiman et al., 1984). All of these approaches produced 311 

a spatially-distributed SWE field over the entire glacier area. Individual points in this 312 

field are equivalent to point winter balances (bw; m w.e.). From the distributed bw field, 313 

we calculated a mean area-averaged winter balance (Bw; m w.e.). 314 

 315 

Additionally, we implemented a cross-validation approach to the statistical models 316 

(multivariable regression and regression tree), whereby 75 % of the aggregated 317 

observations were used for training and 25 % were used for testing. However, rather than 318 

randomly selecting pixels from across the entire dataset, we randomly selected a single 319 

pixel containing aggregated GPR observations and then extended this selection out along 320 

continuous survey lines until we reached 25 % of the total observational dataset, thus 321 

removing entire sections (and respective terrain parameters) from the analysis (Fig. S5). 322 

This approach provided a more realistic test for the statistical models, as the random 323 

selection of individual cells did not significantly alter terrain-parameter distributions. For 324 

each glacier and each year, we produced 100 training/test dataset combinations, but rather 325 

than take the single model with the highest R2 or lowest RMSE (between modelled SWE 326 

and the GPR-derived test dataset), we produced a distributed SWE product by taking the 327 

median value for each pixel from all 100 model runs and a glacier-wide median value 328 

that is the median of all 100 individual Bw estimates. We chose the median-value 329 

approach over a highest R2/lowest RMSE approach that is often utilized because, despite 330 

being randomly selected, some training datasets were inherently advantaged by a more 331 

complete sampling of terrain parameter distributions. These iterations resulted in the 332 

highest R2/lowest RMSE when applied to the training dataset, but weren’t necessarily 333 
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indicative of a better model, particularly in the context of being able to predict SWE at 342 

locations on the glacier where the terrain parameter space had not been well sampled. 343 

 344 

3.3.2. Stepwise Multivariable Linear Regression 345 

We used a stepwise multivariable linear regression model of the form,  346 

𝑆𝑊𝐸(#,4) = 𝑐6𝑥6(#,4) + 𝑐.𝑥.(#,4)+	. . . +𝑐:𝑥:(#,4) + 𝜀(#,4),	           (2) 347 

where SWE(i,j) is the predicted (standardized) value at location i,j and c1, c2, cn are the beta 348 

coefficients of the model, x1, x2, xn are terrain parameters which are independent variables 349 

that have been standardized and 𝜀 is the residual. We applied the regression model 350 

stepwise and included an independent variable if it minimized the Akaike information 351 

criterion (AIC; Akaike, 1974). We present the beta coefficients from each regression 352 

(each year, each glacier) to explore the temporal stability of these terms.  353 

 354 

3.3.3. Regression Trees 355 

Regression trees (Breiman et al., 1984) provide an alternative statistical approach for 356 

extrapolating point observations by recursively partitioning SWE into progressively more 357 

homogenous subsets based on independent terrain parameter predictors (Molotch et al., 358 

2005; Meromy et al., 2013; Bair et al., 2018). The primary advantage of the regression 359 

tree approach is that each terrain parameter is used multiple times to partition the 360 

observations, thereby allowing for non-linear interactions between these terms. In 361 

contrast, the MVR only allows for a single “global” linear relationship for each parameter 362 

across the entire parameter-space. We implemented a random forest approach (Breiman, 363 

2001) of repeated regression trees (100 learning cycles) in Matlab, using weak learners 364 

and bootstrap aggregating (bagging; Breiman, 1996). Each weak learner omits 37% of 365 

observations, such that these “out-of-bag” observations are used to calculate predictor 366 

importance. The use of this ensemble/bagging approach reduces overfitting and thus 367 

precludes having to subjectively prune the tree and provides more accurate and unbiased 368 

error estimates (Breiman, 2001). Prior to implementing the regression tree, we removed 369 

the SWE elevation gradient from the observations using a least-squares regression. As 370 

described in the results, elevation is the dominant independent variable and as our 371 

observations (particularly at Wolverine) did not cover the entire elevation range, the 372 
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regression tree approach was not well suited to predicting SWE at elevations outside of 374 

the observational range.  375 

 376 

3.4. Interannual variability in spatial patterns 377 

We quantified the stability of spatial patterns in SWE across the five-year interval using 378 

two approaches: (i) normalized range and (ii) the coefficient of determination. In the first 379 

approach, we first divided each pixel in the distributed SWE fields by the glacier-wide 380 

average, Bw, for each year and each glacier, and then calculated the range in these 381 

normalized values over the entire five-year interval. For example, if a cell had normalized 382 

values of 84 %, 92 %, 106 %, 112 % and 120 %, the normalized range would be 36 %. A 383 

limitation of this approach is that it is highly sensitive to outliers, such that a single year 384 

can substantially increase this range. This is similar to an approach presented by Sold et 385 

al. (2016), but unlike their calculation (their Fig. 9), the normalized values reported here 386 

have not been further normalized by the normalized mean of that pixel over the study 387 

interval. Thus, the values reported here are an absolute normalized range, whereas Sold et 388 

al. (2016) report a relative normalized range. In the coefficient of determination (R2) 389 

approach, we computed the least-squares regression correlation between the SWE in each 390 

pixel and the glacier-wide average, Bw, derived from the MVR model over the five-year 391 

period. For this approach, cells with a higher R2 scale linearly with the glacier-wide 392 

average, while those with low R2 do not.   393 

 394 

3.5. Glaciological mass balance 395 

Beginning in 1966, glacier-wide seasonal (winter, Bw; summer, Bs) and annual balances (Ba) 396 

were derived from glaciological measurements made at three fixed locations on each glacier. 397 

The integration of these point measurements was accomplished using a site-index method – 398 

equivalent to an area-weighted average (March and Trabant, 1996; van Beusekom et al., 2010). 399 

Beginning in 2009, a more extensive stake network of seven to nine stakes was established on 400 

each glacier, thereby facilitating the use of a balance profile method for spatial extrapolation 401 

(Cogley et al., 2011). Systematic bias in the glaciological mass balance time-series is removed 402 

via a geodetic adjustment derived from DEM differencing over decadal timescales (e.g., 403 

O’Neel et al., 2014). For this study, glaciological measurements were made within a day of the 404 
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GPR surveys, and integrated over the glacier hypsometry using both the historically applied 406 

site-index method (based on the long-term three stake network) and the more commonly 407 

applied balance profile method (based on the more extensive stake network). We utilized a 408 

single glacier hypsometry, derived from the 2015 DEMs, for each glacier over the entire five-409 

year interval. Importantly, in order to facilitate a more direct comparison to the GPR-derived 410 

Bw estimates, we used glaciological Bw estimates that have not been geodetically calibrated.  411 

 412 

4. Results 413 

4.1.  General accumulation conditions 414 

Since 1966, Wolverine Glacier’s median Bw (determined from the stake network) exceeds 415 

Gulkana’s by more than a factor of two (2.3 vs. 1.1 m w.e.), and exhibits greater 416 

variability, with an interquartile range more than twice as large (0.95 m w.e. vs. 0.4 m 417 

w.e.). Over the five-year study period, both glaciers experienced accumulation conditions 418 

that spanned their historical ranges, with one year in the upper quartile (including the 5th 419 

greatest Bw at Wolverine in 2016), one year within 25% of the median, and multiple years 420 

in the lower quartile (2017 at Gulkana and 2014 at Wolverine had particularly low Bw 421 

values) (Fig. 2). In all years, Bw at Wolverine was greater, although in 2013 and 2014, the 422 

difference was only 0.1 m w.e.  423 

 424 

Average accumulation season (taken as October 1 – May 31) wind speeds over the study 425 

period were stronger (~7 m s–1 vs. ~3 m s–1) and from a more consistent direction at 426 

Wolverine than Gulkana (northeast at Wolverine, southwest to northeast at Gulkana) 427 

(Fig. S6). On average, Wolverine experienced ~50 days with wind gusts >15 m s–1 each 428 

winter, while for Gulkana, this only occurred on ~7 days. Over the five-year study period, 429 

interannual variability in wind direction was very low at Wolverine (2016 saw slightly 430 

greater variability, with an increase in easterly winds). In contrast, at Gulkana, winds 431 

were primarily from the northeast to east in 2013–2015, from the southwest to south in 432 

2016–2017, and experienced much greater variability during any single winter.  433 

 434 

4.2. In situ and GPR point observations 435 
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Glacier-averaged snow densities across all years were 440 kg m–3 (range 414–456 kg m–436 
3) at Wolverine and 362 kg m–3 (range 328–380 kg m–3) at Gulkana (Table S1). Average 437 

radar velocities were 0.218 m ns–1 (range 0.207–0.229 m ns–1) at Wolverine and 0.223 m 438 

ns–1 (0.211–0.231 m ns–1) at Gulkana. Over this five-year interval, the GPR point 439 

observations revealed a general pattern of increasing SWE with elevation, along with 440 

fine-scale variability due to wind redistribution (e.g., upper elevations of Wolverine) and 441 

localized avalanche input (e.g., lower west branch of Gulkana) (Fig. S1, S2). The 442 

accumulation season (hereafter, winter) SWE elevation gradient was steeper (~440 vs. 443 

~115 mm 100 m–1) and more variable in its magnitude at Wolverine than Gulkana. 444 

Gradients ranged between 348 – 624 mm 100 m–1 at Wolverine, and 74 – 154 mm 100 m–445 
1 at Gulkana (Fig. 4). Over all five years at both glaciers, elevation explained between 50 446 

% and 83 % of the observed variability in SWE (Fig. 4). 447 

 448 

4.3. Model performance 449 

To evaluate model performance in unsampled locations of the glacier, both extrapolation 450 

approaches were run 100 times for each glacier and each year, each time with a unique, 451 

randomly selected training (75 % of aggregated observations) and test (remaining 25 % 452 

of aggregated observations) dataset. The median and standard deviation of the 453 

coefficients of determination (R2) between modeled SWE and the test datasets for the 100 454 

models runs are shown in Fig. 5. Model performance ranged from 0.25 to 0.75, but on 455 

average, across both glaciers and all years, was 0.56 for the MVR approach and 0.46 for 456 

the regression tree. Model performance was higher and more consistent at Wolverine, 457 

whereas 2015 and 2017 at Gulkana had test dataset R2 of ~0.4 and 0.3, likely reflecting 458 

the lower winter SWE elevation gradients and coefficients of determination with 459 

elevation during these years (Fig. 4). The wide range in R2 across the 100 model runs 460 

reflects the variability in training and test datasets that were randomly selected. When the 461 

test dataset terrain parameter space was captured by the training dataset, a high 462 

coefficient of determination resulted, but when the test dataset terrain parameter space 463 

was exclusive (e.g., contained only a small elevation range), the model performance was 464 

typically low. This further highlights the importance of elevation as a predictor for these 465 

glaciers. 466 
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 470 

At Gulkana, the model residuals (Fig. S1) exhibited spatiotemporal consistency, with 471 

positive residuals (i.e., observed SWE exceeded modeled SWE by ~0.2 m w.e.) at mid-472 

elevations of the west branch, and at the very terminus of the glacier. The largest negative 473 

residuals typically occurred at the highest elevations. In both cases, these locations 474 

deviated from the overall SWE elevation gradient. At Wolverine, observations at the 475 

highest elevations typically exceeded the modeled SWE (i.e., positive residuals), 476 

particularly at the highest elevations of the northeast corner where wind drifting is 477 

particularly prevalent (Fig. S2). For example, in 2015, nearly 80% of the residuals in this 478 

section were positive and had a median value of 0.4 m. Elsewhere at Wolverine, the 479 

residuals often alternated between positive and negative values over length scales of 10s 480 

to 100s of meters (Fig. S2), which we interpret as zones of scour/drift not captured by the 481 

MVR model.  482 

 483 

The beta coefficients of terrain parameters from the MVR were fairly consistent from 484 

year-to-year at both glaciers (Fig. 6). At Wolverine, elevation was the largest beta 485 

coefficient, followed by Sb and curvature. At Gulkana, elevation was also the largest beta 486 

coefficient, followed by curvature. Gulkana experiences much greater variability in wind 487 

direction during the winter months (Fig. S6), possibly explaining why Sb was either not 488 

included or had a very low beta coefficient in the median regression model. As our 489 

surveys were completed prior to the onset of ablation, terrain parameters related to solar 490 

radiation gain (notably the terms that include aspect: northness and eastness) had small 491 

and variable beta coefficients.  492 

 493 

4.4. Spatial Variability 494 

A common approach for quantifying snow accumulation variability across a range of 495 

means is the coefficient of variation (CoV), which is calculated as the ratio of the 496 

standard deviation to the mean (Liston et al., 2004; Winstral and Marks, 2014). The mean 497 

and standard deviation of CoVs at Wolverine were 0.42 ± 0.03 and at Gulkana, 0.29 ± 498 

0.05, indicating relatively lower spatial variability in SWE at Gulkana (Fig. 7). CoVs 499 

were fairly consistent across all five years, although 2017 saw the largest CoVs at both 500 
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glaciers. Interestingly, 2017 had the lowest absolute spatial variability (i.e., lowest 504 

standard deviation), but also the lowest glacier-wide averages during the study period, 505 

resulting in greater CoVs. 506 

 507 

Qualitatively, both Wolverine and Gulkana glaciers exhibited consistent spatiotemporal 508 

patterns in accumulation across the glacier surface, with elevation exerting a first-order 509 

control (Fig. 8, S7, S8). Overlaid on the strong elevational gradient are consistent 510 

locations of wind scour and deposition, reflecting the interaction of wind redistribution 511 

and complex – albeit relatively stable year to year – surface topography (consisting of 512 

both land and ice topography). For instance, numerous large drifts (~2 m amplitude, ~200 513 

m wavelength) occupy the northeast and northwest corners of Wolverine Glacier, where 514 

prevailing northeasterly winds consistently redistributed snow into sheltered locations in 515 

each year of the study period (Fig. 8). The different statistical extrapolation approaches 516 

produced nearly identical Bw estimates (4 % difference on average at Wolverine and 1 % 517 

difference on average at Gulkana) (Fig. 9). The MVR Bw estimate was larger in 4 out of 5 518 

years at Wolverine (Fig. 9), while neither approach exhibited a consistent bias at 519 

Gulkana. 520 

 521 

Although the glacier-wide averages between these approaches showed close agreement, 522 

we explored the differences in spatial patterns by calculating a mean SWE difference 523 

map for each glacier by differencing the five-year mean SWE produced by the regression 524 

tree model from the same produced by the MVR model (Fig. 10). As such, locations 525 

where the MVR exceeded the regression tree are positive (yellow). At Gulkana, where 526 

the two approaches showed slightly better glacier-wide Bw agreement, the magnitude in 527 

individual pixel differences were substantially less than at Wolverine (e.g., color bar 528 

scales range ± 0.2 m at Gulkana vs. ± 0.5 m at Wolverine). At Wolverine Glacier, there 529 

were three distinct elevation bands where the MVR approach predicted greater SWE, 530 

namely the main icefall in the ablation zone, a region of complex topography centered 531 

around a normalized elevation of 0.65, and lastly, at higher elevations, where both 532 

approaches predicted a series of drift and scour zones, although in sum, the MVR model 533 

predicted greater SWE. 534 
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 535 

We used two different approaches to quantify the ‘time-stability’ of spatial patterns 536 

across these glaciers. By the first metric, normalized range, we found that both glaciers 537 

exhibited very similar patterns (Fig. 11), with either ~65 or 85 % (regression tree and 538 

MVR, respectively) of the glacier area experiencing less than 25 % absolute normalized 539 

variability (Fig. 12). The R2 approach provides an alternative way of assessing the time 540 

stability of SWE, essentially determining whether SWE at each location scales with the 541 

glacier-wide value. By this metric, 80 % of the glacier area at Wolverine and 96 % of the 542 

glacier area at Gulkana (based on MVR model) had a coefficient of determination greater 543 

than 0.8 (Fig. 12), suggesting that most locations on the glacier have a consistent 544 

relationship with the mean glacier-wide mass balance. By both metrics, the MVR output 545 

suggests greater ‘time-stability’ (e.g., lower normalized range or higher R2) compared to 546 

the regression tree. 547 

 548 

4.5. Winter mass balance 549 

In order to examine systematic variations between the approaches we outlined in Section 550 

3 for calculating the glacier-wide winter balance, Bw, we first calculated a yearly mean 551 

from the six approaches (including four based on the GPR observations: MVR, 552 

regression tree, elevation gradient derived from centerline only observations, elevation 553 

gradient derived from all point observations, and two based on the in situ stake network: 554 

site-index and profile). In general, Gulkana exhibited greater agreement (4 % average 555 

difference) among the approaches, with most approaches agreeing within 5 % of the six-556 

approach mean (Fig. 13; Table S2). Wolverine showed slightly less agreement (7 % 557 

average difference), as the two terrain parameters statistical extrapolations (MVR and 558 

regression tree) produced Bw estimates ~9 % above the mean, while the two stake derived 559 

estimates were ~7 % less than the mean. On average across all five years at Wolverine, 560 

the MVR approach was the most positive, while the glaciological site-index approach 561 

was always the most negative (Fig. 13). At both glaciers, the estimates using elevation as 562 

the only predictor yielded Bw estimates on average within 3 % of the six-method mean, 563 

with the centerline only based estimate being slightly negatively biased, and the complete 564 

observations being slightly positively biased. 565 
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 566 

To examine the systematic difference between the glaciological site-index method and 567 

GPR-based MVR approach, we compared stake-derived 𝑏w values from the three long-568 

term stakes to all GPR-based MVR 𝑏w values within that index zone (Fig. 14). Both the 569 

stakes and the GPR-derived 𝑏w values have been normalized by the glacier-wide value to 570 

make these results comparable across years and glaciers. It is apparent that Wolverine 571 

experienced much greater spatial variability in accumulation, with larger interquartile 572 

ranges and a large number of positive outliers in all index zones. Importantly, the stake 573 

weight in the site-index solution is dependent on the hypsometry of the glacier, and for 574 

both glaciers, the upper stake accounts for ~65 % of the weighted average. In years that 575 

the misfit between GPR Bw and site-index Bw was largest (2015 and 2016 at Gulkana, 576 

2013 and 2017 at Wolverine), the stake-derived 𝑏w at the upper stake was in the lower 577 

quartile of all GPR-derived 𝑏w values, explaining the significant difference in Bw 578 

estimates in these years. Potential reasons for this discrepancy are discussed in Section 579 

5.3. 580 

 581 

In situ stake and pit observations traditionally serve as the primary tool for deriving 582 

glaciological mass balances. However, in order for these observations to provide a 583 

systematic and meaningful long-term record, they need to record interannual variability 584 

in mass balance rather than interannual variability in spatial patterns of mass balance. To 585 

assess the performance of the long-term stake sites, we examined the interannual 586 

variability metrics for the stake locations. By both metrics (normalized absolute range 587 

and R2), the middle and upper elevation stakes at both glaciers appear to be in locations 588 

that achieve this temporal stability, having exhibited ~10 % range and R2>0.95 over the 589 

five-year interval. The lower elevation stake was less temporally stable and exhibited 590 

opposing behavior at each glacier. At Gulkana, this stake had a high R2 (0.93) and 591 

moderate normalized variability (26 %), which in part, reflects the lower total 592 

accumulation at this site and the ability for a single uncharacteristic storm to alter this 593 

total amount significantly. In contrast, Wolverine’s lowest site exhibited both low R2 594 

(<0.01) and normalized range (2 %), a somewhat unlikely combination. The statistical 595 

models commonly predicted zero or near-zero cumulative winter accumulation at this site 596 
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(i.e., mid-winter rain and/or ablation is common at this site), so although the normalized 600 

range was quite low, predicted SWE values were uncorrelated with Bw over the study 601 

interval. 602 

 603 

Discussion 604 

5.1. Interannual variability in spatial patterns 605 

Each glacier exhibited consistent normalized SWE spatial patterns across the five-year 606 

study, reflecting the strong control of elevation and regular patterns in wind redistribution 607 

in this complex topography (Fig. 11, S7, S8). This is particularly notable given the highly 608 

variable magnitudes of accumulation over the five-year study and the contrasting climate 609 

regions of these two glaciers (wet, warm maritime and cold, dry continental), with unique 610 

storm paths, timing of annual accumulation, wind direction and wind direction 611 

variability, and snow density. At both glaciers, the lowest interannual variability was 612 

found away from locations with complex topography and elevated surface roughness, 613 

such as crevassed zones, glacier margins, and areas near peaks and ridges.   614 

 615 

In the most directly comparable study using repeat GPR surveys at Switzerland’s 616 

Findelgletscher, 86 % of the glacier area experienced less than 25 % range in relative 617 

normalized accumulation over a three-year interval (Sold et al., 2016). As noted in 618 

Section 3.4., we reported an absolute normalized range, whereas Sold et al. (2016) 619 

reported a relative normalized range. Following their calculation, we found that 81 and 620 

82 % of Wolverine and Gulkana’s area experienced a relative normalized range less than 621 

25 %. Collectively, our results add to the growing body of evidence (e.g., Deems et al., 622 

2008; Sturm and Wagner, 2010; Schirmer et al., 2011; Winstral and Marks, 2014) 623 

suggesting ‘time-stability’ in the spatial distribution of snow in locations that span a 624 

range of climate zones, topographic complexity, and relief. While the initial effort 625 

required to constrain the spatial distribution over a given area can be significant, the 626 

benefits of understanding the spatial distribution are substantial and long-lasting, and 627 

have a wide range of applications.  628 

 629 

5.1.1 Elevation  630 
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Elevation explained between 50 and 83 % of the observed SWE variability at Gulkana 631 

and Wolverine, making it the most significant terrain parameter at both glaciers every 632 

year (Fig. 4, 6). Steep winter SWE gradients characterized both glaciers throughout the 633 

study period (115 – 440 mm 100 m-1). Such gradients are comparable to previous results 634 

for glaciers in the region (Pelto, 2008; Pelto et al., 2013; McGrath et al., 2015), but 635 

exceed reported orographic precipitation gradients in other mountainous regions by a 636 

factor of 2–3 (e.g., Anderson et al., 2014; Grünewald and Lehning, 2011). These steep 637 

gradients are likely the result of physical processes beyond just orographic precipitation, 638 

including storm systems that deliver snow at upper elevations and rain at lower elevations 639 

(common at both Wolverine and Gulkana) and mid-winter ablation at lower elevations (at 640 

Wolverine). These processes have also been shown to steepen observed SWE gradients 641 

relative to orographic precipitation gradients in a mid-latitude seasonal snow watershed 642 

(Anderson et al., 2014). Unfortunately, given that we solely sampled snow distribution at 643 

the end of the accumulation season, the relative magnitude of each of these secondary 644 

processes is not constrained.  645 

 646 

Wolverine and Gulkana glaciers exhibited opposing SWE gradients at their highest 647 

elevations, with Wolverine showing a sharp non-linear increase in SWE, while Gulkana 648 

showed a gradual decrease. This non-linear increase was also noted at two maritime 649 

glaciers (Scott and Valdez) in 2013 (McGrath et al., 2015), and perhaps reflects an 650 

abundance of split precipitation phase storms in these warm coastal regions. The cause of 651 

the observed reverse gradient at Gulkana may be the result of wind scouring at the 652 

highest and most exposed sections of the glacier, or in part, a result of where we were 653 

able to safely sample the glacier. For instance, in 2013, when we were able to access the 654 

highest basin on the glacier, the SWE elevation gradient remained positive (Fig. 4). 655 

Reductions in accumulated SWE at the highest elevations have also been observed at 656 

Lemon Creek Glacier in southeast Alaska and Findel Glacier in Switzerland (Machguth 657 

et al., 2006), presumably related to wind scouring at these exposed elevations.  658 

 659 

5.1.2. Wind redistribution 660 
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Both statistical extrapolation approaches found terrain parameters Sb and curvature, 661 

proxies for wind redistribution, to have the largest beta coefficients after elevation (Fig. 662 

6, S9). The spatial pattern of SWE estimated by each model clearly reflects the dominant 663 

influence of wind redistribution and elevation (Fig. 8), as areas of drift and scour are 664 

apparent, especially at higher elevations. However, these terms do not fully capture the 665 

redistribution process, as the model residuals (Fig. S1, S2) show sequential positive and 666 

negative residuals associated with drift/scour zones. There are a number of reasons why 667 

this might occur, including variable wind directions transporting snow (this is likely a 668 

more significant issue at Gulkana, which experiences greater wind direction variability 669 

(Fig. S6)), complex wind fields that are not well represented by a singular wind direction 670 

(Dadic et al., 2010), changing surface topography (the glacier surface is dynamic over a 671 

range of temporal scales, changing through both surface mass balance processes and ice 672 

dynamics), and widely varying wind velocities. This is particularly relevant at Wolverine, 673 

where wind speeds regularly gust over 30 m s-1 during winter storms, speeds that result in 674 

variable length scales of redistribution that would not be captured by a fixed length scale 675 

of redistribution. All of these factors influence the redistribution of snow and limit the 676 

predictive ability of relatively simple proxies. Significant effort has gone into developing 677 

physically-based snow-distribution models (e.g., Alpine3D and SnowModel), however, 678 

high-resolution meteorological forcing data requirements generally limit the application 679 

of these models in glacierized basins. Where such observations do exist, previous studies 680 

have illuminated how the final distribution of snow is strongly correlated to the complex 681 

wind field, including vertical (surface normal) winds (Dadic et al., 2010).  682 

 683 

5.1.3. Differences with non-glaciated terrain 684 

Although our GPR surveys did not regularly include non-glaciated regions of these 685 

basins, a few key differences are worth noting. First, the length scales of variability on 686 

and off the glacier were distinctly different, with shorter scales and greater absolute 687 

variability (snow-free to >5 m in less than 10 m distance) off-glacier (Fig. S10). This 688 

point has been clearly shown using airborne LiDAR in a glaciated catchment in the 689 

Austrian Alps (Helfricht et al., 2014). The reduced variability on the glacier is largely due 690 

to surface mass balance and ice flow processes that act to smooth the surface, leading to a 691 
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more spatially consistent surface topography, and therefore a more spatially consistent 692 

SWE pattern. For this reason, establishing a SWE elevation gradient on a glacier is likely 693 

much less prone to terrain-induced outliers compared to off-glacier sites, although the 694 

relationship of this gradient to off-glacier gradients is generally unknown.  695 

 696 

5.2. Spatial differences between statistical models 697 

The two statistical extrapolation approaches yielded comparable large-scale spatial 698 

distributions and glacier-wide averages, although there were some notable spatial 699 

differences (Fig. 10). The systematic positive bias of the MVR approach over the 700 

regression tree at Wolverine was due to three sectors of the glacier with both complex 701 

terrain (i.e., icefalls) and large data gaps (typically locations that are not safe to access on 702 

ground surveys). The difference in predicted SWE in these locations is likely due to how 703 

the two statistical extrapolation approaches handle unsampled terrain parameter space. 704 

The MVR extrapolates based on global linear trends, while the regression tree assigns 705 

SWE from terrain that most closely resembles the under-sampled location. Anecdotally, 706 

it appears that the MVR may overestimate SWE in some of these locations, which is most 707 

evident in Wolverine’s lower icefall, where bare ice is frequently exposed at the end of 708 

the accumulation season (Fig. S11) in locations where the MVR predicted substantial 709 

SWE. Likewise, the regression tree models could be underestimating SWE in these 710 

regions, but in the absence of direct observations the errors are inherently unknown. The 711 

regression tree model captures more short length scale variability while the MVR model 712 

clarifies the larger trends. Consequently, smaller drifts and scours are captured well by 713 

the regression tree model in areas where the terrain parameter space is well surveyed, but 714 

the results become progressively less plausible as the terrain becomes distinctly different 715 

from the sampled terrain parameter space. In contrast, the MVR model appears to give 716 

more plausible results at larger spatial scales. This suggests that there is some theoretical 717 

threshold where the regression tree is more appropriate if the terrain parameter space is 718 

sampled sufficiently, but that for many glacier surveys the MVR model would be more 719 

appropriate.  720 

 721 

5.3. Winter mass balance comparisons 722 
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On average, all methods for estimating Bw were within ± 11 % of the six-method mean, 724 

(Fig. 13). The agreement (as measured by the average percent difference from the mean) 725 

between estimates was slightly better at Gulkana than Wolverine, likely reflecting the 726 

overall lower spatial variability at Gulkana and the greater percentage of the glacier area 727 

where bw correlates well with the glacier-wide average (Fig. 11 e, f). At both glaciers, Bw 728 

solutions based solely on elevation showed excellent agreement to the six-method mean, 729 

suggesting that this simple approach is a viable means for measuring Bw on these glaciers.   730 

The biggest differences occurred between the GPR-forced MVR model and the 731 

glaciological site-index method, which we’ve shown is attributed to the upper stake (with 732 

the greatest weight) underestimating the median SWE for that index zone (Fig. 14). The 733 

upper stake location was established in 1966 at an elevation below the median elevation 734 

of that index zone, which given the strong elevation control on SWE, is a likely reason 735 

for the observed difference. At Gulkana, the relationship between the upper index site 736 

and the GPR-forced MVR model is more variable in large part due to observed 737 

differences in the accumulation between the main branch (containing the index site) and 738 

the west branch of the glacier (containing additional stakes added in 2009). Such basin-739 

scale differences are likely present on many glaciers with complex geometry, and thus 740 

illustrate potential uncertainties of using a small network of stakes to monitor the mass 741 

balance of these glaciers. In the context of the MVR model, this manifests as a change in 742 

sign in the eastness coefficient (which separates the branches in parameter space; Fig. 743 

S4). Notably, in the two years where the site-index estimate was most negatively biased 744 

at Gulkana (2015 and 2016), the glaciological profile method, relying on the more 745 

extensive stake network (which includes stakes in the west branch of the glacier), yielded 746 

Bw estimates within a few percent of the GPR-derived MVR estimate.  747 

 748 

These GPR-derived Bw results have important implications for the cumulative 749 

glaciological (stake-derived) mass balance time-series (currently only based on the site-750 

index method), which is calibrated with geodetic observations (details on the site-index 751 

method and geodetic calibrations can be found in Van Beusekom et al., 2010 and O’Neel 752 

et al., 2014). It is important to remember that the previous comparisons (e.g., Fig. 13) 753 

were based on glaciological Bw values that have not had a geodetic calibration applied. At 754 
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Wolverine, the cumulative annual glaciological mass balance solutions are positively 755 

biased compared to the geodetic mass balance solutions over decadal timescales, 756 

requiring a negative calibration (−0.43 m w.e. a–1; O’Neel et al., 2014) to be applied to 757 

the glaciological solutions. The source of this disagreement is some combination of the 758 

stake-derived winter and summer balances being too positive relative to the geodetic 759 

solution. On average, the GPR-derived Bw results were ~0.4 m w.e. more positive than the 760 

site-index Bw results at Wolverine, which would further increase the glaciological-761 

geodetic solution difference and suggest that the stake-derived glaciological solutions are 762 

underestimating ablation (Bs) by ~0.8 m w.e. a–1. Preliminary observations at Wolverine 763 

using ablation wires show that some sectors of the glacier experience very high ablation 764 

rates that are not captured by the stake network (e.g., crevassed zones through enhanced 765 

shortwave solar radiation gain (e.g., Pfeffer and Bretherton, 1987; Cathles et al., 2011; 766 

Colgan et al., 2016), and/or increased turbulent heat fluxes due to enhanced surface 767 

roughness), and/or ice margins (through enhanced longwave radiation from nearby snow-768 

free land cover)). However, these results are not universal, as the assimilation of 769 

distributed GPR observations at Findelgletchter significantly improved the comparison 770 

between geodetic and modeled mass balance estimates (Sold et al., 2016), suggesting 771 

multiple drivers of glaciologic-geodetic mismatch for long-term mass balance programs. 772 

 773 

5.3.1. Implications for stake placement 774 

Understanding the spatiotemporal distribution of SWE is useful for informing stake 775 

placements and also for quantifying the uncertainty that interannual spatial variations in 776 

SWE introduce to historic estimates of glacier-wide mass balance, particularly when 777 

long-term mass balance programs rely on limited numbers of point observations (e.g., 778 

USGS and National Park Service glacier monitoring programs; O’Neel et al., 2014; 779 

Burrows, 2014). Our winter balance results illustrate that stakes placed at the same 780 

elevation are not directly comparable, and hence are not necessarily interchangeable in 781 

the context of a multi-year mass balance record. Most locations on the glacier exhibit bias 782 

from the average mass balance at that elevation and our results suggest interannual 783 

consistency in this bias over sub-decadal time scales. As a result, constructing a balance 784 
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profile using a small number of inconsistently located stakes is likely to introduce large 785 

relative errors from one year to the next. 786 

 787 

Considering this finding, the placement of stakes to measure snow accumulation is 788 

dependent on whether a single glacier-wide winter mass balance value (Bw) or a spatially 789 

distributed SWE field is desired as a final product. For the former, a small number of 790 

stakes can be distributed over the glacier hypsometry in areas where interannual 791 

variability is low. Alternatively, if a distributed field is desired, a large number of stakes 792 

can be widely distributed across the glacier, including areas where the interannual 793 

variability is higher. In both cases it is important to have consistent locations from year to 794 

year, although as the number of stakes increases significantly, this becomes less critical. 795 

 796 

We assess the uncertainty that interannual variability in the spatial distribution of SWE 797 

introduces to the historic index-method (March and Trabant, 1996) mass balance 798 

solutions by first calculating the uncertainty,	𝜎, contributed by each stake as: 799 

𝜎"$?@% = 𝜎ABC%D	E%"#CF?D" 	+	 (1 − 𝑅.) ∙ 𝑢 ,      (3) 800 

where 𝜎ABC%D	E%"#CF?D"  is the standard deviation of MVR model residuals over all five 801 

years within ± 30 meters of the index site, u is the mean bw within ± 30 meters of the 802 

index site, and R2 is the coefficient of determination between bw and Bw over the five-year 803 

period (Fig. 11). The first term on the right hand side of Eq. 3 accounts for both the 804 

spatial and temporal variability in the observed bw as compared to the model, and the 805 

second term accounts for the variability of the model as compared to Bw. The glacier-806 

wide uncertainty from interannual variability is then: 807 

𝐺𝑙𝑎𝑐𝑖𝑒𝑟	𝜎 = Q∑ (𝜎"$?@% ∙ 𝑤"$?@%).?DD	"$?@%" ,     (4) 808 

where 𝑤"$?@%  is the weight function from the site-index method (which depends on stake 809 

location and glacier hypsometry). By this assessment, interannual variability in the spatial 810 

distribution of SWE at stake locations introduced minor uncertainty, on the order of 0.11 811 

m w.e. at both glaciers (4 % and 10 % of Bw at Wolverine and Gulkana, respectively). 812 

This suggests that the original stake network design at the benchmark glaciers does 813 

remarkably well at capturing the interannual variability in glacier-wide winter balance. 814 

The greatest interannual variability at each glacier is found at the lowest stake sites, but 815 
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because bw and the stake weights are both quite low at these sites, they contribute only 816 

modestly to the overall uncertainty. Instead, the middle and upper elevation stakes 817 

contribute the greatest amount to the glacier-wide uncertainty.     818 

 819 

6. Conclusions 820 

We collected spatially extensive GPR observations at two glaciers in Alaska for five 821 

consecutive winters to quantify the spatiotemporal distribution of SWE. We found good 822 

agreement of glacier-average winter balances, Bw, among the four different approaches 823 

used to extrapolate GPR point measurements of SWE across the glacier hypsometry. 824 

Extrapolations relying only on elevation (i.e., a simple balance profile) produced Bw 825 

estimates similar to the more complicated statistical models, suggesting that this is an 826 

appropriate method for quantifying glacier-wide winter balances at these glaciers. The 827 

more complicated approaches, which allow SWE to vary across a range of terrain-828 

parameters based on DEMs, show a high degree of temporal stability in the pattern of 829 

accumulation at both glaciers, as ~85 % of the area on both glaciers experienced less than 830 

25 % normalized absolute variability over the five-year interval. Elevation and the 831 

parameters related to wind redistribution had the most explanatory power, and were 832 

temporally consistent at each site. The choice between MVR and regression tree models 833 

should depend on both the range in terrain parameter space that exists on the glacier, 834 

along with how well that space is surveyed.  835 

 836 

In total, six different methods (four based on GPR measurements and two based on stake 837 

measurements) for estimating the glacier-wide average agreed within ± 11 %. The site-838 

index glaciological Bw estimates were negatively biased compared to all other estimates, 839 

particularly when the upper-elevation stake significantly underestimated SWE in that 840 

index zone. In contrast, the profile glaciological approach, using a more extensive stake 841 

network, showed better agreement with the other approaches, highlighting the benefits of 842 

using a more extensive stake network.  843 

 844 

We found the spatial patterns of snow accumulation to be temporally stable on these 845 

glaciers, which is consistent with a growing body of literature documenting similar 846 
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consistency in a wide variety of environments. The long-term stake locations experienced 849 

low interannual variability in normalized SWE, meaning that stake measurements tracked 850 

the interannual variability in SWE, rather than interannual variability in spatial patterns. 851 

The uncertainty associated with interannual spatial variability is only 4–10 % of the 852 

glacier-wide Bw at each glacier. Thus, our findings support the concept that sparse stake 853 

networks can be effectively used to measure interannual variability in winter balance on 854 

glaciers. 855 

 856 

Data Availability. The GPR and associated observational data used in this study can be 857 

accessed on the USGS Glaciers and Climate Project website 858 

(https://doi.org/10.5066/F7M043G7). The Benchmark Glacier mass balance input and 859 

output can be accessed at: https://doi.org/10.5066/F7HD7SRF (O’Neel et al., 2018). The 860 

Gulkana DEM is available from the ArcticDEM project website 861 

(https://www.pgc.umn.edu/data/arcticdem/) and the Wolverine DEM is available at 862 

ftp://bering.gps.alaska.edu/pub/chris/wolverine/. A generalized version of the SWE 863 

extrapolation code is available at: https://github.com/danielmcgrathCSU/Snow-864 

Distribution. 865 
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Figure 1. Map of southern Alaska with study glaciers marked by red outline. All glaciers 1127 
in the region are shown in white (Pfeffer et al., 2014).  1128 

 1129 
 1130 
 1131 
 1132 
 1133 
Figure 2. Boxplots of glacier-wide winter balance for Gulkana and Wolverine glaciers 1134 
between 1966 and 2017. Years corresponding to GPR surveys are shown with colored 1135 
markers. These values have not been adjusted by the geodetic calibration (see O’Neel et 1136 
al., 2014).  1137 
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 1139 
 1140 
 1141 
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Figure 3. GPR surveys from 2015 at Gulkana (a) and Wolverine (c) glaciers and MVR 1142 
model residuals (b, d).  1143 

 1144 
 1145 
 1146 
Figure 4. SWE from GPR surveys as a function of elevation, along with least squares 1147 
regression slope and coefficient of determination for each year of the study period. 1148 
Wolverine is plotted in blue, Gulkana in red.  1149 
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 1151 
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Figure 5. Median and standard deviation (error bars) of coefficient of determination 1152 
(from 100 model runs) for both extrapolation approaches (circles are MVR, triangles are 1153 
regression tree) developed on training datasets and applied to test datasets. Symbols and 1154 
error bars are offset from year for clarity.  1155 
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Figure 6. Terrain parameter beta coefficients for (a) Gulkana and (b) Wolverine for 1174 
multivariable linear regression for each year of the study interval.  1175 
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Figure 7. Spatial variability in snow accumulation across the glacier quantified by the 1177 
coefficient of variation (standard deviation/mean) for each glacier across the five-year 1178 
interval based on MVR model output. 1179 
 1180 

 1181 
 1182 
Figure 8. Five-year mean of normalized distributed SWE for Gulkana (a,b) and 1183 
Wolverine (c,d) for multivariable regression (a,c) and regression tree (b,d). 1184 
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Figure 9. Comparing statistical models for GPR-derived glacier-wide winter balances for 1186 
both Wolverine (blue) and Gulkana (red) glaciers. For each year and each glacier, two 1187 
boxplots are shown. The first shows multivariable regression model (MVR) output and 1188 
the second shows regression tree output (tree). The Bw estimate from the glaciological 1189 
profile method is shown for each year and glacier as the filled circle.  1190 
 1191 
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Figure 10.  SWE differences between statistical models for Gulkana (a) and Wolverine 1203 
(b) calculated by differencing the regression tree five-year mean SWE from the 1204 
multivariable regression (MVR) five-year mean SWE. Yellow colors indicate regions 1205 
where MVR yields more SWE than decision tree and blue colors indicate the opposite. 1206 
Note different magnitude colorbar scales. c) Summed SWE difference between methods 1207 
in bins of 0.05 normalized elevation values.  1208 
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Figure 11. Interannual variability of the SWE accumulation field from 2013–2017, 1223 
quantified via normalized range (a-d) and R2 (e-h) approach for median distributed fields 1224 
from the multivariable regression (left column) and regression tree (right column) 1225 
statistical models. 1226 
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Figure 12.  Interannual variability of the SWE accumulation pattern as a function of 1229 
cumulative glacier area, shown as (a) normalized range and (b) and R2. Solid lines are for 1230 
multivariable regression (MVR) and dashed lines are regression tree.  1231 
 1232 
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 44 

Figure 13. Percent deviation for each estimate from the six-method mean of Bw. 1248 
Individual years for Gulkana Glacier are shown in panels a-e with the five-year mean 1249 
shown in f. Individual years for Wolverine Glacier are shown in panels g-k, with the five-1250 
year mean shown in l. 1251 
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Figure 14. Spatial variability in snow accumulation for individual years (2013-2017) by 1268 
elevation (lower, middle, upper) compared to stake measurements. Box plot of all 1269 
distributed SWE values (from multivariable regression) for each index zone of the glacier 1270 
for Gulkana (a-e) and Wolverine (f-j) for 2013-2017. The filled circles are the respective 1271 
stake observation for that index zone. SWE is expressed as a percentage of  the glacier-1272 
wide average, Bw, for that year and glacier.  1273 
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Figure 15. Interannual variability in the spatial pattern of snow accumulation at long-term 1294 
mass balance stake locations for Wolverine and Gulkana glaciers using a) normalized bw 1295 
range and b) coefficient of determination (from Figure 11; MVR model). 1296 
 1297 
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