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Abstract.  This study introduces and evaluates a comprehensive, model-generated dataset of Northern Hemisphere permafrost 

conditions at high resolution. Surface meteorological forcing fields from the Modern-Era Retrospective Analysis for Research 

and Applications-2 (MERRA-2) reanalysis were used to drive an improved version of the land component of MERRA-2 in 

middle-to-high northern latitudes from 1980 to 2017.  The resulting simulated permafrost distribution across the Northern 

Hemisphere captures well the observed extent of continuous and discontinuous permafrost except in western Siberia, which is 15 

permafrost-free in the simulation.  Noticeable discrepancies also appear along the southern edge of the permafrost region where 

sporadic and isolated permafrost types dominate.  The evaluation of the simulated active layer thickness (ALT) climatology 

against in-situ measurements demonstrates reasonable skill except in Mongolia. Specifically, the RMSE (and bias) of 

climatological ALT is 1.22 m (and -0.48 m) across all sites and 0.33 m (and -0.04 m) without the Mongolia sites. In northern 

Alaska, both ALT retrievals from airborne remote sensing for 2015 and the corresponding simulated ALT exhibit limited skill 20 

versus in-situ measurements. In addition, the remotely sensed ALT retrievals generally demonstrate lower levels of spatial 

variability than both the observed and simulated ALT.  Controls on the spatial variability of ALT are examined with idealized 

numerical experiments focusing on northern Alaska; meteorological forcing and soil type are found to have dominant impacts 

on the spatial variability of ALT, with vegetation also playing a role through its modulation of snow accumulation. A 

correlation analysis further reveals that accumulated air temperature and maximum snow water equivalent explain most of the 25 

year-to-year variability of ALT nearly everywhere over the model-simulated permafrost regions. Simulated ALT trends from 

1980 to 2017 indicate that some permafrost areas are experiencing significant degradation, with ALT increasing up to 0.5 

cm/year. It is difficult, however, to adequately assess the accuracy of the simulated ALT trends given the limited availability 

and relatively short records of in-situ measurements.  
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1 Introduction 

Permafrost is an important component of the climate system, and its variations can have significant impacts on climate and 

society.  Of deep concern is a potential positive feedback loop by which carbon stored within permafrost regions is released 

through global warming, thereby adding greenhouse gases to the atmosphere that accelerate the warming further (Schuur et 

al., 2015;MacDougall et al., 2012;Dorrepaal et al., 2009;Schuur et al., 2009). Communities and infrastructure in ice-rich 5 

permafrost regions are particularly vulnerable to land subsidence and infrastructure damage caused by permafrost thaw (Nelson 

et al., 2001;Liu et al., 2010;Guo and Sun, 2015).   

 

Permafrost variations, including pronounced permafrost degradation due to a warming climate, have been reported for many 

regions, including Alaska (Jorgenson et al., 2001;Liu et al., 2012;Nicholas and Hinkel, 1996;Batir et al., 2017;Osterkamp and 10 

Romanovsky, 1996;Hinkel and Nelson, 2003;Jafarov et al., 2012;Jones et al., 2016), Canada (Chen et al., 2003;James et al., 

2013), Mongolia (Sharkhuu and Sharkhuu, 2012), Norway (Gisnas et al., 2013), the Qinghai–Tibet Plateau (Zhou et al., 

2013;Lu et al., 2017;Wang et al., 2016a), Russia (Romanovsky et al., 2010;Romanovsky et al., 2007) and Sweden (Pannetier 

and Frampton, 2016). Some of these findings are based on in-situ measurements at a point-scale or at a spatially-aggregated 

scale (up to 1000m×1000m), such as through the Circumpolar Active Layer Monitoring (CALM) network. In particular, 15 

rapidly accelerated permafrost degradation in recent years has already been reported at CALM in-situ sites over the Northern 

Hemisphere (Luo et al., 2016). In addition, given the apparent climate warming seen in recent years (exemplified by the fact 

that the average Arctic air temperature in 2017 (ending in September) was the second warmest on record since 1900 (Arctic 

Report Card; http://www.arctic.noaa.gov/Report-Card/Report-Card-2017) and that 2017 was the warmest year on record for 

global ocean temperatures (Cheng and Zhu, 2018)), important reductions in permafrost might be occurring as well. However, 20 

current global permafrost thermal states (i.e., permafrost temperature, ice content and degradation rates across much of 

Northern latitudes) are still largely unknown. Monitoring permafrost degradation in a timely manner is particularly critical for 

ecosystem management and for various policy decisions. 

 

For large spatial scales, numerical model simulations are potentially useful.  Simulations and/or predictions with a variety of 25 

land surface models (LSMs) have been used to quantify large-scale permafrost patterns (i.e., distributions and thermal states) 

and their interactions with a warming climate.  LSMs utilized for this include, for example, the Joint UK Land Environment 

Simulator (JULES, Dankers et al., 2011), the ORganizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE) - 

aMeliorated Interactions between Carbon and Temperature (ORCHIDEE-MICT, Guimberteau et al., 2018), the Catchment 

Land Surface Model (CLSM, Tao et al., 2017), and the Community Land Model (CLM, Lawrence and Slater, 2005;Alexeev 30 

et al., 2007;Nicolsky et al., 2007a;Yi et al., 2007;Lawrence and Slater, 2008;Lawrence et al., 2008;Lawrence et al., 2012;Koven 

et al., 2013;Chadburn et al., 2017;Guo and Wang, 2017). Most of these land models were run at coarse spatial resolutions, 

e.g., ranging from 0.5° × 0.5° to 1.8° × 3.6° for LSMs participating in the Permafrost Carbon Network (PCN) (Wang et al., 

https://link.springer.com/article/10.1023/A:1005667424292
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2016a) and from 0.188° × 0.188° to 4.10° × 5° for the models participating in the Coupled Model Intercomparison Project 

phase 5 (CMIP5) (Koven et al., 2013; https://portal.enes.org/data/enes-model-data/cmip5/resolution). As a result, it is difficult 

to compare the simulated values with in-situ observations taken at the point scale. Other types of numerical models have been 

run at relatively higher resolution, but not globally; such simulation domains were limited to regional scales (e.g., 2 km × 2 

km in  Jafarov et al. (2012) covering Alaska;1 km × 1 km in  Gisnas et al. (2013) covering Norway) as necessitated  by the 5 

availability of ancillary data and the heavy computational burden.  As discussed further below, one of the unique contributions 

of the present work is a global simulation of permafrost at a somewhat higher resolution than earlier global-scale studies. 

 

The impact of a changing climate on permafrost dynamics must depend on local site characteristics. Subsurface heat transfer 

processes and active layer thickness (ALT; the maximum thaw depth at the end of the thawing season) are influenced by more 10 

than surface meteorological forcing – they are also influenced by vegetation type, surface organic layer characteristics, soil 

properties and soil moisture (Yi et al., 2007;Fisher et al., 2016;Shur and Jorgenson, 2007;Tao et al., 2017;Johnson et al., 

2013;Jean and Payette, 2014;Yi et al., 2015;Stieglitz et al., 2003;Luetschg et al., 2008;Matyshak et al., 2017;Dankers et al., 

2011). Understanding the contributions from the different controls on ALT (and permafrost conditions in general) is crucial 

for assessing permafrost behaviour and its resilience to a warming climate.  15 

 

Again, such understanding can potentially be derived from models.  Permafrost dynamics can be modelled, for example, by 

driving a land surface model offline (i.e., uncoupled from an atmospheric model) with meteorological forcing data (including 

air temperature, radiation, precipitation, etc.) from some credible source. During the course of the simulation, the model 

produces estimates of ALT and permafrost thermal characteristics. A wide range of simulated permafrost behaviour has been 20 

reported in the literature, with differences reflecting model-specific process representations and biases associated with different 

meteorological forcing datasets (Barman and Jain, 2016;Slater and Lawrence, 2013;Guimberteau et al., 2018;Guo et al., 

2017;Wang et al., 2016a;Wang et al., 2016b).  The latter source of bias is particularly difficult to reconcile given that direct 

observations of meteorological variables in most parts of the high latitudes are sparse. In addition, reanalysis datasets that 

assimilate a variety of observations provide global coverage but still inevitably have biases in high latitudes due to this 25 

observation sparsity in cold regions combined with the many challenges of physical process modelling.  

 

Despite these issues, permafrost behaviour simulated with LSMs driven offline by reanalysis forcing fields can still be useful 

for understanding the impacts of climate variability on permafrost, and, in turn, to evaluate the performance of the reanalysis 

data. (Consider the example of the LSMs participating in the Permafrost Carbon Network.) The present paper utilizes this 30 

approach in the context of the Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2), an 

atmospheric reanalysis system that assimilates a wide range of conventional and satellite observations (Gelaro et al., 2017).  

We generate here a dataset of Northern Hemisphere permafrost conditions by driving an updated version of NASA’s 

Catchment Land Surface Model (CLSM) with MERRA-2 surface meteorological forcing fields for the middle-to-high latitudes 
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across the Northern Hemisphere over the period 1980-2017.  Note that MERRA-2 has been found to be skilful in its simulation 

of near-surface atmospheric conditions (Reichle et al., 2017a;Reichle et al., 2017b;Bosilovich et al., 2015;Bosilovich et al., 

2017) and to show improvements in the representation of cryospheric processes compared with its predecessor MERRA 

(Gelaro et al., 2017). In particular, MERRA-2 assimilates substantially more satellite observations and employs more 

physically reasonable hydrology representations for glaciated land surfaces compared to MERRA, and it also uses observation-5 

based, seasonally-varying sea ice albedo as opposed to MERRA’s fixed value of 0.6 (Gelaro et al., 2017). A recent study 

shows that permafrost and ALT simulation results obtained with forcing data from the original MERRA reanalysis are 

inferior to those driven by other reanalysis-based forcing data sets, particularly those from the NOAA Climate Forecast System 

Reanalysis (CFSR) and European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-I) (Guo et al., 

2017). The superiority of MERRA-2 forcing compared to MERRA forcing in the context of permafrost simulation is presumed 10 

here (given its general improvements in the cryosphere), though a side-by-side test of the two forcing datasets in this regard 

has not been performed.     

 

Detailed observations are another obvious source of understanding, and here, to complement our modelling analysis, we also 

make use of remote sensing information from the NASA Airborne Microwave Observatory of Subcanopy and Subsurface 15 

(AirMOSS) mission.  In 2015, AirMOSS acquired P-band (420-440 MHz) radar observations over portions of northern Alaska 

from which Chen et al. (2018) retrieved regional estimates of ALT and soil layer dielectric properties that are related to soil 

moisture and freeze/thaw states. In their study, Chen et al. (2018) mainly focus on the development and improvement of the 

ALT retrieval algorithm, whereas the present study emphasizes using the ALT retrievals to assess the (fully independent) ALT 

simulations. 20 

 

In the present paper we evaluate our simulated ALT and permafrost extent against an observations-based permafrost 

distribution map, against in-situ observations from CALM, and against the ALT retrievals derived from AirMOSS.  Overall 

we pursue three scientific objectives: 1) evaluate the relative importance of the factors that determine the spatial variability of 

ALT, 2) evaluate CLSM-simulated ALT climatology and permafrost extent against observations, and 3) quantify and assess 25 

the large-scale characteristics of ALT (in terms of means, interannual variability and trend) in Northern Hemisphere permafrost 

regions from 1980 through 2017.  Section 2 below describes the model and datasets used in this study, Section 3 describes 

methods, and Section 4 provides results.  Our findings are summarized in Section 5. 

2 Model and data sets 

2.1 NASA Catchment Land Surface Model (CLSM) 30 

CLSM is the land model component of NASA’s Goddard Earth Observing System (GEOS) Earth system model and was part 

of the model configuration underlying the MERRA-2 reanalysis product (Reichle et al., 2017a;Gelaro et al., 2017). CLSM 
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explicitly accounts for sub-grid heterogeneity in soil moisture characteristics with a statistical approach (Koster et al., 

2000;Ducharne et al., 2000).  The land fraction within each computational unit (or grid cell) is partitioned into three soil 

moisture regimes, namely the wilting (i.e., non-transpiring), unsaturated, and saturated area fractions. Over each of the three 

moisture regimes, a distinct parameterization is applied to estimate the relevant physical processes (e.g., runoff and 

evapotranspiration). CLSM also includes a three-layer snow model that estimates the evolution of snow water equivalent 5 

(SWE), snow depth, and snow heat content (Stieglitz et al., 2001) in response to the forcing data.  The snow model accounts 

for key physical mechanisms that contribute to the growth and ablation of the snowpack, including snow accumulation, aging, 

melting, and refreezing.  The model also includes the insulation of the ground from the atmosphere by the snowpack.  The 

CLSM subsurface heat transfer module uses an explicit finite difference scheme to solve the heat diffusion equation for six 

soil layers (0-0.1m, 0.1-0.3m, 0.3-0.7m, 0.7-1.4m, 1.4-3m, and 3-13m). A no-heat-flux condition is employed at the bottom of 10 

the model’s soil column. 

 

The updated version of CLSM used here (Tao et al., 2017) includes modifications aimed at improving permafrost simulation.  

It accounts, for example, for the impact of soil carbon on the soil thermal properties with soil porosity, thermal conductivity, 

and specific heat capacity calculated separately for mineral soil and soil carbon, after which the two are averaged using a 15 

carbon-weighting scheme.  Higher (lower) soil carbon content, therefore, results in lower (higher) soil thermal conductivity.  

The updated version produces more realistic subsurface thermodynamics in cold regions than does the original scheme (Tao 

et al., 2017). 

 

Particularly relevant to the present analysis is our calculation of ALT from CLSM simulation output.  We compute ALT from 20 

the simulated soil temperature profile and the ice content within the soil layer that contains the thawed-to-frozen transition. 

Precisely, the thawed-to-frozen depth is calculated as:  

zbottom(𝑙) − fice(𝑙, t) × ∆z(𝑙),         (1) 

where layer 𝑙 is the deepest layer that is fully or partially thawed, zbottom(𝑙) represents the depth at the bottom of layer 𝑙, 

fice(𝑙, t) is the fraction of ice in layer 𝑙 at time t (i.e., fice(𝑙, t) ∈ [0  1]), and ∆z(𝑙) is the thickness of layer 𝑙. To identify layer 25 

𝑙, we use a 0⁰C degree temperature threshold. Specifically, T > 0⁰C degree indicates that a layer is fully thawed, T = 0⁰C degree 

indicates that a layer is partially thawed, and T < 0⁰C degree indicates that a layer is fully frozen. That is, layer 𝑙 is the deepest 

layer that satisfies T(𝑙) ≥ 0⁰C. Equation (1) then expresses that the thawed-to-frozen depth is equal to the bottom depth of the 

layer 𝑙 but adjusted upward according to the ice fraction within the partially thawed layer 𝑙. The annual ALT for a given year, 

then, is defined as the maximum thawed-to-frozen depth within that year. 30 
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We drive the improved CLSM version of Tao et al. (2017) in a land-only (offline) configuration across permafrost areas in the 

Northern Hemisphere. The simulation domain, shown in Figure 1a, covers the major permafrost regions of the Northern 

Hemisphere middle-to-high latitudes for which soil carbon data are available from the Northern Circumpolar Soil Carbon 

Database version 2 (NCSCDv2, https://bolin.su.se/data/ncscd/) (Hugelius et al., 2013a;Hugelius et al., 2013b).  The NCSCDv2 

data are used to calculate the CLSM soil thermal properties used in the simulations (Tao et al., 2017).  The model simulation 5 

covered the period from 1980 to 2017 and was performed at a 81-km2 spatial resolution on the 9-km  Equal Area Scalable 

Earth grid, version 2 (Brodzik et al., 2012).   

 

Surface meteorological forcing were extracted from the MERRA-2 reanalysis data, which are provided at a resolution of 0.5° 

latitude × 0.625° longitude (Global Modeling and Assimilation Office (GMAO), 2015a, b).  At latitudes south of 62.5°N within 10 

our simulation domain, the MERRA-2 precipitation forcing used here is informed by gauge measurements from the daily 0.5° 

global Climate Prediction Center Unified gauge product (Chen et al., 2008) as described in (Reichle et al., 2017b).  We further 

rescaled the precipitation to the long-term, seasonally varying climatology of the Global Precipitation Climatology Project 

version 2.2 product (Huffman et al., 2009). Further details regarding model parameters and forcing inputs are found in Tao et 

al. (2017).   15 

 

The model was spun-up for 180 years by looping five successive times through the 36-year period of MERRA-2 forcing from 

1 January 1980 to 1 January 2016 in order to achieve a quasi-equilibrium state.  The spatial terrestrial state variables at the end 

of the fifth loop were used to initialize the model for the final simulation experiment from 1980 to 2017.  The details of the 

spin-up procedure employed here admittedly impact our trend analysis (section 4.5); the approach makes use of the warmer 20 

conditions during the last few decades and thus should produce warmer 1980 initial conditions than would be produced with 

realistic historical forcing over hundreds of years (e.g., Sapriza-Azuri et al., 2018).  

 

2.2 Remotely Sensed ALT from AirMOSS 

Radar backscatter measurements are sensitive to changes in the soil dielectric constant (or relative permittivity) which in turn 25 

are associated with changes in soil moisture and the soil freeze-thaw state. Based on this relationship, Chen et al.(2018) used 

the AirMOSS airborne P-band (420-440 MHz) synthetic aperture radar (SAR) observations collected during two campaigns 

in 2015 to estimate ALT in northern Alaska.  As shown in Figure 2a, the AirMOSS flights originated from Fairbanks 

International Airport and headed west toward the Seward Peninsula (HUS, KYK, COC), then turned back east (KGR) prior to 

heading north towards the Arctic coast overpassing Ambler (AMB), Ivotuk (IVO), and Atqasuk (ATQ).  From there, the flights 30 

turned south again, flying over Barrow (BRW), Deadhorse (DHO), and Coldfoot (CFT) en route to Fairbanks.  In the present 

paper, the remotely-sensed ALT retrievals are compared with in-situ observations and CLSM-simulated ALT.   
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Chen et al. (2018) used AirMOSS P-band SAR observations at two different times to retrieve active layer properties: (1) 

acquisitions on 29 August 2015 when the downward thawing process approximately reached its deepest depth (i.e., the bottom 

of the active layer), and (2) acquisitions on 1 October 2015 when the active layer started to refreeze from the surface while the 

bottom of the active layer remained thawed. ALT was assumed constant from late August to early October because over this 

period changes in thawing depth are found typically negligible (Chen et al., 2016;Carey and Woo, 2005;Zona et al., 2016).  5 

Strictly speaking, the radar retrievals represent the approximate thaw depth of the thawed-to-frozen boundary on 29 August 

2015 and 1 October 2015.  The unknown, true ALT for 2015 might occur later if the thawing continued and the maximum 

thaw depth occurred after the October flight time. Based on an analysis of in-situ observations (not shown), however, it is rare 

that this occurs, and the subsequent impact on the estimated ALT value would be relatively small in any case. We therefore 

equate the retrieved thaw depth with ALT. 10 

 

In the retrieval algorithm, Chen et al. (2018) used a three-layer dielectric structure to represent the active layer and underlying 

permafrost. In their algorithm, the two uppermost layers together constitute the active layer that account for a top, unsaturated 

zone and an underlying, saturated zone. The bottommost (third) layer of the retrieval model structure represents the permafrost.  

Because the soil moisture at saturation only depends on the porosity of the soil medium, the dielectric constant of the saturated 15 

zone in the active layer is assumed constant over the time window. An iterative forward-model inversion scheme was used to 

simultaneously retrieve the dielectric constants and layer thicknesses of the three-layer dielectric structure from the SAR 

observations collected on 29 August 2015 and 1 October 2015. Note that the retrieved ALT cannot exceed the radar sensing 

depth of about 60 cm. This is the depth below which the AirMOSS radar is expected to lose sensitivity to subsurface features, 

and is calculated based on the radar system noise floor and calibration accuracy. Therefore, any retrieved ALT larger than 60 20 

cm is expected to have large uncertainties, and the error is further expected to grow linearly as the retrieved values of ALT 

essentially “saturate.”  This limitation may also lead to underestimates of  the actual thaw depth.   

 

In this study, we focus on the retrievals of four flight lines across the Alaska North Slope, including IVO (Ivotuk), ATQ 

(Atqasuk), BRW (Barrow), and DHO (Deadhorse) as shown in Figure 2a. These four transects cover areas with light to 25 

moderate vegetation. Since the radar scattering model is only applicable to bare surfaces or lightly vegetated tundra areas 

(Chen et al., 2018), the ALT estimates derived for IVO, ATQ, BRW, and DHO are considered more accurate than ALT 

retrievals for the remaining transects, which include more vegetated areas. Moreover, some of the southern transects cover 

discontinuous permafrost where the ALT often exceeds the P-band radar sensing depth of about 60 cm and thus cannot be 

retrieved from AirMOSS observations. 30 
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2.3 Circum-Arctic Permafrost Conditions and In-situ Observations of ALT 

The permafrost distribution simulated by CLSM is evaluated against the observations-based Circum-Arctic Map of Permafrost 

and Ground-Ice Conditions (Brown et al., 2002) shown in Figure 1b.  The map is based on the distribution and character of 

permafrost and ground ice using a physiographic approach.  Permafrost conditions are categorized into four classes: continuous 

(90-100%), discontinuous (50-90%), sporadic (10-50%), and isolated (0-10%) permafrost, where the numbers in parentheses 5 

indicate the area fraction of permafrost extent.   

 

In-situ observations of ALT obtained by the CALM network (https://www2.gwu.edu/~calm/; Brown et al., 2000) were used 

to evaluate both the AirMOSS ALT retrievals and CLSM-simulated ALT results.  The CALM network provides observations 

from 1990 to 2017, but few sites have records in the early 1990s.  We did not use measurements that were flagged as having 10 

been taken too early in the season or under unusual conditions (e.g., after the site was burned or covered with lava). In total 

there are 220 sites located within the CLSM simulation domain (Figure 1b), and we use 213 sites to evaluate results.  Thaw 

depth measurements are usually made at the end of the thawing season.  Most of the CALM sites (129 out of the 213 sites used 

here) employ a spatially-distributed mechanical probing method to measure thaw depths along a transect or across a rectangular 

grid ranging in size from 10m×10m to 1000m×1000m.  At 20 sites thaw tubes or boreholes are used to measure the thaw depth.  15 

At 63 sites, ground temperature measurements from boreholes are used to infer thaw depth.  For the remaining site, no 

information about the measurement method is available.  Only point-scale measurements are available from the thaw 

tube/borehole and ground temperature sites (including, e.g., the sites in Mongolia).  

 

In addition, daily in-situ observations of soil temperature profiles at ten Alaskan sites from the Permafrost Laboratory at the 20 

University of Alaska Fairbanks (UAF) (http://permafrost.gi.alaska.edu/sites_map; Romanovsky et al., 2009) were used to infer 

thawed-to-frozen depth using the 0⁰C degree threshold and to complement the CALM ALT observations in Alaska. Table 1 

provides the coordinates and measuring methods of the UAF in-situ sites.  The UAF measurements were used along with the 

CALM data to evaluate the ALT estimates derived from the CLSM simulation and the AirMOSS radar observations for the 

North Slope of Alaska. 25 

3 Methods 

3.1 Comparison With AirMOSS ALT Retrievals 

The comparison of the ALT simulations with the AirMOSS ALT retrievals consists of two parts.  First, we compare the spatial 

patterns of the AirMOSS retrievals with those of the model-simulated ALT over the northern Alaska. Second, we evaluate 

both the AirMOSS retrievals and the simulated ALT against in-situ observations from the CALM and UAF networks. The 30 

results are discussed in section 4.1. 
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The radar retrievals were provided at 2-arcsec × 2-arcsec (roughly 20 m x 60 m in the Arctic) resolution whereas the CLSM-

simulated ALTs are at 81 km2. We thus aggregated the AirMOSS retrievals to the CLSM model grid by averaging all the 

retrieval data points within each 81 km2 model grid cell. Only model grid cells that were at least 30% covered by radar retrievals 

were used in the comparison.  5 

 

The daily UAF in-situ soil temperature profile observations on the AirMOSS flight date (29 August 2015) were used to 

calculate the thawed-to-frozen depth (i.e., approximated ALT).  The ALT measurements at all of the 13 CALM sites covered 

by the AirMOSS transects were obtained in August of 2015 (Table 1). Among them, eight CALM sites obtained ALT 

measurements slightly earlier than the overflight date (within at most 18 days from 29 August 2015). Nevertheless, we assume 10 

that these earlier measurements still represent the thaw depth at the end of August reasonably well.  Prior to comparison with 

the model results and the radar retrievals, the distributed measurements for a given CALM site (see sampling methods in Table 

1) were averaged into a single value.  Similarly, we also aggregated the radar retrievals (20 m x 60 m) up to the respective site-

scale (ranging from 10 m × 10 m to 1000 m × 1000 m) where the CALM sampling grid for a given site included more than 

one AirMOSS pixel.  Otherwise, the radar retrievals closest to the UAF (single-point) or CALM site are used in the site-scale 15 

comparison. 

 

3.2 Idealized Experiments 

After comparing the spatial patterns of the AirMOSS retrievals with the CLSM-simulated ALT results, we then investigate the 

factors that affect the spatial variability of ALT through a series of idealized experiments.  Specifically, we repeated the 20 

simulation along the AirMOSS transects multiple times, each time removing the spatial variation in some aspect of the model 

forcing or parameters and then quantifying the resulting impact on ALT variability.  

 

For these supplemental simulations, we first identified a grid cell within the IVO transect (shown in Figure 2a) that represents 

roughly average (typical) conditions across the ten different transects. In the first idealized experiment, we then modified the 25 

baseline configuration by applying the surface meteorological forcing data from the selected representative grid cell within the 

IVO transect to all grid cells along all AirMOSS transects.  Thus, in this modified simulation (HomF, for homogenized forcing), 

spatial variability in meteorological forcing is artificially removed. All model parameters related to soil type and vegetation, 

however, remain spatially variable, matching those in the baseline simulation.  In the next idealized experiment (HomF&Veg), 

we further replaced the vegetation-related parameters (including vegetation class, vegetation height, and time-variable Leaf 30 

Area Index (LAI) and greenness) along the AirMOSS transects using the corresponding parameters from the representative 

grid cell, which is characterized by dwarf tree vegetation cover.  Thus, in this simulation, spatial variability in both forcing 

and vegetation is artificially removed.   
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In the final idealized experiment (HomF&Veg&Soil), spatial variability in soil type and topography-related model parameters 

is removed along with that of the forcing and vegetation. The homogenized parameters include soil organic carbon content, 

porosity, saturated hydraulic conductivity, Clapp-Hornberger parameters, wilting point, soil class, sand and clay fraction, 

vertical decay factor for transmissivity, baseflow parameters, area partitioning parameters, and timescale parameters for 5 

moisture transfer (Koster et al., 2000;Ducharne et al., 2000).  Here we use an intermediate soil carbon content value (i.e., 40 

kg/m2) for the homogenization; recall that the carbon content impacts the soil thermal properties (see section 2.1). Our 

investigation reveals that the model sensitivity to soil carbon content is much larger for lower SOC than for higher SOC, and 

easily gets saturated for high SOC (i.e., larger than ~100 kg/m2) (not shown). Thus, we trust that 40 kg/m2 is an appropriate 

value representing an intermediate SOC condition. All other soil parameters are homogenized to those at the representative 10 

grid cell. Table 2 provides a summary of these idealized experiments.  Taken together, the four experiments (including the 

baseline) allow us to identify the individual contribution of each factor to the ALT variability along the AirMOSS 

transects.  The results are discussed in section 4.2. 

 

3.3 Quantifying ALT Spatiotemporal Characteristics 15 

We also quantify the large-scale characteristics of ALT over the Northern Hemisphere for the current climate (1980 - 2017) 

as determined by the response of the land model to 38 years of MERRA-2 forcing (in section 4.3). Again, this forcing was 

applied to 81 km2 grid cells in the middle-to-high latitude area defined by the existence of NCSCDv2 soil carbon data (see 

area outlined in Figure 1a).  Output diagnostics saved from this multi-decadal, offline simulation allow the characterization of 

permafrost dynamics at each grid cell.  In particular, we can compute a number of relevant ALT statistics, including mean, 20 

standard deviation, and skewness, from the diagnosed yearly values at each cell, and we can examine how these statistics relate 

to those of MERRA-2 forcing data (particularly the mean annual air temperature, MAAT)) over the last 38 years. 

 

Besides MAAT statistics, we also consider the evolution of the air temperature during the warm season in terms of the energy 

it could provide to the land surface and thus to the determination of ALT.  A simple surrogate for the total warm-season energy 25 

in year N can be computed from daily-averaged air temperature, Tair(t), and the freezing temperature, Tf (0⁰C degree), as 

follows: 

𝑇𝑐𝑢𝑚(N) =  ∑ 𝑇𝑝𝑜𝑠(𝑡)𝑡=𝑀
𝑡=1  ,          (2) 

where 

𝑇𝑝𝑜𝑠(t) = {
𝑇𝑎𝑖𝑟(𝑡) − 𝑇𝑓  

0
     

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) > 𝑇𝑓

𝑖𝑓 𝑇𝑎𝑖𝑟(𝑡) ≤ 𝑇𝑓
,         (3) 30 
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The index t in equation (2) for year N starts with a value of 1 on 1 September of year (N-1) and ends with a value of M on 31 

August of year N. M could be 365 or 366 depending on the presence of a leap year over the preceding annual period. Note the 

air temperature throughout this study means the near-surface air temperature (i.e., 2 m above the displacement height) derived 

from MERRA-2. 

 5 

Then, to further quantify the joint contributions of Tcum and the maximum SWE (SWEmax), we performed a multiple linear 

regression analysis by fitting the equation 

ALT = 𝑎0 + 𝑎1𝑇𝑐𝑢𝑚 + 𝑎2𝑆𝑊𝐸𝑚𝑎𝑥 ,         (4) 

to the available data.  The results are discussed in section 4.3. 

 10 

3.4 Evaluation of Simulated Permafrost Extent, ALT Climatology and Trend 

The CALM network of in-situ ALT measurements allows a quantitative evaluation of the simulated ALTs for the grid cells 

containing the measurement sites. Our comparisons here focus on multi-year averages; for a consistent comparison, we average 

the simulated ALTs over the same years for which observed ALTs are available.  If multiple CALM sites lay within a single 

CLSM grid cell, a single “spatially-averaged” observed, multi-year value was computed for the cell. The results are discussed 15 

in section 4.4. 

 

The MERRA-2 dataset provides close to four decades of forcing data, and it is tempting to see if trends in this forcing imprint 

themselves on the simulated permafrost.  We realize at the outset, however, that two difficulties hamper the accurate 

quantification of permafrost trends from our data.  First, air temperature trends in MERRA-2 are known to be underestimated 20 

in high-latitude regions, especially in more recent years (Simmons et al., 2017).  Second, our spin-up procedure essentially 

involved running our model over several cycles of MERRA-2 forcing prior to the final 1980-2017 simulation, meaning that if 

a temperature trend does exist in the data, the initial conditions for 1980 already contain information from the warmer, later 

period.  Note that both of these difficulties would contribute to a trend underestimation. 

 25 

We keep these caveats in mind as we compute permafrost trends through a linear regression of simulated yearly ALT against 

the year of simulation, interpreting the slope obtained (in cm/yr) as the trend.  We similarly compute trends in MAAT (⁰C/year), 

in Tcum (section 3.3), and in the number of days with air temperature above the freezing point (i.e., warm days). As in section 

3.3, a given year’s MAAT, accumulated air temperature, and number of warm days are computed for the year-long period 

ending on 31 August of that year.  30 
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The ALT trend was similarly calculated from CALM observations at sites for which observed ALTs are available for at least 

eight years (i.e., sample size ≥ 8). When evaluating the accuracy of the model-simulated ALT trends, the model-based ALT 

trends were calculated using the same years for which observed ALTs are available. The results are discussed in section 4.5. 

4 Results 

4.1 Comparisons with observations across retrieval transects 5 

In this section, we compare AirMOSS radar retrievals and CLSM simulation results against each other and against in-situ 

observations of ALT for 2015. The AirMOSS transects cover several different regions with different climatologic regimes, 

topography, vegetation and soil type (Figure 2). Note that although the vegetation class (Figure 2b) suggests the presence of 

dwarf trees over the Alaska North Slope, the actual satellite-based LAI, vegetation height, greenness fraction and albedo will 

still instruct the model that the tree cover is extremely sparse in this region. The data sources for these vegetation-related 10 

boundary conditions can be found in Table 1 in Tao et al. (2017). Overall, the variability of ALT along these transects 

encompasses the influence of a variety of factors at the regional scale.  

 

Figure 3 compares the spatial pattern of AirMOSS ALT retrievals and CLSM-simulated results. Generally, the patterns of the 

AirMOSS retrievals and CLSM results are quite different.  For example, the AirMOSS-retrieved ALT is greater in the northern 15 

portion of the DHO transect than in the southern portion (Figure 3a,b), whereas this pattern is largely reversed in the simulated 

ALT (Figure 3c). The CLSM-simulated ALT (Figure 3c) is greater than that from AirMOSS (Figure 3b) in portions of each 

transect. Across all four transects, the CLSM-simulated ALT shows relatively larger spatial variability (0.35 - 0.85 m) than 

the AirMOSS retrievals (0.4 – 0.6 m).  The AirMOSS ALT exhibits some spatial variability at the native resolution (Figure 

3a), but some of this variability averages out during the aggregation to the coarse model grid (Figure 3b).  The abrupt changes 20 

in CLSM-simulated ALT shown in Figure 3c are predominantly controlled by soil type (see discussion in section 4.2). 

 

Next, we compare the retrieved and simulated ALT in 2015 with in-situ observations from the CALM and UAF sites that are 

collocated with the AirMOSS transects. Figure 4b, c demonstrates that in some ways, the CLSM-simulated results roughly 

agree, to first order, with the in-situ observations. The overall mean bias of simulated ALT relative to the in-situ measurements 25 

is -0.05 m.  Nevertheless, the scatter (blue) in Figure 4c is large, and the corresponding correlation coefficient is quite weak 

(0.27). The most significant discrepancies between the CLSM-simulated ALT and in-situ measurements are at U6, U31, 

FB1&FBD&FBW (Figure 4b), where the simulated ALT underestimates the in-situ measurements by 0.25-0.28 m, and at U28 

where the simulated ALT overestimates the in-situ ALT by 0.27 m.  

 30 

The AirMOSS ALT radar retrievals, for their part, again show less spatial variability than the observations (Figure 4c).  The 

largest error for these AirMOSS retrievals at the model scale is also at FB1&FBD&FBW, where the retrievals significantly 
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underestimate the observed in-situ ALT by 0.38m.  Note that radar retrievals at the model scale (green) are not available at 

some sites because of our imposed 30% filling restriction (Figure 4b), whereas the retrievals at the site scale (black) are 

available at all sites within the IVO, ATQ, BRW and DHO transects (Figure 4a).   The largest radar retrieval errors at the site 

scale are at FBD, FBW, and SG1, where the ALT retrievals underestimate the in-situ measurements by 0.32 - 0.53 m.  For the 

AirMOSS retrievals, when all in-situ sites are considered, the overall ALT bias is -0.11 m at the site scale and -0.12 m at the 5 

model scale. While the correlation coefficient with the in-situ observations is only 0.05 at the site scale, it is 0.61 at the model 

scale.  

 

Although the AirMOSS ALT retrievals generally underestimate the in-situ ALT measurements, the retrievals are broadly 

consistent with the observations when the in-situ measurements are within the ~60 cm sensing depth of the P-band radar data. 10 

(Note again the ALT retrievals cannot exceed the radar sensing depth of about 60 cm.)  This is the case at sites in the 

northernmost area, e.g., U3, U1, U2, BR2, and U5.  Excluding the sites with in-situ ALT measurements that exceed the 

AirMOSS sensing depth of ~60 cm, the overall mean bias for the AirMOSS retrievals at the model scale (site scale) drops to 

-0.01 m (0.02 m), and the correlation coefficient at the model scale (site scale) increases to 0.64 (0.20) (Table 3). In contrast, 

the CLSM simulation results show a bias of 0.01 m and a zero correlation coefficient at the same sites.   15 

 

4.2 Sources of ALT Variability 

Here we investigate the specific factors that drive ALT spatial variability along all ten of the AirMOSS transects (Figure 2a). 

For this analysis, the simulated ALT estimates shown in Figure 5a were aggregated across the width of the radar swath 

(compare Figure 3).  Figure 5a illustrates that, in general, the simulated ALT captures the spatial variability exhibited by the 20 

in-situ measurements. This conclusion is, however, very tentative given the limited number of in-situ ALT observations.    

 

Generally, the simulated ALT is shallowest in the northern transects (ATQ, BRW, and DHO) and deepest in the southeastern 

transects (KYK, COC, KGR, and AMB).  This pattern correlates somewhat (R = 0.46) with that of the mean screen-level (2-

meter) air temperature (Tair) for the preceding 12-month period (i.e., from 1 September 2014 to 31 August 2015) from 25 

MERRA-2 (green line in Figure 5a).  The soil carbon content, by contrast, appears anti-correlated (R = -0.59) with the 

simulated ALT, as exemplified by the transect portions within the red box (Figure 5a and 5b). Such a correlation presumably 

reflects the fact that soil with high organic carbon content has low thermal conductivity, which hinders heat transfer from the 

surface to the deeper soil in the summertime, thus resulting in a relatively smaller ALT.  In addition, heat transfer is also 

slowed by a higher effective heat capacity associated with higher organic carbon content – not from the carbon itself, but from 30 

the extra water that can be held in the soil due to the increased porosity.  The maximum snow depth (Figure 5c) displays a 

positive correlation with ALT (R=0.47), reflecting, at least in part, the fact that subsurface soil temperatures remain relatively 
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insulated under thick and persistent snow cover, which reduces heat transfer out of the soil column during the wintertime and 

hence facilitates a deeper thawing during the summer and thus a deeper ALT.   

 

The correlations in Figure 5 suggest (without proving causality) that for the model, surface meteorological forcing (including 

air temperature and precipitation) as well as soil type are important drivers of ALT variability along the AirMOSS transects.  5 

However, the relatively low values of the correlations indicate that a simple linear relationship cannot explain the mutual 

control that these variables exert on ALT spatial variability.  In the remainder of this section, we use a series of idealized model 

simulations (as described in section 3.2) to better quantify the relative impacts of these driving factors along the AirMOSS 

transects.   

 10 

The results of the idealized experiments are shown in Figure 6.  The above-mentioned, large-scale spatial variation of ALT in 

the baseline simulation, with larger values in the southeastern transects (KYK, COC, and KGR) and lower values in the 

northern transects (ATQ, BRW, and DHO), is absent after homogenizing the meteorological forcing (HomF; Figure 6a).  

Experiment HomF correspondingly has much less spatial variation in the temperature of the top soil layer than does the baseline 

simulation (Figure 6b).  In addition, homogenizing the forcing (which includes snowfall) significantly reduces the variability 15 

in maximum snow depth along the AirMOSS transects (Figure 6c). These results indicate that in the model, meteorological 

forcing exerts the dominant control over the spatial patterns of ALT, the temperature in the top soil layer, and snow depth at 

the regional scale, as expected.  

 

Homogenizing the vegetation attributes in addition to the forcing (HomF&Veg) results in ALT differences (relative to HomF) 20 

primarily along the northern transects (ATQ, BRW, and DHO).  Along these transects, homogenizing the vegetation 

parameters (including LAI and tree height) to those of the representative grid cell within the IVO transect results in generally 

shallower ALT.  We speculate that this is because the generally lower albedo of the somewhat taller and leafier trees 

(representative of the IVO transect) during the snow season resulted in increased snowmelt and thus reduced snowpack during 

the snow season (compare the green and red curves in Figure 6c), thereby reducing the thermal insulation of the wintertime 25 

ground.  With reduced insulation, cold season ground temperatures dropped, making it more difficult for temperatures to 

recover during summer.   

 

As might be expected, the simulation in which soil properties are homogenized in conjunction with forcing and vegetation 

(i.e., HomF&Veg&Soil) essentially eliminates all remaining spatial variability in ALT, snow depth, and soil temperature. 30 

Owing to the strong control of soil type-related parameters on soil moisture, spatial variability in soil moisture remains high 

in HomF and HomF&Veg and is only eliminated once the soil type-related parameters are homogenized (Figure 6d), which 

explains the abrupt changes shown in Figure 3c as mentioned in section 3.1.  (Note that to maintain consistency with the 

hardwired scaling factors for snow-free albedo within the model (Mahanama et al., 2015), we still used the original, vegetation-
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related parameters to calculate surface albedo during snow-free conditions along the transects.  This is likely the cause of the 

few tiny bumps seen in the Figure 6a for HomF&Veg&Soil.) 

 

An alternative view of these results is provided in Figure 7a, which shows the (spatial) standard deviation of ALT along the 

AirMOSS transects for each of the above experiments. Homogenizing the meteorological forcing data results in a significant 5 

reduction of the ALT standard deviation (from 0.16 to 0.10).  Additionally homogenizing the vegetation only reduces the ALT 

standard deviation slightly (from 0.10 to 0.09).  The remaining ALT variability is eliminated through the additional 

homogenization of the soil type-related parameters (HomF&Veg&Soil), which emerge as another important driver of ALT 

variability along the AirMOSS transects.  Note that the ALT variability associated with soil type is generally realized at smaller 

spatial scales than that associated with the meteorological forcing discussed earlier regarding Figure 6a.   10 

 

We investigated potential nonlinearities by conducting two additional experiments: one in which we homogenized both the 

vegetation and soil parameters (HomVeg&Soil) and another in which we homogenized both forcing and soil parameters 

(HomF&Soil) (Table 2).  Put differently, in experiment HomVeg&Soil only the forcing varied along the transects, whereas in 

experiment HomF&Soil, only the vegetation parameters varied along the transects.  Combined with the experiment 15 

HomF&Veg (in which only soil properties varied along the transects), these three experiments show in a different way how 

each individual factor (forcing, vegetation, or soil) can contribute to ALT variability.  The results, shown in Figure 7b, confirm 

that the meteorological forcing is the dominant driver of ALT spatial variability in our modelling system, followed by the soil 

type-related parameters and the vegetation parameters.   

 20 

Note that in Figure 6a, the soil impact on ALT (difference between HomF&Veg&Soil in black and HomF&Veg in red) appears 

smaller than that of the vegetation (difference between HomF in green and HomF&Veg in red) over the northern transects 

(ATQ, BRW and DHO).  Even so, Figure 7b shows that, in terms of the integrated impact along all the transects, the soil 

influence clearly outweighs the influence of vegetation – at several other transects, including HUS, KYK, COC, AMB, IVO 

and the first half of ATQ (where vegetation conditions might be similar to those used for homogenizing), the changes in 25 

vegetation parameters do not have much impact.  

 

4.3 ALT Characteristics over the Northern Hemisphere 

Figure 8a shows the distribution of mean ALT over the modelling domain, and Figure 8b shows the ALT standard deviation 

over the 38-year period. As might be expected, ALT tends to increase with distance from the pole, with the largest values 30 

found in Mongolia and near the southern portion of Hudson Bay, though there are areas (e.g., just north of 60⁰N at ~120⁰E) 

with local minima that break this pattern.  The largest ALT standard deviations (red colour in Figure 8b) are found mainly in 

discontinuous and sporadic permafrost regions (see Figure 1b) where ALTs are deeper on average.  Figure 8c provides the 
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skewness of the temporal distribution. Though there are some exceptions, by and large the skewness is positive in most 

permafrost regions, suggesting that the largest positive ALT anomalies tend to be of greater magnitude than the largest negative 

anomalies. 

 

Figure 8d displays the average of annual mean 2-meter air temperature as derived from MERRA-2. The observed continuous 5 

and discontinuous permafrost areas shown in Figure 1b are well confined within the cold side of the 0°C (273.15K) isotherm 

in the mean air temperature map (Figure 8d). For the most part, the observed sporadic and isolated permafrost regions of Figure 

1b also lie on the cold side of the 0°C isotherm. The consistency with this isotherm, however, is not as clearly present in the 

simulated permafrost extent (i.e., the extent of the non-grey and non-white areas in Figure 8a).  The relationship between the 

spatiotemporal characteristics of simulated ALT and air temperature forcing clearly needs more analysis.  10 

 

Figure 9a shows a map of the correlation coefficient between the 37-year time series (i.e., from September 1980 through 

August 2017) of Tcum and the corresponding time series of simulated ALT. The areas with p values larger than 0.05, which 

indicate correlations that are not statistically different from zero at the 95% confidence level, are shown as green. Figure 9a 

demonstrates that most permafrost regions indeed have significant positive correlations (red colours) between ALT and Tcum. 15 

Clearly, in these regions, air temperature exerts a dominant control on year-to-year ALT variability.  

 

However, not all regions exhibit a significant correlation; other variable(s) must also be exerting control on interannual ALT 

variability.  One reasonable candidate variable is snowpack.  As noted above, snow acts as a thermal insulator -- regions with 

thicker snowpack are better able to insulate the winter ground from becoming too cold, thereby facilitating the heating of the 20 

subsurface during non-winter months.  Variable, but often thick, snowpack is in fact common in the areas of Figure 9a that 

show a low (green) or negative (blue) correlation between ALT and Tcum – areas such as Central Siberia, the Southern part of 

eastern Siberia, and a vast region in Canada surrounding the Hudson Bay, as well as other small areas that appear in high 

mountains or on the windward side of the mountains (e.g., locations B, C and D in Figure 1a).    

 25 

In Figure 9b we show the correlation coefficient between the time series of ALT and the maximum SWE (SWEmax), during 

the preceding winter.  A positive correlation is seen in many areas, most notably in areas with a poor or negative correlation 

between ALT and Tcum  (Figure 9a) – for example, just west of Hudson Bay and along a zonal band at 60°N in Russia.  

Apparently, in these areas, the impacts of snow physics on ALT outweigh the impacts of lumped energy input (Tcum), for 

reasons that are not clear. In some other areas ALT correlates positively with both Tcum and SWEmax. Figure 9c shows how 30 

the resulting coefficient of multiple correlation varies in space.  High correlations largely blanket the modelled area. That is, 

over most of the area examined, a substantial portion of the year-to-year variability of ALT can be explained by variations in 

Tcum and SWEmax.  Even so, a few limited areas still exhibit low correlations (p>0.05, green colour in Figure 9c).  Some of 

https://en.wikipedia.org/wiki/Siberia
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these areas are in high mountains where more complex environmental controls might be playing a dominant role. In addition, 

MERRA-2 snow forcing might be severely erroneous in these regions. 

 

4.4 Evaluation of simulated permafrost extent and ALT climatology 

We now evaluate, to the extent allowed by available CALM in-situ observations, and on a spatial scale much broader than that 5 

addressed in section 4.1, the accuracy of the permafrost fields simulated by the model.   

 

Qualitatively, the simulated permafrost extent (Figure 8a) generally shows reasonable agreement with the observation-based 

permafrost map in Figure 1b, especially for the continuous permafrost regions.  This is shown explicitly in Figure 10a.  The 

main deficiency in the simulation results is the failure to capture a large area of permafrost in western Siberia (labelled as A 10 

in Figure 1a).  The reasons for this particular deficiency are unclear; perhaps the initial thermal conditions over western Siberia 

were too warm, or perhaps MERRA-2 overestimates current air temperatures in this region. Note that some other global 

models, such as CLM3 and the Community Climate System Model version 3 (CCSM3) as reported in Lawrence et al. (2012), 

also missed this area of permafrost and that updated versions of these models (i.e., CLM4 and CCSM4) showed improved 

performance in this regard (Lawrence et al., 2012). Guo et al. (2017) reported underestimated permafrost extent simulated in 15 

western Siberia using CLM4.5 driven by three different reanalysis forcings (i.e., CFSR, ERA-I and MERRA), and they showed 

an improved simulation of permafrost extent in this area when using another reanalysis forcing, the CRUNCEP (Climatic 

Research Unit ‐ NCEP) (Guo and Wang, 2017). Guimberteau et al. (2018) found similar improvements stemming from the 

use of CRUNCEP forcing. We leave for further study whether the MERRA-2 forcing data is responsible for the western Siberia 

deficiency seen in our own results.  20 

 

Aside from western Siberia, the geographically thin disagreements (i.e., about a few degrees latitude) between the simulated 

and observed permafrost extents toward the south in Figure 10a (green and blue areas at the southern edge of permafrost 

regions) are not as much a concern, since the comparison in such areas is muddied by the interpretation of “isolated” permafrost 

in the observational map (Figure 1b). The model’s description of permafrost is binary – either permafrost exists across a grid 25 

cell or it is completely absent. We cannot then expect an exact comparison to a specification of isolated permafrost (0-10% of 

area by definition) or even, to a lesser extent, sporadic permafrost (10-50% of area by definition). The specific areas of each 

type shown in Figure 10a are listed in Table 4. The simulated permafrost extent covers 81.3% of the observation-based area 

(i.e., the total area of continuous, discontinuous and sporadic permafrost regions), and misses 18.7% of the observed permafrost 

area. When comparing simulated permafrost extent with only continuous and discontinuous types, these metrics change to 30 

87.7% and 12.3%, respectively. Meanwhile, the permafrost extent is overestimated by 3.2×106 km2. 
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To produce Figure 10b, multi-year averages of CLSM-simulated ALT values were spatially averaged over each of the four 

permafrost types outlined in Figure 1b.  (As is appropriate, permafrost is only occasionally simulated over the fourth, 

“isolated”, permafrost type.  The ALT average shown for this type is thus based on a particularly limited number of grid cells.)  

The average ALT is smallest in the continuous permafrost zone, higher in the discontinuous zone, and higher still in the 

sporadic permafrost zone; it is highest in areas of isolated permafrost.  The progression, of course, is in qualitative agreement 5 

with expectations – larger breaks in permafrost coverage imply a greater amount of available energy, which should also act to 

increase ALT. 

 

The observed and simulated ALT averages are compared in Figure 11. Generally, the CLSM-simulated ALT averages agree 

reasonably well with observations for shallow permafrost regions, that is, for smaller ALT. A large bias, however, is found for 10 

most of the Mongolia sites. In Mongolia, observed ALTs tend to be much larger than the simulated ALTs (light purple dots in 

Figure 11a). The RMSE (and bias) associated with this scatterplot is 1.22 m (and -0.48 m), and it drops to 0.33 m (and -0.04 

m) if the Mongolia sites are excluded (Figure 11b).  Given simplifications in the model, uncertainties in boundary conditions 

(e.g., soil properties), and representativeness issues stemming from the coarse-scale nature of the forcing data relative to the 

point-scale nature of the observations, these results seem encouraging. The correlation coefficient metric (R), however, is 15 

somewhat less encouraging, amounting to only 0.5 when considering all sites.  The correlation coefficient is in fact lower (0.3) 

when the Mongolian sites are excluded; the correlation coefficient is 0.39 for the Mongolian sites considered in isolation. Note 

that the existing literature on simulated ALT fields (e.g., Dankers et al. (2011), Lawrence et al. (2012) and Guo et al. (2017)) 

reveals a general tendency for models to overestimate ALT climatology at the global scale.  Our results here suggest that the 

CLSM-simulated ALT fields are among the better simulation products, especially for shallow permafrost. 20 

 

Comparing the observed and simulated spatial distributions of the ALT averages provides a further test of the accuracy of the 

simulation results (as shown in Figure 12).  The model successfully simulates the large-scale spatial patterns in ALT, capturing, 

for example, the variations in Siberia, Svalbard, northern Canada, and northern Alaska (see Figure 12a, b). Figure 12c, d show 

the differences between the observed and estimated values in middle latitudes (45⁰N to 60⁰N) and high latitudes (60⁰N to 25 

90⁰N), respectively; in agreement with Figure 11a, the model clearly performs better in high-latitude regions, i.e., outside of 

Mongolia. Many of the sites north of 60⁰N (Figure 12d) are coloured grey, indicating a small error in the simulation of ALT 

at these sites – the errors at these sites range from only -0.10m to 0.10m. 

 

The significant underestimation of ALT in Mongolia may very well result from errors in the meteorological forcing provided 30 

by MERRA-2. However, a comparison (not shown) of MERRA-2 air temperatures with measurements at six weather stations 

collocated with CALM sites in Mongolia calls this explanation into question. While MERRA-2 summer temperatures are 

indeed too low at four of the weather stations examined, they are too high at the other two weather stations. Another potential 

reason for the underestimation of Mongolian ALT involves the aforementioned representativeness error.  The Mongolian 
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CALM sites employ a single-point measurement method (section 2.3) and are thus not able to represent the presumed spatial 

heterogeneity of permafrost within an 81 km2 CLSM grid cell.  

 

4.5 ALT Trend from 1980 to 2017 

The spatial distributions of the computed trends as described in section 3.4 are shown in Figure 13. (Only trends that are 5 

statistically significant at the 0.05 level are shown in the figure.)  Figure 13a shows increasing/positive ALT trends (red colours) 

in many regions, particularly in northern Alaska and eastern Siberia but also in some parts of Canada and northern Mongolia.  

Such positive trends, which appear despite the aforementioned spin-up limitations in the analysis, can be interpreted as 

permafrost degradation.  Particularly large positive trends (i.e., greater than or equal to 0.5 cm/year) are found along the 

coastline of the Okhotsk Sea in eastern Siberia, in northern Mongolia, in northern Quebec, and in limited areas of central 10 

Canada and the north slope of Alaska. The fact that the highest trends are generally found at the margins of the simulated 

permafrost distributions is consistent with the findings of James et al. (2013).  

 

The ALT trends in Figure 13a are, at least to some extent, consistent with the temperature trends shown in Figure 13b,c,d, 

particularly in northern Alaska, northern Quebec, and (for MAAT) eastern Siberia. The widespread positive ALT trend in 15 

northern Mongolia is consistent with the positive trend in Tcum (Figure 13c). Some areas, however, show a large positive ALT 

trend but not an obvious corresponding trend in air temperature. Also, some locations near the regions marked B, C, and D in 

Figure 1a show negative ALT trends in the presence of a warming trend in Tcum(Figure 13c).  It is possible that in such cases, 

the computed trends are strongly affected by snowpack variability, though neither maximum SWE nor snow cover duration 

tends to show a significant trend in these areas (not shown).  It may be that in snow-dominated regions, joint variations and 20 

trends in temperature and snowpack complicate a simple interpretation of ALT trends in terms of trends in the meteorological 

forcing.  

 

The observed trends calculated with CALM measurements are compared to the model-based trends in Figure 14.  We exclude 

from the comparison the observational sites located in regions that, according to the CLSM, are permafrost-free (grey area in 25 

Figure 8a). Not counting the two Mongolian sites with trends at approximately 20-25 cm/yr, the simulated and observed trends 

at most of the sites roughly agree, though on balance the CLSM-based ALT trends are too low, likely due to the analysis 

limitations noted in section 2.1 and 3.4.  A particular caveat is required regarding the Mongolian sites, given the unusual 

observed trends calculated there. Attempts to contact the data providers to attain more detailed information for data evaluation 

were unsuccessful, and accordingly our confidence in these particular data is limited. The overall comparison in Figure 14 is, 30 

in any case, highly uncertain, given the limited number of data points available to compute the trends. Note that only four (ten) 

points remain when screening out sites at which either the observed or estimated ALT trend is not statistically significant at 
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the 0.05 (0.10) level. Simply put, the limited number of sites with meaningful trends cannot assure an accurate trend 

assessment. 

5 Conclusion and Discussion 

Driving a tested model of permafrost dynamics (Tao et al., 2017) with a multi-decadal, reanalysis-based dataset of 

meteorological forcing (Gelaro et al., 2017) allows a global-scale characterization of permafrost.  Indeed, in the course of this 5 

work we have produced a dataset (effectively a derivative of MERRA-2) of permafrost variations in space and time at the 81 

km2 scale across middle-to-high latitudes.  The permafrost dataset presented herein can be considered unique in terms of its 

daily temporal resolution combined with a relatively high spatial resolution at the global scale (i.e., 81 km2).  The dataset, 

which is derived from a state-of-the-art reanalysis, shows reasonable skill in capturing permafrost extent and in adequately 

estimating ALT climatology (aside from that at the Mongolian sites). We note that our MERRA-2-driven permafrost 10 

simulation results, while potentially better than those we might have obtained with MERRA forcing, are still lacking (e.g., in 

western Siberia). Still, with its resolution and available variables (ALT, subsurface temperature at different depths), the dataset 

could prove valuable to many future permafrost analyses.  

 

This work also provides a first comparison between two highly complementary approaches to estimating permafrost: model 15 

simulation and remote sensing retrieval method. In northern Alaska, ALT retrievals from airborne remote sensing for 2015 

and the corresponding simulated ALT exhibit limited skill versus the in-situ measurements.  At the model scale, the mean bias 

for the simulated results is better (-0.05 m) than that for the retrievals (-0.12 m), but the opposite is true for the correlation 

coefficient against observations (0.27 for the model vs. 0.61 for the retrievals). At the in-situ site scale, however, the ALT 

retrievals show a very weak correlation coefficient with the observations (0.05). Excluding sites that have ALT measurements 20 

exceeding the radar sensing depth (~ 60cm), the evaluation metrics for ALT retrievals become better than that for simulated 

ALT at the model scale. However, the remotely sensed ALT estimates generally show lower levels of spatial variability than 

the simulated ALT estimates, and their spatial patterns differ considerably.  The remote sensing approach is still relatively 

new, and many aspects still need to be worked out.  It is important, though, to begin considering the modeling and remote 

sensing approaches side by side, as both should play important roles in permafrost quantification in the years to come.  Indeed, 25 

once the science fully develops, joint use of modeling and remote sensing (e.g., through the application of downscaling 

methods) should allow the generation of more accurate permafrost products at even higher resolutions. 

 

It is important to note that the retrieved ALT was determined by the dielectric transition from thawed to frozen conditions 

whereas the modelled ALT and the ALT for some of the in-situ measurements was based on a freezing temperature of 0⁰C 30 

(see sections 2.1 and 2.3).  Depending on local conditions, soil does not typically freeze at 0⁰C but rather at slightly lower 

temperatures (e.g., around -1⁰C) due to the presence of dissolved compounds that depress the freezing point (Watanabe and 
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Wake, 2009).  The sharp drop in conductivity and dielectric constant is much more accurately tied to a frozen state than to a 

temperature threshold. These and other differences in the various ALT measurement methods (section 2.3) introduce 

considerable uncertainty into our comparisons. The use of the 0⁰C degree threshold in CLSM for determining the thawed or 

frozen layer may explain in part the model’s underestimation of ALT, as may the lack of an explicit treatment of local aspect, 

errors in assigned model parameters, and so on.  5 

 

Analysis of the CLSM-simulated data, along with data produced in supplemental, idealized experiments with specific 

homogenized controls, show how the statistics of permafrost variability in space are controlled by forcing variability and by 

variability in the imposed surface boundary conditions. In the idealized experiments, we employ successive homogenization 

of controls to quantify how meteorological forcing, soil type, and vegetation cover affect the underground thermodynamic 10 

processes associated with the variability of ALT along the AirMOSS flight paths in Alaska. Meteorological forcing and soil 

type are found to be the two dominant factors controlling ALT variability along these transects. Vegetation plays a smaller 

role by modulating the accumulation of snow.  

 

A statistical analysis focusing on the global-scale fields reveals that yearly ALT strongly correlates with an accumulated air 15 

temperature diagnostic in most permafrost regions. In regions where they do not correlate well, yearly ALT does correlate with 

maximum SWE. Indeed, a multiple regression analysis relating yearly ALT jointly to accumulated air temperature and 

maximum SWE shows that time variations in these two latter quantities explain most of the time variability of ALT in the 

CLSM-identified permafrost regions.  

 20 

The spatial distribution of CLSM-simulated permafrost shows general agreement with the observation-based permafrost map 

of Brown et al. (2002), capturing 81.3% of total areas of continuous, discontinuous and sporadic types while capturing 87.7% 

of the total area of continuous and discontinuous types. The model-based product does seem to miss a large area of permafrost 

in the northern part of the western Siberia, but it captures correctly, for the most part, the southward extent of permafrost.  

Apparent errors along the southern edge are, in any case, subject to significant uncertainty in this comparison given the 25 

presence of “sporadic” and “isolated” permafrost in the observational map, types that do not have direct analogues in the 

model-based (binary) product.  

 

The CLSM-simulated ALT climatology was also compared to that derived from in-situ measurements collected through the 

CALM network.  The simulated ALTs agree well with the in-situ observations for shallow permafrost in high-latitude regions 30 

(above 60⁰N latitude), but they generally underestimate ALTs in middle-latitude regions, especially in Mongolia. The RMSE 

of climatological ALT between model simulations and observations is 1.22m, and the mean bias is -0.48m. However, these 

reduce to 0.33m and -0.04m, respectively, when the Mongolia sites are excluded.  
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The simulated fields indicate permafrost degradation (as represented by a positive ALT trend) over the past 38 years in many 

areas, including large areas in Alaska and eastern Siberia as well as some limited patches in Canada and northern Mongolia.  

While concurrent trends in air temperature can reasonably explain many of the ALT trends, this connection appears to fall 

apart in regions dominated by snowpack variability. Modeled ALT trends agree with observed ALT trends (based on analysis 

of data from the CALM network) within a reasonable range (i.e., -1cm/year to 1cm/year) at many sites. At other sites, however, 5 

modeled trends are biased low, and they grossly underestimate the observed trends at two Mongolian sites.  We emphasize 

again that such trend analyses are in any case highly uncertain due to the limited availability and the relatively short temporal 

extent of the observational ALT record. 

 

Spatial representativeness issues plague an evaluation of simulated ALT (representing averages across 81 km2 grid cells) 10 

against site-based ALT measurements.  That said, we fully expect that the discrepancies seen between the simulated and 

observational ALT estimates reflect problems on the modelling side.  For example, the observed climatological ALTs at the 

Mongolia sites are all larger than 3m.  This depth falls well within the 6th soil layer of the model, which has a thickness of 

10m; the subsurface vertical resolution in the CLSM may be too coarse to capture these deeper ALTs.   Test simulations (not 

shown) with alternative model configurations indicate that increasing the number of soil layers may act to decrease somewhat 15 

the simulated ALT, suggesting that our values may be a little overestimated; however, based on results from a new study by 

Sapriza-Azuri et al.(2018), our use of a no-heat-flux condition at the bottom boundary rather than a dynamic geothermal flux 

may lead to underestimates of ALT.  Such uncertainties should naturally be kept in mind when interpreting our results.  Our 

supplemental simulations also suggest that increasing the total modelled soil depth has only a small impact on simulated ALT. 

Uncertainty in our description of soil organic carbon, i.e., both soil carbon content and vertical carbon distribution, leads to 20 

corresponding uncertainty in our ALT simulations. We indeed find a significant improvement in simulated ALT at several 

Mongolian sites when we arbitrarily impose less total soil carbon content and concentrate less soil carbon in top layers (not 

shown). Besides the vertical distribution of soil carbon, the vertical variation in other soil hydrological properties (e.g. soil 

texture, porosity, hydraulic conductivity, etc.) should also play a significant role since they all affect soil thermal conductivity 

and heat capacity. 25 

 

Another issue affecting our ALT comparisons is the climatological representation of vegetation parameters such as LAI used 

in CLSM.  Additional investigation (not shown) revealed large differences between the LAI climatology used in CLSM and 

more realistic, time-varying, satellite-based LAI products at several Mongolian sites. In addition, while we did exclude from 

our analyses any measurements that were affected by notable disturbance (e.g., wildfire), the impacts of other potential land 30 

changes on ALT, including overgrazing in Mongolia (Sharkhuu and Sharkhuu, 2012;Liu et al., 2013), were not explicitly 

treated in the model.  The model also lacks the vertical advective transport of heat in the subsurface due to downward flowing 

liquid water, which can significantly affect permafrost thawing (Kane et al., 2001;Kurylyk et al., 2014;Rowland et al., 2011).  

Also relevant are potential errors in the MERRA-2 forcing, which has a particularly large impact on the trend analysis; as 
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mentioned above, the MERRA-2 reanalysis is known to have problems capturing trends in high latitudes (Simmons et al., 

2017). 

 

Such modelling deficiencies must always be kept in mind when evaluating a product like the one examined here. That said, as 

long as appropriate caution is employed, the product could have significant value for further analyses of permafrost.  The 5 

product features daily subsurface temperatures and depth-to-freezing estimates over middle-to-high latitudes in the Northern 

Hemisphere at an 81 km2 resolution, covering the period 1980-2017.  It is, in a sense, a value-added derivative product of the 

MERRA-2 reanalysis and will be available via the National Snow and Ice Data Center (NSIDC).  The comparisons against 

observations discussed above, along with the intuitively sensible connections shown between permafrost variability, forcing 

variability, and boundary condition variability, gives confidence that this dataset contains useful information. These data can 10 

potentially contribute, for example, to ecological studies focused on the dynamics of microbial activity and soil respiration in 

cold regions, on vegetation migration/adaptation in response to climate change, and so on. 
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Table 1 – In-situ permafrost measurement sites covered by the AirMOSS transects in 2015.    

AirMOSS flight  

(Official full name) 

Permafrost 

Site (CALM 

or UAF)* 

Latitude 

(degree) 

Longitude 

(degree) 

Sampling 

Method@ 

Measurement 

Date 

COC (Council) 

U27 (CALM) 64.8333 -163.7000 ④ 8/30/2015 

U28 (CALM) 65.4500 -164.6167 ④ 8/29/2015 

IVO (Ivotuk) IV4 (UAF) 68.4803 -155.7437 ①# 8/29/2015 

ATQ (Atqasuk) U3 (CALM) 70.4500 -157.4000 ④ 8/25/2015 

BRW (Barrow) 

U1 (CALM) 71.3167 -156.6000 ④ 8/21/2015 

U2 (CALM) 71.3167 -156.5833 ② 8/24/2015 

BR2 (UAF) 71.3090 -156.6615 ① 8/29/2015 

DHO (Deadhorse) 

U4 (CALM) 70.3667 -148.5500 ③ 8/25/2015 

U5 (CALM) 70.3667 -148.5667 ④ 8/11/2015 

U6 (CALM) 70.1667 -148.4667 ③ 8/26/2015 

U31 (CALM) 69.6969 -148.6821 ③ 8/15/2015 

U8 (CALM) 69.6833 -148.7167 ③ 8/27/2015 

U32A (CALM) 69.4410 -148.6703 ③ 8/16/2015 

U32B (CALM) 69.4010 -148.8056 ③ 8/16/2015 

U9A (CALM) 69.1667 -148.8333 ③ 8/25/2015 

WD1 & WDN 

(UAF) 

70.3745 -148.5522 ① 8/29/2015 

DH2 (UAF) 70.1613 -148.4653 ① 8/29/2015 

FB1 (UAF) 69.6739 -148.7219 ① 8/29/2015 

FBD (UAF) 69.6741 -148.7208 ①% 8/29/2015 
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FBW (UAF) 69.6746 -148.7196 ① 8/29/2015 

SG1 (UAF) 69.4330 -148.6738 ① 8/29/2015 

SG2 (UAF) 69.4283 -148.7001 ① 8/29/2015 

HV1 (UAF) 69.1466 -148.8483 ①% 8/29/2015 

* CALM: sites from the Circumpolar Active Layer Monitoring (CALM) network; UAF: sites from the Permafrost Laboratory 

at the University of Alaska Fairbanks (UAF). 

@Sampling method: ① Single point; ② 10m × 10m grid; ③ 100m × 100m grid with a 10m sampling interval; ④ 1000m × 

1000m grid with a 100m sampling interval. 

# Two sensors are installed at IV4. 5 

%Observations were taken from two conditions, including a frost-boil and an inter-boil area. 
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Table 2 – List of idealized simulation experiments along the AirMOSS transects.    

Experiment Name 
Meteorological 

forcing 
Vegetation Soil parameters* 

Baseline Original Original Original 

HomF Homogenized Original Original 

HomF&Veg Homogenized Homogenized Original 

HomF&Veg&Soil Homogenized Homogenized Homogenized 

HomVeg&Soil Original Homogenized Homogenized 

HomF&Soil Homogenized Original Homogenized 

*CLSM soil parameters include soil organic carbon content, porosity, saturated hydraulic conductivity, Clapp-Hornberger 

parameters, wilting point, soil class, sand and clay fraction, vertical decay factor for transmissivity, baseflow parameters, area 

partitioning parameters, and time scale parameters for moisture transfer (Koster et al., 2000;Ducharne et al., 2000;Tao et al., 

2017). 5 
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Table 3 – Evaluation metrics for model-simulated ALT and AirMOSS retrievals for 2015.    

Metric 

All sites 
Sites with ALT measurements within AirMOSS 

sensing depth (~60 cm) 

CLSM-

simulated 

ALT (model 

scale) 

AirMOSS ALT 

retrievals 

(model scale) 

AirMOSS ALT 

retrievals 

(site scale) 

CLSM-

Simulated 

ALT (model 

scale) 

AirMOSS ALT 

retrievals 

(model scale) 

AirMOSS ALT 

retrievals 

(site scale) 

RMSE 

(m) 
0.17 0.17 0.21 

0.12 0.06 0.08 

Bias (m) -0.05 -0.12 -0.11 
0.01 -0.01 0.02 

R 0.27 0.61 0.05 
-0.00 0.64 0.20 
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Table 4 – Evaluation results for simulated permafrost extent. 

Case CLSM Obs. Simulated Area (×106 km2) Percentage Relative to Observation 

4 No No 48.8 - 

3 Yes No 1.9 - 

2 No Yes 3.2 (1.7) 18.7% (12.3%) 

1 Yes Yes 13.8 (12.3) 81.3 % (87.7%) 
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Figure 1: a) Elevation above mean sea level in the simulation domain, which is defined by the area for which NCSCDv2 data are 

available.  Regions A, B, C, and D are discussed in the text.  b) Permafrost and ground ice conditions adapted from (Brown et al., 5 
2002).  Red dots represent CALM sites. 
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Figure 2: a) Ten transects of AirMOSS flights conducted in Alaska on 29 August 2015 and 1 October 2015, including HUS (Huslia), 

KYK (Koyuk), COC (Council), KGR (Kougarok), AMB (Ambler), IVO (Ivotuk), ATQ (Atqasuk), BRW (Barrow), DHO 

(Deadhorse), and CFT  (Coldfoot). Each flight swath width is approximately 15 km. The red dot on IVO illustrates the location of 5 
the representative grid cell used and discussed in section 3.2. b) Vegetation class, c) soil organic carbon content, and d) soil class used 

in CLSM. The eight vegetation classes are 1-broadleaf evergreen trees, 2-broadleaf deciduous trees, 3-needleleaf trees, 4-grassland, 

5-broadleaf shrubs, 6-dwarf trees, 7-bare soil, and 8-desert soil, respectively. The 253 soil classes include one “peat” class (#253), 

which is shown in dark grey, and 252 mineral soil classes (De Lannoy et al., 2014). 

  10 
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Figure 3: a) AirMOSS radar retrievals of ALT for 2015 at raw resolution (20 m x 60 m) derived from P-band radar observations on 

29 August 2015 and 01 October 2015 for IVO, ATQ, BRW, and DHO. b) ALT radar retrievals aggregated to 81 km2 model grid 

cells. c) CLSM-simulated ALT. Magenta squares in b) and c) represent CALM sites covered by the flight swath whereas black circles 

represent UAF sites. 5 
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Figure 4: a) ALT observations for 2015 from CALM (magenta) and UAF (red) sites covered by AirMOSS swaths, and from radar 

retrievals at in-situ site scale (black). b) Same as a) but with ALT from radar retrievals aggregated to 81 km2 grid cells (green), and 

from CLSM simulations at 81 km2 (blue). The short name of the corresponding covering swath is shown on the top (see also Figure 

2a). Error bars represent the standard deviation for multiple observations at in-situ sites, and for radar retrievals within the CALM 5 
observing grid (at site scale), or within each 81 km2 grid cell (at model scale). No standard deviations are provided for site-scale 

radar retrievals at CALM U2, U31, and U32B sites because sampling coordinates are not available nor at UAF sites since single-

point measurements were deployed. Averaged values were provided if multiple sites appear within a same model grid cell (e.g., 

U1&U2, U4&U5, FB1&FBD&FBW, and SG1&SG2) and compared with results at 81 km2 grid cell. The sites are arranged aligning 

with the flight direction. c) CLSM estimates and AirMOSS radar retrievals of ALT (at both site scale and model scale) for 2015 10 
versus in-situ measurements.   
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Figure 5: a) CLSM-simulated ALT (thawed-to-frozen depth) on 29 August 2015 along the AirMOSS flight transects.  In-situ ALT 

observations from UAF and CALM are shown as red circles and magenta diamonds, respectively. Averaged air temperature at 2 m 

(Tair) from the preceding annual period (i.e., 01 September 2014 to 31 August 2015) is shown in green with the scale on the right 

ordinate. b) organic carbon content and c) maximum snow depth during the preceding annual period (again from 01 September 5 
2014 to 31 August 2015). The red rectangle crossing a) and b) highlights a portion of the domain that shows an anti-

correlated relationship between organic carbon content and modelled ALT (see Section 4.2). The abscissa in c) provides 

cumulative distances in units of km along the transects. 
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Figure 6: a) CLSM-simulated ALT (thawed-to-frozen depth) on the flight date (i.e., 29 August 2015) from the top four experiments 

listed in Table 2; b) simulated top layer soil temperature on the flight date, c) maximum snow depth the during the preceding annual 

period (i.e., from 01 September 2014 to 31 August 2015), and d) soil moisture within the soil profile on the flight date along the 

connected transects for the four experiments. The black dot indicates the representative location within the IVO transect from which 5 
the forcing, vegetation and/or soil data are used to homogenize the inputs in the idealized experiments. By construction, all  

simulations provide identical results at this representative location.  
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Figure 7: a) Standard deviation of ALT along the AirMOSS transects from the top four experiments listed in Table 2. Subplot b) 

shows the individual impact (or contribution) from the heterogeneous vegetation, soil type and meteorological forcing, respectively. 

For instance, the impact of vegetation (or soil, or forcing) heterogeneity is the ALT standard deviation along the transects from 

HomF&Soil (or HomF&Veg, or HomVeg&Soil).  5 
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Figure 8: a) Mean, b) standard deviation, and c) skewness of CLSM-simulated ALT over the 38 years (1980 - 2017). Grey indicates 

permafrost-free (Pfree) areas in the simulation. d) 38-year averaged MERRA-2 annual atmospheric temperature at 2 m above 

displacement height (Tair). The red boundary outlines the continuous and discontinuous permafrost regions of Brown’s map. 

  5 
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Figure 9: Correlation coefficient between a) ALT and effective accumulated air temperature (𝑻𝒄𝒖𝒎) and b) ALT and maximum 

SWE (𝑺𝑾𝑬𝒎𝒂𝒙) from the preceding September to the present August over the period 1980-2017. c) Multi-variable coefficient of 

correlation for a fitted multiple linear regression model between ALT and the accumulated temperature and the maximum SWE. 

Areas that have a p-value larger than 0.05 (i.e., statistically insignificant correlation) are masked in green. Grey indicates permafrost-5 
free (Pfree) areas in the simulation.  
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Figure 10: a) Four comparison categories include: 1) blue - CLSM collocates permafrost with the observation-based permafrost 

map of Brown et al. (2002) as either continuous, discontinuous, or sporadic permafrost; 2) green - CLSM has no permafrost, but the 

observation-based permafrost map does as either continuous, discontinuous, or sporadic types; 3) red - CLSM does have permafrost, 

but the observation-based permafrost map does not or contains isolated permafrost; and 4) grey - CLSM has no permafrost and 5 
neither does the observation-based permafrost map (except for isolated permafrost). b) area-weighted average of ALT as simulated 

by CLSM for the four different permafrost types.   
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Figure 11: a) 38-yr average ALT for the period 1980-2017 from CLSM simulation vs. CALM observations. b) Same as a) but without 

the Mongolia sites. The correlation coefficient (R), bias, and root mean squared error (RMSE) are provided on each subplot. 
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Figure 12: Multi-year average ALT at CALM site locations for a) CALM observations and b) CLSM results. c) ALT difference 

between observations and model results for locations within 45⁰N- 60⁰N latitude and 85⁰E-125⁰E longitude. d) Same as c) but for 

locations poleward of 60⁰N latitude. In c) and d) grey indicates absolute ALT differences less than 0.10 m. 

 5 
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Figure 13: 1980-2017 trend in a) ALT, b) mean annual air temperature (MAAT), c) effective accumulated air temperature (𝑻𝒄𝒖𝒎), 

and d) warm days from CLSM simulations. Areas that have p-values larger than 0.05 (i.e., no statistically significant trend) are 

shown in green. In a), grey indicates permafrost-free (Pfree) areas in the simulation.  
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Figure 14: a) ALT trend from CLSM estimates vs. that from CALM observations, based on years common to both datasets within 

the period of 1990 to 2017. The horizontal and vertical error bars represent 95% confidence intervals of observed ALT trend 

(regression slope) and CLSM-simulated ALT trend, respectively.  b) Same as a) but zoomed into observed ALT trends between -2 

and 6 cm/yr. Note: the trends plotted here are not filtered based on statistical significance. Only four and ten sites have observed 5 
and estimated ALT trends with p value less than 0.05 and 0.10, respectively. 

 


