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Overview 

We thank the reviewers for their constructive comments and suggestions. The manuscript 

will be appropriately revised in response to the reviewers’ comments (see the point-by-

point expected responses below).  As requested by the reviewers, we compared our 

modeling results with some existing permafrost data sets by calculating evaluation metrics 

that can be compared directly against matching results reported in the literature.  In addition, 

we also conducted several new simulations that further assess the impact on ALT of the 

model soil layer configuration, the soil organic carbon content, and its vertical distribution.  

 

In summary, the planned modifications to the text can be categorized as follows: 

 

a) Novelty and added value:  

See R1C1 (i.e., Reviewer 1, Comment 1), R1C2, and R3C6 

 

b) Comparison with other model-generated permafrost data sets: 

See R1C1, R1C2, R3C6, R3C29 and R3C30 

 

c) Rephrasing “optimistic” discussion about ALT results: 

See R1C10, R1C11, R1C12, R3C2, R3C31  

 

d) New sensitivity experiments and uncertainty discussion: 

See R1C3, R1C20, R2C8 and R2C12 

 

e) Add specific evaluation metrics instead of using description words:  

See R3C6, R3C8, R3C24, R3C29 and R3C31 

 

 

Throughout the discussion below, the text is colored as follows: 

 

Black: Reviewer comment 

Blue: Expected author response 

Red: Expected text to be inserted into the revised manuscript 

 

For reference, our response to comment “m” by reviewer “n” is labeled “R[n]C[m]”.  
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Reviewer #2 

Overall comments: 

This paper used in-situ data and a remote sensing based ALT (active layer thickness) data 

to evaluate a model-based ALT dataset. Overall, I think it is a useful study. The analysis 

was done in a comprehensive way, and the results were acceptable. However, the analysis 

regarding the model uncertainty is somewhat general – considering we already have a good 

knowledge of the ability of global land models in NH permafrost simulation. I think, the 

study could benefit from more in-depth discussions on this aspect. The details were 

provided below. 

We thank the reviewer for the careful reviewing. We absolutely agree with the reviewer 

about the importance of model uncertainty regarding ALT estimation.  To further examine 

model uncertainty, we conducted new tests on sensitivity to organic carbon content and its 

vertical distribution. We also replaced the vegetation climatology at several Mongolian 

sites with satellite-based, time-variant LAI to investigate the impact of inter-annual 

variations in vegetation. Please also see our response to Reviewer #1 (R1C21) regarding 

the discussion about the soil layer configuration. 

 

Major comments: 

1. Page 4 Paragraph 3: I have questions regarding how the ALT was calculated. The paper 

indicates here it was calculated based on the simulated ice content. Does the model consider 

unfrozen water in frozen soils? If it does, please provide information on how the model 

calculates unfrozen water content. If not, this definition will be same as using a 0_C 

temperature threshold for thawed-to-frozen depth calculation. This information is 

especially important for the deep soils due to year-round low temperatures and coarse 

vertical resolution of the model at deeper depths. 

R2C1: In our model, the ice fraction is unity if soil is fully frozen (i.e., T < 0⁰C and fice = 

1), and it is zero if the soil is fully thawed (i.e., T > 0⁰C and fice = 0).  The reviewer 

comment refers to the situation where the soil temperature is exactly at the freezing point 

and the soil is partially frozen (i.e., T = 0⁰C and 0 < fice < 1).  In the latter case, frozen and 

thawed soil and water coexist.  This situation always occurs during freeze-to-thaw and 

thaw-to-freeze transitions.  This is because in soil layers that are as thick as those used in 

the model, the phase transition does not occur instantly (relative to the model time step).  

More specifically, the model uses heat content as the prognostic variable, from which the 

temperature and ice fraction are diagnosed. Therefore, our calculation of ALT is not the 

same as simply using a 0⁰C degree threshold to determine the thawed-to-frozen depth.  

Rather, we identify the deepest (fully or partially) thawed layer and then calculate the 

thawed-to-frozen depth based on the ice fraction within the layer. We will modify the  

paragraph about the ALT calculation as follows.   

“Precisely, the thawed-to-frozen depth is calculated as:  
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zbottom(𝑙) − fice(𝑙, t) × ∆z(𝑙),    (1) 

where layer 𝑙  is the deepest layer that is fully or partially thawed, zbottom ( 𝑙 ) 

represents the depth at the bottom of layer 𝑙, fice(𝑙,t) is the fraction of ice in layer 𝑙 

at time t, where fice(𝑙, t) ∈ [0  1], and ∆z(𝑙) is the thickness of layer 𝑙.  To identify 

layer l we use a 0⁰C degree temperature threshold.  Specifically, T > 0⁰C degree 

indicates that a layer is fully thawed, T  = 0⁰C degree indicates that a layer is 

partially thawed, and T < 0⁰C degree indicates that a layer is fully frozen.  That is, 

layer 𝑙 is the deepest layer that satisfies T(𝑙) ≥ 0⁰C.  Equation (1) then expresses 

that the thawed-to-frozen depth is equal to the bottom depth of the layer 𝑙  but 

adjusted upward according to the ice fraction within the partially thawed layer l.” 

The above declaration seems contradictory to “The use of the 0_C degree threshold in 

CLSM for determining the thawed or frozen state of the soil may explain the model’s 

underestimation of ALT.” (Page 9, Paragraph 1). So I am confused what methods were 

actually used to determine the thawing depth/ALT. Please clarify. 

R2C2: The 0⁰C degree is used to determine the deepest thawed layer 𝑙, and then the ALT 

is calculated by zbottom(𝑙) − fice(𝑙, t) × ∆z(𝑙) as explained above (R2C1). We will modify 

the text as follows: 

“The use of the 0⁰C degree temperature threshold in CLSM (along with the ice 

fraction) for determining the model’s ALT is thus only an approximation.  These 

and other simplifications contribute to the model’s underestimation of ALT.” 

2. Page 5 Paragraph 3: The spin-up scheme is questionable, though the authors themselves 

acknowledged this. Why do the authors using the meteorology for the entire 36-year period 

for spin-up? If the design is to reduce the uncertainty introduced by a single-year surface 

meteorology, spin-up using the first few years during the period will be more acceptable. 

R2C3: As the reviewer points out, we recognized this issue and discussed it in the original 

manuscript.  No spin-up procedure is entirely problem-free. Using a shorter period for spin-

up as suggested by the reviewer would exaggerate in the resulting initial conditions any 

anomalies that occur during the spin-up period.  The ultimate solution would be to construct 

a realistic historical forcing dataset over hundreds of years with a dynamic geothermal flux 

applied to the bottom boundary of soil column (e.g., Sapriza-Azuri et al., 2018).  However, 

this approach is hardly feasible and would still not assure absolutely correct initial 

conditions.  Please also see our response to Reviewer #1 (R1C9). 

3. I have questions regarding the vegetation effects on permafrost simulation in Northern 

Alaska (Page 11, Paragraph 2). Those 4 northern flights were dominated by “dwarf trees” 

as indicated by Fig. 2b (really?). Moreover, the changes in simulated maximum snow depth 

due to vegetation in those flights were much smaller comparing with the experiment 

homogenizing the forcing data (Fig. 6c). So I would expect the impact due to snow changes 

for the homogenizing vegetation experiment would be smaller comparing with the 

experiment homogenizing surface forcing, while this is not the case shown in Fig. 6a-b. 

Can the authors explain why? 
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R2C4: As we mentioned in the manuscript, the homogenization is applied cumulatively. 

Before we homogenized vegetation in this experiment, we already homogenized the 

forcing. The differences between HomF and HomF&Veg are then attributed to the changes 

in vegetation parameters (specifically LAI and vegetation height).   

Fig.6a-b indeed demonstrates that the impact due to snow changes for the homogenizing 

vegetation experiment (differences between HomF and HomF&Veg) would be smaller 

compared to the experiment homogenizing surface forcing (differences between Baseline 

and HomF). Figure 7b also illustrates this in a quantitative way. 

On the other hand, the Alaska North slope is dominated by tundra, while the vegetation 

map in CLSM indicates mostly dwarf trees or shrubs (Fig. 2b). Would this introduce 

uncertainties to the analysis on the contribution of different factors (i.e. forcing data, 

vegetation and soil) in Fig. 6? 

R2C5: The vegetation class is only one of several model inputs.  The land cover class used 

in the study is derived from the USGS Global Land Cover Characteristics Data Base 

Version 2.0 (GLCCv2).  In addition to vegetation class, the model uses vegetation height, 

leaf-area index (LAI), greenness fraction and albedo, which are all obtained from other 

satellite-based sources that reflect realistic conditions for tundra.   Put differently, while 

the modeled vegetation class may suggest the presence of dwarf trees, the typically low 

(satellite) LAI values in northern Alaska will instruct the model that the tree cover is 

extremely sparse in this region.  Please refer to Table 1 in (Tao et al., 2017) to see all the 

data sources.   We will add one sentence to Section 4.1 to clarify this. 

“Note that although the vegetation class (Figure 2b) suggests the presence of dwarf 

trees over the Alaska North Slope, the actual satellite-based LAI, vegetation height, 

greenness fraction and albedo will still instruct the model that the tree cover is 

extremely sparse in this region. The data sources for these vegetation-related 

boundary conditions can be found in Table 1 in Tao et al. (2017).” 

Also, from Fig. 6, it does not seem to me that homogenizing soil parameters has much 

bigger impact on simulated ALT and surface soil temperature than homogenizing 

vegetation (at least for the northern flights), as the authors indicated in Fig. 7. Maybe I miss 

something here? 

R2C6: We will add the following discussion to Section 4.2. 

“Also, over the northern transects (ATQ, BRW and DHO) the soil impact on ALT 

(difference between HomF&Veg&Soil in black and HomF&Veg in red) appears 

smaller than that of the vegetation (difference between HomF in green and 

HomF&Veg in red), as shown in Figure 6a. But the integrated impact along the 

transects as shown in Figure 7b indicates that the soil influence clearly outweighs 

the influence of vegetation, since the changes in vegetation parameters do not have 

much impact at several other transects, including HUS, KYK, COC, AMB, IVO 
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and the first half of ATQ, where the vegetation conditions might be similar to those 

used for homogenizing. ” 

4. Most of the value for AirMOSS radar retrievals, I think, is in its ability to characterize 

land surface heterogeneity. Simply averaging AirMOSS data to a much coarseresolution 

(i.e. 9km in this study) to compare with the land model simulations is not very insightful 

in terms of exploring the value of this dataset. I agree with the authors that the current 

AirMOSS retrievals seem having large uncertainties; most notably, its ALT retrievals were 

in a very narrower range. However, the inconsistency of the ALT spatial pattern at some 

of AirMOSS flights may come from the model itself. For example, at the DHO flightâ˘Aˇ 

Tthis is the flight with most in-situ sites available, the model ALT generally increases from 

the north to the south, while the in-situ data show large variability, and do not show a clear 

increasing trend from the north to the south (Fig. 5a). There are also a number of studies 

pointing out that ALT is extremely variable at local scale. Therefore, analysis using a 

dataset like AirMOSS in this aspect would be more valuable. 

R2C7: We agree with the value of AirMOSS radar retrievals in terms of (theoretically) 

being able to represent the spatial variability of ALT. Note, however, that Figure 4 also 

compares the radar retrievals at the site scale with in-situ observations and demonstrates 

that the radar retrievals exhibit too little variability also at their native resolution.   

The differences in the spatial patterns of the AirMOSS ALT retrievals and the simulated 

ALT suggest that neither radar remote sensing nor modeling is perfect. As we mentioned 

in the manuscript, the radar sensing depth (about 60cm) strongly constrains the retrieval 

accuracy. We expanded on the analysis by adding a new Table 3, which provides several 

evaluation metrics for ALT restricted to less than 60cm.  The table suggests that the radar 

retrievals are in better agreement with in-situ observations especially at model scale when 

only using sites that have ALT less than or equal to 60cm. We will add several sentences 

to Section 4.1:  

 “Excluding the sites with in-situ ALT measurements that exceed 60 cm, the overall 

mean bias for the AirMOSS retrievals at the model scale (site scale) drops to -0.01 

m (0.02 m), and the correlation coefficient at the model scale (site scale) increases 

to 0.64 (0.20).  In contrast, the CLSM simulation results show a bias of 0.01 m and 

a zero correlation coefficient at the same sites.” 

Please also see our response in R1C12.  

5. It would be more interesting if the authors could provide more insightful analysis 

regarding the model ALT uncertainties or the correlation analysis, including:  

a) Why does the model show much stronger correlation with maximum SWE in portions 

of NH permafrost region than with air temperature?  

R2C8a: Good question. We will add a sentence into Section 4.3 of the revised manuscript. 
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“One possible explanation is that the warming impact of the current climate has not 

yet had an impact on subsurface heat transfer over these areas because the insulation 

provided by the snow pack prevents such an influence.” 

b) It would be helpful if the authors could give more explanations regarding why the model 

fails in western Siberia? Those areas also include continuous permafrost, so I do not think 

it is too challenging for global models to capture the permafrost distribution there. 

R2C8b: As indicated in Figure 1b, all four types of permafrost (i.e., continuous, 

discontinuous, sporadic and isolated) are present in the western Siberia.  The literature 

suggests that other global models also missed this portion of permafrost, including  CLM3 

and CCSM3, although the updated versions of these models (i.e., CLM4 and CCSM4) 

demonstrated improved performance (Lawrence et al., 2012). Similarly, Guo et al. (2017) 

also reported underestimations in permafrost extent in western Siberia simulated by 

CLM4.5 when driven with three different reanalysis forcings (CFSR, ERA-I and MERRA) 

and improved performance when using forcing data from a different reanalysis. We will 

add some discussion to compare our simulation with other existing works: 

“Note that some other global models, such as CLM3 and CCSM3 as reported in 

Lawrence et al. (2012), also missed this area of permafrost and that updated 

versions of these models (i.e., CLM4 and CCSM4) showed improved performance 

in this regard (Lawrence et al., 2012). Guo et al. (2017) reported underestimated 

permafrost extent simulated in western Siberia by CLM4.5 driven by three different 

reanalysis forcings (i.e., CFSR, ERA-I and MERRA), and they showed an 

improved simulation of permafrost extent in this area when using another reanalysis 

forcing, the CRUNCEP (Climatic Research Unit ‐ NCEP) (Guo and Wang, 2017). 

Guimberteau et al. (2018) found similar improvements stemming from the use of 

CRUNCEP forcing.  We leave for further study whether the MERRA-2 forcing 

data is responsible for the western Siberia deficiency seen in our own results.”  

c) The ALT trends shown in Fig. 13a seem not very consistent with the trends of 

temperature indices shown in this figure. Have the authors explore the changes in snow 

cover duration? A longer snow free season generally leads to warmer soil temperature and 

thus deep ALT esp. in the southern area. 

R2C8c: We did examine the trend in snow cover duration (see Figure R4). While some 

areas show a trend in snow cover duration, this trend does not seem correlated with the 

trend in ALT.  
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Figure R4: Spatial distribution of trend in snow persistence days when daily mean snow 

depth > 25cm.  

Accordingly, we plan to modify the relevant sentence as follows: 

“It is possible that in such cases, the computed trends are strongly affected by 

snowpack variability, even though maximum SWE itself does not tend to show a 

significant trend in these areas (not shown), neither the snow cover duration (not 

shown). ” 

d) Page 18, Paragraph 3: I do not quite agree with the authors’ explanation why the model 

fails in the Mongolian sites. For those sites, the model simulated ALT is generally less than 

1.4 m, therefore, the coarse resolution at deeper soils in the model set-up (i.e. layer 5: 1.4-

3m) should not be a major contributing factor there. Much drier conditions, sparse 

vegetation, and perhaps uncertainties in soil texture data (eps. in deep soils), I think, are 

more likely contributing more to the model uncertainties. 

R2C8d: The reviewer is correct about the soil configuration. We conducted new tests using 

different soil configurations at several Mongolian sites. Please see the results and 

discussion in our response to the Reviewer #1 (R1C21).  

The reviewer also raised a very good point regarding the influence on ALT of soil wetness, 

vegetation and uncertainties in soil texture for deep soils.  We first examined realistic 

satellite-based LAI data at from Moderate Resolution Imaging Spectroradiometer (MODIS) 

MCD15A2H product and the Advanced very-high-resolution radiometer (AVHRR) 

AVH15C1 product (see Table R3). Figure R5 then shows the time series of the MODIS 

and AVHRR LAI, along with the LAI climatology used in the model at one CALM 

Mongolian site (M11).  A post-processing procedure that included quality screening and 

gap filling was applied to the two satellite LAI products. The CLSM LAI climatology is 

used for the years that MODIS data is not available (1980 to 2002).  

Table R3 – Information of satellite-based LAI products from MODIS and AVHRR. 
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Sensor Dataset  Product  Resolution  
Temporal 

Granularity  

Temporal 

Extent 

MODIS  MCD15A2H  

Leaf Area Index and 

Fractional 

Photosynthetically Active 

Radiation  

500 m 
8-day 

Composites  

July 2002 - 

Present 

AVHRR AVH15C1 

Leaf Area Index and 

Fraction of Absorbed 

Photosynthetically Active 

Radiation  

0.05deg Daily  
June 1981 - 

Present 

 

 

Figure R5: The LAI time series at one Mongolian site (M11). Green line represent the 

original LAI climatology used in the CLSM. Blue and red dash line represent the realistic 

(time-varying) LAI data from MODIS and AVHRR.  

As illustrated by Figure R5, MODIS shows smaller LAI than AVHRR over the valid period 

after 2002. The LAI climatology used in the model is inbetween of the two products. The 

differences between the LAI climatology used in the model and realistic LAI products 

would cause differences in energy and water partitioning at the land surface via impacting 

surface albedo. We conducted a simple test to examine the impact of using the more 

realistic, inter-annually varying vegetation inputs on the winter surface albedo and thus the 

snow accumulation process, which in turn would impact ALT estimates. Specifically, we 

replaced the LAI climatology with the satellite-based, inter-annually varying LAI products 

in the model, but turned off the impacts in summer, i.e., not affecting the snow-free albedo. 

The simulation results show only minimal differences in the estimated ALT.  That is, the 

winter surface albedo when using realistic satellite LAI products does not differ very much 

from that using the original LAI climatology.  However, we speculate that large differences 

in summer could have significant impact on ALT estimation. We leave further 

investigation for future work. We will add one sentence in the manuscript to bring up this 

issue. 

“Another issue affecting our ALT comparisons is the climatological representation 

of vegetation parameters such as LAI used in CLSM.  Additional investigation (not 
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shown) revealed large differences between the LAI climatology used in CLSM and 

more realistic, time-varying LAI products at several Mongolian sites.” 

Without any further information about the soil parameters in deep soils, we could not 

conduct further tests. Here we provided the results on the sensitivity of soil organic carbon 

and the vertical distribution in Figure 6. The figure reveals that a deeper ALT results from 

reducing the SOC content and from using a very different vertical distribution profile that 

arbitrarily concentrates less carbon in the top soil. Indeed, changing the vertical distribution 

profile for SOC content plays an almost equivalent role to changing the SOC content.  

This further confirms the reviewer’s comment regarding the importance of vertical 

variation of soil properties. Thus, we will add one sentence here to bring up the issue about 

vertical variation in soil parameters.  

“Besides the vertical distribution of soil carbon, the vertical variation in other soil 

hydrological properties (e.g. soil texture, porosity, hydraulic conductivity, etc.) 

should also play a significant role since they all affect soil thermal conductivity and 

heat capacity.” 

 
Figure R6: Simulation results at six Mongolian sites with different soil carbon contents 

and vertical carbon distributions. “OriSOC_OriProf” – Original soil organic carbon 

(SOC) content vertically distributed with the original profile as used in baseline simulation. 

“SOC/N_OriProf” – Reduced soil organic carbon content (by dividing the original SOC 

content by N) vertically distributed using the original profile. “OriSOC_NewProf” – 

Original SOC content vertically distributed with a new profile which arbitrarily 

concentrates less carbon in top soils. “SOC/N_NewProf” – Reduced SOC content (by 

dividing the original SOC content by N) vertically distributed using the new profile.  

 

Minor comments: 
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1. Fig. 4: The text in Section 2.3 indicates most of the comparisons against AirMOSS data 

will be at the 4 flights in the Alaska north slope. So I wonder why COC flight was included 

in this figure esp. considering the AirMOSS retrievals were not included?  

R2C9: We only have AirMOSS retrievals for IVO, ATQ, BRW and DHO, not for COC. 

However, our model provides results here, thus we included COC to add two additional 

measurements to compare with model results (Figure 4b).    

2. Fig. 4 a-b: were the sites arranged according to the latitudinal changes? 

R2C10: We arranged the sites aligning with the flight direction. We will also add this into 

the caption of Figure 4.  

“The sites are arranged aligning with the flight direction.” 

3. Page 9, Line 21: Does MERRA-2 not provide air temperature at 2-m surface height? 

R2C11: MERRA-2 does provide output of hourly 2-m air temperature.  However, the land 

model within the MERRA-2 system is forced with the air temperature in the lowest 

(atmospheric) model layer (TLML), and the 2-m temperature is simply diagnosed from 

TLML and the surface temperature.  For consistency, the off-line (land-only) model 

simulations presented here were likewise driven with TLML from MERRA-2.   In any case, 

the sentence in question was not necessary and only caused confusion, so we will delete it.  

4. Section 3.2 and Figure 6: Part of the IVO flight lies in the Brooks mountain range with 

very low SOC content (Fig. 2c). It may be not a good representative of the average 

conditions in this area, at least considering SOC variability. 

R2C12: The point at which we extracted the soil parameters does have a sort of 

intermediate SOC (greenish color in Fig.2c) which is also shown in Figure 5b. As 

mentioned in the original manuscript, however, we actually used an arbitrary intermediate 

SOC value which is 40 kg/m2.  

We also conducted two additional simulations using a very large and a very small SOC 

value everywhere. The results are shown in Figure R7 below. The “IntermC” used the same 

SOC that was used for homogenization (i.e., 40 kg/m2). “LowC” and “HighC” used the 

lowest (10kg/m2) and highest (120kg/m2) SOC values found along the transects as shown 

in Figure 5b and also in Figure R7b.  Figure R7a reveals that the model sensitivity to soil 

carbon is much larger for lower SOC than for higher SOC, and easily gets saturated for 

high SOC (i.e., larger than ~100 kg/m2). However, all of this depends on the vertical soil 

carbon distribution profile used. Please also see R2C8d. 
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Figure R7: a) similar to the Figure 5a in the original manuscript but showing model 

sensitivity to organic carbon content along the AirMOSS flight transect. b) the organic 

carbon content along the transect. 

We will add a sentence into the Section 3.2. 

“Our investigation reveals that the model sensitivity to soil carbon content is much 

larger for lower SOC than for higher SOC, and easily gets saturated for high SOC 

(i.e., larger than ~100 kg/m2) (not shown). Thus, we trust 40 kg/m2 is an appropriate 

value representing an intermediate SOC condition.” 

5. Section 3.2: Would it be easier to follow if the description regarding the idealized 

experiments was included in the Methods section? 

R2C13: We thank the reviewer for the helpful suggestion.  We will introduce the idealize 

experiments in Section 2 by adding a new Methods section (section 2.5).  

6. Fig. 7 is not very informative. I suggest summarizing the results in a table. 

R2C14: We feel that Fig.7 is informative, which is also supported by Reviewer #1 (R1C15). 

The figure displays the actual values and therefore also serves as a table. We therefore opt 

to keep the figure in its current form.  
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