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Abstract.  This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost 

conditions at 81-km2 resolution. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for 

Research and Applications-2 (MERRA-2) reanalysis were used to drive an improved version of the land component of 15 

MERRA-2 in middle-to-high northern latitudes from 1980 to 2017. The resulting simulated permafrost distribution across the 

Northern Hemisphere mostly captures the observed extent of continuous and discontinuous permafrost but misses the 

ecosystem-protected permafrost zones in western Siberia.  Noticeable discrepancies also appear along the southern edge of the 

permafrost regions where sporadic and isolated permafrost types dominate.  The evaluation of the simulated active layer 

thickness (ALT) against remote sensing retrievals and in-situ measurements demonstrates reasonable skill except in Mongolia. 20 

The RMSE (bias) of climatological ALT is 1.22 m (-0.48 m) across all sites and 0.33 m (-0.04 m) without the Mongolia sites. 
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In northern Alaska, both ALT retrievals from airborne remote sensing for 2015 and the corresponding simulated ALT exhibit 

limited skill versus in-situ measurements at the model scale. Although the simulated ALT agrees well with the remotely sensed 

ALT when considering measurement uncertainty, it demonstrates larger spatial variability than the ALT retrievals.  Controls 

on the spatial variability of ALT are examined with idealized numerical experiments focusing on northern Alaska; 

meteorological forcing and soil types are found to have dominant impacts on the spatial variability of ALT, with vegetation 5 

also playing a role through its modulation of snow accumulation. A correlation analysis further reveals that accumulated above-

freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT nearly 

everywhere over the model-simulated permafrost regions. 

 

1 Introduction 10 

Permafrost is an important component of the climate system, and its variations can have significant impacts on climate and 

society.  Of deep concern is a potential positive feedback loop by which carbon stored within permafrost regions is released 

through global warming, thereby adding greenhouse gases to the atmosphere that accelerate the warming further (Dorrepaal et 

al., 2009; Schuur et al., 2009; MacDougall et al., 2012; Schuur et al., 2015). Communities and infrastructure in ice-rich 

permafrost regions are particularly vulnerable to land subsidence and infrastructure damage caused by permafrost thaw (Nelson 15 

et al., 2001; Liu et al., 2010; Guo and Sun, 2015).   

 

Permafrost variations, including pronounced permafrost degradation due to a warming climate, have been reported for many 

regions, including Alaska (Nicholas and Hinkel, 1996; Osterkamp and Romanovsky, 1996; Jorgenson et al., 2001; Hinkel and 

Nelson, 2003; Jafarov et al., 2012; Liu et al., 2012; Jones et al., 2016; Batir et al., 2017), Canada (Chen et al., 2003; James et 20 

al., 2013), Norway (Gisnas et al., 2013), Sweden (Pannetier and Frampton, 2016), Russia (Romanovsky et al., 2007; 

Romanovsky et al., 2010), Mongolia (Sharkhuu and Sharkhuu, 2012), and the Qinghai–Tibet Plateau (Zhou et al., 2013; Wang 

et al., 2016a; Lu et al., 2017; Ran et al., 2018).  For the entire Northern Hemisphere, rapidly accelerated permafrost degradation 

in recent years has been reported by Luo et al. (2016) based on in-situ measurements at a point-scale or a spatially-aggregated 

https://link.springer.com/article/10.1023/A:1005667424292
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scale (up to 1000m×1000m) from the Circumpolar Active Layer Monitoring (CALM) network. However, the current state and 

evolution of global permafrost (including permafrost temperature, ice content, and degradation rates) are still largely unknown 

across much of the Northern latitudes.  

 

The impact of a changing climate on permafrost dynamics must depend on local site characteristics. Subsurface heat transfer 5 

processes and active layer thickness (ALT; the maximum thaw depth at the end of the thawing season) are influenced by more 

than surface meteorological forcing – they are also influenced by vegetation type, surface organic layer characteristics, soil 

properties and soil moisture (Stieglitz et al., 2003; Shur and Jorgenson, 2007; Yi et al., 2007; Luetschg et al., 2008; Dankers 

et al., 2011; Johnson et al., 2013; Jean and Payette, 2014; Yi et al., 2015; Fisher et al., 2016; Matyshak et al., 2017; Tao et al., 

2017). Understanding the contributions from the different controls on ALT (and permafrost conditions in general) is crucial 10 

for assessing permafrost behaviour and its resilience to a warming climate.  

 

Physically-based numerical model simulations are potentially useful for quantifying and understanding these dynamics at large 

spatial scales; they can also provide insights into associated impacts on the global carbon cycle.  Permafrost dynamics can be 

modelled, for example, by driving a land surface model (LSM) offline (i.e., uncoupled from an atmospheric model) with 15 

meteorological forcing data (including air temperature, radiation, precipitation, etc.) from some credible source.  LSMs that 

have been used to quantify large-scale permafrost patterns (i.e., distributions and thermal states) and their interactions with a 

warming climate include, for example, the Joint UK Land Environment Simulator (JULES, Dankers et al., 2011), the 

ORganizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE) - aMeliorated Interactions between Carbon and 

Temperature (ORCHIDEE-MICT, Guimberteau et al., 2018), the Catchment Land Surface Model (CLSM, Tao et al., 2017), 20 

and the Community Land Model (Alexeev et al., 2007; Nicolsky et al., 2007a; Yi et al., 2007; Lawrence and Slater, 2008; 

Lawrence et al., 2008; Lawrence et al., 2012; Koven et al., 2013; Chadburn et al., 2017; Guo and Wang, 2017). Most of these 

land models were run at coarse spatial resolutions, e.g., ranging from 0.5° × 0.5° to 1.8° × 3.6° for LSMs participating in the 

Permafrost Carbon Network (PCN) (Wang et al., 2016a) and from 0.188° × 0.188° to 4.10° × 5° for the models participating 



4 

 

in the Coupled Model Intercomparison Project phase 5 (CMIP5) (Koven et al., 2013; https://portal.enes.org/data/enes-model-

data/cmip5/resolution).  

 

Differences in the permafrost behaviour simulated with these models reflect model-specific process representations as well as 

biases associated with different meteorological forcing datasets (Barman and Jain, 2016; Wang et al., 2016a; Wang et al., 5 

2016b; Guo et al., 2017; Guimberteau et al., 2018).  Such forcing biases are difficult to avoid given the sparsity of direct 

observations of meteorological variables in most parts of the high latitudes. Even reanalyses, which assimilate a variety of 

global observations, inevitably have biases in high latitudes due to observation sparsity in cold regions combined with the 

many challenges of physical process modelling.  Nevertheless, despite these issues, permafrost behaviour simulated with LSMs 

driven offline by reanalysis forcing fields can still be useful for understanding the impacts of climate variability on permafrost. 10 

The present paper utilizes this approach.  Specifically, we generate here a dataset of Northern Hemisphere permafrost 

conditions by driving an updated version of NASA’s Catchment Land Surface Model (CLSM) with Modern-Era Retrospective 

Analysis for Research and Applications-2 (MERRA-2; Gelaro et al., 2017) surface meteorological forcing fields for the 

middle-to-high latitudes across the Northern Hemisphere over the period 1980-2017.  We perform the simulations at 81 km2 

resolution encompassing permafrost areas in the middle-to-high latitudes of the Northern Hemisphere.  This resolution is high 15 

relative to most existing modelling studies at the global scale; published simulations at higher resolution are limited to plot 

scales (e.g., CALM-site scale in Shiklomanov et al. (2010)), landscape scales (e.g., polygonal tundra landscape scale in Kumar 

et al. (2016)), or regional scales (e.g., 4 km2 in  Jafarov et al. (2012) covering Alaska; 1 km2 in Gisnas et al. (2013) covering 

Norway). 

 20 

Due to the sparsity of in-situ measurements at the regional to global scale, evaluating the spatial pattern of ALT produced by 

any such simulation remains challenging. Indeed, it is difficult to compare the simulated values at model resolutions with in-

situ observations taken at the point scale unless the measurement point is uniformly representative of the area covered by the 

model grid cell or the representation errors associated with the point-to-grid comparison are well defined. Remotely sensed 

permafrost products, which provide a unique source of spatially distributed ALT at the landscape-scale, may provide help in 25 
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this regard. Existing remote sensing ALT products have been retrieved from ground-based Ground Penetrating Radar (GPR) 

(Chen et al., 2016a; Jafarov et al., 2017), airborne polarimetric Synthetic Aperture Radar (SAR), and spaceborne 

interferometric SAR (Liu et al., 2012; Li et al., 2015; Schaefer et al., 2015). These ALT products are available at the landscape-

scale and can complement our modelling analysis. In this study, we use remote sensing information from the NASA Airborne 

Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission.  In 2015, AirMOSS acquired P-band (420-440 5 

MHz) SAR observations over portions of northern Alaska from which Chen et al. (2019) retrieved regional estimates of ALT 

and soil layer dielectric properties that are related to soil moisture and freeze/thaw states. In their study, Chen et al. (2019) 

mainly focus on the development and improvement of the ALT retrieval algorithm, whereas the present study uses the ALT 

retrievals in combination with in-situ measurements to aid in assessing the (fully independent) ALT simulations.   

 10 

In the present paper, we evaluate our simulated permafrost extent and ALTs against an observations-based permafrost 

distribution map and against multi-year in-situ observations.  We also compare the skill of our model estimates to that of the 

AirMOSS ALT retrievals.  In these comparisons, we account for uncertainty to the extent possible.  Overall, we pursue three 

scientific objectives: 1) evaluate the relative importance of the factors that determine the spatial variability of ALT, 2) evaluate 

CLSM-simulated ALT and permafrost extent against observations, and 3) quantify and assess the large-scale characteristics 15 

of ALT (in terms of means and interannual variability) in Northern Hemisphere permafrost regions from 1980 through 2017.  

As a side benefit, the side-by-side comparison of modelled and remotely sensed ALT estimates is an important first step toward 

combining this information effectively in future model-data fusion efforts.  Section 2 below describes the model and datasets 

used in this study, Section 3 describes methods, and Section 4 provides results.  Our findings are summarized and discussed 

in Section 5. 20 
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2 Model and data sets 

2.1 NASA Catchment Land Surface Model (CLSM) 

CLSM is the land model component of NASA’s Goddard Earth Observing System (GEOS) Earth system model and was part 

of the model configuration underlying the MERRA-2 reanalysis product (Reichle et al., 2017a; Gelaro et al., 2017). CLSM 

explicitly accounts for sub-grid heterogeneity in soil moisture characteristics with a statistical approach (Koster et al., 2000; 5 

Ducharne et al., 2000).  The land fraction within each computational unit (or grid cell) is partitioned into three soil moisture 

regimes, namely the wilting (i.e., non-transpiring), unsaturated, and saturated area fractions. Over each of the three moisture 

regimes, a distinct parameterization is applied to estimate the relevant physical processes (e.g., runoff and evapotranspiration).  

This version of CLSM includes a three-layer snow model that estimates the evolution of snow water equivalent (SWE), snow 

depth, and snow heat content (Stieglitz et al., 2001) in response to the forcing data.  The snow model accounts for key physical 10 

mechanisms that contribute to the growth and ablation of the snowpack, including snow accumulation, aging, melting, and 

refreezing.  The model also includes the insulation of the ground from the atmosphere by the snowpack.  The CLSM subsurface 

heat transfer module uses an explicit finite difference scheme to solve the heat diffusion equation for six soil layers (0-0.1m, 

0.1-0.3m, 0.3-0.7m, 0.7-1.4m, 1.4-3m, and 3-13m). The soil layer thicknesses increase with depth following a geometric series 

for consistency with the linear heat diffusion calculation (Koster et al., 2000). A no-heat-flux condition is employed at 13m 15 

depth. 

 

The updated version of CLSM used here includes modifications aimed at improving permafrost simulation.  It accounts, for 

example, for the impact of soil carbon on the soil thermal properties with soil porosity, thermal conductivity, and specific heat 

capacity calculated separately for mineral soil and soil carbon, after which the two are averaged using a carbon-weighting 20 

scheme.  Higher (lower) soil carbon content, therefore, results in lower (higher) soil thermal conductivity.  The updated version 

produces more realistic subsurface thermodynamics in cold regions than does the original scheme (Tao et al., 2017). This 

version of CLSM, however, does not include dynamic soil carbon pools. 
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Particularly relevant to the present analysis is our calculation of ALT from CLSM simulation output.  We compute ALT from 

the simulated soil temperature profile and the ice content within the soil layer that contains the thawed-to-frozen transition. 

Precisely, the thawed-to-frozen depth is calculated as:  

zbottom(𝑙) − fice(𝑙, t) × ∆z(𝑙),         (1) 

where layer 𝑙 is the deepest layer that is fully or partially thawed, zbottom(𝑙) represents the depth at the bottom of layer 𝑙, 5 

fice(𝑙, t) is the fraction of ice in layer 𝑙 at time t (i.e., fice(𝑙, t) ∈ [0  1]), and ∆z(𝑙) is the thickness of layer 𝑙. To identify layer 

𝑙, we use a 0⁰C degree temperature threshold. Specifically, T > 0⁰C degree indicates that a layer is fully thawed, T = 0⁰C degree 

indicates that a layer is partially thawed, and T < 0⁰C degree indicates that a layer is fully frozen. That is, layer 𝑙 is the deepest 

layer that satisfies T(𝑙) ≥ 0⁰C. Equation (1) then expresses that the thawed-to-frozen depth is equal to the bottom depth of the 

layer 𝑙 but adjusted upward according to the ice fraction within the partially thawed layer 𝑙.  This upward adjustment, by the 10 

way, allows the thawed-to-frozen depth to be a continuous variable; it is not quantized to the imposed layer depths. We search 

for the deepest 𝑙 if multiple thawed-to-frozen transitions are present (e.g., if a seasonal frost at the surface is separated from 

the permafrost below by a thawed soil layer). The annual ALT for a given year, then, is defined as the deepest depth at which 

a thawed-to-frozen transition occurs within that year. Note that the calculation of equation (1) is made at the scale of a model 

grid cell, and thus features such as talik are not represented if they occur at sub-grid cell scale.    15 

 

We drive the improved CLSM version of Tao et al. (2017) in a land-only (offline) configuration across permafrost areas in the 

Northern Hemisphere. The simulation domain, shown in Figure 1a, covers the major permafrost regions of the Northern 

Hemisphere middle-to-high latitudes for which soil carbon data are available from the Northern Circumpolar Soil Carbon 

Database version 2 (NCSCDv2, https://bolin.su.se/data/ncscd/) (Hugelius et al., 2013a; Hugelius et al., 2013b).  The NCSCDv2 20 

data are used to calculate the CLSM soil thermal properties used in the simulations (Tao et al., 2017).  The model simulation 

covered the period from 1980 to 2017 and was performed at an 81-km2 spatial resolution on the 9-km Equal-Area Scalable 

Earth grid, version 2 (Brodzik et al., 2012).   
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Surface meteorological forcings were extracted from the MERRA-2 reanalysis data, which are provided at a resolution of 0.5° 

latitude × 0.625° longitude (Global Modeling and Assimilation Office (GMAO), 2015a, b).  At latitudes south of 62.5°N within 

our simulation domain, the MERRA-2 precipitation forcing used here is informed by gauge measurements from the daily 0.5° 

global Climate Prediction Center Unified gauge product (Chen et al., 2008) as described in (Reichle et al., 2017b).  We further 

rescaled the precipitation to the long-term, seasonally varying climatology of the Global Precipitation Climatology Project 5 

version 2.2 product (Huffman et al., 2009). Further details regarding model parameters and forcing inputs are found in Tao et 

al. (2017).   

 

The model was spun-up for 180 years by looping five successive times through the 36-year period of MERRA-2 forcing from 

1 January 1980 to 1 January 2016 in order to achieve a quasi-equilibrium state.  The spatial terrestrial state variables at the end 10 

of the fifth loop were used to initialize the model for the final simulation experiment from 1980 to 2017.   

 

2.2 Remotely Sensed ALT from AirMOSS 

Radar backscatter measurements are sensitive to changes in the soil dielectric constant (or relative permittivity) which in turn 

are associated with changes in soil moisture and the soil freeze-thaw state. Based on this relationship, Chen et al. (2019) used 15 

the AirMOSS airborne P-band (420-440 MHz) synthetic aperture radar (SAR) observations collected during two campaigns 

in 2015 to estimate ALT in northern Alaska.  As shown in Figure 2a, the AirMOSS flights originated from Fairbanks 

International Airport and headed west toward the Seward Peninsula (HUS, KYK, COC), then turned back east (KGR) prior to 

heading north towards the Arctic coast overpassing Ambler (AMB), Ivotuk (IVO), and Atqasuk (ATQ).  From there, the flights 

turned south again, flying over Barrow (BRW), Deadhorse (DHO), and Coldfoot (CFT) en route to Fairbanks.  In the present 20 

paper, the remotely-sensed ALT retrievals are compared with in-situ observations and CLSM-simulated ALT.   

 

Chen et al. (2019) used AirMOSS P-band SAR observations at two different times to retrieve active layer properties: (1) 

acquisitions on 29 August 2015 when the downward thawing process approximately reached its deepest depth (i.e., the bottom 
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of the active layer), and (2) acquisitions on 1 October 2015 when the active layer started to refreeze from the surface while the 

bottom of the active layer remained thawed. ALT was assumed constant from late August to early October because over this 

period changes in thawing depth are found typically negligible (Carey and Woo, 2005; Chen et al., 2016b; Zona et al., 2016).  

Strictly speaking, the radar retrievals represent the approximate thaw depth of the thawed-to-frozen boundary on 29 August 

2015 and 1 October 2015.  The unknown, true ALT for 2015 might occur later if the thawing continued and the maximum 5 

thaw depth occurred after the October flight time. Based on an analysis of in-situ observations (not shown), however, it is rare 

that this occurs, and the subsequent impact on the estimated ALT value would be relatively small in any case. We, therefore, 

equate the retrieved thaw depth with ALT. 

 

In the retrieval algorithm,  used a three-layer dielectric structure to represent the active layer and underlying permafrost. In 10 

their algorithm, the two uppermost layers together constitute the active layer that accounts for a top, unsaturated zone and an 

underlying, saturated zone. The bottommost (third) layer of the retrieval model structure represents the permafrost.  Because 

the soil moisture at saturation only depends on the porosity of the soil medium, the dielectric constant of the saturated zone in 

the active layer is assumed constant over the time window. An iterative forward-model inversion scheme was used to 

simultaneously retrieve the dielectric constants and layer thicknesses of the three-layer dielectric structure from the SAR 15 

observations collected on 29 August 2015 and 1 October 2015. Note that the retrieved ALT cannot exceed the radar sensing 

depth of about 60 cm. This is the depth below which the AirMOSS radar is expected to lose sensitivity to subsurface features, 

and it is calculated based on the radar system noise floor and calibration accuracy. Therefore, any retrieved ALT larger than 

60 cm is expected to have large uncertainties, and the error is further expected to grow linearly as the retrieved values of ALT 

essentially “saturate.”  This limitation may also lead to underestimates of the actual thaw depth.   20 

 

In this study, we focus on the retrievals of four flight lines across the Alaska North Slope, including IVO (Ivotuk), ATQ 

(Atqasuk), BRW (Barrow), and DHO (Deadhorse) as shown in Figure 2a. These four transects cover areas with light to 

moderate vegetation. Since the radar scattering model is only applicable to bare surfaces or lightly vegetated tundra areas 

(Chen et al., 2019), the ALT estimates derived for IVO, ATQ, BRW, and DHO are considered more accurate than ALT 25 
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retrievals for the remaining transects, which include more vegetated areas. Moreover, some of the southern transects cover 

discontinuous permafrost where the ALT often exceeds the P-band radar sensing depth of about 60 cm and thus the retrievals 

have large uncertainty (Chen et al., 2019).  

 

2.3 Circum-Arctic Permafrost Conditions and In-situ Observations of ALT 5 

The permafrost distribution simulated by CLSM is evaluated against the observations-based Circum-Arctic Map of Permafrost 

and Ground-Ice Conditions (Brown et al., 2002) shown in Figure 1b.  The map is based on the distribution and character of 

permafrost and ground ice using a physiographic approach. Permafrost conditions are categorized into four classes: continuous 

(90-100%), discontinuous (50-90%), sporadic (10-50%), and isolated (0-10%), where the numbers in parentheses indicate the 

area fraction of permafrost extent.   10 

 

In-situ observations of ALT obtained by the CALM network (https://www2.gwu.edu/~calm/; Brown et al., 2000) were used 

to evaluate both the AirMOSS ALT retrievals and CLSM-simulated ALT results.  The CALM network provides observations 

from 1990 to 2017, but few sites have records in the early 1990s.  We did not use measurements that were flagged as having 

been taken too early in the season or under unusual conditions (e.g., after the site was burned or covered with lava, which 15 

occurred at sites R30A and R30B in Kamchatka). In total, there are 220 sites located within the CLSM simulation domain 

(Figure 1b), and we use 213 sites to evaluate results.  Thaw depth measurements are usually made at the end of the thawing 

season.  Most of the CALM sites (129 out of the 213 sites used here) employ a spatially-distributed mechanical probing method 

to measure thaw depths along a transect or across a rectangular grid ranging in size from 10m×10m to 1000m×1000m.  At 20 

sites, thaw tubes or boreholes are used to measure the thaw depth.  At 63 sites, ground temperature measurements from 20 

boreholes are used to infer thaw depth.  For the remaining site, no information about the measurement method is available.  

Only point-scale measurements are available from the thaw tube/borehole and ground temperature sites (including, e.g., the 

sites in Mongolia).  
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In addition, daily in-situ observations of soil temperature profiles at ten Alaskan sites from the Permafrost Laboratory at the 

University of Alaska Fairbanks (UAF) (http://permafrost.gi.alaska.edu/sites_map; Romanovsky et al., 2009) were used to infer 

thawed-to-frozen depth using the 0⁰C degree threshold and to complement the CALM ALT observations in Alaska. Table 1 

provides the coordinates and measuring methods of the UAF in-situ sites.  The UAF measurements were used along with the 

CALM data to evaluate the ALT estimates derived from the CLSM simulation and the AirMOSS radar observations for the 5 

North Slope of Alaska in section 4.1.  

 

3 Methods 

3.1 Comparing ALT from In-situ Observations, AirMOSS Retrievals, and CLSM Results in Alaska 

First, we compare AirMOSS radar retrievals and CLSM simulation results of ALT for 2015 against each other and against in-10 

situ observations: (i) we compare the spatial patterns of the AirMOSS retrievals with those of the model-simulated ALT over 

northern Alaska; and (ii) we evaluate the simulated ALT against both the AirMOSS retrievals and in-situ observations from 

the CALM and UAF networks. We rely on several metrics to evaluate the model and radar-retrieval performance, including 

bias, root mean square error (RMSE), and correlation coefficient (R). The results are discussed in section 4.1.  

 15 

We conducted the intercomparison at the model scale. The radar retrievals were provided at 2-arcsec × 2-arcsec (roughly 20 

m x 60 m in the Arctic) resolution whereas the CLSM-simulated ALTs are at 81 km2. We thus aggregated the AirMOSS 

retrievals to the CLSM model grid by averaging all the retrieval data points within each 81 km2 model grid cell. Only model 

grid cells that were at least 30% covered by radar retrievals were used in the comparison. The AirMOSS transects cover several 

different regions with different climatologic regimes, topography, vegetation, and soil type (Figure 2). Note that although the 20 

vegetation class used in the model (Figure 2b) suggests the presence of dwarf trees over the Alaska North Slope, the actual 

satellite-based LAI, vegetation height, greenness fraction and albedo will still instruct the model that the tree cover there is 

extremely sparse. The data sources for these vegetation-related boundary conditions can be found in Table 1 of Tao et al. 
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(2017). Overall, the variability of ALT along these transects encompasses the influence of a variety of factors at the regional 

scale.  

 

The daily UAF in-situ soil temperature profile observations on the AirMOSS flight date (29 August 2015) were used to 

calculate the thawed-to-frozen depth (i.e., approximated ALT).  The ALT measurements at all of the 13 CALM sites covered 5 

by the AirMOSS transects were obtained in August of 2015 (Table 1). Among them, eight CALM sites obtained ALT 

measurements slightly earlier than the overflight date (within at most 18 days from 29 August 2015). Nevertheless, we assume 

that these earlier measurements still represent the thaw depth at the end of August reasonably well.  Prior to comparison with 

the model results and the aggregated radar retrievals, the distributed measurements for a given CALM site (see sampling 

methods in Table 1) were averaged into a single value.  If multiple CALM or UAF sites lay within a single CLSM grid cell, a 10 

single “spatially-averaged” observed value was computed for the cell.   

 

We employed the strategy of Schaefer et al. (2015) to handle the uncertainty propagation, i.e., adding in quadrature the 

uncertainty components from each scale/level involved (see the supplementary file for a detailed description).  For AirMOSS 

retrievals, the sampling uncertainty of mean ALT at the 81 km2 model grid-cell scale is negligible given the large sampling 15 

size and the fact that the retrieval uncertainty dominates the overall uncertainty (see supplementary file). Here, we use a 

nominal estimate of 0.15 m to represent the AirMOSS uncertainty (i.e., the average of the lower and upper bound of the actual 

retrieval uncertainty for individual radar pixels as discussed by Chen et al. (2019)).  

 

When comparing in-situ measurements with model results at the 81 km2 scale (i.e., a point-to-grid comparison), the ultimate 20 

measurement uncertainty propagated from the point-scale measurements to the 81 km2 scale is, for all intents and purposes, 

unknown due to a lack of sufficient measurements over the 81 km2 scale to compute upscaling errors (see supplementary file). 

We thus show instead the standard deviation of CALM measurements to illustrate, in a highly approximate way, the spatial 

representativeness error of the in-situ measurements – a small (large) standard deviation represents a homogeneous 

(heterogeneous) area in terms of ALT, meaning that the in-situ mean likely can (cannot) represent an average over a larger 25 
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scale, assuming the site-scale heterogeneity is somewhat transferable to the larger scale. Such transferability might only apply 

to the largest in-situ site scales (e.g., 1000 m × 1000 m) to the model grid-scale (81 km2) and is thus, in general, questionable. 

We thus make no claim here that the standard deviations shown represent true uncertainty levels.     

 

3.2 Idealized Experiments 5 

After comparing the spatial patterns of the AirMOSS retrievals with the CLSM-simulated ALT results, we then investigate the 

factors that affect the spatial variability of ALT through a series of idealized experiments.  Specifically, we repeated the 

simulation along the AirMOSS transects multiple times, each time removing the spatial variation in some aspect of the model 

forcing or parameters and then quantifying the resulting impact on ALT variability.  

 10 

For these supplemental simulations, we first identified a grid cell within the IVO transect (shown in Figure 2a) that represents 

roughly average (typical) conditions across the ten different transects. In the first idealized experiment, we then modified the 

baseline configuration by applying the surface meteorological forcing data from the selected representative grid cell within the 

IVO transect to all grid cells along all AirMOSS transects.  Thus, in this modified simulation (HomF, for homogenized forcing), 

spatial variability in meteorological forcing is artificially removed. All model parameters related to soil type and vegetation, 15 

however, remain spatially variable, matching those in the baseline simulation.  In the next idealized experiment (HomF&Veg), 

we further replaced the vegetation-related parameters (including vegetation class, vegetation height, and time-variable Leaf 

Area Index (LAI) and greenness) along the AirMOSS transects using the corresponding parameters from the representative 

grid cell, which is characterized by dwarf tree vegetation cover.  Thus, in this simulation, spatial variability in both forcing 

and vegetation is artificially removed.   20 

 

In a third idealized experiment (HomF&Veg&Soil), spatial variability in soil type and topography-related model parameters 

is removed along with that of the forcing and vegetation. The homogenized parameters include soil organic carbon content, 

porosity, saturated hydraulic conductivity, Clapp-Hornberger parameters, wilting point, soil class, sand and clay fraction, 
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vertical decay factor for transmissivity, baseflow parameters, area partitioning parameters, and timescale parameters for 

moisture transfer (Ducharne et al., 2000; Koster et al., 2000).  Here we use an intermediate soil carbon content value (i.e., 40 

kg/m2) for the homogenization; recall that the carbon content impacts the soil thermal properties (see section 2.1). Our 

investigation reveals that the model sensitivity to soil carbon content is much larger for lower soil organic carbon content 

(SOC) than for higher SOC, and easily gets saturated for high SOC (i.e., larger than ~100 kg/m2) (not shown). Thus, we trust 5 

that 40 kg/m2 is an appropriate value representing an intermediate SOC condition. All other soil parameters are homogenized 

to those at the representative grid cell. 

 

Finally, we investigate potential nonlinearities by conducting two additional experiments: one in which we homogenized both 

the vegetation and soil parameters (HomVeg&Soil) and another in which we homogenized both forcing and soil parameters 10 

(HomF&Soil).  Put differently, in experiment HomVeg&Soil only the forcing varies along the transects, whereas in experiment 

HomF&Soil, only the vegetation parameters vary along the transects.  Combined with the experiment HomF&Veg (in which 

only soil properties vary along the transects), these three experiments show in a different way how each individual factor 

(forcing, vegetation, or soil) can contribute to ALT variability.  Table 2 provides a summary of these idealized experiments.  

Taken together, the six experiments (including the baseline) allow us to identify the individual contribution of each factor to 15 

the ALT variability along the AirMOSS transects.  The results are discussed in section 4.2. 

 

3.3 Quantifying ALT Spatiotemporal Characteristics 

In section 4.3 we quantify the large-scale characteristics of ALT over the Northern Hemisphere for the current climate (1980 

- 2017) as determined by the response of the land model to 38 years of MERRA-2 forcing (section 2.1).  The output from this 20 

multi-decadal, offline simulation allows the characterization of permafrost dynamics at each grid cell.  In particular, we can 

compute a number of relevant ALT statistics, including mean, standard deviation, and skewness, from the diagnosed yearly 

values at each cell, and we can examine how these statistics relate to those of MERRA-2 forcing data (particularly the mean 

annual air temperature, MAAT) over the last 38 years. 
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Besides MAAT statistics, we also consider the evolution of the air temperature during the warm season in terms of the energy 

it could provide to the land surface and thus to the determination of ALT.  A simple surrogate for the total warm-season energy 

in year N can be computed from daily-averaged air temperature, Tair(t), and the freezing temperature, Tf (0⁰C degree), as 

follows: 5 

𝑇𝑐𝑢𝑚(N) =  ∑ 𝑇𝑝𝑜𝑠(𝑡)𝑡=𝑀
𝑡=1  ,          (2) 

where 

𝑇𝑝𝑜𝑠(t) = {
𝑇𝑎𝑖𝑟(𝑡) − 𝑇𝑓 

0
     

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) > 𝑇𝑓

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) ≤ 𝑇𝑓
,         (3) 

The index t in equation (2) for year N starts with a value of 1 on 1 September of the year (N-1) and ends with a value of M on 

31 August of year N. The number of days M is 365 or 366 depending on the presence of a leap year. Note the air temperature 10 

throughout this study means the near-surface air temperature (i.e., 2 m above the displacement height) derived from MERRA-

2.  

 

We first computed the correlation coefficient (R) between the annual time series of ALT and √𝑇𝑐𝑢𝑚 and between the annual 

time series of ALT and maximum SWE (SWEmax) to quantify the degree to which variations of ALT can be explained solely 15 

by air temperature or by snow mass.  Then, to quantify the joint contributions of √𝑇𝑐𝑢𝑚 and SWEmax, we performed a multiple 

linear regression analysis by fitting the equation 

ALT = 𝑎0 + 𝑎1√𝑇𝑐𝑢𝑚 + 𝑎2𝑆𝑊𝐸𝑚𝑎𝑥 ,         (4) 

to the available data. The correlation coefficient relating ALT to √𝑇𝑐𝑢𝑚 and SWEmax is the square root of the coefficient of 

multiple determination (R2) obtained through fitting Equation (4). This equation is similar in form to the common degree-day 20 

model for predicting ALT from accumulated degree days of thaw based on the Stefan solution (e.g., Shiklomanov and Nelson, 

2002; Zhang et al., 2005; Riseborough et al., 2008; Shiklomanov et al., 2010).  Here, however, we constructed equation (4) 

for a different purpose: to explore how much of the temporal variability of ALT can be jointly explained by snow mass and 
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above-freezing air temperature. Before calculating these correlation coefficients, we removed the linear trend within ALT, 

𝑇𝑐𝑢𝑚, and SWEmax to avoid potentially exaggerating the correlation due to an underlying trend. The results are discussed in 

section 4.3. 

 

3.4 Evaluating Simulated Northern Hemisphere Permafrost Extent and ALT  5 

We first evaluated the simulated permafrost extent against the observation-based permafrost map (Brown et al., 2002, as shown 

in Figure 1b). Note the model’s description of permafrost is binary – either permafrost exists across a grid cell or it is 

completely absent. We cannot then expect an exact comparison to a specification of isolated permafrost (0-10% of area by 

definition) or even, to a lesser extent, sporadic permafrost (10-50% of area by definition). Therefore, we compared our 

simulated permafrost area with that of the total area of continuous, discontinuous, and sporadic permafrost area together from 10 

Brown et al. (2002) and computed the percentage error relative to the observation-based area (i.e., the total area of continuous, 

discontinuous and sporadic permafrost regions). We also compared our simulated permafrost area against the total area of only 

continuous and discontinuous permafrost regions.  

 

Further, the CALM network of in-situ ALT measurements (section 2.3) allows a quantitative evaluation of the simulated ALTs 15 

for the grid cells containing measurement sites. Our comparisons here focus on both multi-year annual ALTs and the average 

(climatological) ALT at the 81 km2
 scale of CLSM data. To ensure a consistent comparison, we average the simulated ALTs 

only over the years for which observations are available.  As noted in section 3.1 and the supplementary file, the uncertainty 

of the CALM ALT measurements in the context of evaluating grid cell-scale model results theoretically involves uncertainty 

derived from probing point measurement uncertainty, site-scale mean uncertainty, and upscaling errors in going from the site-20 

scale to the model-scale.  This latter uncertainty, in particular, is unknown.  In our figures (in section 4.4) we show the standard 

deviation of the observed ALT as a very crude surrogate for the spatial representativeness error associated with the point-to-

grid comparison.  As before, we make no claim here that the standard deviations shown represent the relevant statistical 

uncertainty. The results are discussed in section 4.4. 
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4 Results 

4.1 Simulated ALT versus In-situ Measurements and AirMOSS Retrievals in Alaska 

In this section, we compare the simulated ALT and the AirMOSS ALT retrievals at the 81-km2 model resolution.  Note that 

Chen et al. (2019) provide maps of the AirMOSS retrievals and an evaluation versus in-situ measurements at the native (20 m 

by 60 m) scale of the retrievals. 5 

 

Figure 3 compares the spatial pattern of AirMOSS ALT retrievals and CLSM-simulated results. Generally, the patterns of the 

AirMOSS retrievals and CLSM results are quite different.  For example, the AirMOSS-retrieved ALT is greater in the northern 

portion of the DHO transect than in the southern portion (Figure 3a), whereas this pattern is largely reversed in the simulated 

ALT for DHO (Figure 3b). Across all transects, there are portions where the AirMOSS ALT is less than the CLSM-simulated 10 

ALT and portions where the AirMOSS ALT is greater (Figure 3c), though it should be noted that the differences in Figure 3c 

are generally less than the assumed uncertainty of 0.l5 m (see section 3.1).  Generally, the CLSM-simulated ALT shows 

relatively larger spatial variability (0.35 - 0.85 m) than the AirMOSS retrievals (0.4 – 0.6 m).  The AirMOSS ALT exhibits 

some spatial variability at the native resolution (see Chen et al., 2019), but much of this variability averages out during the 

aggregation to the coarse model grid (Figure 3a).  Variations of the simulated ALT within a single transect (Figure 3a) are 15 

predominantly induced by changes in soil type (indicated in Figure 2c and 2d).  In essence, the higher the organic carbon 

content within the soil, the smaller the simulated ALT due to slower heat transfer associated with lower thermal conductivity, 

higher porosity, heat capacity, etc.  (Tao et al., 2017). See also section 4.2 for a discussion of the influence of soil texture on 

the spatial pattern of ALT. 

 20 

Next, we compare the simulated ALT in 2015 with in-situ observations from the CALM and UAF sites that are collocated 

with the AirMOSS transects (section 3.1). Figures 4a and 4b show that the CLSM-simulated ALTs agree with the in-situ 

observations with an overall mean bias of -0.05 m and an RMSE of 0.17 m. The most significant discrepancies between the 

CLSM-simulated ALT and in-situ measurements are at U6, U31, FB1&FBD&FBW (Figure 4a), where the simulated ALT 
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underestimates the in-situ measurements by 0.25-0.28 m, and at U28 where the simulated ALT overestimates the in-situ ALT 

by 0.27 m.  Nevertheless, the scatter in Figure 4b is large, and the corresponding correlation coefficient is quite weak (0.27).   

 

The AirMOSS ALT radar retrievals, for their part, again averaged to the 81-km2 model resolution (section 2.2), show less 

spatial variability than the observations (Figure 4a).  The largest error for the AirMOSS retrievals at the model scale is also at 5 

FB1&FBD&FBW, where the retrievals significantly underestimate the observed in-situ ALT by 0.38m.  Note that radar 

retrievals at the 81 km2 scale are not available at some sites because of our imposed 30% filling restriction.  Although the 

AirMOSS ALT retrievals generally underestimate the in-situ ALT measurements (as shown in Figure 4a), the retrievals tend 

to be more consistent with the observations when the in-situ measurements are within the ~60 cm sensing depth of the P-band 

radar data, as indicated in Table 3.  Specifically, excluding the sites with in-situ ALT measurements that exceed the AirMOSS 10 

sensing depth of ~60 cm, the overall mean bias for the AirMOSS retrievals at the 81 km2 scale drops to -0.01 m, and the 

correlation coefficient increases to 0.64. In contrast, the CLSM simulation results show a bias of 0.01 m and a zero correlation 

coefficient at these sites.  

 

Nevertheless, as noted in section 3.1, given that the upscaling errors in going from the CALM site-scale to the model-scale is 15 

unknown and the fact that the standard deviation of these measurements (as shown by error bars in Figure 4a and 4b) indicates 

large representativeness errors of the in-situ measurements, the point-to-grid comparison result is hard to quantify. In this 

regard, the AirMOSS retrievals aggregated to the same scale as model results provide a comparable counterpart for evaluation. 

Figures 4c further shows that the CLSM-simulated ALT agrees well with the AirMOSS ALT retrievals to within the 

measurement uncertainty of 0.15 m at all the site-located model grid cells.  Indeed as Figure 3c illustrated, the differences 20 

between simulated ALT and the AirMOSS retrievals over all the transects examined here are generally below the measurement 

uncertainty of 0.15 m. 
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4.2 Sources of ALT Spatial Variability:  Results from Idealized Experiments 

Here we investigate the specific factors that drive ALT spatial variability along all ten of the AirMOSS transects (Figure 2a). 

For this analysis, the simulated ALT estimates were aggregated across the width of the radar swath (compare Figure 3).  Figure 

5a illustrates that the simulated ALT captures the spatial variability exhibited by the in-situ measurements. This conclusion is, 

however, very tentative given the limited number of in-situ ALT observations.    5 

 

The simulated ALT is shallowest in the northern transects (ATQ, BRW, and DHO) and deepest in the southeastern transects 

(KYK, COC, KGR, and AMB).  This pattern correlates somewhat (R = 0.46) with that of the mean screen-level (2-meter) air 

temperature (Tair) for the preceding 12-month period (i.e., from 1 September 2014 to 31 August 2015) from MERRA-2 (green 

line in Figure 5a).  The soil carbon content, by contrast, appears anti-correlated (R = -0.59) with the simulated ALT, as 10 

exemplified by the transect portions within the red box (Figure 5a and 5b). Such a correlation presumably reflects the fact that 

soil with high organic carbon content has low thermal conductivity, which hinders heat transfer from the surface to the deeper 

soil in the summertime, thus resulting in a relatively smaller ALT.  In addition, heat transfer is slowed by a higher effective 

heat capacity associated with higher organic carbon content – not from the carbon itself, but from the extra water that can be 

held in the soil due to the increased porosity.  The maximum snow depth (Figure 5c) displays a positive correlation with ALT 15 

(R=0.47), reflecting, at least in part, the fact that subsurface soil temperatures remain relatively insulated under thick and 

persistent snow cover, which reduces heat transfer out of the soil column during the wintertime and hence facilitates a deeper 

thawing during the summer and thus a deeper ALT.   

 

The correlations in Figure 5 suggest (without proving causality) that for the model, surface meteorological forcing (including 20 

air temperature and precipitation), as well as soil type, are important drivers of ALT variability along the AirMOSS transects.  

However, the relatively low values of the correlations indicate that a simple linear relationship cannot explain the mutual 

control that these variables exert on ALT spatial variability.  In the remainder of this section, we use a series of idealized model 

simulations (as described in section 3.2) to better quantify the relative impacts of these driving factors along the AirMOSS 

transects.   25 
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The results of the idealized experiments are shown in Figure 6.  The above-mentioned, large-scale spatial variation of ALT in 

the baseline simulation, with larger values in the southeastern transects (KYK, COC, and KGR) and lower values in the 

northern transects (ATQ, BRW, and DHO), is absent after homogenizing the meteorological forcing (HomF; Figure 6a).  

Experiment HomF correspondingly has much less spatial variation in the temperature of the top soil layer than does the baseline 5 

simulation (Figure 6b).  In addition, homogenizing the forcing (which includes snowfall) significantly reduces the variability 

in maximum snow depth along the AirMOSS transects (Figure 6c). These results indicate that in the model, meteorological 

forcing exerts the dominant control over the spatial patterns of ALT, the temperature in the top soil layer, and snow depth at 

the regional scale, as expected.  

 10 

Homogenizing the vegetation attributes in addition to the forcing (HomF&Veg) results in ALT differences (relative to HomF) 

primarily along the northern transects (ATQ, BRW, and DHO). Along these transects, homogenizing the vegetation parameters 

(including LAI and tree height) to those of the representative grid cell within the IVO transect results in generally shallower 

ALT.  This is because the generally lower albedo of the taller and leafier trees (representative of the IVO transect) during the 

snow season resulted in increased snowmelt and thus reduced snowpack during the snow season (compare the green and red 15 

curves in Figure 6c), thereby reducing the thermal insulation of the wintertime ground.  With reduced insulation, cold season 

ground temperatures dropped, making it more difficult for temperatures to recover during summer(Tao et al., 2017). 

 

As might be expected, the simulation in which soil properties are homogenized in conjunction with forcing and vegetation 

(i.e., HomF&Veg&Soil) essentially eliminates all remaining spatial variability in ALT, snow depth, and soil temperature. 20 

Owing to the strong control of soil type-related parameters (see section 3.2 and Table 2) on soil moisture, spatial variability in 

soil moisture remains high in HomF and HomF&Veg and is only eliminated once these soil type-related parameters are 

homogenized (Figure 6d), which explains the abrupt changes shown in Figure 3c as mentioned in section 3.1.  (Note that to 

maintain consistency with the hardwired scaling factors for snow-free albedo within the model (Mahanama et al., 2015), we 
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still used the original, vegetation-related parameters to calculate surface albedo during snow-free conditions along the 

transects.  This is likely the cause of the few tiny bumps seen in the Figure 6a for HomF&Veg&Soil.) 

 

An alternative view of these results is provided in Figure 7a, which shows the (spatial) standard deviation of ALT along the 

AirMOSS transects for each of the above experiments. Homogenizing the meteorological forcing data results in a significant 5 

reduction of the ALT standard deviation (from 0.16 to 0.10).  Additionally homogenizing the vegetation only reduces the ALT 

standard deviation slightly (from 0.10 to 0.09).  The remaining ALT variability is eliminated through the additional 

homogenization of the soil type-related parameters (HomF&Veg&Soil), which emerge as another important driver of ALT 

variability along the AirMOSS transects.  Note that the ALT variability associated with soil type is generally realized at smaller 

spatial scales than that associated with the meteorological forcing discussed earlier regarding Figure 6a.  The impact of 10 

potential nonlinearities is examined in Figure 7b, which shows the individual impact of vegetation, soil, and forcing 

heterogeneity on the ALT standard deviation along the transects, with the other inputs having been homogenized.  The graphic 

confirms that the meteorological forcing is the dominant driver of ALT spatial variability in our modelling system, followed 

by the soil type-related parameters and the vegetation parameters.   

 15 

Note that in Figure 6a, the soil impact on ALT (the difference between HomF&Veg&Soil in black and HomF&Veg in red) 

appears smaller than that of the vegetation (the difference between HomF in green and HomF&Veg in red) over the northern 

transects (ATQ, BRW, and DHO).  Even so, Figure 7b shows that, in terms of the integrated impact along all the transects, the 

soil influence clearly outweighs the influence of vegetation – at several other transects, including HUS, KYK, COC, AMB, 

IVO and the first half of ATQ (where vegetation conditions might be similar to those used for homogenizing), the changes in 20 

vegetation parameters do not have much impact.  
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4.3 Spatiotemporal Characteristics of ALT across the Northern Hemisphere 

Figure 8a shows the distribution of mean ALT over the modelling domain, and Figure 8b shows the ALT standard deviation 

in time over the 38-year period. As might be expected, ALT tends to increase with distance from the pole, with the largest 

values found in Mongolia and near the southern portion of Hudson Bay, though there are areas (e.g., just north of 60⁰N at 

~120⁰E) with local minima that break this pattern.  The largest ALT standard deviations (red color in Figure 8b) are found 5 

mainly in discontinuous and sporadic permafrost regions (see Figure 1b) where ALTs are deeper on average than that in 

continuous permafrost region.  Figure 8c provides the skewness of the temporal distribution. Though there are some exceptions, 

by and large, the skewness is positive in most permafrost regions, suggesting that the largest positive ALT anomalies tend to 

be of greater magnitude than the largest negative anomalies. 

 10 

Figure 8d displays the average of annual mean 2-meter air temperature as derived from MERRA-2. The observed continuous 

and discontinuous permafrost areas shown in Figure 1b are well confined within the cold side of the 0°C (273.15K) isotherm 

in the mean air temperature map (Figure 8d). For the most part, the observed sporadic and isolated permafrost regions of Figure 

1b also lie on the cold side of the 0°C isotherm. The consistency with this isotherm, however, is not as clearly present in the 

simulated permafrost extent (i.e., the extent of the non-grey and non-white areas in Figure 8a).   15 

 

The relationship between the spatiotemporal characteristics of simulated ALT and air temperature forcing has been 

investigated before in many studies at the site to landscape scale (e.g., Klene et al., 2001; Shiklomanov and Nelson, 2002; 

Zhang et al., 2005; Juliussen and Humlum, 2007) and at the regional scale (e.g., Anisimov et al., 2007). Here we simply 

analyze the correlation coefficient between ALT and two variables: the proxy of total energy input into the ground (i.e., 20 

√𝑇𝑐𝑢𝑚, see section 3.3) and the maximum SWE.  Our goal is to explore how much of the spatiotemporal variability of ALT 

across the globe can be jointly explained by these two variables.   

 

Figure 9a shows a map of the correlation coefficient between the 37-year time series (i.e., from September 1980 through 

August 2017) of √𝑇𝑐𝑢𝑚 and the corresponding time series of simulated ALT. The areas with p values larger than 0.05, which 25 
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indicate correlations that are not statistically different from zero at the 95% confidence level, are shown as green. Figure 9a 

demonstrates that most permafrost regions indeed have significant positive correlations (red colours) between ALT and √𝑇𝑐𝑢𝑚. 

Clearly, in these regions, air temperature exerts a dominant control on year-to-year ALT variability.  

 

However, not all regions exhibit a significant correlation; other variable(s) must also be exerting control on interannual ALT 5 

variability.  One reasonable candidate variable is snowpack.  As noted above, snow acts as a thermal insulator -- regions with 

thicker snowpack are better able to insulate the ground from becoming too cold during winter, thereby supporting higher 

subsurface temperatures during non-winter months.  Variable, but often thick, snowpack is in fact common in the areas of 

Figure 9a that show a low (green) or negative (blue) correlation between ALT and √𝑇𝑐𝑢𝑚 – areas such as Central Siberia, the 

Southern part of eastern Siberia, and a vast region in Canada surrounding the Hudson Bay, as well as other small areas that 10 

appear in high mountains or on the windward side of the mountains (e.g., locations B, C and D in Figure 1a).    

 

In Figure 9b we show the correlation coefficient between the time series of ALT and the maximum SWE (SWEmax) during 

the preceding winter.  A positive correlation is seen in many areas, most notably in areas with a poor or negative correlation 

between ALT and √𝑇𝑐𝑢𝑚 (Figure 9a) – for example, just west of Hudson Bay and along a zonal band at 60°N in Russia.  15 

Apparently, in these areas, the impacts of snow physics on ALT outweigh the impacts of lumped energy input (√𝑇𝑐𝑢𝑚). In 

some other areas ALT correlates positively with both √𝑇𝑐𝑢𝑚 and SWEmax. Figure 9c shows how the resulting coefficient of 

multiple correlation varies in space.  High correlations largely blanket the modelled area. That is, over most of the area 

examined, a substantial portion of the year-to-year variability of ALT can be explained by joint variations in √𝑇𝑐𝑢𝑚 and 

SWEmax.  Even so, a few limited areas still exhibit low correlations (p>0.05, green colour in Figure 9c).  Some of these areas 20 

are in mountainous regions, for instance the Eastern Siberian (Ostsibirisches) Bergland, where more complex environmental 

controls might be playing a dominant role. In addition, MERRA-2 snow forcing might be severely erroneous in these regions. 

 

https://en.wikipedia.org/wiki/Siberia
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4.4 Evaluation of Simulated Permafrost Extent and ALT across the Northern Hemisphere  

Qualitatively, the simulated permafrost extent (Figure 8a) generally shows reasonable agreement with the observation-based 

permafrost map in Figure 1b, especially for the continuous permafrost regions.  This is shown explicitly in Figure 10a.  The 

main deficiency in the simulation results is the failure to capture a large area of permafrost in western Siberia (labelled as A 

in Figure 1a).  The reasons for this particular deficiency are unclear.  One possible reason is that the permafrost in western 5 

Siberia is characterized as an ecosystem-protected permafrost zone (Shur and Jorgenson, 2007) where a thick moss-organic 

layer (i.e., moss-dominated mires (Anisimov and Reneva, 2006; Anisimov, 2007; Peregon et al., 2009)) protects the permafrost 

below from thawing under a warm air temperature. This is mainly attributed to the low thermal conductivity of the organic 

layer in summer, which strongly insulates the permafrost from the warm atmosphere, and the high thermal conductivity of the 

frozen organic layer in winter, which allows cold temperature penetration from above, provided the snowpack is not too thick 10 

(Nicolsky et al., 2007b; Jafarov and Schaefer, 2016). This mechanism is lacking in the current version of CLSM (Tao et al., 

2017). Thus, improving the model through a better representation of thermal processes in an organic layer above the soil 

column in combination with initializing the simulation with a sufficiently cold soil temperature should improve the simulation 

results. This work is reserved for a future study. 

 15 

Another possible reason for the poor skill in western Siberia is that the model initial conditions there were too warm, although 

MERRA-2 appears to underestimate summer air temperatures in this region (Draper et al., 2018; their Figure 7e). Note that 

some other global models, such as CLM3 and the Community Climate System Model version 3 (CCSM3) as reported in 

Lawrence et al. (2012), also missed this area of permafrost and that updated versions of these models (i.e., CLM4 and CCSM4) 

showed improved performance in this regard (Lawrence et al., 2012). Guo et al. (2017) reported underestimated permafrost 20 

extent simulated in western Siberia using CLM4.5 driven by three different reanalysis forcings (i.e., CFSR, ERA-I and 

MERRA), and they showed an improved simulation of permafrost extent in this area when using another reanalysis forcing, 

the CRUNCEP (Climatic Research Unit ‐ NCEP) (Guo and Wang, 2017). Guimberteau et al. (2018) found similar 

improvements stemming from the use of CRUNCEP forcing. We leave for further study whether the MERRA-2 forcing data 

is responsible for the western Siberia deficiency seen in our results.  25 
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The disagreements between the simulated and observed permafrost extents (covering about a few degrees latitude) toward the 

south in Figure 10a (green and blue areas at the southern edge of permafrost regions) are less of a concern, since the comparison 

in such areas is muddied by the interpretation of “isolated” permafrost in the observational map (Figure 1b). The specific areas 

of each type shown in Figure 10a are listed in Table 4. The simulated permafrost extent covers 81.3% of the observation-based 5 

area (i.e., the total area of continuous, discontinuous and sporadic permafrost regions), and misses 18.7% of the observed 

permafrost area. When comparing simulated permafrost extent with only continuous and discontinuous types, these metrics 

change to 87.7% and 12.3%, respectively. Meanwhile, the permafrost extent is overestimated by 3.2×106 km2. 

 

To produce Figure 10b, multi-year averages of CLSM-simulated ALT values were spatially averaged over each of the four 10 

permafrost types outlined in Figure 1b.  (As is appropriate, permafrost is only occasionally simulated over the fourth, 

“isolated”, permafrost type.  The ALT average shown for this type is thus based on a particularly limited number of grid cells.)  

The average ALT is smallest in the continuous permafrost zone, higher in the discontinuous zone, and higher still in the 

sporadic permafrost zone; it is highest in areas of isolated permafrost.  The progression, of course, is in qualitative agreement 

with expectations – larger breaks in permafrost coverage imply a greater amount of available energy, which should also act to 15 

increase ALT. 

 

The observed and CLSM-simulated annual ALT and multi-year ALT averages are compared in Figure 11. Generally, the 

simulated annual ALT and the averages agree reasonably well with observations for shallow permafrost regions, that is, for 

smaller ALT. A large bias, however, is found for most of the Mongolia sites; in Mongolia, the observed annual ALT and the 20 

climatological ALTs tend to be much larger than the simulated ALTs (light purple dots in Figure 11).  Overall, the RMSE, 

bias, and R are all significantly improved when the Mongolian sites are excluded from consideration.  Specifically for the 

climatological ALTs, the RMSE (and bias) of simulated ALT climatological means is 1.22 m (and -0.48 m), and it drops to 

0.33 m (and -0.04 m) if the Mongolia sites are excluded (Figure 11d). Given simplifications in the model, uncertainties in 

boundary conditions (e.g., vegetation types, soil properties, etc.), and upscaling issues stemming from the coarse-scale nature 25 
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of the forcing data relative to the point-scale and plot-scale nature of the observations (i.e., the representative errors as indicated 

by the large standard deviation shown in Figure 11a), these results seem encouraging. The correlation coefficient metric (R), 

however, is somewhat less encouraging, amounting to only 0.5 when considering all sites.  The correlation coefficient is in 

fact lower (0.3) when the Mongolian sites are excluded; the correlation coefficient is 0.39 for the Mongolian sites considered 

in isolation. Note that the existing literature on simulated ALT fields (e.g., Dankers et al. (2011), Lawrence et al. (2012) and 5 

Guo et al. (2017)) reveals a general tendency for models to overestimate ALT climatology at the global scale.  In light of this, 

our results suggest that the CLSM-simulated ALT fields are perhaps among the better simulation products, especially for 

shallow permafrost. 

 

Comparing the observed and simulated spatial distributions of the ALT averages provides a further test of the accuracy of the 10 

simulation results (as shown in Figure 12).  The model successfully simulates the large-scale spatial patterns in ALT, capturing, 

for example, the variations in Siberia, Svalbard, northern Canada, and northern Alaska (see Figure 12a, b). Figure 12c, d show 

the differences between the observed and estimated values in middle latitudes (45⁰N to 60⁰N) and high latitudes (60⁰N to 

90⁰N), respectively; in agreement with Figure 11a, the model clearly performs better in high-latitude regions, i.e., outside of 

Mongolia. Many of the sites north of 60⁰N (Figure 12d) are coloured grey, indicating a small error in the simulation of ALT 15 

at these sites – the errors at these sites range from only -0.10m to 0.10m. 

 

The significant underestimation of ALT in Mongolia might result from errors in the meteorological forcing provided by 

MERRA-2. However, a comparison (not shown) of MERRA-2 air temperatures with measurements at six weather stations 

collocated with CALM sites in Mongolia calls this explanation into question. While MERRA-2 summer temperatures are 20 

indeed too low at four of the weather stations examined, they are too high at the other two weather stations. An additional 

reason for the underestimation of ALT in Mongolia might be a mismatch between the land surface parameter values used in 

the model and the actual conditions at each site. For instance, detailed soil information 

(https://www2.gwu.edu/~calm/data/webforms/mg_f.html) indicate that some Mongolian sites have special “rocky” soil types 

including limestones (e.g., M04), slatestones (e.g., M05), gravelly sand (e.g., M06 and M08), etc. that are not well represented 25 

https://www2.gwu.edu/~calm/data/webforms/mg_f.html
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in the model.  As another example, sites on south-facing slopes presumably have much deeper ALT than those on slopes with 

less exposure to the sun, which is not captured by CLSM.  The large representative errors of Mongolian sites are clearly 

illustrated by the standard deviation (although computed only with 3 to 5 measurements) as shown by the error bars in Figure 

11a. 

 5 

5 Conclusion and Discussion 

We produced a dataset (effectively a derivative of MERRA-2) of permafrost variations in space and time across middle-to-

high latitudes.  This dataset can be considered unique in terms of its daily temporal resolution combined with a relatively high 

spatial resolution at the global scale (i.e., 81 km2).  The dataset, which is derived from a state-of-the-art reanalysis (MERRA-

2), shows reasonable skill in capturing permafrost extent (87.7% of the total area of continuous and discontinuous types, 10 

according to one validation dataset) and in adequately estimating ALT climatology (with a RMSE of 0.33m and a mean bias 

of -0.04m), excluding Mongolian sites. We note that our MERRA-2-driven permafrost simulation results, while potentially 

better than those we might have obtained with MERRA forcing, are still lacking (e.g., in western Siberia). Still, with its 

resolution and available variables (ALT, subsurface temperature and ice content at different depths), the dataset could prove 

valuable to many future permafrost analyses.  15 

 

This work also provides a first comparison between two highly complementary approaches to estimating permafrost: model 

simulation and remote sensing. In northern Alaska, excluding sites that have ALT measurements exceeding the radar sensing 

depth (~ 60cm), the evaluation metrics for ALT retrievals against in-situ measurements are better than those for simulated 

ALT at the 81 km2 scale. However, the remotely sensed ALT estimates generally show lower levels of spatial variability 20 

relative to the simulated ALT estimates (and relative to the in-situ observations), and the spatial patterns of the simulated and 

retrieved values differ considerably.  The remote sensing approach is still relatively new, with many aspects still requiring 

development.  It is important, though, to begin considering the modeling and remote sensing approaches side by side, as both 

should play important roles in permafrost quantification in the years to come.  Indeed, once the science fully develops, joint 
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use of modeling and remote sensing (e.g., through the application of downscaling methods) should allow the generation of 

more accurate permafrost products at higher resolutions.  

 

It is important to note that the retrieved ALT was determined by the dielectric transition from thawed to frozen conditions 

whereas the modelled ALT and the ALT for some of the in-situ measurements was based on a freezing temperature of 0⁰C 5 

(see sections 2.1 and 2.3).  Depending on local conditions, soil does not typically freeze at 0⁰C but rather at slightly lower 

temperatures (e.g., around -1⁰C) due to the presence of dissolved compounds that depress the freezing point (Watanabe and 

Wake, 2009).  The sharp drop in conductivity and dielectric constant is much more accurately tied to a frozen state than to a 

temperature threshold. These and other differences in the various ALT measurement methods (section 2.3) introduce 

considerable uncertainty into our comparisons. The use of the 0⁰C degree threshold in CLSM for determining the thawed or 10 

frozen layer may explain in part the model’s underestimation of ALT, as may the lack of an explicit treatment of local aspect, 

errors in assigned model parameters, and so on.  

 

Analysis of the CLSM-simulated data, along with data produced in idealized experiments with specific homogenized controls, 

show how the statistics of permafrost variability in space are controlled by forcing variability and by variability in the imposed 15 

surface boundary conditions. In the idealized experiments, we employ successive homogenization of controls to quantify how 

meteorological forcing, soil type, and vegetation cover affect the underground thermodynamic processes associated with the 

variability of ALT along the AirMOSS flight paths in Alaska. Meteorological forcing and soil type are found to be the two 

dominant factors controlling ALT variability along these transects. Vegetation plays a smaller role by modulating the 

accumulation of snow.  A multiple regression analysis relating yearly ALT jointly to accumulated air temperature and 20 

maximum SWE shows that time variations in these two latter quantities explain most of the time variability of ALT in the 

CLSM-identified permafrost regions.  

 

Many aspects of the modelling framework may contribute to the noted errors in the simulated ALTs. For example, the observed 

climatological ALTs at the Mongolia sites are all larger than 3m.  This depth falls well within the 6th soil layer of the model, 25 
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which has a thickness of 10m; the subsurface vertical resolution in the CLSM may be too coarse to capture these deeper ALTs.   

Test simulations (not shown) with alternative model configurations indicate that increasing the number of soil layers may act 

to decrease somewhat the simulated ALT, suggesting that our values may be a little overestimated; however, based on results 

from a new study by Sapriza-Azuri et al.(2018), our use of a no-heat-flux condition at the bottom boundary rather than a 

dynamic geothermal flux may lead to underestimates of ALT.  Such uncertainties should naturally be kept in mind when 5 

interpreting our results.  Our supplemental simulations (not shown) also suggest that increasing the total modelled soil depth 

has only a small impact on simulated ALT. Uncertainty in our description of soil organic carbon, i.e., both soil carbon content 

and vertical carbon distribution, leads to corresponding uncertainty in our ALT simulations. We indeed find a significant 

improvement in simulated ALT at several Mongolian sites when we arbitrarily impose less total soil carbon content and 

concentrate less soil carbon in top layers (not shown). Besides the vertical distribution of soil carbon, the vertical variation in 10 

other soil hydrological properties (e.g., soil texture and porosity) should also play a significant role since they all affect soil 

thermal conductivity and heat capacity. In addition, the lack of a necessary organic layer on top of soil column and the related 

thermal processes is also a major deficiency for the model, especially in ecosystem-protected performant regions. 

 

Another issue affecting our ALT comparisons is the climatological representation of vegetation parameters such as LAI used 15 

in CLSM.  An additional investigation (not shown) revealed large differences between the LAI climatology used in CLSM 

and more realistic, time-varying, satellite-based LAI products at several Mongolian sites. In addition, while we did exclude 

from our analyses any measurements that were affected by notable disturbance (e.g., wildfire), the impacts of other potential 

land changes on ALT, including overgrazing in Mongolia (Sharkhuu and Sharkhuu, 2012; Liu et al., 2013), were not explicitly 

treated in the model.  The model also lacks the vertical advective transport of heat in the subsurface due to downward flowing 20 

liquid water, which can significantly affect permafrost thawing (Kane et al., 2001; Rowland et al., 2011; Kurylyk et al., 2014).  

Also relevant are potential errors in the MERRA-2 forcing.  The MERRA-2 reanalysis is known to have problems capturing 

trends in high latitudes (Simmons et al., 2017). 
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Such modelling deficiencies must always be kept in mind when evaluating a product like the one examined here. That said, as 

long as appropriate caution is employed, the product could have significant value for further analyses of permafrost.  The 

product features daily subsurface temperatures and depth-to-freezing estimates over middle-to-high latitudes in the Northern 

Hemisphere at an 81 km2 resolution, covering the period 1980-2017.  It is, in a sense, a value-added derivative product of the 

MERRA-2 reanalysis and will be available via the National Snow and Ice Data Center (NSIDC).  The comparisons against 5 

observations discussed above, along with the intuitively sensible connections shown between permafrost variability, forcing 

variability, and boundary condition variability, gives confidence that this dataset contains useful information. These data can 

potentially contribute, for example, to ecological studies focused on the dynamics of microbial activity and soil respiration in 

cold regions, on vegetation migration/adaptation in response to climate change, and so on. 
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Table 1 – In-situ permafrost measurement sites covered by the AirMOSS transects in 2015.    

AirMOSS flight  

(Official full name) 

Permafrost 

Site (CALM 

or UAF)* 

Latitude 

(degree) 

Longitude 

(degree) 

Sampling 

Method@ 

Measurement 

Date 

COC (Council) 

U27 (CALM) 64.8333 -163.7000 4 8/30/2015 

U28 (CALM) 65.4500 -164.6167 4 8/29/2015 

IVO (Ivotuk) IV4 (UAF) 68.4803 -155.7437 1# 8/29/2015 

ATQ (Atqasuk) U3 (CALM) 70.4500 -157.4000 4 8/25/2015 

BRW (Barrow) 

U1 (CALM) 71.3167 -156.6000 4 8/21/2015 

U2 (CALM) 71.3167 -156.5833 2 8/24/2015 

BR2 (UAF) 71.3090 -156.6615 1 8/29/2015 

DHO (Deadhorse) 

U4 (CALM) 70.3667 -148.5500 3 8/25/2015 

U5 (CALM) 70.3667 -148.5667 4 8/11/2015 

U6 (CALM) 70.1667 -148.4667 3 8/26/2015 

U31 (CALM) 69.6969 -148.6821 3 8/15/2015 

U8 (CALM) 69.6833 -148.7167 3 8/27/2015 

U32A (CALM) 69.4410 -148.6703 3 8/16/2015 

U32B (CALM) 69.4010 -148.8056 3 8/16/2015 

U9A (CALM) 69.1667 -148.8333 3 8/25/2015 

WD1 & WDN 

(UAF) 

70.3745 -148.5522 1 8/29/2015 

DH2 (UAF) 70.1613 -148.4653 1 8/29/2015 

FB1 (UAF) 69.6739 -148.7219 1 8/29/2015 

FBD (UAF) 69.6741 -148.7208 1% 8/29/2015 
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FBW (UAF) 69.6746 -148.7196 1 8/29/2015 

SG1 (UAF) 69.4330 -148.6738 1 8/29/2015 

SG2 (UAF) 69.4283 -148.7001 1 8/29/2015 

HV1 (UAF) 69.1466 -148.8483 1% 8/29/2015 

* CALM: sites from the Circumpolar Active Layer Monitoring (CALM) network; UAF: sites from the Permafrost Laboratory 

at the University of Alaska Fairbanks (UAF). 

@Sampling method: 1. Single point; 2. 320 random sampling points within 10m × 10m area; 3. 100m × 100m grid with a 10m 

sampling interval; 4. 1000m × 1000m grid with a 100m sampling interval. 

# Two sensors are installed at IV4. 5 

%Observations were taken from two conditions, including a frost-boil and an inter-boil area. 
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Table 2 – List of idealized simulation experiments along the AirMOSS transects.    

Experiment Name 

Meteorological 

forcing 

Vegetation Soil parameters* 

Baseline Original Original Original 

HomF Homogenized Original Original 

HomF&Veg Homogenized Homogenized Original 

HomF&Veg&Soil Homogenized Homogenized Homogenized 

HomVeg&Soil Original Homogenized Homogenized 

HomF&Soil Homogenized Original Homogenized 

*CLSM soil parameters include soil organic carbon content, porosity, saturated hydraulic conductivity, Clapp-Hornberger 

parameters, wilting point, soil class, sand and clay fraction, vertical decay factor for transmissivity, baseflow parameters, area 

partitioning parameters, and time scale parameters for moisture transfer (Koster et al., 2000; Ducharne et al., 2000; Tao et al., 

2017). 5 
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Table 3 – Evaluation metrics for model-simulated ALT and AirMOSS retrievals for 2015.    

Metric All sites 

Sites with ALT measurements within AirMOSS sensing 

depth (~60 cm) 

 

CLSM-simulated 

ALT  

AirMOSS ALT 

retrievals 

CLSM-Simulated 

ALT 

AirMOSS ALT retrievals 

RMSE (m) 0.17 0.17 0.12 0.06 

Bias (m) -0.05 -0.12 0.01 -0.01 

R 0.27 0.61 -0.00 0.64 
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Table 4 – Evaluation results for simulated permafrost extent against the permafrost map by Brown et al. (2002). The calculation 

was based on the comparison between simulated permafrost area and the total area of continuous, discontinuous and sporadic 

permafrost regions from Brown’s map. The number in the brackets was calculated against the total area of continuous and 

discontinuous permafrost regions. 

Case CLSM Obs. Simulated Area (×106 km2) Percentage Relative to Observation 

4 No No 48.8 - 

3 Yes No 1.9 - 

2 No Yes 3.2 (1.7) 18.7% (12.3%) 

1 Yes Yes 13.8 (12.3) 81.3 % (87.7%) 

 5 
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Figure 1: a) Elevation above mean sea level in the simulation domain, which is defined by the area for which NCSCDv2 data are 

available.  Regions A, B, C, and D are discussed in the text.  b) Permafrost and ground ice conditions adapted from (Brown et al., 5 

2002).  Red dots represent CALM sites. 
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Figure 2: a) Ten transects of AirMOSS flights conducted in Alaska on 29 August 2015 and 1 October 2015, including HUS (Huslia), 

KYK (Koyuk), COC (Council), KGR (Kougarok), AMB (Ambler), IVO (Ivotuk), ATQ (Atqasuk), BRW (Barrow), DHO 

(Deadhorse), and CFT  (Coldfoot). Each flight swath width is approximately 15 km. The red dot on IVO illustrates the location of 5 

the representative grid cell used and discussed in section 3.2. b) Vegetation class, c) soil organic carbon content, and d) soil class used 

in CLSM. The eight vegetation classes are 1-broadleaf evergreen trees, 2-broadleaf deciduous trees, 3-needleleaf trees, 4-grassland, 

5-broadleaf shrubs, 6-dwarf trees, 7-bare soil, and 8-desert soil, respectively. The 253 soil classes include one “peat” class (#253), 

which is shown in dark grey, and 252 mineral soil classes (De Lannoy et al., 2014). 

  10 
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Figure 3: a) Radar retrievals of ALT derived from P-band radar observations on 29 August 2015 and 01 October 2015 for IVO, 

ATQ, BRW, and DHO, aggregated to 81 km2 model grid cells. b) CLSM-simulated ALT. c) Difference between the aggregated ALT 

retrievals and the CLSM-simulated results. Magenta squares represent CALM sites covered by the flight swath whereas black circles 

represent UAF sites.  5 
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Figure 4: a) ALT observations (red)  for 2015 from CALM and UAF sites covered by AirMOSS swaths and from radar retrievals 

aggregated to 81 km2 grid cells (green), and CLSM-simulated ALT at 81 km2 (blue).  The short name of the corresponding covering 

swath is shown on the top (see also Figure 2a). Error bars represent the standard deviation for multiple observations at in-situ sites. 

No standard deviations are provided for UAF sites since single-point measurements were deployed. Averaged values were provided 5 

if multiple sites appear within a same model grid cell (e.g., U1&U2, U4&U5, WD1&WD2, FB1&FBD&FBW, and SG1&SG2). The 

sites are arranged aligning with the flight direction. b) CLSM estimates of ALT for 2015 versus in-situ measurements with error 

bars indicating the standard deviation as in a).  c) Same as b) but versus aggregated AirMOSS ALT at model scale. The error bars 

here represent the uncertainty for radar retrievals mean within each 81 km2 grid cell as explained in section 3.1. Corresponding 

estimates of CLSM uncertainty, which are presumably large, are not shown in the figure.   10 
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Figure 5: a) CLSM-simulated ALT (thawed-to-frozen depth) on 29 August 2015 along the AirMOSS flight transects.  In-situ ALT 

observations from UAF and CALM are shown as red circles and magenta diamonds, respectively. Averaged air temperature at 2 m 

(Tair) from the preceding annual period (i.e., 01 September 2014 to 31 August 2015) is shown in green with the scale on the right 5 

ordinate. b) Organic carbon content and c) maximum snow depth during the preceding annual period (again from 01 September 

2014 to 31 August 2015). The red rectangle across a) and b) highlights a portion of the domain that shows anti-correlation between 

organic carbon content and modelled ALT (see Section 4.2). The abscissa in c) provides cumulative distances in units of km along 

the transects. 
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Figure 6: a) CLSM-simulated ALT (thawed-to-frozen depth) on the flight date (i.e., 29 August 2015) from the top four experiments 

listed in Table 2; b) simulated top layer soil temperature on the flight date, c) maximum snow depth the during the preceding annual 

period (i.e., from 01 September 2014 to 31 August 2015), and d) soil moisture within the soil profile on the flight date along the 

connected transects for the four experiments. The black dot indicates the representative location within the IVO transect from which 5 

the forcing, vegetation and/or soil data are used to homogenize the inputs in the idealized experiments. By construction, all 

simulations provide identical results at this representative location.  
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Figure 7: a) Standard deviation of ALT along the AirMOSS transects from the top four experiments listed in Table 2.  b) The 

individual impact (or contribution) from heterogeneous vegetation, soil type and meteorological forcing, respectively. For instance, 

the impact of vegetation (or soil, or forcing) heterogeneity is the ALT standard deviation along the transects from HomF&Soil (or 

HomF&Veg, or HomVeg&Soil).  5 
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Figure 8: a) Mean, b) standard deviation, and c) skewness of CLSM-simulated ALT over the 38 years (1980 - 2017). Grey indicates 

permafrost-free (Pfree) areas in the simulation. d) 38-year averaged MERRA-2 annual atmospheric temperature at 2 m above 

displacement height (Tair). The red boundary outlines the continuous and discontinuous permafrost regions according to Brown et 

al. (2002). 5 
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Figure 9: Correlation coefficient between a) ALT and square root of the effective accumulated air temperature (√𝑻𝒄𝒖𝒎) and b) ALT 

and maximum SWE (𝑺𝑾𝑬𝒎𝒂𝒙) from the preceding September to the present August over the period 1980-2017. c) Multi-variable 

coefficient of correlation for a fitted multiple linear regression model between ALT and √𝑻𝒄𝒖𝒎 and 𝑺𝑾𝑬𝒎𝒂𝒙. Areas that have a p-

value larger than 0.05 (i.e., statistically insignificant correlation) are masked in green. Grey indicates permafrost-free (Pfree) areas 5 

in the simulation.  
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Figure 10: a) Four comparison categories include: 1) blue - CLSM collocates permafrost with the observation-based permafrost 

map of Brown et al. (2002) as either continuous, discontinuous, or sporadic permafrost; 2) green - CLSM has no permafrost, but the 

observation-based permafrost map does as either continuous, discontinuous, or sporadic types; 3) red - CLSM does have permafrost, 5 

but the observation-based permafrost map does not or contains isolated permafrost; and 4) grey - CLSM has no permafrost and 

neither does the observation-based permafrost map (except for isolated permafrost). b) area-weighted average of ALT as simulated 

by CLSM for the four different permafrost types.   
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Figure 11: a) Annual ALT from CLSM simulation vs. CALM observations with horizontal error bars indicating standard deviations 

of measurements within the model grid cell. Error bar is absent if the number of measurements within a 81 km2 grid cell is less than 

three. b) As in a) but excluding the Mongolia sites.  c) 38-yr average ALT for the period 1980-2017 from CLSM simulation vs. CALM 5 

observations. d) As in c) but without the Mongolia sites. The correlation coefficient (R), bias, and root mean squared error (RMSE) 

are provided next to each subplot. 
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Figure 12: Multi-year average ALT at CALM site locations for a) CALM observations and b) CLSM results. c) ALT difference 

between observations and model results for locations within 45⁰N- 60⁰N latitude and 85⁰E-125⁰E longitude. d) Same as c) but for 

locations poleward of 60⁰N latitude. In c) and d) grey indicates absolute ALT differences less than 0.10 m.  

 5 


