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Abstract.  This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost 

conditions at 81-km2 resolution. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for 

Research and Applications-2 (MERRA-2) reanalysis were used to drive an improved version of the land component of 15 

MERRA-2 in middle-to-high northern latitudes from 1980 to 2017. The resulting simulated permafrost distribution across the 

Northern Hemisphere mostly captures the observed extent of continuous and discontinuous permafrost but misses the 

ecosystem-protected permafrost zones in western Siberia.  Noticeable discrepancies also appear along the southern edge of the 

permafrost regions where sporadic and isolated permafrost types dominate.  The evaluation of the simulated active layer 

thickness (ALT) against in-situ measurements demonstrates reasonable skill except in Mongolia. The RMSE (bias) of 20 

climatological ALT is 1.22 m (-0.48 m) across all sites and 0.33 m (-0.04 m) without the Mongolia sites. In northern Alaska, 
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both ALT retrievals from airborne remote sensing for 2015 and the corresponding simulated ALT exhibit limited skill versus 

in-situ measurements at the model scale. In addition, the simulated ALT has larger spatial variability than the remotely sensed 

ALT, although it agrees well with the retrievals when considering measurements uncertainty.  Controls on the spatial variability 

of ALT are examined with idealized numerical experiments focusing on northern Alaska; meteorological forcing and soil types 

are found to have dominant impacts on the spatial variability of ALT, with vegetation also playing a role through its modulation 5 

of snow accumulation. A correlation analysis further reveals that accumulated above-freezing air temperature and maximum 

snow water equivalent explain most of the year-to-year variability of ALT nearly everywhere over the model-simulated 

permafrost regions. 

 

1 Introduction 10 

Permafrost is an important component of the climate system, and its variations can have significant impacts on climate and 

society.  Of deep concern is a potential positive feedback loop by which carbon stored within permafrost regions is released 

through global warming, thereby adding greenhouse gases to the atmosphere that accelerate the warming further (Dorrepaal et 

al., 2009; Schuur et al., 2009; MacDougall et al., 2012; Schuur et al., 2015). Communities and infrastructure in ice-rich 

permafrost regions are particularly vulnerable to land subsidence and infrastructure damage caused by permafrost thaw (Nelson 15 

et al., 2001; Liu et al., 2010; Guo and Sun, 2015).   

 

Permafrost variations, including pronounced permafrost degradation due to a warming climate, have been reported for many 

regions, including Alaska (Nicholas and Hinkel, 1996; Osterkamp and Romanovsky, 1996; Jorgenson et al., 2001; Hinkel and 

Nelson, 2003; Jafarov et al., 2012; Liu et al., 2012; Jones et al., 2016; Batir et al., 2017), Canada (Chen et al., 2003; James et 20 

al., 2013), Norway (Gisnas et al., 2013), Sweden (Pannetier and Frampton, 2016), Russia (Romanovsky et al., 2007; 

Romanovsky et al., 2010), Mongolia (Sharkhuu and Sharkhuu, 2012), and the Qinghai–Tibet Plateau (Zhou et al., 2013; Wang 

et al., 2016a; Lu et al., 2017; Ran et al., 2018).  For the entire Northern Hemisphere, rapidly accelerated permafrost degradation 

in recent years has been reported by Luo et al. (2016) based on in-situ measurements at a point-scale or at a spatially-aggregated 

https://link.springer.com/article/10.1023/A:1005667424292
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scale (up to 1000m×1000m) from the Circumpolar Active Layer Monitoring (CALM) network. However, the current state and 

evolution of global permafrost (including permafrost temperature, ice content, and degradation rates) are still largely unknown 

across much of the Northern latitudes.  

 

The impact of a changing climate on permafrost dynamics must depend on local site characteristics. Subsurface heat transfer 5 

processes and active layer thickness (ALT; the maximum thaw depth at the end of the thawing season) are influenced by more 

than surface meteorological forcing – they are also influenced by vegetation type, surface organic layer characteristics, soil 

properties and soil moisture (Stieglitz et al., 2003; Shur and Jorgenson, 2007; Yi et al., 2007; Luetschg et al., 2008; Dankers 

et al., 2011; Johnson et al., 2013; Jean and Payette, 2014; Yi et al., 2015; Fisher et al., 2016; Matyshak et al., 2017; Tao et al., 

2017). Understanding the contributions from the different controls on ALT (and permafrost conditions in general) is crucial 10 

for assessing permafrost behaviour and its resilience to a warming climate.  

 

Physically-based numerical model simulations are potentially useful for quantifying and understanding these dynamics at large 

spatial scales; they can also provide insights into associated impacts on the global carbon cycle.  Permafrost dynamics can be 

modelled, for example, by driving a land surface model (LSM) offline (i.e., uncoupled from an atmospheric model) with 15 

meteorological forcing data (including air temperature, radiation, precipitation, etc.) from some credible source.  LSMs that 

have been used to quantify large-scale permafrost patterns (i.e., distributions and thermal states) and their interactions with a 

warming climate include, for example, the Joint UK Land Environment Simulator (JULES, Dankers et al., 2011), the 

ORganizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE) - aMeliorated Interactions between Carbon and 

Temperature (ORCHIDEE-MICT, Guimberteau et al., 2018), the Catchment Land Surface Model (CLSM, Tao et al., 2017), 20 

and the Community Land Model (Alexeev et al., 2007; Nicolsky et al., 2007a; Yi et al., 2007; Lawrence and Slater, 2008; 

Lawrence et al., 2008; Lawrence et al., 2012; Koven et al., 2013; Chadburn et al., 2017; Guo and Wang, 2017). Most of these 

land models were run at coarse spatial resolutions, e.g., ranging from 0.5° × 0.5° to 1.8° × 3.6° for LSMs participating in the 

Permafrost Carbon Network (PCN) (Wang et al., 2016a) and from 0.188° × 0.188° to 4.10° × 5° for the models participating 
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in the Coupled Model Intercomparison Project phase 5 (CMIP5) (Koven et al., 2013; https://portal.enes.org/data/enes-model-

data/cmip5/resolution).  

 

Differences in the permafrost behaviour simulated with these models reflect model-specific process representations as well as 

biases associated with different meteorological forcing datasets (Barman and Jain, 2016; Wang et al., 2016a; Wang et al., 5 

2016b; Guo et al., 2017; Guimberteau et al., 2018).  Such forcing biases are difficult to avoid given the sparsity of direct 

observations of meteorological variables in most parts of the high latitudes. Even reanalyses, which assimilate a variety of 

global observations, inevitably have biases in high latitudes due to observation sparsity in cold regions combined with the 

many challenges of physical process modelling.  Nevertheless, despite these issues, permafrost behaviour simulated with LSMs 

driven offline by reanalysis forcing fields can still be useful for understanding the impacts of climate variability on permafrost. 10 

The present paper utilizes this approach.  Specifically, we generate here a dataset of Northern Hemisphere permafrost 

conditions by driving an updated version of NASA’s Catchment Land Surface Model (CLSM) with Modern-Era Retrospective 

Analysis for Research and Applications-2 (MERRA-2; Gelaro et al., 2017) surface meteorological forcing fields for the 

middle-to-high latitudes across the Northern Hemisphere over the period 1980-2017.  We perform the simulations at 81 km2 

resolution encompassing permafrost areas in the middle-to-high latitudes of the Northern Hemisphere.  This resolution is high 15 

relative to most existing modelling studies at the global scale; published simulations at higher resolution are limited to plot 

scales (e.g., CALM-site scale in Shiklomanov et al. (2010)), landscape scales (e.g., polygonal tundra landscape scale in Kumar 

et al. (2016)), or regional scales (e.g., 4 km2 in  Jafarov et al. (2012) covering Alaska; 1 km2 in Gisnas et al. (2013) covering 

Norway). 

 20 

Due to the sparsity of in-situ measurements at the regional to global scale, evaluating the spatial pattern of ALT produced by 

any such simulation remains challenging. Indeed, it is difficult to compare the simulated values at model resolutions with in-

situ observations taken at the point scale unless the measurement point is uniformly representative of the area covered by the 

model grid cell or the representation errors associated with the point-to-grid comparison are well defined. Remotely sensed 

permafrost products, which provide a unique source of spatially distributed ALT at the landscape-scale, may provide help in 25 
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this regard. Existing remote sensing ALT products have been retrieved from ground-based Ground Penetrating Radar (GPR) 

(Chen et al., 2016a; Jafarov et al., 2017), airborne polarimetric Synthetic Aperture Radar (SAR), and spaceborne 

interferometric SAR (Liu et al., 2012; Li et al., 2015; Schaefer et al., 2015). These ALT products are available at the landscape-

scale and can complement our modelling analysis. In this study, we use remote sensing information from the NASA Airborne 

Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission.  In 2015, AirMOSS acquired P-band (420-440 5 

MHz) SAR observations over portions of northern Alaska from which Chen et al. (2019) retrieved regional estimates of ALT 

and soil layer dielectric properties that are related to soil moisture and freeze/thaw states. In their study, Chen et al. (2019) 

mainly focus on the development and improvement of the ALT retrieval algorithm, whereas the present study uses the ALT 

retrievals in combination with in-situ measurements to aid in assessing the (fully independent) ALT simulations.   

 10 

In the present paper we evaluate our simulated permafrost extent and ALTs against an observations-based permafrost 

distribution map and against multi-year in-situ observations.  We also compare the skill of our model estimates to that of the 

AirMOSS ALT retrievals.  In these comparisons, we account for uncertainty to the extent possible.  Overall, we pursue three 

scientific objectives: 1) evaluate the relative importance of the factors that determine the spatial variability of ALT, 2) evaluate 

CLSM-simulated ALT and permafrost extent against observations, and 3) quantify and assess the large-scale characteristics 15 

of ALT (in terms of means and interannual variability) in Northern Hemisphere permafrost regions from 1980 through 2017.  

As a side benefit, the side-by-side comparison of modelled and remotely sensed ALT estimates is an important first step toward 

combining this information effectively in future model-data fusion efforts.  Section 2 below describes the model and datasets 

used in this study, Section 3 describes methods, and Section 4 provides results.  Our findings are summarized and discussed 

in Section 5. 20 
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2 Model and data sets 

2.1 NASA Catchment Land Surface Model (CLSM) 

CLSM is the land model component of NASA’s Goddard Earth Observing System (GEOS) Earth system model and was part 

of the model configuration underlying the MERRA-2 reanalysis product (Reichle et al., 2017a; Gelaro et al., 2017). CLSM 

explicitly accounts for sub-grid heterogeneity in soil moisture characteristics with a statistical approach (Koster et al., 2000; 5 

Ducharne et al., 2000).  The land fraction within each computational unit (or grid cell) is partitioned into three soil moisture 

regimes, namely the wilting (i.e., non-transpiring), unsaturated, and saturated area fractions. Over each of the three moisture 

regimes, a distinct parameterization is applied to estimate the relevant physical processes (e.g., runoff and evapotranspiration).  

This version of CLSM includes a three-layer snow model that estimates the evolution of snow water equivalent (SWE), snow 

depth, and snow heat content (Stieglitz et al., 2001) in response to the forcing data.  The snow model accounts for key physical 10 

mechanisms that contribute to the growth and ablation of the snowpack, including snow accumulation, aging, melting, and 

refreezing.  The model also includes the insulation of the ground from the atmosphere by the snowpack.  The CLSM subsurface 

heat transfer module uses an explicit finite difference scheme to solve the heat diffusion equation for six soil layers (0-0.1m, 

0.1-0.3m, 0.3-0.7m, 0.7-1.4m, 1.4-3m, and 3-13m). The soil layer thicknesses increase with depth following a geometric series 

for consistency with the linear heat diffusion calculation (Koster et al., 2000). A no-heat-flux condition is employed at 13m 15 

depth. 

 

The updated version of CLSM used here includes modifications aimed at improving permafrost simulation.  It accounts, for 

example, for the impact of soil carbon on the soil thermal properties with soil porosity, thermal conductivity, and specific heat 

capacity calculated separately for mineral soil and soil carbon, after which the two are averaged using a carbon-weighting 20 

scheme.  Higher (lower) soil carbon content, therefore, results in lower (higher) soil thermal conductivity.  The updated version 

produces more realistic subsurface thermodynamics in cold regions than does the original scheme (Tao et al., 2017). This 

version of CLSM, however, does not include dynamic soil carbon pools. 
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Particularly relevant to the present analysis is our calculation of ALT from CLSM simulation output.  We compute ALT from 

the simulated soil temperature profile and the ice content within the soil layer that contains the thawed-to-frozen transition. 

Precisely, the thawed-to-frozen depth is calculated as:  

zbottom(𝑙) − fice(𝑙, t) × ∆z(𝑙),         (1) 

where layer 𝑙 is the deepest layer that is fully or partially thawed, zbottom(𝑙) represents the depth at the bottom of layer 𝑙, 5 

fice(𝑙, t) is the fraction of ice in layer 𝑙 at time t (i.e., fice(𝑙, t) ∈ [0  1]), and ∆z(𝑙) is the thickness of layer 𝑙. To identify layer 

𝑙, we use a 0⁰C degree temperature threshold. Specifically, T > 0⁰C degree indicates that a layer is fully thawed, T = 0⁰C degree 

indicates that a layer is partially thawed, and T < 0⁰C degree indicates that a layer is fully frozen. That is, layer 𝑙 is the deepest 

layer that satisfies T(𝑙) ≥ 0⁰C. Equation (1) then expresses that the thawed-to-frozen depth is equal to the bottom depth of the 

layer 𝑙 but adjusted upward according to the ice fraction within the partially thawed layer 𝑙.  This upward adjustment, by the 10 

way, allows the thawed-to-frozen depth to be a continuous variable; it is not quantized to the imposed layer depths. We search 

for the deepest 𝑙 if multiple thawed-to-frozen transitions are present (e.g., if a seasonal frost at the surface is separated from 

the permafrost below by a thawed soil layer). The annual ALT for a given year, then, is defined as the deepest depth at which 

a thawed-to-frozen transition occurs within that year. Note that the calculation of equation (1) is made at the scale of a model 

grid cell, and thus features such as talik are not represented if they occur at sub-grid cell scale.    15 

 

We drive the improved CLSM version of Tao et al. (2017) in a land-only (offline) configuration across permafrost areas in the 

Northern Hemisphere. The simulation domain, shown in Figure 1a, covers the major permafrost regions of the Northern 

Hemisphere middle-to-high latitudes for which soil carbon data are available from the Northern Circumpolar Soil Carbon 

Database version 2 (NCSCDv2, https://bolin.su.se/data/ncscd/) (Hugelius et al., 2013a; Hugelius et al., 2013b).  The NCSCDv2 20 

data are used to calculate the CLSM soil thermal properties used in the simulations (Tao et al., 2017).  The model simulation 

covered the period from 1980 to 2017 and was performed at a 81-km2 spatial resolution on the 9-km Equal Area Scalable Earth 

grid, version 2 (Brodzik et al., 2012).   
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Surface meteorological forcing were extracted from the MERRA-2 reanalysis data, which are provided at a resolution of 0.5° 

latitude × 0.625° longitude (Global Modeling and Assimilation Office (GMAO), 2015a, b).  At latitudes south of 62.5°N within 

our simulation domain, the MERRA-2 precipitation forcing used here is informed by gauge measurements from the daily 0.5° 

global Climate Prediction Center Unified gauge product (Chen et al., 2008) as described in (Reichle et al., 2017b).  We further 

rescaled the precipitation to the long-term, seasonally varying climatology of the Global Precipitation Climatology Project 5 

version 2.2 product (Huffman et al., 2009). Further details regarding model parameters and forcing inputs are found in Tao et 

al. (2017).   

 

The model was spun-up for 180 years by looping five successive times through the 36-year period of MERRA-2 forcing from 

1 January 1980 to 1 January 2016 in order to achieve a quasi-equilibrium state.  The spatial terrestrial state variables at the end 10 

of the fifth loop were used to initialize the model for the final simulation experiment from 1980 to 2017.   

 

2.2 Remotely Sensed ALT from AirMOSS 

Radar backscatter measurements are sensitive to changes in the soil dielectric constant (or relative permittivity) which in turn 

are associated with changes in soil moisture and the soil freeze-thaw state. Based on this relationship, Chen et al. (2019) used 15 

the AirMOSS airborne P-band (420-440 MHz) synthetic aperture radar (SAR) observations collected during two campaigns 

in 2015 to estimate ALT in northern Alaska.  As shown in Figure 2a, the AirMOSS flights originated from Fairbanks 

International Airport and headed west toward the Seward Peninsula (HUS, KYK, COC), then turned back east (KGR) prior to 

heading north towards the Arctic coast overpassing Ambler (AMB), Ivotuk (IVO), and Atqasuk (ATQ).  From there, the flights 

turned south again, flying over Barrow (BRW), Deadhorse (DHO), and Coldfoot (CFT) en route to Fairbanks.  In the present 20 

paper, the remotely-sensed ALT retrievals are compared with in-situ observations and CLSM-simulated ALT.   

 

Chen et al. (2019) used AirMOSS P-band SAR observations at two different times to retrieve active layer properties: (1) 

acquisitions on 29 August 2015 when the downward thawing process approximately reached its deepest depth (i.e., the bottom 
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of the active layer), and (2) acquisitions on 1 October 2015 when the active layer started to refreeze from the surface while the 

bottom of the active layer remained thawed. ALT was assumed constant from late August to early October because over this 

period changes in thawing depth are found typically negligible (Carey and Woo, 2005; Chen et al., 2016b; Zona et al., 2016).  

Strictly speaking, the radar retrievals represent the approximate thaw depth of the thawed-to-frozen boundary on 29 August 

2015 and 1 October 2015.  The unknown, true ALT for 2015 might occur later if the thawing continued and the maximum 5 

thaw depth occurred after the October flight time. Based on an analysis of in-situ observations (not shown), however, it is rare 

that this occurs, and the subsequent impact on the estimated ALT value would be relatively small in any case. We therefore 

equate the retrieved thaw depth with ALT. 

 

In the retrieval algorithm,  used a three-layer dielectric structure to represent the active layer and underlying permafrost. In 10 

their algorithm, the two uppermost layers together constitute the active layer that account for a top, unsaturated zone and an 

underlying, saturated zone. The bottommost (third) layer of the retrieval model structure represents the permafrost.  Because 

the soil moisture at saturation only depends on the porosity of the soil medium, the dielectric constant of the saturated zone in 

the active layer is assumed constant over the time window. An iterative forward-model inversion scheme was used to 

simultaneously retrieve the dielectric constants and layer thicknesses of the three-layer dielectric structure from the SAR 15 

observations collected on 29 August 2015 and 1 October 2015. Note that the retrieved ALT cannot exceed the radar sensing 

depth of about 60 cm. This is the depth below which the AirMOSS radar is expected to lose sensitivity to subsurface features, 

and it is calculated based on the radar system noise floor and calibration accuracy. Therefore, any retrieved ALT larger than 

60 cm is expected to have large uncertainties, and the error is further expected to grow linearly as the retrieved values of ALT 

essentially “saturate.”  This limitation may also lead to underestimates of the actual thaw depth.   20 

 

In this study, we focus on the retrievals of four flight lines across the Alaska North Slope, including IVO (Ivotuk), ATQ 

(Atqasuk), BRW (Barrow), and DHO (Deadhorse) as shown in Figure 2a. These four transects cover areas with light to 

moderate vegetation. Since the radar scattering model is only applicable to bare surfaces or lightly vegetated tundra areas 

(Chen et al., 2019), the ALT estimates derived for IVO, ATQ, BRW, and DHO are considered more accurate than ALT 25 
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retrievals for the remaining transects, which include more vegetated areas. Moreover, some of the southern transects cover 

discontinuous permafrost where the ALT often exceeds the P-band radar sensing depth of about 60 cm and thus the retrievals 

have large uncertainty (Chen et al., 2019).  

 

2.3 Circum-Arctic Permafrost Conditions and In-situ Observations of ALT 5 

The permafrost distribution simulated by CLSM is evaluated against the observations-based Circum-Arctic Map of Permafrost 

and Ground-Ice Conditions (Brown et al., 2002) shown in Figure 1b.  The map is based on the distribution and character of 

permafrost and ground ice using a physiographic approach. Permafrost conditions are categorized into four classes: continuous 

(90-100%), discontinuous (50-90%), sporadic (10-50%), and isolated (0-10%), where the numbers in parentheses indicate the 

area fraction of permafrost extent.   10 

 

In-situ observations of ALT obtained by the CALM network (https://www2.gwu.edu/~calm/; Brown et al., 2000) were used 

to evaluate both the AirMOSS ALT retrievals and CLSM-simulated ALT results.  The CALM network provides observations 

from 1990 to 2017, but few sites have records in the early 1990s.  We did not use measurements that were flagged as having 

been taken too early in the season or under unusual conditions (e.g., after the site was burned or covered with lava, which 15 

occurred at sites R30A and R30B in Kamchatka). In total there are 220 sites located within the CLSM simulation domain 

(Figure 1b), and we use 213 sites to evaluate results.  Thaw depth measurements are usually made at the end of the thawing 

season.  Most of the CALM sites (129 out of the 213 sites used here) employ a spatially-distributed mechanical probing method 

to measure thaw depths along a transect or across a rectangular grid ranging in size from 10m×10m to 1000m×1000m.  At 20 

sites thaw tubes or boreholes are used to measure the thaw depth.  At 63 sites, ground temperature measurements from 20 

boreholes are used to infer thaw depth.  For the remaining site, no information about the measurement method is available.  

Only point-scale measurements are available from the thaw tube/borehole and ground temperature sites (including, e.g., the 

sites in Mongolia).  
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In addition, daily in-situ observations of soil temperature profiles at ten Alaskan sites from the Permafrost Laboratory at the 

University of Alaska Fairbanks (UAF) (http://permafrost.gi.alaska.edu/sites_map; Romanovsky et al., 2009) were used to infer 

thawed-to-frozen depth using the 0⁰C degree threshold and to complement the CALM ALT observations in Alaska. Table 1 

provides the coordinates and measuring methods of the UAF in-situ sites.  The UAF measurements were used along with the 

CALM data to evaluate the ALT estimates derived from the CLSM simulation and the AirMOSS radar observations for the 5 

North Slope of Alaska in section 4.1.  

 

3 Methods 

3.1 Comparing ALT from In-situ Observations, AirMOSS Retrievals, and CLSM Results in Alaska 

First, we compare AirMOSS radar retrievals and CLSM simulation results of ALT for 2015 against each other and against in-10 

situ observations: (i) we compare the spatial patterns of the AirMOSS retrievals with those of the model-simulated ALT over 

northern Alaska; and (ii) we evaluate the simulated ALT against both the AirMOSS retrievals and in-situ observations from 

the CALM and UAF networks. We rely on several metrics to evaluate the model and radar-retrieval performance, including 

bias, root mean square error (RMSE), and correlation coefficient (R). The results are discussed in section 4.1.  

 15 

We conducted the intercomparison at the model scale. The radar retrievals were provided at 2-arcsec × 2-arcsec (roughly 20 

m x 60 m in the Arctic) resolution whereas the CLSM-simulated ALTs are at 81 km2. We thus aggregated the AirMOSS 

retrievals to the CLSM model grid by averaging all the retrieval data points within each 81 km2 model grid cell. Only model 

grid cells that were at least 30% covered by radar retrievals were used in the comparison. The AirMOSS transects cover several 

different regions with different climatologic regimes, topography, vegetation and soil type (Figure 2). Note that although the 20 

vegetation class used in the model (Figure 2b) suggests the presence of dwarf trees over the Alaska North Slope, the actual 

satellite-based LAI, vegetation height, greenness fraction and albedo will still instruct the model that the tree cover there is 

extremely sparse. The data sources for these vegetation-related boundary conditions can be found in Table 1 of Tao et al. 
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(2017). Overall, the variability of ALT along these transects encompasses the influence of a variety of factors at the regional 

scale.  

 

The daily UAF in-situ soil temperature profile observations on the AirMOSS flight date (29 August 2015) were used to 

calculate the thawed-to-frozen depth (i.e., approximated ALT).  The ALT measurements at all of the 13 CALM sites covered 5 

by the AirMOSS transects were obtained in August of 2015 (Table 1). Among them, eight CALM sites obtained ALT 

measurements slightly earlier than the overflight date (within at most 18 days from 29 August 2015). Nevertheless, we assume 

that these earlier measurements still represent the thaw depth at the end of August reasonably well.  Prior to comparison with 

the model results and the aggregated radar retrievals, the distributed measurements for a given CALM site (see sampling 

methods in Table 1) were averaged into a single value.  If multiple CALM or UAF sites lay within a single CLSM grid cell , 10 

a single “spatially-averaged” observed value was computed for the cell.   

 

We employed the strategy of Schaefer et al. (2015) to handle the uncertainty propagation, i.e., adding in quadrature the 

uncertainty components from each scale/level involved (see the supplementary file for a detailed description).  For AirMOSS 

retrievals, the sampling uncertainty of mean ALT at the 81 km2 model grid-cell scale is negligible given the large sampling 15 

size and the fact that the retrieval uncertainty dominates the overall uncertainty (see supplementary file). Here, we use a 

nominal estimate of 0.15 m to represent the AirMOSS uncertainty (i.e., the average of the lower and upper bound of the actual 

retrieval uncertainty for individual radar pixels as discussed by Chen et al. (2019)).  

 

When comparing in-situ measurements with model results at the 81 km2 scale (i.e., a point-to-grid comparison), the ultimate 20 

measurement uncertainty propagated from the point-scale measurements to the 81 km2 scale is, for all intents and purposes, 

unknown due to a lack of sufficient measurements over the 81 km2 scale to compute upscaling errors (see supplementary file). 

We thus show instead the standard deviation of CALM measurements to illustrate, in a highly approximate way, the spatial 

representativeness error of the in-situ measurements – a small (large) standard deviation represents a homogeneous 

(heterogeneous) area in terms of ALT, meaning that the in-situ mean likely can (cannot) represent an average over a larger 25 
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scale, assuming the site-scale heterogeneity is somewhat transferable to the larger scale. Such transferability might only apply 

to the largest in-situ site scales (e.g., 1000 m × 1000 m) to the model grid-scale (81 km2) and is thus, in general, questionable. 

We thus make no claim here that the standard deviations shown represent true uncertainty levels.     

 

3.2 Idealized Experiments 5 

After comparing the spatial patterns of the AirMOSS retrievals with the CLSM-simulated ALT results, we then investigate the 

factors that affect the spatial variability of ALT through a series of idealized experiments.  Specifically, we repeated the 

simulation along the AirMOSS transects multiple times, each time removing the spatial variation in some aspect of the model 

forcing or parameters and then quantifying the resulting impact on ALT variability.  

 10 

For these supplemental simulations, we first identified a grid cell within the IVO transect (shown in Figure 2a) that represents 

roughly average (typical) conditions across the ten different transects. In the first idealized experiment, we then modified the 

baseline configuration by applying the surface meteorological forcing data from the selected representative grid cell within the 

IVO transect to all grid cells along all AirMOSS transects.  Thus, in this modified simulation (HomF, for homogenized forcing), 

spatial variability in meteorological forcing is artificially removed. All model parameters related to soil type and vegetation, 15 

however, remain spatially variable, matching those in the baseline simulation.  In the next idealized experiment (HomF&Veg), 

we further replaced the vegetation-related parameters (including vegetation class, vegetation height, and time-variable Leaf 

Area Index (LAI) and greenness) along the AirMOSS transects using the corresponding parameters from the representative 

grid cell, which is characterized by dwarf tree vegetation cover.  Thus, in this simulation, spatial variability in both forcing 

and vegetation is artificially removed.   20 

 

In a third idealized experiment (HomF&Veg&Soil), spatial variability in soil type and topography-related model parameters 

is removed along with that of the forcing and vegetation. The homogenized parameters include soil organic carbon content, 

porosity, saturated hydraulic conductivity, Clapp-Hornberger parameters, wilting point, soil class, sand and clay fraction, 
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vertical decay factor for transmissivity, baseflow parameters, area partitioning parameters, and timescale parameters for 

moisture transfer (Ducharne et al., 2000; Koster et al., 2000).  Here we use an intermediate soil carbon content value (i.e., 40 

kg/m2) for the homogenization; recall that the carbon content impacts the soil thermal properties (see section 2.1). Our 

investigation reveals that the model sensitivity to soil carbon content is much larger for lower soil organic carbon content 

(SOC) than for higher SOC, and easily gets saturated for high SOC (i.e., larger than ~100 kg/m2) (not shown). Thus, we trust 5 

that 40 kg/m2 is an appropriate value representing an intermediate SOC condition. All other soil parameters are homogenized 

to those at the representative grid cell. 

 

Finally, we investigate potential nonlinearities by conducting two additional experiments: one in which we homogenized both 

the vegetation and soil parameters (HomVeg&Soil) and another in which we homogenized both forcing and soil parameters 10 

(HomF&Soil).  Put differently, in experiment HomVeg&Soil only the forcing varies along the transects, whereas in experiment 

HomF&Soil, only the vegetation parameters varies along the transects.  Combined with the experiment HomF&Veg (in which 

only soil properties vary along the transects), these three experiments show in a different way how each individual factor 

(forcing, vegetation, or soil) can contribute to ALT variability.  Table 2 provides a summary of these idealized experiments.  

Taken together, the six experiments (including the baseline) allow us to identify the individual contribution of each factor to 15 

the ALT variability along the AirMOSS transects.  The results are discussed in section 4.2. 

 

3.3 Quantifying ALT Spatiotemporal Characteristics 

In section 4.3 we quantify the large-scale characteristics of ALT over the Northern Hemisphere for the current climate (1980 

- 2017) as determined by the response of the land model to 38 years of MERRA-2 forcing (section 2.1).  Output from this 20 

multi-decadal, offline simulation allows the characterization of permafrost dynamics at each grid cell.  In particular, we can 

compute a number of relevant ALT statistics, including mean, standard deviation, and skewness, from the diagnosed yearly 

values at each cell, and we can examine how these statistics relate to those of MERRA-2 forcing data (particularly the mean 

annual air temperature, MAAT) over the last 38 years. 
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Besides MAAT statistics, we also consider the evolution of the air temperature during the warm season in terms of the energy 

it could provide to the land surface and thus to the determination of ALT.  A simple surrogate for the total warm-season energy 

in year N can be computed from daily-averaged air temperature, Tair(t), and the freezing temperature, Tf (0⁰C degree), as 

follows: 5 

𝑇𝑐𝑢𝑚(N) =  ∑ 𝑇𝑝𝑜𝑠(𝑡)𝑡=𝑀
𝑡=1  ,          (2) 

where 

𝑇𝑝𝑜𝑠(t) = {
𝑇𝑎𝑖𝑟(𝑡) − 𝑇𝑓  

0
     

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) > 𝑇𝑓

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) ≤ 𝑇𝑓
,         (3) 

The index t in equation (2) for year N starts with a value of 1 on 1 September of year (N-1) and ends with a value of M on 31 

August of year N. The number of days M is 365 or 366 depending on the presence of a leap year. Note the air temperature 10 

throughout this study means the near-surface air temperature (i.e., 2 m above the displacement height) derived from MERRA-

2.  

 

We first computed the correlation coefficient (R) between the annual time series of ALT and √𝑇𝑐𝑢𝑚 and between the annual 

time series of ALT and maximum SWE (SWEmax) to quantify the degree to which variations of ALT can be explained solely 15 

by air temperature or by snow mass.  Then, to quantify the joint contributions of √𝑇𝑐𝑢𝑚 and SWEmax, we performed a multiple 

linear regression analysis by fitting the equation 

ALT = 𝑎0 + 𝑎1√𝑇𝑐𝑢𝑚 + 𝑎2𝑆𝑊𝐸𝑚𝑎𝑥  ,         (4) 

to the available data. The correlation coefficient relating ALT to √𝑇𝑐𝑢𝑚 and SWEmax is the square root of the coefficient of 

multiple determination (R2) obtained through fitting Equation (4). This equation is similar in form to the common degree-day 20 

model for predicting ALT from accumulated degree days of thaw based on the Stefan solution (e.g., Shiklomanov and Nelson, 

2002; Zhang et al., 2005; Riseborough et al., 2008; Shiklomanov et al., 2010).  Here, however, we constructed equation (4) 

for a different purpose: to explore how much of the temporal variability of ALT can be jointly explained by snow mass and 
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above-freezing air temperature. Before calculating these correlation coefficients, we removed the linear trend within ALT, 

𝑇𝑐𝑢𝑚, and SWEmax to avoid potentially exaggerating the correlation due to an underlying trend. The results are discussed in 

section 4.3. 

 

3.4 Evaluating Simulated Northern Hemisphere Permafrost Extent and ALT  5 

We first evaluated the simulated permafrost extent against the observation-based permafrost map (Brown et al., 2002 as shown 

in Figure 1b). Note the model’s description of permafrost is binary – either permafrost exists across a grid cell or it is 

completely absent. We cannot then expect an exact comparison to a specification of isolated permafrost (0-10% of area by 

definition) or even, to a lesser extent, sporadic permafrost (10-50% of area by definition). Therefore, we compared our 

simulated permafrost area with that of the total area of continuous, discontinuous, and sporadic permafrost area together from 10 

Brown et al. (2002) and computed the percentage error relative to the observation-based area (i.e., the total area of continuous, 

discontinuous and sporadic permafrost regions). We also compared our simulated permafrost area against the total area of only 

continuous and discontinuous permafrost regions.  

 

Further, the CALM network of in-situ ALT measurements (section 2.3) allows a quantitative evaluation of the simulated ALTs 15 

for the grid cells containing measurement sites. Our comparisons here focus on both multi-year annual ALTs and the average 

(climatological) ALT at the 81 km2
 scale of CLSM data. To ensure a consistent comparison, we average the simulated ALTs 

only over the years for which observations are available.  As noted in section 3.1 and in the supplementary file, the uncertainty 

of the CALM ALT measurements in the context of evaluating grid cell-scale model results theoretically involves uncertainty 

derived from probing point measurement uncertainty, site-scale mean uncertainty, and upscaling errors in going from the site-20 

scale to the model-scale.  This latter uncertainty in particular is unknown.  In our figures (in section 4.4) we show the standard 

deviation of the observed ALT as a very crude surrogate for the spatial representativeness error associated with the point-to-

grid comparison.  As before, we make no claim here that the standard deviations shown represent the relevant statistical 

uncertainty. The results are discussed in section 4.4. 
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4 Results 

4.1 Simulated ALT versus In-situ Measurements and AirMOSS Retrievals in Alaska 

In this section, we compare the simulated ALT and the AirMOSS ALT retrievals at the 81-km2 model resolution.  Note that 

Chen et al. (2019) provide maps of the AirMOSS retrievals and an evaluation versus in-situ measurements at the native (20 m 

by 60 m) scale of the retrievals. 5 

 

Figure 3 compares the spatial pattern of AirMOSS ALT retrievals and CLSM-simulated results. Generally, the patterns of the 

AirMOSS retrievals and CLSM results are quite different.  For example, the AirMOSS-retrieved ALT is greater in the northern 

portion of the DHO transect than in the southern portion (Figure 3a), whereas this pattern is largely reversed in the simulated 

ALT for DHO (Figure 3b). Across all transects, there are portions where the AirMOSS ALT is less than the CLSM-simulated 10 

ALT and portions where the AirMOSS ALT is greater (Figure 3c), though it should be noted that the differences in Figure 3c 

are generally less than the assumed uncertainty of 0.l5 m (see section 3.1).  Generally, the CLSM-simulated ALT shows 

relatively larger spatial variability (0.35 - 0.85 m) than the AirMOSS retrievals (0.4 – 0.6 m).  The AirMOSS ALT exhibits 

some spatial variability at the native resolution (see Chen et al., 2019), but much of this variability averages out during the 

aggregation to the coarse model grid (Figure 3a).  Variations of the simulated ALT within a single transect (Figure 3a) are 15 

predominantly induced by changes in soil type (indicated in Figure 2c and 2d).  In essence, the higher the organic carbon 

content within the soil, the smaller the simulated ALT due to slower heat transfer associated with lower thermal conductivity, 

higher porosity, heat capacity, etc.  (Tao et al., 2017). See also section 4.2 for a discussion of the influence of soil texture on 

the spatial pattern of ALT. 

 20 

Next, we compare the simulated ALT in 2015 with in-situ observations from the CALM and UAF sites that are collocated 

with the AirMOSS transects (section 3.1). Figures 4a and 4b show that the CLSM-simulated ALTs agree with the in-situ 

observations with an overall mean bias of -0.05 m and a RMSE of 0.17 m. The most significant discrepancies between the 

CLSM-simulated ALT and in-situ measurements are at U6, U31, FB1&FBD&FBW (Figure 4a), where the simulated ALT 
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underestimates the in-situ measurements by 0.25-0.28 m, and at U28 where the simulated ALT overestimates the in-situ ALT 

by 0.27 m.  Nevertheless, the scatter in Figure 4b is large, and the corresponding correlation coefficient is quite weak (0.27).   

 

The AirMOSS ALT radar retrievals, for their part, again averaged to the 81-km2 model resolution (section 2.2), show less 

spatial variability than the observations (Figure 4a).  The largest error for the AirMOSS retrievals at the model scale is also at 5 

FB1&FBD&FBW, where the retrievals significantly underestimate the observed in-situ ALT by 0.38m.  Note that radar 

retrievals at the 81 km2 scale are not available at some sites because of our imposed 30% filling restriction.  Although the 

AirMOSS ALT retrievals generally underestimate the in-situ ALT measurements (as shown in Figure 4a), the retrievals tend 

to be more consistent with the observations when the in-situ measurements are within the ~60 cm sensing depth of the P-band 

radar data, as indicated in Table 3.  Specifically, excluding the sites with in-situ ALT measurements that exceed the AirMOSS 10 

sensing depth of ~60 cm, the overall mean bias for the AirMOSS retrievals at the 81 km2 scale drops to -0.01 m, and the 

correlation coefficient increases to 0.64. In contrast, the CLSM simulation results show a bias of 0.01 m and a zero correlation 

coefficient at these sites.  

 

Nevertheless, as noted in section 3.1, given that the upscaling errors in going from the CALM site-scale to the model-scale is 15 

unknown and the fact that the standard deviation of these measurements (as shown by error bars in Figure 4a and 4b) indicates 

large representativeness errors of the in-situ measurements, the point-to-grid comparison result is hard to quantify. In this 

regard, the AirMOSS retrievals aggregated to the same scale as model results provide a comparable counterpart for evaluation. 

Figures 4c further shows that the CLSM-simulated ALT agrees well with the AirMOSS ALT retrievals to within the 

measurement uncertainty of 0.15 m at all the site-located model grid cells.  Indeed as Figure 3c illustrated, the differences 20 

between simulated ALT and the AirMOSS retrievals over all the transects examined here are generally below the measurement 

uncertainty of 0.15 m. 
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4.2 Sources of ALT Spatial Variability:  Results from Idealized Experiments 

Here we investigate the specific factors that drive ALT spatial variability along all ten of the AirMOSS transects (Figure 2a). 

For this analysis, the simulated ALT estimates were aggregated across the width of the radar swath (compare Figure 3).  Figure 

5a illustrates that the simulated ALT captures the spatial variability exhibited by the in-situ measurements. This conclusion is, 

however, very tentative given the limited number of in-situ ALT observations.    5 

 

The simulated ALT is shallowest in the northern transects (ATQ, BRW, and DHO) and deepest in the southeastern transects 

(KYK, COC, KGR, and AMB).  This pattern correlates somewhat (R = 0.46) with that of the mean screen-level (2-meter) air 

temperature (Tair) for the preceding 12-month period (i.e., from 1 September 2014 to 31 August 2015) from MERRA-2 (green 

line in Figure 5a).  The soil carbon content, by contrast, appears anti-correlated (R = -0.59) with the simulated ALT, as 10 

exemplified by the transect portions within the red box (Figure 5a and 5b). Such a correlation presumably reflects the fact that 

soil with high organic carbon content has low thermal conductivity, which hinders heat transfer from the surface to the deeper 

soil in the summertime, thus resulting in a relatively smaller ALT.  In addition, heat transfer is slowed by a higher effective 

heat capacity associated with higher organic carbon content – not from the carbon itself, but from the extra water that can be 

held in the soil due to the increased porosity.  The maximum snow depth (Figure 5c) displays a positive correlation with ALT 15 

(R=0.47), reflecting, at least in part, the fact that subsurface soil temperatures remain relatively insulated under thick and 

persistent snow cover, which reduces heat transfer out of the soil column during the wintertime and hence facilitates a deeper 

thawing during the summer and thus a deeper ALT.   

 

The correlations in Figure 5 suggest (without proving causality) that for the model, surface meteorological forcing (including 20 

air temperature and precipitation) as well as soil type are important drivers of ALT variability along the AirMOSS transects.  

However, the relatively low values of the correlations indicate that a simple linear relationship cannot explain the mutual 

control that these variables exert on ALT spatial variability.  In the remainder of this section, we use a series of idealized model 

simulations (as described in section 3.2) to better quantify the relative impacts of these driving factors along the AirMOSS 

transects.   25 
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The results of the idealized experiments are shown in Figure 6.  The above-mentioned, large-scale spatial variation of ALT in 

the baseline simulation, with larger values in the southeastern transects (KYK, COC, and KGR) and lower values in the 

northern transects (ATQ, BRW, and DHO), is absent after homogenizing the meteorological forcing (HomF; Figure 6a).  

Experiment HomF correspondingly has much less spatial variation in the temperature of the top soil layer than does the baseline 5 

simulation (Figure 6b).  In addition, homogenizing the forcing (which includes snowfall) significantly reduces the variability 

in maximum snow depth along the AirMOSS transects (Figure 6c). These results indicate that in the model, meteorological 

forcing exerts the dominant control over the spatial patterns of ALT, the temperature in the top soil layer, and snow depth at 

the regional scale, as expected.  

 10 

Homogenizing the vegetation attributes in addition to the forcing (HomF&Veg) results in ALT differences (relative to HomF) 

primarily along the northern transects (ATQ, BRW, and DHO).  Along these transects, homogenizing the vegetation 

parameters (including LAI and tree height) to those of the representative grid cell within the IVO transect results in generally 

shallower ALT.  This is because the generally lower albedo of the taller and leafier trees (representative of the IVO transect) 

during the snow season resulted in increased snowmelt and thus reduced snowpack during the snow season (compare the green 15 

and red curves in Figure 6c), thereby reducing the thermal insulation of the wintertime ground.  With reduced insulation, cold 

season ground temperatures dropped, making it more difficult for temperatures to recover during summer(Tao et al., 2017). 

 

As might be expected, the simulation in which soil properties are homogenized in conjunction with forcing and vegetation 

(i.e., HomF&Veg&Soil) essentially eliminates all remaining spatial variability in ALT, snow depth, and soil temperature. 20 

Owing to the strong control of soil type-related parameters (see section 3.2 and Table 2) on soil moisture, spatial variability in 

soil moisture remains high in HomF and HomF&Veg and is only eliminated once these soil type-related parameters are 

homogenized (Figure 6d), which explains the abrupt changes shown in Figure 3c as mentioned in section 3.1.  (Note that to 

maintain consistency with the hardwired scaling factors for snow-free albedo within the model (Mahanama et al., 2015), we 
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still used the original, vegetation-related parameters to calculate surface albedo during snow-free conditions along the 

transects.  This is likely the cause of the few tiny bumps seen in the Figure 6a for HomF&Veg&Soil.) 

 

An alternative view of these results is provided in Figure 7a, which shows the (spatial) standard deviation of ALT along the 

AirMOSS transects for each of the above experiments. Homogenizing the meteorological forcing data results in a significant 5 

reduction of the ALT standard deviation (from 0.16 to 0.10).  Additionally homogenizing the vegetation only reduces the ALT 

standard deviation slightly (from 0.10 to 0.09).  The remaining ALT variability is eliminated through the additional 

homogenization of the soil type-related parameters (HomF&Veg&Soil), which emerge as another important driver of ALT 

variability along the AirMOSS transects.  Note that the ALT variability associated with soil type is generally realized at smaller 

spatial scales than that associated with the meteorological forcing discussed earlier regarding Figure 6a.  The impact of 10 

potential nonlinearities are examined in Figure 7b, which shows the individual impact of vegetation, soil, and forcing 

heterogeneity on the ALT standard deviation along the transects, with the other inputs having been homogenized.  The graphic 

confirms that the meteorological forcing is the dominant driver of ALT spatial variability in our modelling system, followed 

by the soil type-related parameters and the vegetation parameters.   

 15 

Note that in Figure 6a, the soil impact on ALT (difference between HomF&Veg&Soil in black and HomF&Veg in red) appears 

smaller than that of the vegetation (difference between HomF in green and HomF&Veg in red) over the northern transects 

(ATQ, BRW and DHO).  Even so, Figure 7b shows that, in terms of the integrated impact along all the transects, the soil 

influence clearly outweighs the influence of vegetation – at several other transects, including HUS, KYK, COC, AMB, IVO 

and the first half of ATQ (where vegetation conditions might be similar to those used for homogenizing), the changes in 20 

vegetation parameters do not have much impact.  
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4.3 Spatiotemporal Characteristics of ALT across the Northern Hemisphere 

Figure 8a shows the distribution of mean ALT over the modelling domain, and Figure 8b shows the ALT standard deviation 

in time over the 38-year period. As might be expected, ALT tends to increase with distance from the pole, with the largest 

values found in Mongolia and near the southern portion of Hudson Bay, though there are areas (e.g., just north of 60⁰N at 

~120⁰E) with local minima that break this pattern.  The largest ALT standard deviations (red color in Figure 8b) are found 5 

mainly in discontinuous and sporadic permafrost regions (see Figure 1b) where ALTs are deeper on average than that in 

continuous permafrost region.  Figure 8c provides the skewness of the temporal distribution. Though there are some exceptions, 

by and large the skewness is positive in most permafrost regions, suggesting that the largest positive ALT anomalies tend to 

be of greater magnitude than the largest negative anomalies. 

 10 

Figure 8d displays the average of annual mean 2-meter air temperature as derived from MERRA-2. The observed continuous 

and discontinuous permafrost areas shown in Figure 1b are well confined within the cold side of the 0°C (273.15K) isotherm 

in the mean air temperature map (Figure 8d). For the most part, the observed sporadic and isolated permafrost regions of Figure 

1b also lie on the cold side of the 0°C isotherm. The consistency with this isotherm, however, is not as clearly present in the 

simulated permafrost extent (i.e., the extent of the non-grey and non-white areas in Figure 8a).   15 

 

The relationship between the spatiotemporal characteristics of simulated ALT and air temperature forcing has been 

investigated before in many studies at the site to landscape scale (e.g., Klene et al., 2001; Shiklomanov and Nelson, 2002; 

Zhang et al., 2005; Juliussen and Humlum, 2007) and at the regional scale (e.g., Anisimov et al., 2007). Here we simply 

analyze the correlation coefficient between ALT and two variables: the proxy of total energy input into the ground (i.e., 20 

√𝑇𝑐𝑢𝑚, see section 3.3) and the maximum SWE.  Our goal is to explore how much of the spatiotemporal variability of ALT 

across the globe can be jointly explained by these two variables.   

 

Figure 9a shows a map of the correlation coefficient between the 37-year time series (i.e., from September 1980 through 

August 2017) of √𝑇𝑐𝑢𝑚 and the corresponding time series of simulated ALT. The areas with p values larger than 0.05, which 25 
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indicate correlations that are not statistically different from zero at the 95% confidence level, are shown as green. Figure 9a 

demonstrates that most permafrost regions indeed have significant positive correlations (red colours) between ALT and √𝑇𝑐𝑢𝑚. 

Clearly, in these regions, air temperature exerts a dominant control on year-to-year ALT variability.  

 

However, not all regions exhibit a significant correlation; other variable(s) must also be exerting control on interannual ALT 5 

variability.  One reasonable candidate variable is snowpack.  As noted above, snow acts as a thermal insulator -- regions with 

thicker snowpack are better able to insulate the ground from becoming too cold during winter, thereby supporting higher 

subsurface temperatures during non-winter months.  Variable, but often thick, snowpack is in fact common in the areas of 

Figure 9a that show a low (green) or negative (blue) correlation between ALT and √𝑇𝑐𝑢𝑚 – areas such as Central Siberia, the 

Southern part of eastern Siberia, and a vast region in Canada surrounding the Hudson Bay, as well as other small areas that 10 

appear in high mountains or on the windward side of the mountains (e.g., locations B, C and D in Figure 1a).    

 

In Figure 9b we show the correlation coefficient between the time series of ALT and the maximum SWE (SWEmax) during 

the preceding winter.  A positive correlation is seen in many areas, most notably in areas with a poor or negative correlation 

between ALT and √𝑇𝑐𝑢𝑚 (Figure 9a) – for example, just west of Hudson Bay and along a zonal band at 60°N in Russia.  15 

Apparently, in these areas, the impacts of snow physics on ALT outweigh the impacts of lumped energy input (√𝑇𝑐𝑢𝑚). In 

some other areas ALT correlates positively with both √𝑇𝑐𝑢𝑚 and SWEmax. Figure 9c shows how the resulting coefficient of 

multiple correlation varies in space.  High correlations largely blanket the modelled area. That is, over most of the area 

examined, a substantial portion of the year-to-year variability of ALT can be explained by joint variations in √𝑇𝑐𝑢𝑚  and 

SWEmax.  Even so, a few limited areas still exhibit low correlations (p>0.05, green colour in Figure 9c).  Some of these areas 20 

are in mountainous regions, for instance the Eastern Siberian (Ostsibirisches) Bergland, where more complex environmental 

controls might be playing a dominant role. In addition, MERRA-2 snow forcing might be severely erroneous in these regions. 

 

https://en.wikipedia.org/wiki/Siberia
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4.4 Evaluation of Simulated Permafrost Extent and ALT across the Northern Hemisphere  

Qualitatively, the simulated permafrost extent (Figure 8a) generally shows reasonable agreement with the observation-based 

permafrost map in Figure 1b, especially for the continuous permafrost regions.  This is shown explicitly in Figure 10a.  The 

main deficiency in the simulation results is the failure to capture a large area of permafrost in western Siberia (labelled as A 

in Figure 1a).  The reasons for this particular deficiency are unclear.  One possible reason is that the permafrost in western 5 

Siberia is characterized as an ecosystem-protected permafrost zone (Shur and Jorgenson, 2007) where a thick moss-organic 

layer (i.e., moss-dominated mires (Anisimov and Reneva, 2006; Anisimov, 2007; Peregon et al., 2009)) protects the permafrost 

below from thawing under a warm air temperature. This is mainly attributed to the low thermal conductivity of the organic 

layer in summer, which strongly insulates the permafrost from the warm atmosphere, and the high thermal conductivity of the 

frozen organic layer in winter, which allows cold temperature penetration from above, provided the snowpack is not too thick 10 

(Nicolsky et al., 2007b; Jafarov and Schaefer, 2016). This mechanism is lacking in the current version of CLSM (Tao et al., 

2017). Thus, improving the model through a better representation of thermal processes in an organic layer above the soil 

column in combination with initializing the simulation with a sufficiently cold soil temperature should improve the simulation 

results. This work is reserved for a future study. 

 15 

Another possible reason for the poor skill in western Siberia is that the model initial conditions there were too warm, although 

MERRA-2 appears to underestimate summer air temperatures in this region (Draper et al., 2018; their Figure 7e). Note that 

some other global models, such as CLM3 and the Community Climate System Model version 3 (CCSM3) as reported in 

Lawrence et al. (2012), also missed this area of permafrost and that updated versions of these models (i.e., CLM4 and CCSM4) 

showed improved performance in this regard (Lawrence et al., 2012). Guo et al. (2017) reported underestimated permafrost 20 

extent simulated in western Siberia using CLM4.5 driven by three different reanalysis forcings (i.e., CFSR, ERA-I and 

MERRA), and they showed an improved simulation of permafrost extent in this area when using another reanalysis forcing, 

the CRUNCEP (Climatic Research Unit ‐ NCEP) (Guo and Wang, 2017). Guimberteau et al. (2018) found similar 

improvements stemming from the use of CRUNCEP forcing. We leave for further study whether the MERRA-2 forcing data 

is responsible for the western Siberia deficiency seen in our own results.  25 
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The disagreements between the simulated and observed permafrost extents (covering about a few degrees latitude) toward the 

south in Figure 10a (green and blue areas at the southern edge of permafrost regions) are less of a concern, since the comparison 

in such areas is muddied by the interpretation of “isolated” permafrost in the observational map (Figure 1b). The specific areas 

of each type shown in Figure 10a are listed in Table 4. The simulated permafrost extent covers 81.3% of the observation-based 5 

area (i.e., the total area of continuous, discontinuous and sporadic permafrost regions), and misses 18.7% of the observed 

permafrost area. When comparing simulated permafrost extent with only continuous and discontinuous types, these metrics 

change to 87.7% and 12.3%, respectively. Meanwhile, the permafrost extent is overestimated by 3.2×106 km2. 

 

To produce Figure 10b, multi-year averages of CLSM-simulated ALT values were spatially averaged over each of the four 10 

permafrost types outlined in Figure 1b.  (As is appropriate, permafrost is only occasionally simulated over the fourth, 

“isolated”, permafrost type.  The ALT average shown for this type is thus based on a particularly limited number of grid cells.)  

The average ALT is smallest in the continuous permafrost zone, higher in the discontinuous zone, and higher still in the 

sporadic permafrost zone; it is highest in areas of isolated permafrost.  The progression, of course, is in qualitative agreement 

with expectations – larger breaks in permafrost coverage imply a greater amount of available energy, which should also act to 15 

increase ALT. 

 

The observed and CLSM-simulated annual ALT and multi-year ALT averages are compared in Figure 11. Generally, the 

simulated annual ALT and the averages agree reasonably well with observations for shallow permafrost regions, that is, for 

smaller ALT. A large bias, however, is found for most of the Mongolia sites; in Mongolia, the observed annual ALT and the 20 

climatological ALTs tend to be much larger than the simulated ALTs (light purple dots in Figure 11).  Overall, the RMSE, 

bias and R are all significantly improved when the Mongolian sites are excluded from consideration.  Specifically for the 

climatological ALTs, the RMSE (and bias) of simulated ALT climatological means is 1.22 m (and -0.48 m), and it drops to 

0.33 m (and -0.04 m) if the Mongolia sites are excluded (Figure 11d). Given simplifications in the model, uncertainties in 

boundary conditions (e.g., vegetation types, soil properties, etc.), and upscaling issues stemming from the coarse-scale nature 25 
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of the forcing data relative to the point-scale and plot-scale nature of the observations (i.e., the representative errors as indicated 

by the large standard deviation shown in Figure 11a), these results seem encouraging. The correlation coefficient metric (R), 

however, is somewhat less encouraging, amounting to only 0.5 when considering all sites.  The correlation coefficient is in 

fact lower (0.3) when the Mongolian sites are excluded; the correlation coefficient is 0.39 for the Mongolian sites considered 

in isolation. Note that the existing literature on simulated ALT fields (e.g., Dankers et al. (2011), Lawrence et al. (2012) and 5 

Guo et al. (2017)) reveals a general tendency for models to overestimate ALT climatology at the global scale.  In light of this, 

our results suggest that the CLSM-simulated ALT fields are perhaps among the better simulation products, especially for 

shallow permafrost. 

 

Comparing the observed and simulated spatial distributions of the ALT averages provides a further test of the accuracy of the 10 

simulation results (as shown in Figure 12).  The model successfully simulates the large-scale spatial patterns in ALT, capturing, 

for example, the variations in Siberia, Svalbard, northern Canada, and northern Alaska (see Figure 12a, b). Figure 12c, d show 

the differences between the observed and estimated values in middle latitudes (45⁰N to 60⁰N) and high latitudes (60⁰N to 

90⁰N), respectively; in agreement with Figure 11a, the model clearly performs better in high-latitude regions, i.e., outside of 

Mongolia. Many of the sites north of 60⁰N (Figure 12d) are coloured grey, indicating a small error in the simulation of ALT 15 

at these sites – the errors at these sites range from only -0.10m to 0.10m. 

 

The significant underestimation of ALT in Mongolia might result from errors in the meteorological forcing provided by 

MERRA-2. However, a comparison (not shown) of MERRA-2 air temperatures with measurements at six weather stations 

collocated with CALM sites in Mongolia calls this explanation into question. While MERRA-2 summer temperatures are 20 

indeed too low at four of the weather stations examined, they are too high at the other two weather stations. An additional 

reason for the underestimation of ALT in Mongolia might be a mismatch between the land surface parameter values used in 

the model and the actual conditions at each site. For instance, detailed soil information 

(https://www2.gwu.edu/~calm/data/webforms/mg_f.html) indicate that some Mongolian sites have special “rocky” soil types 

including limestones (e.g., M04), slatestones (e.g., M05), gravelly sand (e.g., M06 and M08), etc. that are not well represented 25 

https://www2.gwu.edu/~calm/data/webforms/mg_f.html
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in the model.  As another example, sites on south-facing slopes presumably have much deeper ALT than those on slopes with 

less exposure to the sun, which is not captured by CLSM.  The large representative errors of Mongolian sites are clearly 

illustrated by the standard deviation (although computed only with 3 to 5 measurements) as shown by the error bars in Figure 

11a. 

 5 

5 Conclusion and Discussion 

We produced a dataset (effectively a derivative of MERRA-2) of permafrost variations in space and time across middle-to-

high latitudes.  This dataset can be considered unique in terms of its daily temporal resolution combined with a relatively high 

spatial resolution at the global scale (i.e., 81 km2).  The dataset, which is derived from a state-of-the-art reanalysis (MERRA-

2), shows reasonable skill in capturing permafrost extent (87.7% of the total area of continuous and discontinuous types, 10 

according to one validation dataset) and in adequately estimating ALT climatology (with a RMSE of 0.33m and a mean bias 

of -0.04m), excluding Mongolian sites. We note that our MERRA-2-driven permafrost simulation results, while potentially 

better than those we might have obtained with MERRA forcing, are still lacking (e.g., in western Siberia). Still, with its 

resolution and available variables (ALT, subsurface temperature at different depths), the dataset could prove valuable to many 

future permafrost analyses.  15 

 

This work also provides a first comparison between two highly complementary approaches to estimating permafrost: model 

simulation and remote sensing. In northern Alaska, excluding sites that have ALT measurements exceeding the radar sensing 

depth (~ 60cm), the evaluation metrics for ALT retrievals against in-situ measurements are better than those for simulated 

ALT at the 81 km2 scale. However, the remotely sensed ALT estimates generally show lower levels of spatial variability 20 

relative to the simulated ALT estimates (and relative to the in-situ observations), and the spatial patterns of the simulated and 

retrieved values differ considerably.  The remote sensing approach is still relatively new, with many aspects still requiring 

development.  It is important, though, to begin considering the modeling and remote sensing approaches side by side, as both 

should play important roles in permafrost quantification in the years to come.  Indeed, once the science fully develops, joint 



28 

 

use of modeling and remote sensing (e.g., through the application of downscaling methods) should allow the generation of 

more accurate permafrost products at higher resolution.  

 

It is important to note that the retrieved ALT was determined by the dielectric transition from thawed to frozen conditions 

whereas the modelled ALT and the ALT for some of the in-situ measurements was based on a freezing temperature of 0⁰C 5 

(see sections 2.1 and 2.3).  Depending on local conditions, soil does not typically freeze at 0⁰C but rather at slightly lower 

temperatures (e.g., around -1⁰C) due to the presence of dissolved compounds that depress the freezing point (Watanabe and 

Wake, 2009).  The sharp drop in conductivity and dielectric constant is much more accurately tied to a frozen state than to a 

temperature threshold. These and other differences in the various ALT measurement methods (section 2.3) introduce 

considerable uncertainty into our comparisons. The use of the 0⁰C degree threshold in CLSM for determining the thawed or 10 

frozen layer may explain in part the model’s underestimation of ALT, as may the lack of an explicit treatment of local aspect, 

errors in assigned model parameters, and so on.  

 

Analysis of the CLSM-simulated data, along with data produced in idealized experiments with specific homogenized controls, 

show how the statistics of permafrost variability in space are controlled by forcing variability and by variability in the imposed 15 

surface boundary conditions. In the idealized experiments, we employ successive homogenization of controls to quantify how 

meteorological forcing, soil type, and vegetation cover affect the underground thermodynamic processes associated with the 

variability of ALT along the AirMOSS flight paths in Alaska. Meteorological forcing and soil type are found to be the two 

dominant factors controlling ALT variability along these transects. Vegetation plays a smaller role by modulating the 

accumulation of snow.  A multiple regression analysis relating yearly ALT jointly to accumulated air temperature and 20 

maximum SWE shows that time variations in these two latter quantities explain most of the time variability of ALT in the 

CLSM-identified permafrost regions.  

 

Many aspects of the modelling framework may contribute to the noted errors in the simulated ALTs. For example, the observed 

climatological ALTs at the Mongolia sites are all larger than 3m.  This depth falls well within the 6th soil layer of the model, 25 
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which has a thickness of 10m; the subsurface vertical resolution in the CLSM may be too coarse to capture these deeper ALTs.   

Test simulations (not shown) with alternative model configurations indicate that increasing the number of soil layers may act 

to decrease somewhat the simulated ALT, suggesting that our values may be a little overestimated; however, based on results 

from a new study by Sapriza-Azuri et al.(2018), our use of a no-heat-flux condition at the bottom boundary rather than a 

dynamic geothermal flux may lead to underestimates of ALT.  Such uncertainties should naturally be kept in mind when 5 

interpreting our results.  Our supplemental simulations (not shown) also suggest that increasing the total modelled soil depth 

has only a small impact on simulated ALT. Uncertainty in our description of soil organic carbon, i.e., both soil carbon content 

and vertical carbon distribution, leads to corresponding uncertainty in our ALT simulations. We indeed find a significant 

improvement in simulated ALT at several Mongolian sites when we arbitrarily impose less total soil carbon content and 

concentrate less soil carbon in top layers (not shown). Besides the vertical distribution of soil carbon, the vertical variation in 10 

other soil hydrological properties (e.g. soil texture and porosity) should also play a significant role since they all affect soil 

thermal conductivity and heat capacity. In addition, the lack of a necessary organic layer on top of soil column and the related 

thermal processes is also a major deficiency for the model especially in ecosystem-protected performant regions. 

 

Another issue affecting our ALT comparisons is the climatological representation of vegetation parameters such as LAI used 15 

in CLSM.  An additional investigation (not shown) revealed large differences between the LAI climatology used in CLSM 

and more realistic, time-varying, satellite-based LAI products at several Mongolian sites. In addition, while we did exclude 

from our analyses any measurements that were affected by notable disturbance (e.g., wildfire), the impacts of other potential 

land changes on ALT, including overgrazing in Mongolia (Sharkhuu and Sharkhuu, 2012; Liu et al., 2013), were not explicitly 

treated in the model.  The model also lacks the vertical advective transport of heat in the subsurface due to downward flowing 20 

liquid water, which can significantly affect permafrost thawing (Kane et al., 2001; Rowland et al., 2011; Kurylyk et al., 2014).  

Also relevant are potential errors in the MERRA-2 forcing.  The MERRA-2 reanalysis is known to have problems capturing 

trends in high latitudes (Simmons et al., 2017). 
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Such modelling deficiencies must always be kept in mind when evaluating a product like the one examined here. That said, as 

long as appropriate caution is employed, the product could have significant value for further analyses of permafrost.  The 

product features daily subsurface temperatures and depth-to-freezing estimates over middle-to-high latitudes in the Northern 

Hemisphere at an 81 km2 resolution, covering the period 1980-2017.  It is, in a sense, a value-added derivative product of the 

MERRA-2 reanalysis and will be available via the National Snow and Ice Data Center (NSIDC).  The comparisons against 5 

observations discussed above, along with the intuitively sensible connections shown between permafrost variability, forcing 

variability, and boundary condition variability, gives confidence that this dataset contains useful information. These data can 

potentially contribute, for example, to ecological studies focused on the dynamics of microbial activity and soil respiration in 

cold regions, on vegetation migration/adaptation in response to climate change, and so on. 
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Table 1 – In-situ permafrost measurement sites covered by the AirMOSS transects in 2015.    

AirMOSS flight  

(Official full name) 

Permafrost 

Site (CALM 

or UAF)* 

Latitude 

(degree) 

Longitude 

(degree) 

Sampling 

Method@ 

Measurement 

Date 

COC (Council) 

U27 (CALM) 64.8333 -163.7000 4 8/30/2015 

U28 (CALM) 65.4500 -164.6167 4 8/29/2015 

IVO (Ivotuk) IV4 (UAF) 68.4803 -155.7437 1# 8/29/2015 

ATQ (Atqasuk) U3 (CALM) 70.4500 -157.4000 4 8/25/2015 

BRW (Barrow) 

U1 (CALM) 71.3167 -156.6000 4 8/21/2015 

U2 (CALM) 71.3167 -156.5833 2 8/24/2015 

BR2 (UAF) 71.3090 -156.6615 1 8/29/2015 

DHO (Deadhorse) 

U4 (CALM) 70.3667 -148.5500 3 8/25/2015 

U5 (CALM) 70.3667 -148.5667 4 8/11/2015 

U6 (CALM) 70.1667 -148.4667 3 8/26/2015 

U31 (CALM) 69.6969 -148.6821 3 8/15/2015 

U8 (CALM) 69.6833 -148.7167 3 8/27/2015 

U32A (CALM) 69.4410 -148.6703 3 8/16/2015 

U32B (CALM) 69.4010 -148.8056 3 8/16/2015 

U9A (CALM) 69.1667 -148.8333 3 8/25/2015 

WD1 & WDN 

(UAF) 

70.3745 -148.5522 1 8/29/2015 

DH2 (UAF) 70.1613 -148.4653 1 8/29/2015 

FB1 (UAF) 69.6739 -148.7219 1 8/29/2015 

FBD (UAF) 69.6741 -148.7208 1% 8/29/2015 
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FBW (UAF) 69.6746 -148.7196 1 8/29/2015 

SG1 (UAF) 69.4330 -148.6738 1 8/29/2015 

SG2 (UAF) 69.4283 -148.7001 1 8/29/2015 

HV1 (UAF) 69.1466 -148.8483 1% 8/29/2015 

* CALM: sites from the Circumpolar Active Layer Monitoring (CALM) network; UAF: sites from the Permafrost Laboratory 

at the University of Alaska Fairbanks (UAF). 

@Sampling method: 1. Single point; 2. 320 random sampling points within 10m × 10m area; 3. 100m × 100m grid with a 10m 

sampling interval; 4. 1000m × 1000m grid with a 100m sampling interval. 

# Two sensors are installed at IV4. 5 

%Observations were taken from two conditions, including a frost-boil and an inter-boil area. 
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Table 2 – List of idealized simulation experiments along the AirMOSS transects.    

Experiment Name 

Meteorological 

forcing 

Vegetation Soil parameters* 

Baseline Original Original Original 

HomF Homogenized Original Original 

HomF&Veg Homogenized Homogenized Original 

HomF&Veg&Soil Homogenized Homogenized Homogenized 

HomVeg&Soil Original Homogenized Homogenized 

HomF&Soil Homogenized Original Homogenized 

*CLSM soil parameters include soil organic carbon content, porosity, saturated hydraulic conductivity, Clapp-Hornberger 

parameters, wilting point, soil class, sand and clay fraction, vertical decay factor for transmissivity, baseflow parameters, area 

partitioning parameters, and time scale parameters for moisture transfer (Koster et al., 2000; Ducharne et al., 2000; Tao et al., 

2017). 5 
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Table 3 – Evaluation metrics for model-simulated ALT and AirMOSS retrievals for 2015.    

Metric All sites 

Sites with ALT measurements within AirMOSS sensing 

depth (~60 cm) 

 

CLSM-simulated 

ALT  

AirMOSS ALT 

retrievals 

CLSM-Simulated 

ALT 

AirMOSS ALT retrievals 

RMSE (m) 0.17 0.17 0.12 0.06 

Bias (m) -0.05 -0.12 0.01 -0.01 

R 0.27 0.61 -0.00 0.64 
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Table 4 – Evaluation results for simulated permafrost extent against the permafrost map by Brown et al. (2002). The calculation 

was based on the comparison between simulated permafrost area and the total area of continuous, discontinuous and sporadic 

permafrost regions from Brown’s map. The number in the brackets was calculated against the total area of continuous and 

discontinuous permafrost regions. 

Case CLSM Obs. Simulated Area (×106 km2) Percentage Relative to Observation 

4 No No 48.8 - 

3 Yes No 1.9 - 

2 No Yes 3.2 (1.7) 18.7% (12.3%) 

1 Yes Yes 13.8 (12.3) 81.3 % (87.7%) 

 5 
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Figure 1: a) Elevation above mean sea level in the simulation domain, which is defined by the area for which NCSCDv2 data are 

available.  Regions A, B, C, and D are discussed in the text.  b) Permafrost and ground ice conditions adapted from (Brown et al., 5 

2002).  Red dots represent CALM sites. 

  



47 

 

 

 

Figure 2: a) Ten transects of AirMOSS flights conducted in Alaska on 29 August 2015 and 1 October 2015, including HUS (Huslia), 

KYK (Koyuk), COC (Council), KGR (Kougarok), AMB (Ambler), IVO (Ivotuk), ATQ (Atqasuk), BRW (Barrow), DHO 

(Deadhorse), and CFT  (Coldfoot). Each flight swath width is approximately 15 km. The red dot on IVO illustrates the location of 5 

the representative grid cell used and discussed in section 3.2. b) Vegetation class, c) soil organic carbon content, and d) soil class used 

in CLSM. The eight vegetation classes are 1-broadleaf evergreen trees, 2-broadleaf deciduous trees, 3-needleleaf trees, 4-grassland, 

5-broadleaf shrubs, 6-dwarf trees, 7-bare soil, and 8-desert soil, respectively. The 253 soil classes include one “peat” class (#253), 

which is shown in dark grey, and 252 mineral soil classes (De Lannoy et al., 2014). 

  10 
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Figure 3: a) Radar retrievals of ALT derived from P-band radar observations on 29 August 2015 and 01 October 2015 for IVO, 

ATQ, BRW, and DHO, aggregated to 81 km2 model grid cells. b) CLSM-simulated ALT. c) Difference between the aggregated ALT 

retrievals and the CLSM-simulated results. Magenta squares represent CALM sites covered by the flight swath whereas black circles 

represent UAF sites.  5 
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Figure 4: a) ALT observations (red)  for 2015 from CALM and UAF sites covered by AirMOSS swaths and from radar retrievals 

aggregated to 81 km2 grid cells (green), and CLSM-simulated ALT at 81 km2 (blue).  The short name of the corresponding covering 

swath is shown on the top (see also Figure 2a). Error bars represent the standard deviation for multiple observations at in-situ sites. 

No standard deviations are provided for UAF sites since single-point measurements were deployed. Averaged values were provided 5 

if multiple sites appear within a same model grid cell (e.g., U1&U2, U4&U5, WD1&WD2, FB1&FBD&FBW, and SG1&SG2). The 

sites are arranged aligning with the flight direction. b) CLSM estimates of ALT for 2015 versus in-situ measurements with error 

bars indicating the standard deviation as in a).  c) Same as b) but versus aggregated AirMOSS ALT at model scale. The error bars 

here represent the uncertainty for radar retrievals at the 81 km2 scale as explained in section 3.1. Corresponding estimates of CLSM 

uncertainty, which are presumably large, are not shown in the figure.   10 
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Figure 5: a) CLSM-simulated ALT (thawed-to-frozen depth) on 29 August 2015 along the AirMOSS flight transects.  In-situ ALT 

observations from UAF and CALM are shown as red circles and magenta diamonds, respectively. Averaged air temperature at 2 m 

(Tair) from the preceding annual period (i.e., 01 September 2014 to 31 August 2015) is shown in green with the scale on the right 5 

ordinate. b) Organic carbon content and c) maximum snow depth during the preceding annual period (again from 01 September 

2014 to 31 August 2015). The red rectangle across a) and b) highlights a portion of the domain that shows anti-correlation between 

organic carbon content and modelled ALT (see Section 4.2). The abscissa in c) provides cumulative distances in units of km along 

the transects. 
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Figure 6: a) CLSM-simulated ALT (thawed-to-frozen depth) on the flight date (i.e., 29 August 2015) from the top four experiments 

listed in Table 2; b) simulated top layer soil temperature on the flight date, c) maximum snow depth the during the preceding annual 

period (i.e., from 01 September 2014 to 31 August 2015), and d) soil moisture within the soil profile on the flight date along the 

connected transects for the four experiments. The black dot indicates the representative location within the IVO transect from which 5 

the forcing, vegetation and/or soil data are used to homogenize the inputs in the idealized experiments. By construction, all 

simulations provide identical results at this representative location.  
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Figure 7: a) Standard deviation of ALT along the AirMOSS transects from the top four experiments listed in Table 2.  b) The 

individual impact (or contribution) from heterogeneous vegetation, soil type and meteorological forcing, respectively. For instance, 

the impact of vegetation (or soil, or forcing) heterogeneity is the ALT standard deviation along the transects from HomF&Soil (or 

HomF&Veg, or HomVeg&Soil).  5 
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Figure 8: a) Mean, b) standard deviation, and c) skewness of CLSM-simulated ALT over the 38 years (1980 - 2017). Grey indicates 

permafrost-free (Pfree) areas in the simulation. d) 38-year averaged MERRA-2 annual atmospheric temperature at 2 m above 

displacement height (Tair). The red boundary outlines the continuous and discontinuous permafrost regions according to Brown et 

al. (2002). 5 
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Figure 9: Correlation coefficient between a) ALT and square root of the effective accumulated air temperature (√𝑻𝒄𝒖𝒎) and b) ALT 

and maximum SWE (𝑺𝑾𝑬𝒎𝒂𝒙) from the preceding September to the present August over the period 1980-2017. c) Multi-variable 

coefficient of correlation for a fitted multiple linear regression model between ALT and √𝑻𝒄𝒖𝒎 and 𝑺𝑾𝑬𝒎𝒂𝒙. Areas that have a p-

value larger than 0.05 (i.e., statistically insignificant correlation) are masked in green. Grey indicates permafrost-free (Pfree) areas 5 

in the simulation.  
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Figure 10: a) Four comparison categories include: 1) blue - CLSM collocates permafrost with the observation-based permafrost 

map of Brown et al. (2002) as either continuous, discontinuous, or sporadic permafrost; 2) green - CLSM has no permafrost, but the 

observation-based permafrost map does as either continuous, discontinuous, or sporadic types; 3) red - CLSM does have permafrost, 5 

but the observation-based permafrost map does not or contains isolated permafrost; and 4) grey - CLSM has no permafrost and 

neither does the observation-based permafrost map (except for isolated permafrost). b) area-weighted average of ALT as simulated 

by CLSM for the four different permafrost types.   
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Figure 11: a) Annual ALT from CLSM simulation vs. CALM observations with horizontal error bars indicating standard deviations 

of measurements within the model grid cell. Error bar is absent if the number of measurements within a 81 km2 grid cell is less than 

three. b) As in a) but excluding the Mongolia sites.  c) 38-yr average ALT for the period 1980-2017 from CLSM simulation vs. CALM 5 

observations. d) As in c) but without the Mongolia sites. The correlation coefficient (R), bias, and root mean squared error (RMSE) 

are provided next to each subplot. 
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Figure 12: Multi-year average ALT at CALM site locations for a) CALM observations and b) CLSM results. c) ALT difference 

between observations and model results for locations within 45⁰N- 60⁰N latitude and 85⁰E-125⁰E longitude. d) Same as c) but for 

locations poleward of 60⁰N latitude. In c) and d) grey indicates absolute ALT differences less than 0.10 m.  

 5 
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Abstract.  This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost 

conditions at high81-km2 resolution. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for 

Research and Applications-2 (MERRA-2) reanalysis were used to drive an improved version of the land component of 15 

MERRA-2 in middle-to-high northern latitudes from 1980 to 2017.  The resulting simulated permafrost distribution across the 

Northern Hemisphere mostly captures well the observed extent of continuous and discontinuous permafrost exceptbut misses 

the ecosystem-protected permafrost zones in western Siberia, which is permafrost-free in the simulation..  Noticeable 

discrepancies also appear along the southern edge of the permafrost regionregions where sporadic and isolated permafrost 

types dominate.  The evaluation of the simulated active layer thickness (ALT) climatology against in-situ measurements 20 

demonstrates reasonable skill except in Mongolia. Specifically, theThe RMSE (and bias) of climatological ALT is 1.22 m (and 
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-(-0.48 m) across all sites and 0.33 m (and -(-0.04 m) without the Mongolia sites. In northern Alaska, both ALT retrievals from 

airborne remote sensing for 2015 and the corresponding simulated ALT exhibit limited skill versus in-situ measurements at 

the model scale. In addition, the remotely sensed simulated ALT retrievals generally demonstrate lower levels ofhas lesslarger 

spatial variability than both the observed and remotely sensed simulated ALT, although it agrees well with the retrievals when 

considering measurements uncertainty.  Controls on the spatial variability of ALT are examined with idealized numerical 5 

experiments focusing on northern Alaska; meteorological forcing and soil typetypes are found to have dominant impacts on 

the spatial variability of ALT, with vegetation also playing a role through its modulation of snow accumulation. A correlation 

analysis further reveals that accumulated above-freezing air temperature and maximum snow water equivalent explain most 

of the year-to-year variability of ALT nearly everywhere over the model-simulated permafrost regions. Simulated ALT trends 

from 1980 to 2017 indicate that some permafrost areas are experiencing significant degradation, with ALT increasing up to 10 

0.5 cm/year. It is difficult, however, to adequately assess the accuracy of the simulated ALT trends given the limited availability 

and relatively short records of in-situ measurements.  

 

1 Introduction 

Permafrost is an important component of the climate system, and its variations can have significant impacts on climate and 15 

society.  Of deep concern is a potential positive feedback loop by which carbon stored within permafrost regions is released 

through global warming, thereby adding greenhouse gases to the atmosphere that accelerate the warming further (Dorrepaal et 

al., 2009; Schuur et al., 2009; MacDougall et al., 2012; Schuur et al., 2015). Communities and infrastructure in ice-rich 

permafrost regions are particularly vulnerable to land subsidence and infrastructure damage caused by permafrost thaw (Nelson 

et al., 2001; Liu et al., 2010; Guo and Sun, 2015).   20 

 

Permafrost variations, including pronounced permafrost degradation due to a warming climate, have been reported for many 

regions, including Alaska (Nicholas and Hinkel, 1996; Osterkamp and Romanovsky, 1996; Jorgenson et al., 2001; Hinkel and 

Nelson, 2003; Jafarov et al., 2012; Liu et al., 2012; Jones et al., 2016; Batir et al., 2017), Canada (Chen et al., 2003; James et 
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al., 2013), Norway (Gisnas et al., 2013), Sweden (Pannetier and Frampton, 2016), Russia (Romanovsky et al., 2007; 

Romanovsky et al., 2010), Mongolia (Sharkhuu and Sharkhuu, 2012), Norway (Gisnas et al., 2013), and the Qinghai–Tibet 

Plateau (Zhou et al., 2013; Wang et al., 2016a; Lu et al., 2017; Ran et al., 2018), Russia (Romanovsky et al., 2010; Romanovsky 

et al., 2007) and Sweden (Pannetier and Frampton, 2016). Some of these findings are based on in-situ measurements at a point-

scale or at a spatially-aggregated scale (up to 1000m×1000m), such as through the Circumpolar Active Layer Monitoring 5 

(CALM) network(e.g., Luo et al., 2016).  For the entire Northern Hemisphere, rapidly accelerated permafrost degradation in 

recent years has been reported by Luo et al. (2016) based on in-situ measurements at a point-scale or at a spatially-aggregated 

scale (up to 1000m×1000m) from the Circumpolar Active Layer Monitoring (CALM) networkand in the Arctic Report Card. 

However, the current state and evolution of global permafrost (including permafrost temperature, ice content, and degradation 

rates) are still largely unknown across much of the Northern latitudes.  10 

 

The impact of a changing climate on permafrost dynamics must depend on local site characteristics . Subsurface heat transfer 

processes and active layer thickness (ALT; the maximum thaw depth at the end of the thawing season) are influenced by more 

than surface meteorological forcing – they are also influenced by vegetation type, surface organic layer characteristics, soil 

properties and soil moisture (Stieglitz et al., 2003; Shur and Jorgenson, 2007; Yi et al., 2007; Luetschg et al., 2008; Dankers 15 

et al., 2011; Johnson et al., 2013; Jean and Payette, 2014; Yi et al., 2015; Fisher et al., 2016; Matyshak et al., 2017; Tao et al., 

2017). Understanding the contributions from the different controls on ALT (and permafrost conditions in general) is crucial 

for assessing permafrost behaviour and its resilience to a warming climate.  

 

Physically-based numerical model simulations are potentially useful for quantifying and understanding these dynamics at large 20 

spatial scales; they can also provide insights into associated impacts on the global carbon cycle.  Permafrost dynamics can be 

modelled, for example, by driving a land surface model (LSM) offline (i.e., uncoupled from an atmospheric model) with 

meteorological forcing data (including air temperature, radiation, precipitation, etc.) from some credible source. Permafrost 

variations, including pronounced permafrost degradation due to a warming climate, have been reported for many regions, 

including Alaska (Jorgenson et al., 2001; Liu et al., 2012; Nicholas and Hinkel, 1996; Batir et al., 2017; Osterkamp and 25 
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Romanovsky, 1996; Hinkel and Nelson, 2003; Jafarov et al., 2012; Jones et al., 2016), Canada (Chen et al., 2003; James et al., 

2013), Mongolia (Sharkhuu and Sharkhuu, 2012), Norway (Gisnas et al., 2013), the Qinghai–Tibet Plateau (Zhou et al., 2013; 

Lu et al., 2017; Wang et al., 2016a), Russia (Romanovsky et al., 2010; Romanovsky et al., 2007) and Sweden (Pannetier and 

Frampton, 2016). Some of these findings are based on in-situ measurements at a point-scale or at a spatially-aggregated scale 

(up to 1000m×1000m), such as through the Circumpolar Active Layer Monitoring (CALM) network. In particular, rapidly 5 

accelerated permafrost degradation in recent years has already been reported at CALM in-situ sites over the Northern 

Hemisphere (Luo et al., 2016). In addition, given the apparent climate warming seen in recent years (exemplified by the fact 

that the average Arctic air temperature in 2017 (ending in September) was the second warmest on record since 1900 (Arctic 

Report Card; http://www.arctic.noaa.gov/Report-Card/Report-Card-2017) and that 2017 was the warmest year on record for 

global ocean temperatures (Cheng and Zhu, 2018)), important reductions in permafrost might be occurring as well. However, 10 

current global permafrost thermal states (i.e., permafrost temperature, ice content and degradation rates across much of 

Northern latitudes) are still largely unknown. Monitoring permafrost degradation in a timely manner is particularly critical for 

ecosystem management and for various policy decisions. 

 

For large spatial scales, numerical model simulations are potentially useful.  Simulations and/or predictions with a variety of 15 

land surface models (LSMs) have been used to quantify large-scale permafrost patterns (i.e., distributions and thermal states) 

and their interactions with a warming climate.  LSMs utilized for this include, for example, the Joint UK Land Environment 

Simulator (JULES, Dankers et al., 2011), the ORganizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE) - 

aMeliorated Interactions between Carbon and Temperature (ORCHIDEE-MICT, Guimberteau et al., 2018), the Catchment 

Land Surface Model (CLSM, Tao et al., 2017), and the Community Land Model (Lawrence and Slater, 2005; Alexeev et al., 20 

2007; Nicolsky et al., 2007a; Yi et al., 2007; Lawrence and Slater, 2008; Lawrence et al., 2008; Lawrence et al., 2012; Koven 

et al., 2013; Chadburn et al., 2017; Guo and Wang, 2017). Most of these land models were run at coarse spatial resolutions, 

e.g., ranging from 0.5° × 0.5° to 1.8° × 3.6° for LSMs participating in the Permafrost Carbon Network (PCN) (Wang et al., 

2016a) and from 0.188° × 0.188° to 4.10° × 5° for the models participating in the Coupled Model Intercomparison Project 

phase 5 (CMIP5) (Koven et al., 2013; https://portal.enes.org/data/enes-model-data/cmip5/resolution). As a result, it is difficult 25 



5 

 

to compare the simulated values with in-situ observations taken at the point scale. Other types of numerical models have been 

run at relatively higher resolution, but not globally; such simulation domains were limited to regional scales (e.g., 2 km × 2 

km in  Jafarov et al. (2012) covering Alaska;1 km × 1 km in  Gisnas et al. (2013) covering Norway) as necessitated  by the 

availability of ancillary data and the heavy computational burden.  As discussed further below, one of the unique contributions 

of the present work is a global simulation of permafrost at a somewhat higher resolution than earlier global-scale studies. 5 

 

The impact of a changing climate on permafrost dynamics must depend on local site characteristics . Subsurface heat transfer 

processes and active layer thickness (ALT; the maximum thaw depth at the end of the thawing season) are influenced by more 

than surface meteorological forcing – they are also influenced by vegetation type, surface organic layer characteristics, soil 

properties and soil moisture (Yi et al., 2007; Fisher et al., 2016; Shur and Jorgenson, 2007; Tao et al., 2017; Johnson et al., 10 

2013; Jean and Payette, 2014; Yi et al., 2015; Stieglitz et al., 2003; Luetschg et al., 2008; Matyshak et al., 2017; Dankers et 

al., 2011). Understanding the contributions from the different controls on ALT (and permafrost conditions in general) is crucial 

for assessing permafrost behaviour and its resilience to a warming climate.  

 

Again, such understanding can potentially be derived from models.  Permafrost dynamics can be modelled, for example, by 15 

driving a land surface model offline (i.e., uncoupled from an atmospheric model) with meteorological forcing data (including 

air temperature, radiation, precipitation, etc.) from some credible source.   LSMs that have been used to quantify large-scale 

permafrost patterns (i.e., distributions and thermal states) and their interactions with a warming climate include, for example, 

the Joint UK Land Environment Simulator (JULES, Dankers et al., 2011), the ORganizing Carbon and Hydrology in Dynamic 

EcosystEms (ORCHIDEE) - aMeliorated Interactions between Carbon and Temperature (ORCHIDEE-MICT, Guimberteau et 20 

al., 2018), the Catchment Land Surface Model (CLSM, Tao et al., 2017), and the Community Land Model (Alexeev et al., 

2007; Nicolsky et al., 2007a; Yi et al., 2007; Lawrence and Slater, 2008; Lawrence et al., 2008; Lawrence et al., 2012; Koven 

et al., 2013; Chadburn et al., 2017; Guo and Wang, 2017). Most of these land models were run at coarse spatial resolutions, 

e.g., ranging from 0.5° × 0.5° to 1.8° × 3.6° for LSMs participating in the Permafrost Carbon Network (PCN) During the 

course of the simulation, the model produces estimates of ALT and permafrost thermal characteristics. A wide range of 25 
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simulated permafrost behaviour has been reported in the literature, with differences reflecting model-specific process 

representations and(Wang et al., 2016a) and from 0.188° × 0.188° to 4.10° × 5° for the models participating in the Coupled 

Model Intercomparison Project phase 5 (CMIP5) (Koven et al., 2013; https://portal.enes.org/data/enes-model-

data/cmip5/resolution).  

 5 

Differences in the permafrost behaviour simulated with these models reflect model-specific process representations as well as 

biases associated with different meteorological forcing datasets (Barman and Jain, 2016; Wang et al., 2016a; Wang et al., 

2016b; Guo et al., 2017; Guimberteau et al., 2018) (Barman and Jain, 2016; Slater and Lawrence, 2013; Guimberteau et al., 

2018; Guo et al., 2017; Wang et al., 2016a; Wang et al., 2016b).  The latter source of bias is particularly .  Such forcing biases 

are difficult to reconcileavoid given thatthe sparsity of direct observations of meteorological variables in most parts of the high 10 

latitudes are sparse. In addition, reanalysis datasets that. Even reanalyses, which assimilate a variety of global observations 

provide global coverage but still, inevitably have biases in high latitudes due to this observation sparsity in cold regions 

combined with the many challenges of physical process modelling.  

 

Despite Nevertheless, despite these issues, permafrost behaviour simulated with LSMs driven offline by reanalysis forcing 15 

fields can still be useful for understanding the impacts of climate variability on permafrost, and, in turn, to evaluate the 

performance of the reanalysis data. (Consider the example of the LSMs participating in the Permafrost Carbon Network.) The 

present paper utilizes this approach in the context of the Modern-Era Retrospective Analysis for Research and Applications-2 

(MERRA-2), an atmospheric reanalysis system that assimilates a wide range of conventional and satellite observations (Gelaro 

et al., 2017).  We. The present paper utilizes this approach.  Specifically, we generate here a dataset of Northern Hemisphere 20 

permafrost conditions by driving an updated version of NASA’s Catchment Land Surface Model (CLSM) with MERRA-

2Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2; Gelaro et al., 2017) (MERRA-2; Gelaro 

et al., 2017) surface meteorological forcing fields for the middle-to-high latitudes across the Northern Hemisphere over the 

period 1980-2017.  Note that MERRA-2 has been found to be skilful in its simulation of near-surface atmospheric conditions 

(Reichle et al., 2017a; Reichle et al., 2017b; Bosilovich et al., 2015; Bosilovich et al., 2017) and to show improvements in the 25 

Formatted: Strikethrough

Formatted: Line spacing:  Double



7 

 

representation of cryospheric processes compared with its predecessor MERRA (Gelaro et al., 2017). In particular, MERRA-

2 assimilates substantially more satellite observations and employs more physically reasonable hydrology representations for 

glaciated land surfaces compared to MERRA, and it also uses observation-based, seasonally-varying sea ice albedo as opposed 

to MERRA’s fixed value of 0.6 (Gelaro et al., 2017). A recent study shows that permafrost and ALT simulation results obtained 

with forcing data from the original MERRA reanalysis are inferior to those driven by other reanalysis-based forcing data sets, 5 

particularly those from the NOAA Climate Forecast System Reanalysis (CFSR) and European Centre for Medium-Range 

Weather Forecasts Re-Analysis Interim (ERA-I) (Guo et al., 2017). The superiority of MERRA-2 forcing compared to 

MERRA forcing in the context of permafrost simulation is presumed here (given its general improvements in the cryosphere), 

though a side-by-side test of the two forcing datasets in this regard has not been performed.    We perform the simulations at 

81 km2 resolution encompassing all permafrost areas in the middle-to-high latitudes of the Northern Hemisphere.  This 10 

resolution is high relative to most existing modelling studies at the global scale; published simulations at higher resolution are 

limited to plot scales (e.g., CALM-site scale in Shiklomanov et al. (2010)Shiklomanov et al. (2010)), landscape scales (e.g., 

polygonal tundra landscape scale in Kumar et al. (2016)Kumar et al. (2016)), or regional scales (e.g., 4 km2 in  Jafarov et al. 

(2012)Jafarov et al. (2012) covering Alaska; 1 km2 in Gisnas et al. (2013)Gisnas et al. (2013) covering Norway). 

 15 

Detailed observations are another obvious source of understanding, and here, to complement our modelling analysis, we also 

make use of remote sensing information from the NASA Airborne Microwave Observatory of Subcanopy and Subsurface 

(AirMOSS) mission.  In 2015, AirMOSS acquired P-band (420-440 MHz) radar observations over portions of northern Alaska 

from which Chen et al. (2019a) retrieved regional estimates of ALT and soil layer dielectric properties that are related to soil 

moisture and freeze/thaw states. In their study, Chen et al. (2019a) mainly focus on the development and improvement of the 20 

ALT retrieval algorithm, whereas the present study emphasizes using the ALT retrievals to assess the (fully independent) ALT 

simulations. 

 

Due to the sparsity of in-situin-situ measurements at the regional to global scale, evaluating the spatial pattern of ALT produced 

by any such simulation remains challenging. Indeed, it is difficult to compare the simulated values at model resolutions with 25 
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in-situin-situ observations taken at the point scale unless the measurement point is uniformly representative of the area covered 

by the model grid cell or the upscaling (representation) errors associated with the point-to-grid comparison are well defined. 

Remotely sensed permafrost products, which provide a unique source of spatially distributed ALT at the landscape-scale, may 

provide help in this regard. Existing remote sensing ALT products have been retrieved from ground-based Ground Penetrating 

Radar (GPR) (Chen et al., 2016a; Jafarov et al., 2017), airborne polarimetric Synthetic Aperture Radar (SAR) (Chen et al., 5 

2019a), and spaceborne interferometric SAR (Liu et al., 2012; Li et al., 2015; Schaefer et al., 2015). These ALT products are 

available at the landscape-scale and can complement our modelling analysis. In this study, we use remote sensing information 

from the NASA Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission.  In 2015, AirMOSS 

acquired P-band (420-440 MHz) SAR observations over portions of northern Alaska from which Chen et al. (2019a) (2019) 

retrieved regional estimates of ALT and soil layer dielectric properties that are related to soil moisture and freeze/thaw states. 10 

In their study, Chen et al. (2019b)Chen et al. (2019a) mainly focus on the development and improvement of the ALT retrieval 

algorithm, whereas the present study uses the ALT retrievals in combination with in situin-situ measurements to aid in 

assessing the (fully independent) ALT simulations.   

 

In the present paper we evaluate our simulated permafrost extent ALT and ALTs permafrost extent against an observations-15 

based permafrost distribution map, and against multi-year in-situin-situ observations from CALM, and against .  We also 

compare the skill of our model estimates to that of the AirMOSS ALT retrievals derived from AirMOSS..  In these 

comparisons, we account for uncertainty to the extent possible.  Overall, we pursue three scientific objectives: 1) evaluate the 

relative importance of the factors that determine the spatial variability of ALT, 2) evaluate CLSM-simulated ALT climatology 

and permafrost extent against observations, and 3) quantify and assess the large-scale characteristics of ALT (in terms of 20 

means, and interannual variability and trend) in Northern Hemisphere permafrost regions from 1980 through 2017.  As a side 

benefit, the side-by-side comparison of modelled and remotely sensed ALT estimates is an important first step toward 

combining this information effectively in future model-data fusion efforts.  Section 2 below describes the model and datasets 

used in this study, Section 3 describes methods, and Section 4 provides results.  Our findings are summarized and discussed 

in Section 5. 25 
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2 Model and data sets 

2.1 NASA Catchment Land Surface Model (CLSM) 

CLSM is the land model component of NASA’s Goddard Earth Observing System (GEOS) Earth system model and was part 

of the model configuration underlying the MERRA-2 reanalysis product (Reichle et al., 2017a; Gelaro et al., 2017). CLSM 

explicitly accounts for sub-grid heterogeneity in soil moisture characteristics with a statistical approach (Koster et al., 2000; 5 

Ducharne et al., 2000).  The land fraction within each computational unit (or grid cell) is partitioned into three soil moisture 

regimes, namely the wilting (i.e., non-transpiring), unsaturated, and saturated area fractions. Over each of the three moisture 

regimes, a distinct parameterization is applied to estimate the relevant physical processes (e.g., runoff and evapotranspirat ion). 

CLSM also includes This version of CLSM does not include dynamic soil carbon pools, but it does includes a three-layer snow 

model that estimates the evolution of snow water equivalent (SWE), snow depth, and snow heat content (Stieglitz et al., 2001) 10 

in response to the forcing data.(Stieglitz et al., 2001) in response to the forcing data.  The snow model accounts for key physical 

mechanisms that contribute to the growth and ablation of the snowpack, including snow accumulation, aging, melting, and 

refreezing.  The model also includes the insulation of the ground from the atmosphere by the snowpack.  The CLSM subsurface 

heat transfer module uses an explicit finite difference scheme to solve the heat diffusion equation for six soil layers (0 -0.1m, 

0.1-0.3m, 0.3-0.7m, 0.7-1.4m, 1.4-3m, and 3-13m). A no-heat-flux condition is employed at the bottom of the model’s soil 15 

columnThe soil layer thicknesses increase with depth following a geometric series for consistency with the linear heat diffusion 

calculation (Koster et al., 2000). A no-heat-flux condition is employed at 13m depth. 

 

The updated version of CLSM used here (Tao et al., 2017) includes modifications aimed at improving permafrost simulation.  

It accounts, for example, for the impact of soil carbon on the soil thermal properties with soil porosity, thermal conductivity, 20 

and specific heat capacity calculated separately for mineral soil and soil carbon, after which the two are averaged using a 

carbon-weighting scheme.  Higher (lower) soil carbon content, therefore, results in lower (higher) soil thermal conductivity.  

The updated version produces more realistic subsurface thermodynamics in cold regions than does the original scheme (Tao 

et al., 2017).(Tao et al., 2017). This version of CLSM, however, does not include dynamic soil carbon pools. 
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Particularly relevant to the present analysis is our calculation of ALT from CLSM simulation output.  We compute ALT from 

the simulated soil temperature profile and the ice content within the soil layer that contains the thawed-to-frozen transition. 

Precisely, the thawed-to-frozen depth is calculated as:  

zbottom(𝑙) − fice(𝑙, t) × ∆z(𝑙),         (1) 5 

where layer 𝑙 is the deepest layer that is fully or partially thawed, zbottom(𝑙) represents the depth at the bottom of layer 𝑙, 

fice(𝑙, t) is the fraction of ice in layer 𝑙 at time t (i.e., fice(𝑙, t) ∈ [0  1]), and ∆z(𝑙) is the thickness of layer 𝑙. To identify layer 

𝑙, we use a 0⁰C degree temperature threshold. Specifically, T > 0⁰C degree indicates that a layer is fully thawed, T = 0⁰C degree 

indicates that a layer is partially thawed, and T < 0⁰C degree indicates that a layer is fully frozen. That is, layer 𝑙 is the deepest 

layer that satisfies T(𝑙) ≥ 0⁰C. Equation (1) then expresses that the thawed-to-frozen depth is equal to the bottom depth of the 10 

layer 𝑙 but adjusted upward according to the ice fraction within the partially thawed layer 𝑙. The annual ALT for a given year, 

then, is defined as the maximum thawed-to-frozen depth within that year. This upward adjustment, by the way, allows the 

thawed-to-frozen depth to be a continuous variable; it is not quantized to the imposed layer depths. We search for the deepest 

𝑙 if multiple thawed-to-frozen transitions are present (e.g., if a seasonal frost at the surface is separated from the permafrost 

below by a thawed soil layer). The annual ALT for a given year, then, is defined as the deepest depth at which a thawed-to-15 

frozen transition occurs within that year. Note that the calculation of equation (1) is made at the scale of a model grid cell, and 

thus features such as talik are not represented if they occur at sub-grid cell scale.    

 

We drive the improved CLSM version of Tao et al. (2017) in a land-only (offline) configuration across permafrost areas in the 

Northern Hemisphere. The simulation domain, shown in  20 

We drive the improved CLSM version of Tao et al. (2017) in a land-only (offline) configuration across permafrost areas in the 

Northern Hemisphere. The simulation domain, shown in Figure 1Figure 1a, covers the major permafrost regions of the 

Northern Hemisphere middle-to-high latitudes for which soil carbon data are available from the Northern Circumpolar Soil 

Carbon Database version 2 (NCSCDv2, https://bolin.su.se/data/ncscd/) (Hugelius et al., 2013a; Hugelius et al., 2013b).  The 
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NCSCDv2 data are used to calculate the CLSM soil thermal properties used in the simulations (Tao et al., 2017).  The model 

simulation covered the period from 1980 to 2017 and was performed at a 81-km2 spatial resolution on the 9-km  Equal Area 

Scalable Earth grid, version 2 (Brodzik et al., 2012).   

 

Surface meteorological forcing were extracted from the MERRA-2 reanalysis data, which are provided at a resolution of 0.5° 5 

latitude × 0.625° longitude (Global Modeling and Assimilation Office (GMAO), 2015a, b).  At latitudes south of 62.5°N within 

our simulation domain, the MERRA-2 precipitation forcing used here is informed by gauge measurements from the daily 0.5° 

global Climate Prediction Center Unified gauge product (Chen et al., 2008) as described in (Reichle et al., 2017b).  We further 

rescaled the precipitation to the long-term, seasonally varying climatology of the Global Precipitation Climatology Project 

version 2.2 product (Huffman et al., 2009). Further details regarding model parameters and forcing inputs are found in Tao et 10 

al. (2017).   

 

The model was spun-up for 180 years by looping five successive times through the 36-year period of MERRA-2 forcing from 

1 January 1980 to 1 January 2016 in order to achieve a quasi-equilibrium state.  The spatial terrestrial state variables at the end 

of the fifth loop were used to initialize the model for the final simulation experiment from 1980 to 2017.  The details of the 15 

spin-up procedure employed here admittedly impact our trend analysis (section 4.5); the approach makes use of the warmer 

conditions during the last few decades and thus should produce warmer 1980 initial conditions than would be produced with 

realistic historical forcing over hundreds of years (e.g., Sapriza-Azuri et al., 2018). .  The NCSCDv2 data are used to calculate 

the CLSM soil thermal properties used in the simulations (Tao et al., 2017).  The model simulation covered the period from 

1980 to 2017 and was performed at a 81-km2 spatial resolution on the 9-km Equal Area Scalable Earth grid, version 2 (Brodzik 20 

et al., 2012).   

 

Surface meteorological forcing were extracted from the MERRA-2 reanalysis data, which are provided at a resolution of 0.5° 

latitude × 0.625° longitude (Global Modeling and Assimilation Office (GMAO), 2015a, b).  At latitudes south of 62.5°N within 

our simulation domain, the MERRA-2 precipitation forcing used here is informed by gauge measurements from the daily 0.5° 25 
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global Climate Prediction Center Unified gauge product (Chen et al., 2008) as described in (Reichle et al., 2017b).  We further 

rescaled the precipitation to the long-term, seasonally varying climatology of the Global Precipitation Climatology Project 

version 2.2 product (Huffman et al., 2009). Further details regarding model parameters and forcing inputs are found in Tao et 

al. (2017).   

 5 

The model was spun-up for 180 years by looping five successive times through the 36-year period of MERRA-2 forcing from 

1 January 1980 to 1 January 2016 in order to achieve a quasi-equilibrium state.  The spatial terrestrial state variables at the end 

of the fifth loop were used to initialize the model for the final simulation experiment from 1980 to 2017.   

 

2.2 Remotely Sensed ALT from AirMOSS 10 

Radar backscatter measurements are sensitive to changes in the soil dielectric constant (or relative permittivity) which in turn 

are associated with changes in soil moisture and the soil freeze-thaw state. Based on this relationship, Chen et al. (2019)(2019a) 

used the AirMOSS airborne P-band (420-440 MHz) synthetic aperture radar (SAR) observations collected during two 

campaigns in 2015 to estimate ALT in northern Alaska.  As shown in Figure 2Figure 2a, the AirMOSS flights originated from 

Fairbanks International Airport and headed west toward the Seward Peninsula (HUS, KYK, COC), then turned back east 15 

(KGR) prior to heading north towards the Arctic coast overpassing Ambler (AMB), Ivotuk (IVO), and Atqasuk (ATQ).  From 

there, the flights turned south again, flying over Barrow (BRW), Deadhorse (DHO), and Coldfoot (CFT) en route to Fairbanks.  

In the present paper, the remotely-sensed ALT retrievals are compared with in-situin-situ observations and CLSM-simulated 

ALT.   

 20 

Chen et al. (2019b)Chen et al. (2019a) used AirMOSS P-band SAR observations at two different times to retrieve active layer 

properties: (1) acquisitions on 29 August 2015 when the downward thawing process approximately reached its deepest depth 

(i.e., the bottom of the active layer), and (2) acquisitions on 1 October 2015 when the active layer started to refreeze from the 

surface while the bottom of the active layer remained thawed. ALT was assumed constant from late August to early October 
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because over this period changes in thawing depth are found typically negligible (Carey and Woo, 2005; Chen et al., 2016b; 

Zona et al., 2016).  Strictly speaking, the radar retrievals represent the approximate thaw depth of the thawed-to-frozen 

boundary on 29 August 2015 and 1 October 2015.  The unknown, true ALT for 2015 might occur later if the thawing continued 

and the maximum thaw depth occurred after the October flight time. Based on an analysis of in-situin-situ observations (not 

shown), however, it is rare that this occurs, and the subsequent impact on the estimated ALT value would be relatively small 5 

in any case. We therefore equate the retrieved thaw depth with ALT. 

 

In the retrieval algorithm, (Chen et al., 2019a) used a three-layer dielectric structure to represent the active layer and underlying 

permafrost. In their algorithm, the two uppermost layers together constitute the active layer that account for a top, unsaturated 

zone and an underlying, saturated zone. The bottommost (third) layer of the retrieval model structure represents the permafrost.  10 

Because the soil moisture at saturation only depends on the porosity of the soil medium, the dielectric constant of the saturated 

zone in the active layer is assumed constant over the time window. An iterative forward-model inversion scheme was used to 

simultaneously retrieve the dielectric constants and layer thicknesses of the three-layer dielectric structure from the SAR 

observations collected on 29 August 2015 and 1 October 2015. Note that the retrieved ALT cannot exceed the radar sensing 

depth of about 60 cm. This is the depth below which the AirMOSS radar is expected to lose sensitivity to subsurface features, 15 

and it is calculated based on the radar system noise floor and calibration accuracy. Therefore, any retrieved ALT larger than 

60 cm is expected to have large uncertainties, and the error is further expected to grow linearly as the retrieved values of ALT 

essentially “saturate.”  This limitation may also lead to underestimates of  the actual thaw depth.   

 

In this study, we focus on the retrievals of four flight lines across the Alaska North Slope, including IVO (Ivotuk), ATQ 20 

(Atqasuk), BRW (Barrow), and DHO (Deadhorse) as shown in Figure 2Figure 2a. These four transects cover areas with light 

to moderate vegetation. Since the radar scattering model is only applicable to bare surfaces or lightly vegetated tundra areas 

(Chen et al., 2019b), the ALT estimates derived for IVO, ATQ, BRW, and DHO are considered more accurate than ALT 

retrievals for the remaining transects, which include more vegetated areas. Moreover, some of the southern transects cover 
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discontinuous permafrost where the ALT often exceeds the P-band radar sensing depth of about 60 cm and thus cannot be 

retrieved from AirMOSS observationsthe retrievals have large uncertainty (Chen et al., 2019b).  

here. 

 

2.3 Circum-Arctic Permafrost Conditions and In-situIn-situ Observations of ALT 5 

The permafrost distribution simulated by CLSM is evaluated against the observations-based Circum-Arctic Map of Permafrost 

and Ground-Ice Conditions (Brown et al., 2002) shown in Figure 1Figure 1b.  The map is based on the distribution and 

character of permafrost and ground ice using a physiographic approach.  Permafrost conditions are categorized into four 

classes: continuous (90-100%), discontinuous (50-90%), sporadic (10-50%), and isolated (0-10%) permafrost,%), where the 

numbers in parentheses indicate the area fraction of permafrost extent.   10 

 

In-situIn-situ observations of ALT obtained by the CALM network (https://www2.gwu.edu/~calm/; Brown et al., 2000) were 

used to evaluate both the AirMOSS ALT retrievals and CLSM-simulated ALT results.  The CALM network provides 

observations from 1990 to 2017, but few sites have records in the early 1990s.  We did not use measurements that were flagged 

as having been taken too early in the season or under unusual conditions (e.g., after the site was burned or covered with lava)., 15 

which occurred at sites R30A and R30B in Kamchatka). In total there are 220 sites located within the CLSM simulation domain 

(Figure 1Figure 1b), and we use 213 sites to evaluate results.  Thaw depth measurements are usually made at the end of the 

thawing season.  Most of the CALM sites (129 out of the 213 sites used here) employ a spatially-distributed mechanical 

probing method to measure thaw depths along a transect or across a rectangular grid ranging in size from 10m×10m to 

1000m×1000m.  At 20 sites thaw tubes or boreholes are used to measure the thaw depth.  At 63 sites, ground temperature 20 

measurements from boreholes are used to infer thaw depth.  For the remaining site, no information about the measurement 

method is available.  Only point-scale measurements are available from the thaw tube/borehole and ground temperature sites 

(including, e.g., the sites in Mongolia).  
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In addition, daily in-situin-situ observations of soil temperature profiles at ten Alaskan sites from the Permafrost Laboratory 

at the University of Alaska Fairbanks (UAF) (http://permafrost.gi.alaska.edu/sites_map; Romanovsky et al., 2009) were used 

to infer thawed-to-frozen depth using the 0⁰C degree threshold and to complement the CALM ALT observations in Alaska. 

Table 1Table 1 provides the coordinates and measuring methods of the UAF in-situin-situ sites.  The UAF measurements were 

used along with the CALM data to evaluate the ALT estimates derived from the CLSM simulation and the AirMOSS radar 5 

observations for the North Slope of Alaska in section XXX4.1.  

 

Prior to comparison with the model results and the aggregated radar retrievals, the distributed measurements for a given CALM 

site (see sampling methods in Table 1) were averaged into a single value.  In the 5 cases where 2 or 3 CALM or UAF sites lay 

within a single CLSM grid cell, a single “spatially-averaged” observed value was computed for the cell.   10 

 

3 Methods 

3.1 Comparison WithComparing ALT from In-situ Observations, AirMOSS ALT Retrievals, and CLSM Results in 

Alaska 

The comparison of the ALT simulations with theFirst, we compare AirMOSS ALTradar retrievals consists of two parts.  15 

First,and CLSM simulation results of ALT for 2015 against each other and against in-situin-situ observations of ALT for 2015: 

(i) we compare the spatial patterns of the AirMOSS retrievals with those of the model-simulated ALT over the northern Alaska. 

Second,; and (ii) we evaluate both the AirMOSS retrievals and the simulated ALT against both the AirMOSS retrievals and 

in-situin-situ observations from the CALM and UAF networks. We rely on several metrics to evaluate the model and radar-

retrieval performance, including bias, root mean square error (RMSE), and correlation coefficient (R). The results are discussed 20 

in section 4.1.  
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We conducted the intercomparison at the model scale. The radar retrievals were provided at 2-arcsec × 2-arcsec (roughly 20 

m x 60 m in the Arctic) resolution whereas the CLSM-simulated ALTs are at 81 km2. We thus aggregated the AirMOSS 

retrievals to the CLSM model grid by averaging all the retrieval data points within each 81 km2 model grid cell. Only model 

grid cells that were at least 30% covered by radar retrievals were used in the comparison.  

The AirMOSS transects cover several different regions with different climatologic regimes, topography, vegetation and soil 5 

type (Figure 2Figure 2). Note that although the vegetation class used in the model (Figure 2b) suggests the presence of dwarf 

trees over the Alaska North Slope, the actual satellite-based LAI, vegetation height, greenness fraction and albedo will still 

instruct the model that the tree cover there is extremely sparse. The data sources for these vegetation-related boundary 

conditions can be found in Table 1 of Tao et al. (2017). Overall, the variability of ALT along these transects encompasses the 

influence of a variety of factors at the regional scale.  10 

 

 

The radar retrievals were provided at 2-arcsec × 2-arcsec (roughly 20 m x 60 m in the Arctic) resolution whereas the CLSM-

simulated ALTs are at 81 km2. We thus aggregated the AirMOSS retrievals to the CLSM model grid by averaging all the 

retrieval data points within each 81 km2 model grid cell. Only model grid cells that were at least 30% covered by radar retrievals 15 

were used in the comparison.  

 

The daily UAF in-situin-situ soil temperature profile observations on the AirMOSS flight date (29 August 2015) were used to 

calculate the thawed-to-frozen depth (i.e., approximated ALT).  The ALT measurements at all of the 13 CALM sites covered 

by the AirMOSS transects were obtained in August of 2015 (Table 1Table 1). Among them, eight CALM sites obtained ALT 20 

measurements slightly earlier than the overflight date (within at most 18 days from 29 August 2015). Nevertheless, we assume 

that these earlier measurements still represent the thaw depth at the end of August reasonably well.  Prior to comparison with 

the model results and the radar retrievals, the distributed measurements for a given CALM site (see sampling methods in Table 

1) were averaged into a single value.  Similarly, we also aggregated the radar retrievals (20 m x 60 m) up to the respective site-

scale (ranging from 10 m × 10 m to 1000 m × 1000 m) where the CALM sampling grid for a given site included more than 25 
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one AirMOSS pixel.  Otherwise, the radar retrievals closest to the UAF (single-point) or CALM site are used in the site-scale 

comparison. 

Prior to comparison with the model results and the aggregated radar retrievals, the distributed measurements for a given CALM 

site (see sampling methods in Table 1Table 1) were averaged into a single value.  If multiple CALM or UAF sites lay within 

a single CLSM grid cell In the 5 cases where 2 or 3 CALM or UAF sites lay within a single CLSM grid cell, a single “spatially-5 

averaged” observed value was computed for the cell.   

 

TheWe employed the strategy of Schaefer et al. (2015) to handle the  uncertainty propagation estimates utilized here are 

necessarily imprecise, i.e., adding in quadrature the uncertainty components from each scale/level involved (see the 

supplementary file for a detailed description).   (Chen et al., 2019b) For AirMOSS retrievals, the sampling uncertainty of mean 10 

ALT at the 81 km2 model grid-cell scale is negligible given the large sampling size and the fact that the retrieval uncertainty 

dominates the overall uncertainty (see supplementary file). Here, we use a nominal estimate of 0.15 m to represent the 

AirMOSS uncertainty (i.e., the average of the lower and upper bound of the actual retrieval uncertainty for individual radar 

pixels as discussed by Chen et al. (2019b)).  

 15 

When comparing in-situ measurements with model results at the 81 km2 scale (i.e., a point-to-grid comparison), the ultimate 

measurement uncertainty propagated from the point-scale measurements to the 81 km2 scale is, for all intents and purposes, 

unknown due to a lack of sufficient measurements over the 81 km2 scale to compute upscaling errors (see supplementary file). 

We thus show instead the standard deviation of CALM measurements to illustrate, in a highly approximate way, the spatial 

representativeness error of the in-situ measurements – a small (large) standard deviation represents a homogeneous 20 

(heterogeneous) area in terms of ALT, meaning that the in-situ mean likely can (cannot) represent an average over a larger 

scale, assuming the site-scale heterogeneity is somewhat transferable to the larger scale. Such transferability might only apply 

to the largest in-situ site scales (e.g., 1000 m × 1000 m) to the model grid-scale (81 km2) and is thus, in general, questionable. 

We thus make no claim here that the standard deviations shown represent true uncertainty levels.   ×Chen et al. (2019b)  

Field Code Changed

Formatted: Font: 10 pt, English (United Kingdom)

Field Code Changed



18 

 

In recognition of the limited documentation surrounding many of the measurements examined here (individual site 

characteristics, measurement strategies, horizontal correlations, etc.), we employ in this analysis, for simplicity, a universal 

error estimate of 0.14m for all in situ and AirMOSS ALT estimates at the 81 km2 scale.  This is the overall uncertainty found 

by Chen et al. (2019) for individual radar pixels at their native (20 m x 60 m) resolution; for the radar estimates aggregated to 

the 81 km2 scale, we thus effectively (and conservatively) assume that the pixel-scale errors are highly correlated in space.   5 

 

  

 

3.2 Idealized Experiments 

After comparing the spatial patterns of the AirMOSS retrievals with the CLSM-simulated ALT results, we then investigate the 10 

factors that affect the spatial variability of ALT through a series of idealized experiments.  Specifically, we repeated the 

simulation along the AirMOSS transects multiple times, each time removing the spatial variation in some aspect of the model 

forcing or parameters and then quantifying the resulting impact on ALT variability.  

 

For these supplemental simulations, we first identified a grid cell within the IVO transect (shown in Figure 2a) that represents 15 

roughly average (typical) conditions across the ten different transects. In the first idealized experiment, we then modified the 

baseline configuration by applying the surface meteorological forcing data from the selected representative grid cell within the 

IVO transect to all grid cells along all AirMOSS transects.  Thus, in this modified simulation (HomF, for homogenized forcing), 

spatial variability in meteorological forcing is artificially removed. All model parameters related to soil type and vegetation, 

however, remain spatially variable, matching those in the baseline simulation.  In the next idealized experiment (HomF&Veg), 20 

we further replaced the vegetation-related parameters (including vegetation class, vegetation height, and time-variable Leaf 

Area Index (LAI) and greenness) along the AirMOSS transects using the corresponding parameters from the representative 

grid cell, which is characterized by dwarf tree vegetation cover.  Thus, in this simulation, spatial variability in both forcing 

and vegetation is artificially removed.   
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In the finala third idealized experiment (HomF&Veg&Soil), spatial variability in soil type and topography-related model 

parameters is removed along with that of the forcing and vegetation. The homogenized parameters include soil organic carbon 

content, porosity, saturated hydraulic conductivity, Clapp-Hornberger parameters, wilting point, soil class, sand and clay 

fraction, vertical decay factor for transmissivity, baseflow parameters, area partitioning parameters, and timescale parameters 5 

for moisture transfer (Ducharne et al., 2000; Koster et al., 2000).  Here we use an intermediate soil carbon content value (i.e., 

40 kg/m2) for the homogenization; recall that the carbon content impacts the soil thermal properties (see section 2.1). Our 

investigation reveals that the model sensitivity to soil carbon content is much larger for lower SOCsoil organic carbon content 

(SOC) than for higher SOC, and easily gets saturated for high SOC (i.e., larger than ~100 kg/m2) (not shown). Thus, we trust 

that 40 kg/m2 is an appropriate value representing an intermediate SOC condition. All other soil parameters are homogenized 10 

to those at the representative grid cell.  

 

Finally, we investigate potential nonlinearities by conducting two additional experiments: one in which we homogenized both 

the vegetation and soil parameters (HomVeg&Soil) and another in which we homogenized both forcing and soil parameters 

(HomF&Soil).  Put differently, in experiment HomVeg&Soil only the forcing varies along the transects, whereas in experiment 15 

HomF&Soil, only the vegetation parameters varies along the transects.  Combined with the experiment HomF&Veg (in which 

only soil properties vary along the transects), these three experiments show in a different way how each individual factor 

(forcing, vegetation, or soil) can contribute to ALT variability.  Table 2Table 2 provides a summary of these idealized 

experiments.  Taken together, the foursix experiments (including the baseline) allow us to identify the individual contribution 

of each factor to the ALT variability along the AirMOSS transects.  The results are discussed in section 4.2. 20 

 

3.3 Quantifying ALT Spatiotemporal Characteristics 

We alsoIn section 4.3 we quantify the large-scale characteristics of ALT over the Northern Hemisphere for the current climate 

(1980 - 2017) as determined by the response of the land model to 38 years of MERRA-2 forcing (in section 4.3). Again, this 
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forcing was applied to 81 km2 grid cells in the middle-to-high latitude area defined by the existence of NCSCDv2 soil carbon 

data (see area outlined in Figure 1a).2.1).  Output diagnostics saved from this multi-decadal, offline simulation allowallows 

the characterization of permafrost dynamics at each grid cell.  In particular, we can compute a number of relevant ALT 

statistics, including mean, standard deviation, and skewness, from the diagnosed yearly values at each cell, and we can examine 

how these statistics relate to those of MERRA-2 forcing data (particularly the mean annual air temperature, MAAT))) over the 5 

last 38 years. 

 

Besides MAAT statistics, we also consider the evolution of the air temperature during the warm season in terms of the energy 

it could provide to the land surface and thus to the determination of ALT.  A simple surrogate for the total warm-season energy 

in year N can be computed from daily-averaged air temperature, Tair(t), and the freezing temperature, Tf (0⁰C degree), as 10 

follows: 

𝑇𝑐𝑢𝑚(N) =  ∑ 𝑇𝑝𝑜𝑠(𝑡)𝑡=𝑀
𝑡=1  ,          (2) 

where 

𝑇𝑝𝑜𝑠(t) = {
𝑇𝑎𝑖𝑟(𝑡) − 𝑇𝑓  

0
     

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) > 𝑇𝑓

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) ≤ 𝑇𝑓
,         (3) 

The index t in equation (2) for year N starts with a value of 1 on 1 September of year (N-1) and ends with a value of M on 31 15 

August of year N. The number of days M could beis 365 or 366 depending on the presence of a leap year over the preceding 

annual period. Note the air temperature throughout this study means the near-surface air temperature (i.e., 2 m above the 

displacement height) derived from MERRA-2.  

 

We first computed the correlation coefficient (R) between the annual time series of ALT and √𝑇𝑐𝑢𝑚 and between the annual 20 

time series of ALT and maximum SWE (SWEmax) to quantify the degree to which variations of ALT can be explained solely 

by air temperature or by snow mass.  Then, to further quantify the joint contributions of Tcum  and the maximum SWE 

(SWEmax),√𝑇𝑐𝑢𝑚 and SWEmax, we performed a multiple linear regression analysis by fitting the equation 
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ALT = 𝑎0 + 𝑎1𝑇𝑐𝑢𝑚 + 𝑎2√𝑇𝑐𝑢𝑚 + 𝑎2𝑆𝑊𝐸𝑚𝑎𝑥 ,        

 (4) 

to the available data.  The results are discussed in section 4.3. 

 

to the available data. The correlation coefficient relating ALT to √𝑇𝑐𝑢𝑚 and SWEmax is the square root of the coefficient of 5 

multiple determination (R2) obtained through fitting Equation (4). This equation is similar in form to the common degree-day 

model for predicting ALT from accumulated degree days of thaw based on the Stefan solution (e.g., Shiklomanov and Nelson, 

2002; Zhang et al., 2005; Riseborough et al., 2008; Shiklomanov et al., 2010).  Here, however, we constructed equation (4) 

for a different purpose: to explore how much of the temporal variability of ALT can be jointly explained by snow mass and 

above-freezing air temperature. Before calculating these correlation coefficients, we removed the linear trend within ALT, 10 

𝑇𝑐𝑢𝑚, and SWEmax to avoid potentially exaggerating the correlation due to an underlying trend. The results are discussed in 

section 4.3. 

 

3.4 Evaluation of Evaluating Simulated Northern Hemisphere Permafrost Extent, and ALT Climatology and Trend 

We first evaluated the simulated permafrost extent against the observation-based permafrost map (Brown et al., 2002 as shown 15 

in Figure 1b). Note Tthe model’s description of permafrost is binary – either permafrost exists across a grid cell or it is 

completely absent. We cannot then expect an exact comparison to a specification of isolated permafrost (0-10% of area by 

definition) or even, to a lesser extent, sporadic permafrost (10-50% of area by definition). Therefore, we compared our 

simulated permafrost area with that of the total area of continuous, discontinuous, and sporadic permafrost area together from 

Brown et al. (2002) and computed the percentage error relative to the observation-based area (i.e., the total area of continuous, 20 

discontinuous and sporadic permafrost regions). We also compared our simulated permafrost area against the total area of only 

continuous and discontinuous permafrost regions.  
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Further, The the CALM network of in-situin-situ ALT measurements (section 2.3) allows a quantitative evaluation of the 

simulated ALTs for the grid cells containing the measurement sites. Our comparisons here focus on both multi-year annual 

ALTs and the multi-year averages; for a average (climatological) ALT at the 81 km2
 scale of CLSM data. To ensure a consistent 

comparison, we average the simulated ALTs only over the same years for which observed ALTs observations are available. .  

If multiple CALM sites lay within a single CLSM grid cell, a single “spatially-averaged” observed, As noted in section 3.1 5 

and in the supplementary file, the uncertainty of the CALM ALT measurements in the context of evaluating grid cell-scale 

model results theoretically involves uncertainty derived from probing point measurement uncertainty, site-scale mean 

uncertainty, and upscaling errors in going from the site-scale to the model-scale.  This latter uncertainty in particular is 

unknown.  In our figures (in section 4.4) we show the standard deviation of the observed ALT as a very crude surrogate for 

the spatial representativeness error associated with the point-to-grid comparison.  As before, we make no claim here that the 10 

standard deviations shown represent the relevant statistical uncertainty. The results are discussed in section 4.4.We 

approximate the uncertainty in the observed climatological ALT estimates at the 81 km2 scale by dividing the universally 

assumed error of 0.14 m (section 3.1) with the square root of the number of years contributing to the multi-year value was 

computed for the cell. Theaverage.  The resulting uncertainty estimates range between 5 and 10 cm.  The results are discussed 

in section 4.4. The results are discussed in section 4.4. 15 

 

The MERRA-2 dataset provides close to four decades of forcing data, and it is tempting to see if trends in this forcing 

imprint themselves on the 4 Results 

simulated permafrost.  We realize at the outset, however, that two difficulties hamper the accurate quantification of permafr ost 

trends from our data.  First, air temperature trends in MERRA-2 are known to be underestimated in high-latitude regions, 20 

especially in more recent years (Simmons et al., 2017).  Second, our spin-up procedure essentially involved running our model 

over several cycles of MERRA-2 forcing prior to the final 1980-2017 simulation, meaning that if a temperature trend does 

exist in the data, the initial conditions for 1980 already contain information from the warmer, later period.  Note that  both of 

these difficulties would contribute to a trend underestimation. 
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We keep these caveats in mind as we compute permafrost trends through a linear regression of simulated yearly ALT against 

the year of simulation, interpreting the slope obtained (in cm/yr) as the trend.  We similarly compute trends in MAAT (⁰C/year), 

in Tcum (section 3.3), and in the number of days with air temperature above the freezing point (i.e., warm days). As in section 

3.3, a given year’s MAAT, accumulated air temperature, and number of warm days are computed for the year-long period 5 

ending on 31 August of that year.  

 

The ALT trend was similarly calculated from CALM observations at sites for which observed ALTs are available for at least 

eight years (i.e., sample size ≥ 8). When evaluating the accuracy of the model-simulated ALT trends, the model-based ALT 

trends were calculated using the same years for which observed ALTs are available. The results are discussed in section 4.5. 10 

4.1 Simulated ALT versus In SituIn-situ Measurements and AirMOSS Retrievals in Alaska 

In this section, we compare the simulated ALT and the AirMOSS ALT retrievals at the 81-km2 model resolution.  Note that 

Chen et al. (2019) provide maps of the AirMOSS retrievals and an evaluation versus in situin-situ measurements at the native 

(20 m by 60 m) scale of the retrievals. 

 15 

4 Results 

4.1 Comparisons with observations across retrieval transects 

In this section, we compare AirMOSS radar retrievals and CLSM simulation results against each other and against in-situ 

observations of ALT for 2015. The AirMOSS transects cover several different regions with different climatologic regimes, 

topography, vegetation and soil type (Figure 2). Note that although the vegetation class (Figure 2b) suggests the presence of 20 

dwarf trees over the Alaska North Slope, the actual satellite-based LAI, vegetation height, greenness fraction and albedo will 

still instruct the model that the tree cover is extremely sparse in this region. The data sources for these vegetation-related 
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boundary conditions can be found in Table 1 in Tao et al. (2017). Overall, the variability of ALT along these transects 

encompasses the influence of a variety of factors at the regional scale.  

 

Figure 3Figure 3 compares the spatial pattern of AirMOSS ALT retrievals and CLSM-simulated results. Generally, the patterns 

of the AirMOSS retrievals and CLSM results are quite different.  For example, the AirMOSS-retrieved ALT is greater in the 5 

northern portion of the DHO transect than in the southern portion (Figure 3a,b), whereas this pattern is largely reversed in the 

simulated ALT (Figure 3c). Thefor DHO (Figure 3b). Across all transects, there are portions where the AirMOSS ALT is less 

than the CLSM-simulated ALT (Figure 3c)and portions where the AirMOSS ALT is greater than (Figure 3c), though it should 

be noted that from AirMOSS (Figure 3b)the differences in portions Figure 3c are generally less than the assumed uncertainty 

of each transect. Across all four transects0.l45 m (see section 3.1).  Generally, the CLSM-simulated ALT shows relatively 10 

larger spatial variability (0.35 - 0.85 m) than the AirMOSS retrievals (0.4 – 0.6 m).  The AirMOSS ALT exhibits some spatial 

variability at the native resolution (Figure 3a), but some(see Chen et al., 2019), but much of this variability averages out during 

the aggregation to the coarse model grid (Figure 3Figure 3b).  The abrupt changes in CLSM-a).  Variations of the simulated 

ALT shown in within a single transect (Figure 3Figure 3c are predominantly controlled by soil type (see discussion in section 

4.2).ba) are predominantly induced by changes in soil type (indicated in Figure 2Figure 2c and 2d).  In essence, the higher the 15 

organic carbon content within the soil, the smaller the simulated ALT due to slower heat transfer associated with lower thermal 

conductivity, higher porosity, heat capacity, etc.  (Tao et al., 2017). See also section 4.2 for a discussion of the influence of 

soil texture on the spatial pattern of ALT. 

 

Next, we compare the retrieved and simulated ALT in 2015 with in-situin-situ observations from the CALM and UAF sites 20 

that are collocated with the AirMOSS transects. Figure 4b, c demonstrates (section 3.1). Figures 4a and 4b show that in some 

ways, the CLSM-simulated results roughly agree, to first order,ALTs agrees with the in-situ observations. The overall mean 

bias of simulated ALT relative to to within the in-situ measurements is -measurement uncertainty of 0.0514 m.  Nevertheless, 

at only about half of the scatter (blue) in Figure 4c is large, and measurement sites.  Note, however, that at several sites in the 

corresponding correlation coefficient is quite weak (remaining half, the difference only slightly exceeds 0.27).14 m. with 25 
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Thean overall mean bias of simulated ALT relative to the in-situ measurements isof -0.05 m and a RMSE of 0.17 m.. The most 

significant discrepancies between the CLSM-simulated ALT and in-situ measurements are at U6, U31, FB1&FBD&FBW 

(Figure 4b4a), where the simulated ALT underestimates the in-situ measurements by 0.25-0.28 m, and at U28 where the 

simulated ALT overestimates the in-situ ALT by 0.27 m.  The overall mean bias of simulated ALT relative to the in-situ 

measurements is -0.05 m.  Nevertheless, the scatter in Figure 4b is large, and the corresponding correlation coefficient is quite 5 

weak (0.27).   

 

 

 

The AirMOSS ALT radar retrievals, for their part, again averaged to the 81-km2 model resolution (section 2.2), show less 10 

spatial variability than the observations (Figure 4c4a).  The largest error for thesethe AirMOSS retrievals at the model scale is 

also at FB1&FBD&FBW, where the retrievals significantly underestimate the observed in-situ ALT by 0.38m.  Note that radar 

retrievals at the model81 km2 scale (green) are not available at some sites because of our imposed 30% filling restriction 

(Figure 4b), whereas the retrievals at the site scale (black) are available at all sites within the IVO, ATQ, BRW and DHO 

transects (Figure 4a).   The largest radar retrieval errors at the site scale are at FBD, FBW, and SG1, where the ALT retrievals 15 

underestimate the in-situ measurements by 0.32 - 0.53 m.a.).   For the AirMOSS retrievals, when all in-situ sites are considered, 

the overall ALT bias is -0.11 m at the site scale and -0.12 m at the model scale. While the12 m. The corresponding correlation 

coefficient with the in-situ observations is only 0.05 at the site scale, it is 0.61 at the model scale.   

 

Although the AirMOSS ALT retrievals generally underestimate the in-situin-situ ALT measurements (as shown in Figure 4a), 20 

the retrievals are broadlytend to be more consistent with the observations when the in-situin-situ measurements are within the 

~60 cm sensing depth of the P-band radar data. (Note again the ALT retrievals cannot exceed the radar sensing depth of about 

60 cm.)  This is the case at sites in the northernmost area, e.g., U3, U1, U2, BR2, and U5.  Excluding, as indicated in Table 3.  

Specifically, excluding the sites with in-situin-situ ALT measurements that exceed the AirMOSS sensing depth of ~60 cm, the 

overall mean bias for the AirMOSS retrievals at the model81 km2 scale (site scale) drops to -0.01 m (0.02 m),, and the 25 
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correlation coefficient at the model scale (site scale) increases to 0.64 (0.20) (Table 3).. In contrast, the CLSM simulation 

results show a bias of 0.01 m and a zero correlation coefficient at the samethese sites.   

 

Nevertheless, as noted in section 3.1, given that the upscaling errors in going from the CALM site-scale to the model-scale is 

unknown and the fact that the standard deviation of these measurements (as shown by error bars in Figure 4a and 4b) indicates 5 

large representativeness errors of the in-situ measurements, the point-to-grid comparison result is hard to quantify. In this 

regard, the AirMOSS retrievals aggregated to the same scale as model results provide a comparable counterpart for evaluation. 

Figures 4c further shows that the CLSM-simulated ALT agrees well with the AirMOSS ALT retrievals to within the 

measurement uncertainty of 0.15 m at all the site-located model grid cells.  Indeed as Figure 3c illustrated, the differences 

between simulated ALT and the AirMOSS retrievals over all the transects examined here are generally below the measurement 10 

uncertainty of 0.15 m. 

 

 

 

4.2 Sources of ALT Spatial Variability:  Results from Idealized Experiments 15 

Here we investigate the specific factors that drive ALT spatial variability along all ten of the AirMOSS transects (Figure 2a). 

For this analysis, the simulated ALT estimates shown in Figure 5a were aggregated across the width of the radar swath 

(compare Figure 3).  Figure 5Figure 5a illustrates that, in general, the simulated ALT captures the spatial variability exhibited 

by the in-situin-situ measurements. This conclusion is, however, very tentative given the limited number of in-situin-situ ALT 

observations.    20 

 

Generally, theThe simulated ALT is shallowest in the northern transects (ATQ, BRW, and DHO) and deepest in the 

southeastern transects (KYK, COC, KGR, and AMB).  This pattern correlates somewhat (R = 0.46) with that of the mean 

screen-level (2-meter) air temperature (Tair) for the preceding 12-month period (i.e., from 1 September 2014 to 31 August 
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2015) from MERRA-2 (green line in Figure 5Figure 5a).  The soil carbon content, by contrast, appears anti-correlated (R = -

0.59) with the simulated ALT, as exemplified by the transect portions within the red box (Figure 5Figure 5a and 5b). Such a 

correlation presumably reflects the fact that soil with high organic carbon content has low thermal conductivity, which hinders 

heat transfer from the surface to the deeper soil in the summertime, thus resulting in a relatively smaller ALT.  In addition, 

heat transfer is also slowed by a higher effective heat capacity associated with higher organic carbon content – not from the 5 

carbon itself, but from the extra water that can be held in the soil due to the increased porosity.  The maximum snow depth 

(Figure 5Figure 5c) displays a positive correlation with ALT (R=0.47), reflecting, at least in part, the fact that subsurface soil 

temperatures remain relatively insulated under thick and persistent snow cover, which reduces heat transfer out of the soil 

column during the wintertime and hence facilitates a deeper thawing during the summer and thus a deeper ALT.   

 10 

The correlations in Figure 5 suggest (without proving causality) that for the model, surface meteorological forcing (including 

air temperature and precipitation) as well as soil type are important drivers of ALT variability along the AirMOSS transects.  

However, the relatively low values of the correlations indicate that a simple linear relationship cannot explain the mutual 

control that these variables exert on ALT spatial variability.  In the remainder of this section, we use a series of idealized model 

simulations (as described in section 3.2) to better quantify the relative impacts of these driving factors along the AirMOSS 15 

transects.   

 

The results of the idealized experiments are shown in Figure 6Figure 6.  The above-mentioned, large-scale spatial variation of 

ALT in the baseline simulation, with larger values in the southeastern transects (KYK, COC, and KGR) and lower values in 

the northern transects (ATQ, BRW, and DHO), is absent after homogenizing the meteorological forcing (HomF; Figure 6a).  20 

Experiment HomF correspondingly has much less spatial variation in the temperature of the top soil layer than does the baseline 

simulation (Figure 6Figure 6b).  In addition, homogenizing the forcing (which includes snowfall) significantly reduces the 

variability in maximum snow depth along the AirMOSS transects (Figure 6Figure 6c). These results indicate that in the model, 

meteorological forcing exerts the dominant control over the spatial patterns of ALT, the temperature in the top soil layer, and 

snow depth at the regional scale, as expected.  25 
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Homogenizing the vegetation attributes in addition to the forcing (HomF&Veg) results in ALT differences (relative to HomF) 

primarily along the northern transects (ATQ, BRW, and DHO).  Along these transects, homogenizing the vegetation 

parameters (including LAI and tree height) to those of the representative grid cell within the IVO transect results in generally 

shallower ALT.  We speculate that thisThis is because the generally lower albedo of the somewhat taller and leafier trees 5 

(representative of the IVO transect) during the snow season resulted in increased snowmelt and thus reduced snowpack during 

the snow season (compare the green and red curves in Figure 6c), thereby reducing the thermal insulation of the wintertime 

ground.  With reduced insulation, cold season ground temperatures dropped, making it more difficult for temperatures to 

recover during summer.  (Tao et al., 2017). 

 10 

As might be expected, the simulation in which soil properties are homogenized in conjunction with forcing and vegetation 

(i.e., HomF&Veg&Soil) essentially eliminates all remaining spatial variability in ALT, snow depth, and soil temperature. 

Owing to the strong control of soil type-related parameters (see section 3.2 and Table 2) on soil moisture, spatial variability in 

soil moisture remains high in HomF and HomF&Veg and is only eliminated once thethese soil type-related parameters are 

homogenized (Figure 6d), which explains the abrupt changes shown in Figure 3Figure 3c as mentioned in section 3.1.  (Note 15 

that to maintain consistency with the hardwired scaling factors for snow-free albedo within the model (Mahanama et al., 

2015),(Mahanama et al., 2015), we still used the original, vegetation-related parameters to calculate surface albedo during 

snow-free conditions along the transects.  This is likely the cause of the few tiny bumps seen in the Figure 6a for 

HomF&Veg&Soil.) 

 20 

An alternative view of these results is provided in Figure 7Figure 7a, which shows the (spatial) standard deviation of ALT 

along the AirMOSS transects for each of the above experiments. Homogenizing the meteorological forcing data results in a 

significant reduction of the ALT standard deviation (from 0.16 to 0.10).  Additionally homogenizing the vegetation only 

reduces the ALT standard deviation slightly (from 0.10 to 0.09).  The remaining ALT variability is eliminated through the 

additional homogenization of the soil type-related parameters (HomF&Veg&Soil), which emerge as another important driver 25 
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of ALT variability along the AirMOSS transects.  Note that the ALT variability associated with soil type is generally realized 

at smaller spatial scales than that associated with the meteorological forcing discussed earlier regarding Figure 6a.   

 

We investigated potential nonlinearities by conducting two additional experiments: one in which we homogenized both the 

vegetation and soil parameters (HomVeg&Soil) and another in which we homogenized both forcing and soil parameters 5 

(HomF&Soil) (Table 2).  Put differently, in experiment HomVeg&Soil only the forcing varied along the transects, whereas in 

experiment HomF&Soil, only the vegetation parameters varied along the transects.  Combined with the experiment 

HomF&Veg (in which only soil properties varied along the transects), these three experiments show in a different way how 

each individual factor (forcing, vegetation, or soil) can contribute to ALT variability.  The results, shown in Figure 7b, 

confirmThe impact of potential nonlinearities are examined in Figure 7Figure 7b, which shows the individual impact of 10 

vegetation, soil, and forcing heterogeneity on the ALT standard deviation along the transects, with the other inputs having 

been homogenized.  The graphic confirms that the meteorological forcing is the dominant driver of ALT spatial variability in 

our modelling system, followed by the soil type-related parameters and the vegetation parameters.   

 

Note that in Figure 6a, the soil impact on ALT (difference between HomF&Veg&Soil in black and HomF&Veg in red) appears 15 

smaller than that of the vegetation (difference between HomF in green and HomF&Veg in red) over the northern transects 

(ATQ, BRW and DHO).  Even so, Figure 7b shows that, in terms of the integrated impact along all the transects, the soil 

influence clearly outweighs the influence of vegetation – at several other transects, including HUS, KYK, COC, AMB, IVO 

and the first half of ATQ (where vegetation conditions might be similar to those used for homogenizing), the changes in 

vegetation parameters do not have much impact.  20 

 

4.3 ALT Spatiotemporal Characteristics overof ALT across the Northern Hemisphere 

Figure 8Figure 8a shows the distribution of mean ALT over the modelling domain, and Figure 8b shows the ALT standard 

deviation in time over the 38-year period. As might be expected, ALT tends to increase with distance from the pole, with the 
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largest values found in Mongolia and near the southern portion of Hudson Bay, though there are areas (e.g., just north of 60⁰N 

at ~120⁰E) with local minima that break this pattern.  The largest ALT standard deviations (red colourcolor in Figure 8Figure 

8b) are found mainly in discontinuous and sporadic permafrost regions (see Figure 1b) where ALTs are deeper on average 

than that in continuous permafrost region.  Figure 8Figure 8c provides the skewness of the temporal distribution. Though there 

are some exceptions, by and large the skewness is positive in most permafrost regions, suggesting that the largest positive ALT 5 

anomalies tend to be of greater magnitude than the largest negative anomalies. 

 

Figure 8Figure 8d displays the average of annual mean 2-meter air temperature as derived from MERRA-2. The observed 

continuous and discontinuous permafrost areas shown in Figure 1b are well confined within the cold side of the 0°C (273.15K) 

isotherm in the mean air temperature map (Figure 8Figure 8d). For the most part, the observed sporadic and isolated permafrost 10 

regions of Figure 1b also lie on the cold side of the 0°C isotherm. The consistency with this isotherm, however, is not as clearly 

present in the simulated permafrost extent (i.e., the extent of the non-grey and non-white areas in Figure 8Figure 8a).  The 

relationship between the spatiotemporal characteristics of simulated ALT and air temperature forcing clearly needs more 

analysis.  

 15 

The relationship between the spatiotemporal characteristics of simulated ALT and air temperature forcing has been 

investigated before in many studies at the site to landscape scale (e.g., Klene et al., 2001; Shiklomanov and Nelson, 2002; 

Zhang et al., 2005; Juliussen and Humlum, 2007) and at the regional scale (e.g., Anisimov et al., 2007). Here we simply 

analyze the correlation coefficient between ALT and two variables: the proxy of total energy input into the ground (i.e., 

√𝑇𝑐𝑢𝑚, see section 3.3) and the maximum SWE.  Our goal is to explore how much of the spatiotemporal variability of ALT 20 

across the globe can be jointly explained by these two variables.   

 

Figure 9Figure 9a shows a map of the correlation coefficient between the 37-year time series (i.e., from September 1980 

through August 2017) of Tcum√𝑇𝑐𝑢𝑚 and the corresponding time series of simulated ALT. The areas with p values larger than 

0.05, which indicate correlations that are not statistically different from zero at the 95% confidence level, are shown as green. 25 
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Figure 9Figure 9a demonstrates that most permafrost regions indeed have significant positive correlations (red colours) 

between ALT and Tcum.√𝑇𝑐𝑢𝑚 . Clearly, in these regions, air temperature exerts a dominant control on year-to-year ALT 

variability.  

 

However, not all regions exhibit a significant correlation; other variable(s) must also be exerting control on interannual ALT 5 

variability.  One reasonable candidate variable is snowpack.  As noted above, snow acts as a thermal insulator -- regions with 

thicker snowpack are better able to insulate the winter ground from becoming too cold during winter, thereby facilitating the 

heating of thesupporting higher subsurface temperatures during non-winter months.  Variable, but often thick, snowpack is in 

fact common in the areas of Figure 9a that show a low (green) or negative (blue) correlation between ALT and Tcum√𝑇𝑐𝑢𝑚 – 

areas such as Central Siberia, the Southern part of eastern Siberia, and a vast region in Canada surrounding the Hudson Bay, 10 

as well as other small areas that appear in high mountains or on the windward side of the mountains (e.g., locations B, C and 

D in Figure 1Figure 1a).    

 

In Figure 9Figure 9b we show the correlation coefficient between the time series of ALT and the maximum SWE (SWEmax),) 

during the preceding winter.  A positive correlation is seen in many areas, most notably in areas with a poor or negative 15 

correlation between ALT and Tcum√𝑇𝑐𝑢𝑚 (Figure 9Figure 9a) – for example, just west of Hudson Bay and along a zonal band 

at 60°N in Russia.  Apparently, in these areas, the impacts of snow physics on ALT outweigh the impacts of lumped energy 

input (Tcum), for reasons that are not clear.√𝑇𝑐𝑢𝑚). In some other areas ALT correlates positively with both Tcum√𝑇𝑐𝑢𝑚 and 

SWEmax. Figure 9Figure 9c shows how the resulting coefficient of multiple correlation varies in space.  High correlations 

largely blanket the modelled area. That is, over most of the area examined, a substantial portion of the year-to-year variability 20 

of ALT can be explained by joint variations in Tcum  √𝑇𝑐𝑢𝑚  and SWEmax .  Even so, a few limited areas still exhibit low 

correlations (p>0.05, green colour in Figure 9Figure 9c).  Some of these areas are in high mountainsmountainous regions, for 

instance the Eastern Siberian (Ostsibirisches) Bergland, where more complex environmental controls might be playing a 

dominant role. In addition, MERRA-2 snow forcing might be severely erroneous in these regions. 

 25 
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4.4 Evaluation of simulated permafrost extentSimulated Permafrost Extent and ALT climatology 

4.4 Evaluation of Simulated Permafrost Extent and ALT across the Northern Hemisphere  

We now evaluate, to across the extent allowed by available CALM in-situ observations, and on a spatial scale much broader 

than that addressed in section 4.1, the accuracy of the permafrost fields simulated by the model.  Northern Hemisphere 

 5 

Qualitatively, the simulated permafrost extent (Figure 8Figure 8a) generally shows reasonable agreement with the observation-

based permafrost map in Figure 1Figure 1b, especially for the continuous permafrost regions.  This is shown explicitly in 

Figure 10Figure 10a.  The main deficiency in the simulation results is the failure to capture a large area of permafrost in 

western Siberia (labelled as A in Figure 1Figure 1a).  The reasons for this particular deficiency are unclear; perhaps the initial 

thermal conditions over western Siberia were too warm, or perhaps MERRA-2 overestimates current air temperatures in this 10 

region..  One possible reason is that the permafrost in western Siberia is characterized as an ecosystem-protected permafrost 

zone (Shur and Jorgenson, 2007) where a thick moss-organic layer (i.e., moss-dominated mires (Anisimov and Reneva, 2006; 

Anisimov, 2007; Peregon et al., 2009)) protects the permafrost below from thawing under a warm air temperature. This is 

mainly attributed to the low thermal conductivity of the organic layer in summer, which strongly insulates the permafrost from 

the warm atmosphere, and the high thermal conductivity of the frozen organic layer in winter, which allows cold temperature 15 

penetration from above, provided the snowpack is not too thick (Nicolsky et al., 2007b; Jafarov and Schaefer, 2016). This 

mechanism is lacking in the current version of CLSM (Tao et al., 2017). Thus, improving the model through a better 

representation of thermal processes in an organic layer above the soil column in combination with initializing the simulation 

with a sufficiently cold soil temperature should improve the simulation results. This work is reserved for a future study.  

 20 

Another possible reason for the poor skill in western Siberia is that the model initial conditions there were too warm, although 

MERRA-2 appears to underestimate summer air temperatures in this region (Draper et al., 2018; their Figure 7e).(Draper et 

al. 2017; their Figure 7e). Note that some other global models, such as CLM3 and the Community Climate System Model 

version 3 (CCSM3) as reported in Lawrence et al. (2012),(2012), also missed this area of permafrost and that updated versions 

of these models (i.e., CLM4 and CCSM4) showed improved performance in this regard (Lawrence et al., 2012). Guo et al. 25 
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(Lawrence et al., 2012). Guo et al. (2017) reported underestimated permafrost extent simulated in western Siberia using 

CLM4.5 driven by three different reanalysis forcings (i.e., CFSR, ERA-I and MERRA), and they showed an improved 

simulation of permafrost extent in this area when using another reanalysis forcing, the CRUNCEP (Climatic Research Unit ‐ 

NCEP) (Guo and Wang, 2017). Guimberteau et al. (Guo and Wang, 2017). Guimberteau et al. (2018) found similar 

improvements stemming from the use of CRUNCEP forcing. We leave for further study whether the MERRA-2 forcing data 5 

is responsible for the western Siberia deficiency seen in our own results.  

 

Aside from western Siberia, the geographically thinThe disagreements (i.e., about a few degrees latitude) between the 

simulated and observed permafrost extents (covering about a few degrees latitude) toward the south in Figure 10a (green and 

blue areas at the southern edge of permafrost regions) are not as muchless of a concern, since the comparison in such areas is 10 

muddied by the interpretation of “isolated” permafrost in the observational map (Figure 1b). The model’s description of 

permafrost is binary – either permafrost exists across a grid cell or it is completely absent. We cannot then expect an exact 

comparison to a specification of isolated permafrost (0-10% of area by definition) or even, to a lesser extent, sporadic 

permafrost (10-50% of area by definition). The specific areas of each type shown in Figure 10a are listed in Table 4. The 

simulated permafrost extent covers 81.3% of the observation-based area (i.e., the total area of continuous, discontinuous and 15 

sporadic permafrost regions), and misses 18.7% of the observed permafrost area. When comparing simulated permafrost extent 

with only continuous and discontinuous types, these metrics change to 87.7% and 12.3%, respectively. Meanwhile, the 

permafrost extent is overestimated by 3.2×106 km2. 

 

To produce Figure 10Figure 10b, multi-year averages of CLSM-simulated ALT values were spatially averaged over each of 20 

the four permafrost types outlined in Figure 1Figure 1b.  (As is appropriate, permafrost is only occasionally simulated over the 

fourth, “isolated”, permafrost type.  The ALT average shown for this type is thus based on a particularly limited number of 

grid cells.)  The average ALT is smallest in the continuous permafrost zone, higher in the discontinuous zone, and higher still 

in the sporadic permafrost zone; it is highest in areas of isolated permafrost.  The progression, of course, is in qualitative 
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agreement with expectations – larger breaks in permafrost coverage imply a greater amount of available energy, which should 

also act to increase ALT. 

 

The observed and CLSM-simulated annual ALT and multi-year ALT averages are compared in Figure 11Figure 11. Generally, 

the CLSM-simulated annual ALT and the averages agree reasonably well with observations for shallow permafrost regions, 5 

that is, for smaller ALT. A large bias, however, is found for most of the Mongolia sites. In; in Mongolia, the observed annual 

ALT and the climatological ALTs tend to be much larger than the simulated ALTs (light purple dots in Figure 11Figure 11a). 

The).  Overall, the RMSE, bias and R are all significantly improved when the Mongolian sites are excluded from consideration.  

Specifically for the climatological ALTs, the RMSE (and bias) associated with this scatterplotof simulated ALT climatological 

means is 1.22 m (and -0.48 m), and it drops to 0.33 m (and -0.04 m) if the Mongolia sites are excluded (Figure 11Figure 11db).  10 

Given simplifications in the model, uncertainties in boundary conditions (e.g., vegetation types, soil properties, etc.), and 

representativenessupscaling issues stemming from the coarse-scale nature of the forcing data relative to the point-scale and 

plot-scale nature of the observations (i.e., the representative errors as indicated by the large standard deviation shown in Figure 

11a), these results seem encouraging. The correlation coefficient metric (R), however, is somewhat less encouraging, 

amounting to only 0.5 when considering all sites.  The correlation coefficient is in fact lower (0.3) when the Mongolian site s 15 

are excluded; the correlation coefficient is 0.39 for the Mongolian sites considered in isolation. Note that the existing literature 

on simulated ALT fields (e.g., Dankers et al. (2011), Lawrence et al. (2012) and Guo et al. (2011), Lawrence et al. (2012) and 

Guo et al. (2017)) reveals a general tendency for models to overestimate ALT climatology at the global scale.  OurIn light of 

this, our results here suggest that the CLSM-simulated ALT fields are perhaps among the better simulation products, especially 

for shallow permafrost. 20 

 

Comparing the observed and simulated spatial distributions of the ALT averages provides a further test of the accuracy of the 

simulation results (as shown in Figure 12).  The model successfully simulates the large-scale spatial patterns in ALT, capturing, 

for example, the variations in Siberia, Svalbard, northern Canada, and northern Alaska (see Figure 12Figure 12a, b). Figure 

12Figure 12c, d show the differences between the observed and estimated values in middle latitudes (45⁰N to 60⁰N) and high 25 
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latitudes (60⁰N to 90⁰N), respectively; in agreement with Figure 11Figure 11a, the model clearly performs better in high-

latitude regions, i.e., outside of Mongolia. Many of the sites north of 60⁰N (Figure 12Figure 12d) are coloured grey, indicating 

a small error in the simulation of ALT at these sites – the errors at these sites range from only -0.10m to 0.10m. 

 

The significant underestimation of ALT in Mongolia may very wellmight result from errors in the meteorological forcing 5 

provided by MERRA-2. However, a comparison (not shown) of MERRA-2 air temperatures with measurements at six weather 

stations collocated with CALM sites in Mongolia calls this explanation into question. While MERRA-2 summer temperatures 

are indeed too low at four of the weather stations examined, they are too high at the other two weather stations. Another 

potential reason for the underestimation of Mongolian ALT involves the aforementioned representativeness error.  The 

Mongolian CALM sites employ a single-point measurement method (section 2.3) and are thus not able to represent the 10 

presumed spatial heterogeneity of permafrost within an 81 km2 CLSM grid cell. An additional reason for the underestimation 

of ALT in Mongolia might be a mismatch between the land surface parameter values used in the model and the actual 

conditions at each site. For instance, detailed soil information (https://www2.gwu.edu/~calm/data/webforms/mg_f.html) 

indicate that some Mongolian sites have special “rocky” soil types including limestones (e.g., M04), slatestones (e.g., M05), 

gravelly sand (e.g., M06 and M08), etc. that are not well represented in the model.  As another example, sites on south-facing 15 

slopes presumably have much deeper ALT than those on slopes with less exposure to the sun, which is not captured by CLSM.  

The uncertainty assumed here for the Mongolian CALM sites (0.14m, as used elsewhere) may be underestimated given that 

these sites employ a single-point measurement method (section 2.3).The large representative errors of Mongolian sites are 

clearly illustrated by the standard deviation (although computed only with 3 to 5 measurements) as shown by the error bars in 

Figure 11a. 20 
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4.5 ALT Trend from 1980 to 2017 

The spatial distributions of the computed trends as described in section 3.4 are shown in Figure 13. (Only trends that are 

statistically significant at the 0.05 level are shown in the figure.)  Figure 13a shows increasing/positive ALT trends (red colours) 

in many regions, particularly in northern Alaska and eastern Siberia but also in some parts of Canada and northern Mongolia.  

Such positive trends, which appear despite the aforementioned spin-up limitations in the analysis, can be interpreted as 5 

permafrost degradation.  Particularly large positive trends (i.e., greater than or equal to 0.5 cm/year) are found along the 

coastline of the Okhotsk Sea in eastern Siberia, in northern Mongolia, in northern Quebec, and in limited areas of central 

Canada and the north slope of Alaska. The fact that the highest trends are generally found at the margins of the simulated 

permafrost distributions is consistent with the findings of James et al. (2013).  

 10 

The ALT trends in Figure 13a are, at least to some extent, consistent with the temperature trends shown in Figure 13b,c,d, 

particularly in northern Alaska, northern Quebec, and (for MAAT) eastern Siberia. The widespread positive ALT trend in 

northern Mongolia is consistent with the positive trend in Tcum (Figure 13c). Some areas, however, show a large positive ALT 

trend but not an obvious corresponding trend in air temperature. Also, some locations near the regions marked B, C, and D in 

Figure 1a show negative ALT trends in the presence of a warming trend in Tcum(Figure 13c).  It is possible that in such cases, 15 

the computed trends are strongly affected by snowpack variability, though neither maximum SWE nor snow cover duration 

tends to show a significant trend in these areas (not shown).  It may be that in snow-dominated regions, joint variations and 

trends in temperature and snowpack complicate a simple interpretation of ALT trends in terms of trends in the meteorological 

forcing.  

 20 

The observed trends calculated with CALM measurements are compared to the model-based trends in Figure 14.  We exclude 

from the comparison the observational sites located in regions that, according to the CLSM, are permafrost-free (grey area in 

Figure 8a). Not counting the two Mongolian sites with trends at approximately 20-25 cm/yr, the simulated and observed trends 

at most of the sites roughly agree, though on balance the CLSM-based ALT trends are too low, likely due to the analysis 

limitations noted in section 2.1 and 3.4.  A particular caveat is required regarding the Mongolian sites, given the unusual 25 
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observed trends calculated there. Attempts to contact the data providers to attain more detailed information for data evaluation 

were unsuccessful, and accordingly our confidence in these particular data is limited. The overall comparison in Figure 14 is, 

in any case, highly uncertain, given the limited number of data points available to compute the trends. Note that only four (ten) 

points remain when screening out sites at which either the observed or estimated ALT trend is not statistically significant at 

the 0.05 (0.10) level. Simply put, the limited number of sites with meaningful trends cannot assure an accurate trend 5 

assessment. 

5 Conclusion and Discussion 

Driving a tested model of permafrost dynamics (Tao et al., 2017) with a multi-decadal, reanalysis-based dataset of 

meteorological forcing (Gelaro et al., 2017) allows a global-scale characterization of permafrost.  Indeed, in the course of this 

work we haveWe produced a dataset (effectively a derivative of MERRA-2) of permafrost variations in space and time at the 10 

81 km2 scale across middle-to-high latitudes.  The permafrostThis dataset presented herein can be considered unique in terms 

of its daily temporal resolution combined with a relatively high spatial resolution at the global scale (i.e., 81 km2).  The dataset, 

which is derived from a state-of-the-art reanalysis, (MERRA-2), shows reasonable skill in capturing permafrost extent (87.7% 

of the total area of continuous and discontinuous types, according to one validation dataset) and in adequately estimating ALT 

climatology (aside from that at the with a RMSE of 0.33m and a mean bias of -0.04m), excluding Mongolian sites).. We note 15 

that our MERRA-2-driven permafrost simulation results, while potentially better than those we might have obtained with 

MERRA forcing, are still lacking (e.g., in western Siberia). Still, with its resolution and available variables (ALT, subsurface 

temperature at different depths), the dataset could prove valuable to many future permafrost analyses.  

 

This work also provides a first comparison between two highly complementary approaches to estimating permafrost: model 20 

simulation and remote sensing retrieval method. In northern Alaska, ALT retrievals from airborne remote sensing for 2015 

and the corresponding simulated ALT exhibit limited skill versus the in-situ measurements.  At the model scale, the mean bias 

for the simulated results is better (-0.05 m) than that for the retrievals (-0.12 m), but the opposite is true for the correlation 

coefficient against observations (0.27 for the model vs. 0.61 for the retrievals). At the in-situ site scale, however, the ALT 
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retrievals show a very weak correlation coefficient with the observations (0.05). Excluding. In northern Alaska, excluding sites 

that have ALT measurements exceeding the radar sensing depth (~ 60cm), the evaluation metrics for ALT retrievals 

becomeagainst in situin-situ measurements are better than thatthose for simulated ALT at the model81 km2 scale. However, 

the remotely sensed ALT estimates generally show lower levels of spatial variability thanrelative to the simulated ALT 

estimates,  (and theirrelative to the in situin-situ observations), and the spatial patterns of the simulated and retrieved values 5 

differ considerably.  The remote sensing approach is still relatively new, andwith many aspects still need to be worked 

outrequiring development.  It is important, though, to begin considering the modeling and remote sensing approaches side by 

side, as both should play important roles in permafrost quantification in the years to come.  Indeed, once the science fully 

develops, joint use of modeling and remote sensing (e.g., through the application of downscaling methods) should allow the 

generation of more accurate permafrost products at even higher resolutions.resolution.  10 

 

It is important to note that the retrieved ALT was determined by the dielectric transition from thawed to frozen conditions 

whereas the modelled ALT and the ALT for some of the in-situin-situ measurements was based on a freezing temperature of 

0⁰C (see sections 2.1 and 2.3).  Depending on local conditions, soil does not typically freeze at 0⁰C but rather at slightly lower 

temperatures (e.g., around -1⁰C) due to the presence of dissolved compounds that depress the freezing point (Watanabe and 15 

Wake, 2009).(Watanabe and Wake, 2009).  The sharp drop in conductivity and dielectric constant is much more accurately 

tied to a frozen state than to a temperature threshold. These and other differences in the various ALT measurement methods 

(section 2.3) introduce considerable uncertainty into our comparisons. The use of the 0⁰C degree threshold in CLSM for 

determining the thawed or frozen layer may explain in part the model’s underestimation of ALT, as may the lack of an explicit 

treatment of local aspect, errors in assigned model parameters, and so on.  20 

 

Analysis of the CLSM-simulated data, along with data produced in supplemental, idealized experiments with specific 

homogenized controls, show how the statistics of permafrost variability in space are controlled by forcing variability and by 

variability in the imposed surface boundary conditions. In the idealized experiments, we employ successive homogenization 

of controls to quantify how meteorological forcing, soil type, and vegetation cover affect the underground thermodynamic 25 
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processes associated with the variability of ALT along the AirMOSS flight paths in Alaska. Meteorological forcing and soil 

type are found to be the two dominant factors controlling ALT variability along these transects. Vegetation plays a smaller 

role by modulating the accumulation of snow.  

 

A statistical analysis focusing on the global-scale fields reveals that yearly ALT strongly correlates with an accumulated air 5 

temperature diagnostic in most permafrost regions. In regions where they do not correlate well, yearly ALT does correlate with 

maximum SWE. Indeed, a A multiple regression analysis relating yearly ALT jointly to accumulated air temperature and 

maximum SWE shows that time variations in these two latter quantities explain most of the time variability of ALT in the 

CLSM-identified permafrost regions.  

 10 

The spatial distribution of CLSM-simulated permafrost shows general agreement with the observation-based permafrost map 

of Brown et al. (2002), capturing 81.3% of total areas of continuous, discontinuous and sporadic types while capturing 87.7% 

of the total area of continuous and discontinuous types. The model-based product does seem to miss a large area of permafrost 

in the northern part of the western Siberia, but it captures correctly, for the most part, the southward extent of permafrost.  

Apparent errors along the southern edge are, in any case, subject to significant uncertainty in this comparison given the 15 

presence of “sporadic” and “isolated” permafrost in the observational map, types that do not have direct analogues in the 

model-based (binary) product.  

 

The CLSM-simulated ALT climatology was also compared to that derived from in-situ measurements collected through the 

CALM network.  The simulated ALTs agree well with the in-situ observations for shallow permafrost in high-latitude regions 20 

(above 60⁰N latitude), but they generally underestimate ALTs in middle-latitude regions, especially in Mongolia. The RMSE 

of climatological ALT between model simulations and observations is 1.22m, and the mean bias is -0.48m. However, these 

reduce to 0.33m and -0.04m, respectively, when the Mongolia sites are excluded.  
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The simulated fields indicate permafrost degradation (as represented by a positive ALT trend) over the past 38 years in many 

areas, including large areas in Alaska and eastern Siberia as well as some limited patches in Canada and northern Mongolia.  

While concurrent trends in air temperature can reasonably explain many of the ALT trends, this connection appears to fall 

apart in regions dominated by snowpack variability. Modeled ALT trends agree with observed ALT trends (based on analysis 

of data from the CALM network) within a reasonable range (i.e., -1cm/year to 1cm/year) at many sites. At other sites, however, 5 

modeled trends are biased low, and they grossly underestimate the observed trends at two Mongolian sites.  We emphasize 

again that such trend analyses are in any case highly uncertain due to the limited availability and the relatively short temporal 

extent of the observational ALT record. 

 

Spatial representativeness issues plague an evaluation of simulated ALT (representing averages across 81 km2 grid cells) 10 

against site-based ALT measurements.  That said, we fully expect that the discrepancies seen between the simulated and 

observational ALT estimates reflect problems on the modelling side. Many aspects of the modelling framework may contribute 

to the noted errors in the simulated ALTs. For example, the observed climatological ALTs at the Mongolia sites are all larger 

than 3m.  This depth falls well within the 6th soil layer of the model, which has a thickness of 10m; the subsurface vertical 

resolution in the CLSM may be too coarse to capture these deeper ALTs.   Test simulations (not shown) with alternative model 15 

configurations indicate that increasing the number of soil layers may act to decrease somewhat the simulated ALT, suggesting 

that our values may be a little overestimated; however, based on results from a new study by Sapriza-Azuri et al.(2018), our 

use of a no-heat-flux condition at the bottom boundary rather than a dynamic geothermal flux may lead to underestimates of 

ALT.  Such uncertainties should naturally be kept in mind when interpreting our results.  Our supplemental simulations (not 

shown) also suggest that increasing the total modelled soil depth has only a small impact on simulated ALT. Uncertainty in 20 

our description of soil organic carbon, i.e., both soil carbon content and vertical carbon distribution, leads to corresponding 

uncertainty in our ALT simulations. We indeed find a significant improvement in simulated ALT at several Mongolian sites 

when we arbitrarily impose less total soil carbon content and concentrate less soil carbon in top layers (not shown). Besides 

the vertical distribution of soil carbon, the vertical variation in other soil hydrological properties (e.g. soil texture, and porosity, 

hydraulic conductivity, etc.)) should also play a significant role since they all affect soil thermal conductivity and heat capacity.  25 
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In addition, the lack of a necessary organic layer on top of soil column and the related thermal processes is also a major 

deficiency for the model especially in ecosystem-protected performant regions. 

 

Another issue affecting our ALT comparisons is the climatological representation of vegetation parameters such as LAI used 

in CLSM.  AdditionalAn additional investigation (not shown) revealed large differences between the LAI climatology used in 5 

CLSM and more realistic, time-varying, satellite-based LAI products at several Mongolian sites. In addition, while we did 

exclude from our analyses any measurements that were affected by notable disturbance (e.g., wildfire), the impacts of other 

potential land changes on ALT, including overgrazing in Mongolia (Sharkhuu and Sharkhuu, 2012; Liu et al., 2013),(Sharkhuu 

and Sharkhuu, 2012; Liu et al., 2013), were not explicitly treated in the model.  The model also lacks the vertical advective 

transport of heat in the subsurface due to downward flowing liquid water, which can significantly affect permafrost thawing 10 

(Kane et al., 2001; Rowland et al., 2011; Kurylyk et al., 2014).  Also relevant are potential errors in the MERRA-2 forcing, 

which has a particularly large impact on the trend analysis; as mentioned above, the.  The MERRA-2 reanalysis is known to 

have problems capturing trends in high latitudes (Simmons et al., 2017).(Simmons et al., 2017). 

 

Such modelling deficiencies must always be kept in mind when evaluating a product like the one examined here. That said, as 15 

long as appropriate caution is employed, the product could have significant value for further analyses of permafrost.  The 

product features daily subsurface temperatures and depth-to-freezing estimates over middle-to-high latitudes in the Northern 

Hemisphere at an 81 km2 resolution, covering the period 1980-2017.  It is, in a sense, a value-added derivative product of the 

MERRA-2 reanalysis and will be available via the National Snow and Ice Data Center (NSIDC).  The comparisons against 

observations discussed above, along with the intuitively sensible connections shown between permafrost variability, forcing 20 

variability, and boundary condition variability, gives confidence that this dataset contains useful information. These data can 

potentially contribute, for example, to ecological studies focused on the dynamics of microbial activity and soil respiration in 

cold regions, on vegetation migration/adaptation in response to climate change, and so on. 
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Table 1 – In-situIn-situ permafrost measurement sites covered by the AirMOSS transects in 2015.    

AirMOSS flight  

(Official full name) 

Permafrost 

Site (CALM 

or UAF)* 

Latitude 

(degree) 

Longitude 

(degree) 

Sampling 

Method@ 

Measurement 

Date 

COC (Council) 

U27 (CALM) 64.8333 -163.7000 ④4 8/30/2015 

U28 (CALM) 65.4500 -164.6167 ④4 8/29/2015 

IVO (Ivotuk) IV4 (UAF) 68.4803 -155.7437 ①1# 8/29/2015 

ATQ (Atqasuk) U3 (CALM) 70.4500 -157.4000 ④4 8/25/2015 

BRW (Barrow) 

U1 (CALM) 71.3167 -156.6000 ④4 8/21/2015 

U2 (CALM) 71.3167 -156.5833 ②2 8/24/2015 

BR2 (UAF) 71.3090 -156.6615 ①1 8/29/2015 

DHO (Deadhorse) 

U4 (CALM) 70.3667 -148.5500 ③3 8/25/2015 

U5 (CALM) 70.3667 -148.5667 ④4 8/11/2015 

U6 (CALM) 70.1667 -148.4667 ③3 8/26/2015 

U31 (CALM) 69.6969 -148.6821 ③3 8/15/2015 

U8 (CALM) 69.6833 -148.7167 ③3 8/27/2015 

U32A (CALM) 69.4410 -148.6703 ③3 8/16/2015 

U32B (CALM) 69.4010 -148.8056 ③3 8/16/2015 

U9A (CALM) 69.1667 -148.8333 ③3 8/25/2015 

WD1 & WDN 

(UAF) 

70.3745 -148.5522 ①1 8/29/2015 

DH2 (UAF) 70.1613 -148.4653 ①1 8/29/2015 

FB1 (UAF) 69.6739 -148.7219 ①1 8/29/2015 

FBD (UAF) 69.6741 -148.7208 ①1% 8/29/2015 
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FBW (UAF) 69.6746 -148.7196 ①1 8/29/2015 

SG1 (UAF) 69.4330 -148.6738 ①1 8/29/2015 

SG2 (UAF) 69.4283 -148.7001 ①1 8/29/2015 

HV1 (UAF) 69.1466 -148.8483 ①1% 8/29/2015 

* CALM: sites from the Circumpolar Active Layer Monitoring (CALM) network; UAF: sites from the Permafrost Laboratory 

at the University of Alaska Fairbanks (UAF). 

@Sampling method: ①1. Single point; ② 2. 320 random sampling points within 10m × 10m gridarea; ③ 3. 100m × 100m 

grid with a 10m sampling interval; ④ 4. 1000m × 1000m grid with a 100m sampling interval. 

# Two sensors are installed at IV4. 5 

%Observations were taken from two conditions, including a frost-boil and an inter-boil area. 
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Table 2 – List of idealized simulation experiments along the AirMOSS transects.    

Experiment Name 

Meteorological 

forcing 

Vegetation Soil parameters* 

Baseline Original Original Original 

HomF Homogenized Original Original 

HomF&Veg Homogenized Homogenized Original 

HomF&Veg&Soil Homogenized Homogenized Homogenized 

HomVeg&Soil Original Homogenized Homogenized 

HomF&Soil Homogenized Original Homogenized 

*CLSM soil parameters include soil organic carbon content, porosity, saturated hydraulic conductivity, Clapp-Hornberger 

parameters, wilting point, soil class, sand and clay fraction, vertical decay factor for transmissivity, baseflow parameters, area 

partitioning parameters, and time scale parameters for moisture transfer (Koster et al., 2000; Ducharne et al., 2000; Tao et al., 

2017). 5 
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Table 3 – Evaluation metrics for model-simulated ALT and AirMOSS retrievals for 2015.    

Metric All sites 

Sites with ALT measurements within AirMOSS sensing 

depth (~60 cm) 

 

CLSM-

simulated 

ALT (model 

scale) 

AirMOSS ALT 

retrievals 

(model scale) 

AirMOSS ALT 

retrievals 

(site scale) 

CLSM-

Simulated 

ALT (model 

scale) 

AirMOSS ALT 

retrievals 

(model scale) 

AirMOSS ALT 

retrievals 

(site scale) 

RMSE 

(m) 

0.17 0.17 

0.21 
0.12 0.06 

0.08 

Bias (m) -0.05 -0.12 
-0.11 

0.01 -0.01 
0.02 

R 0.27 0.61 
0.05 

-0.00 0.64 
0.20 

Metric All sites 

Sites with ALT measurements within AirMOSS sensing 

depth (~60 cm) 

 

CLSM-

simulated 

ALT  

AirMOSS ALT retrievals 

CLSM-Simulated 

ALT 

AirMOSS ALT retrievals 

RMSE (m) 0.17 0.17 0.12 0.06 
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Bias (m) -0.05 -0.12 0.01 -0.01 

R 0.27 0.61 -0.00 0.64 

 

  



52 

 

Table 4 – Evaluation results for simulated permafrost extent. against the observation-based areathe permafrost map by Brown 

et al. (2002). The calculation was based on the comparison between simulated permafrost area and the total area of continuous, 

discontinuous and sporadic permafrost regions from Brown’s map. The number in the brackets was calculated against the total 

area of continuous and discontinuous permafrost regions. 

 5 

Case CLSM Obs. Simulated Area (×106 km2) Percentage Relative to Observation 

4 No No 48.8 - 

3 Yes No 1.9 - 

2 No Yes 3.2 (1.7) 18.7% (12.3%) 

1 Yes Yes 13.8 (12.3) 81.3 % (87.7%) 
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Figure 1: a) Elevation above mean sea level in the simulation domain, which is defined by the area for which NCSCDv2 data are 

available.  Regions A, B, C, and D are discussed in the text.  b) Permafrost and ground ice conditions adapted from (Brown et al., 5 

2002).(Brown et al., 2002).  Red dots represent CALM sites. 
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Figure 2: a) Ten transects of AirMOSS flights conducted in Alaska on 29 August 2015 and 1 October 2015, including HUS (Huslia), 

KYK (Koyuk), COC (Council), KGR (Kougarok), AMB (Ambler), IVO (Ivotuk), ATQ (Atqasuk), BRW (Barrow), DHO 

(Deadhorse), and CFT  (Coldfoot). Each flight swath width is approximately 15 km. The red dot on IVO illustrates the location of 5 

the representative grid cell used and discussed in section 3.2. b) Vegetation class, c) soil organic carbon content, and d) soil class used 

in CLSM. The eight vegetation classes are 1-broadleaf evergreen trees, 2-broadleaf deciduous trees, 3-needleleaf trees, 4-grassland, 

5-broadleaf shrubs, 6-dwarf trees, 7-bare soil, and 8-desert soil, respectively. The 253 soil classes include one “peat” class (#253), 

which is shown in dark grey, and 252 mineral soil classes (De Lannoy et al., 2014). 

  10 
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Figure 3: a) AirMOSS radarRadar retrievals of ALT for 2015 at raw resolution (20 m x 60 m) derived from P-band radar 

observations on 29 August 2015 and 01 October 2015 for IVO, ATQ, BRW, and DHO. b) ALT radar retrievals , aggregated to 81 

km2 model grid cells. cb) CLSM-simulated ALT. c) Difference between the aggregated ALT retrievals and the CLSM-simulated 

results. Magenta squares in b) and c) represent CALM sites covered by the flight swath whereas black circles represent UAF sites. 5 
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Figure 4: a) ALT observations (red)  for 2015 from CALM (magenta) and UAF (red) sites covered by AirMOSS swaths, and and 

from radar retrievals at in-situ site scale (black). b) Same as a) but with ALT from radar retrievals aggregated to 81 km2 grid cells 

(green), and from CLSM-simulated simulations ALT at 81 km2 (blue).  The short name of the corresponding covering swath is 

shown on the top (see also Figure 2a). Error bars represent the standard deviation for multiple observations at in-situ sites, and for 5 

radar retrievals within the CALM observing grid (at site scale), or within each 81 km2 grid cell (at model scale). No standard 

deviations are provided for site-scale radar retrievals at CALM U2, U31, and U32B sites because sampling coordinates are not 

available nor at UAF sites since single-point measurements were deployed. Averaged values were provided if multiple sites appear 

within a same model grid cell (e.g., U1&U2, U4&U5, WD1&WD2, FB1&FBD&FBW, and SG1&SG2) and compared with results at 

81 km2 grid cell. The sites are arranged aligning with the flight direction. cb) CLSM estimates and AirMOSS radar retrievals of 10 

ALT (at both site scale and model scale) for 2015 versus in-situ measurements with error bars indicating the standard deviation as 
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in a).  c) Same as b) but versus aggregated AirMOSS ALT at model scale. The error bars here represent the uncertainty for radar 

retrievals at the 81 km2 scale as explained in section 3.1. Corresponding estimates of CLSM uncertainty, which are presumably 

large, are not shown in the figure.   
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Figure 5: a) CLSM-simulated ALT (thawed-to-frozen depth) on 29 August 2015 along the AirMOSS flight transects.  In-situIn-situ 

ALT observations from UAF and CALM are shown as red circles and magenta diamonds, respectively. Averaged air temperature 

at 2 m (Tair) from the preceding annual period (i.e., 01 September 2014 to 31 August 2015) is shown in green with the scale on the 

right ordinate. b) organicOrganic carbon content and c) maximum snow depth during the preceding annual period (again from 01 5 

September 2014 to 31 August 2015). The red rectangle crossingacross a) and b) highlights a portion of the domain that shows an 

anti-correlated relationshipcorrelation between organic carbon content and modelled ALT (see Section 4.2). The abscissa in c) 

provides cumulative distances in units of km along the transects. 
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Figure 6: a) CLSM-simulated ALT (thawed-to-frozen depth) on the flight date (i.e., 29 August 2015) from the top four experiments 

listed in Table 2Table 2; b) simulated top layer soil temperature on the flight date, c) maximum snow depth the during the preceding 

annual period (i.e., from 01 September 2014 to 31 August 2015), and d) soil moisture within the soil profile on the flight date along 

the connected transects for the four experiments. The black dot indicates the representative location within the IVO transect from 5 

which the forcing, vegetation and/or soil data are used to homogenize the inputs in the idealized experiments. By construction, all 

simulations provide identical results at this representative location.  
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Figure 7: a) Standard deviation of ALT along the AirMOSS transects from the top four experiments listed in Table 2Table 2. Subplot 

b) shows theThe individual impact (or contribution) from the heterogeneous vegetation, soil type and meteorological forcing, 

respectively. For instance, the impact of vegetation (or soil, or forcing) heterogeneity is the ALT standard deviation along the 

transects from HomF&Soil (or HomF&Veg, or HomVeg&Soil).  5 
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Figure 8: a) Mean, b) standard deviation, and c) skewness of CLSM-simulated ALT over the 38 years (1980 - 2017). Grey indicates 

permafrost-free (Pfree) areas in the simulation. d) 38-year averaged MERRA-2 annual atmospheric temperature at 2 m above 

displacement height (Tair). The red boundary outlines the continuous and discontinuous permafrost regions of Brown’s 

map.according to Brown et al. (2002). 5 
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Figure 9: Correlation coefficient between a) ALT and square root of the effective accumulated air temperature (𝑻𝒄𝒖𝒎)√𝑻𝒄𝒖𝒎) and 

b) ALT and maximum SWE (𝑺𝑾𝑬𝒎𝒂𝒙) from the preceding September to the present August over the period 1980-2017. c) Multi-

variable coefficient of correlation for a fitted multiple linear regression model between ALT and the accumulated temperature and 

the maximum SWE.√𝑻𝒄𝒖𝒎 and 𝑺𝑾𝑬𝒎𝒂𝒙. Areas that have a p-value larger than 0.05 (i.e., statistically insignificant correlation) are 5 

masked in green. Grey indicates permafrost-free (Pfree) areas in the simulation.  
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Figure 10: a) Four comparison categories include: 1) blue - CLSM collocates permafrost with the observation-based permafrost 

map of Brown et al. (2002) as either continuous, discontinuous, or sporadic permafrost; 2) green - CLSM has no permafrost, but the 

observation-based permafrost map does as either continuous, discontinuous, or sporadic types; 3) red - CLSM does have permafrost, 5 

but the observation-based permafrost map does not or contains isolated permafrost; and 4) grey - CLSM has no permafrost and 

neither does the observation-based permafrost map (except for isolated permafrost). b) area-weighted average of ALT as simulated 

by CLSM for the four different permafrost types.   
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Figure 11: a) Annual ALT from CLSM simulation vs. CALM observations with horizontal error bars indicating standard deviations 

of measurements within the model grid cell. Error bar is absent if the number of measurements within a 81 km2 grid cell is less than 5 

three. b) As in a) but excluding the Mongolia sites.  ac) 38-yr average ALT for the period 1980-2017 from CLSM simulation vs. 
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CALM observations. bd) Same asAs in ac) but without the Mongolia sites. The correlation coefficient (R), bias, and root mean 

squared error (RMSE) are provided onnext to  each subplot. 
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Figure 12: Multi-year average ALT at CALM site locations for a) CALM observations and b) CLSM results. c) ALT difference 

between observations and model results for locations within 45⁰N- 60⁰N latitude and 85⁰E-125⁰E longitude. d) Same as c) but for 

locations poleward of 60⁰N latitude. In c) and d) grey indicates absolute ALT differences less than 0.10 m.  

 5 Formatted: Caption, Line spacing:  Double
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Figure 13: 1980-2017 trend in a) ALT, b) mean annual air temperature (MAAT), c) effective accumulated air temperature (𝑻𝒄𝒖𝒎), 

and d) warm days from CLSM simulations. Areas that have p-values larger than 0.05 (i.e., no statistically significant trend) are 

shown in green. In a), grey indicates permafrost-free (Pfree) areas in the simulation.  
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Figure 14: a) ALT trend from CLSM estimates vs. that from CALM observations, based on years common to both datasets within 

the period of 1990 to 2017. The horizontal and vertical error bars represent 95% confidence intervals of observed ALT trend 

(regression slope) and CLSM-simulated ALT trend, respectively.  b) Same as a) but zoomed into observed ALT trends between -2 

and 6 cm/yr. Note: the trends plotted here are not filtered based on statistical significance. Only four and ten sites have observed 5 

and estimated ALT trends with p value less than 0.05 and 0.10, respectively. 

 


