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Abstract. A multi-category numerical sea ice model CICE along with data assimilation was used to derive sea ice parameters

in the region of Baffin Bay and Labrador Sea. The assimilation of ice concentration was performed using the data derived from

Advanced Microwave Scanning Radiometer (AMSR-E & AMSR2). The model uses a mixed layer slab ocean parametrization

to compute the Sea Surface Temperature (SST) and thereby to compute the potential to freezing/melting of ice. The data from

Advanced Very High Resolution radiometer (AVHRR-only OISST analysis) was used to assimilate SST. The modeled ice5

parameters including concentration, ice thickness, freeboard, and keel depth were compared with parameters estimated form

remote sensing data. The ice thickness estimated from the model was compared with the measurements derived from Soil

Moisture Ocean Salinity - Microwave Imaging Radiometer using Aperture Synthesis (SMOS-MIRAS). The model freeboard

estimates were compared with the freeboard measurements derived from CryoSat2. The ice concentration, thickness and free-

board estimates from model assimilated with both ice concentration and SST were found to be within the uncertainty of the10

observation except during March. The model estimated draft was compared with the measurements from an upward looking

sonar (ULS) deployed in the Labrador Sea (near Makkovik Bank). The difference between modeled draft and ULS measure-

ments estimated from the model was found to be within 10 cm. The keel depth measurements from the ULS instruments were

compared to the estimates from the model to retrieve a relationship between the ridge height and keel depth.

1 Introduction15

Regional sea ice forecast is important for climate studies, operational activities including navigation, exploration of offshore

mineral resources, and ecological applications, e.g. North Water polynya in Baffin Bay provides a warm environment for

marine animals (Stirling, 1980).

Sea ice is a heterogeneous media and makes it practically difficult for remote sensing instruments to measure the ice thick-

ness, freeboard, and ridge parameters (Carsey, 1992). The climate forecast researchers and operational ice modeling commu-20

nities depend on numerical modeling techniques implementing the physical process of atmosphere and ocean on large scale

computational platforms along with data assimilation methods to retrieve the information on sea ice parameters. Data assimi-

lation methods can provide more accurate initial conditions for forecasting systems (Caya et al., 2006, 2010). The estimation
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of sea ice parameters is a challenging problem in the region of Baffin Bay and the Labrador Sea due to the high interannual

variability of sea ice in this area (Fenty and Heimbach, 2013).

Previous sea ice modeling and assimilation studies at the Canadian Ice Service (CIS) (Sayed et al., 1999) provided an

overview of an operational ice model coupled with atmospheric and ocean modules. The research (Sayed et al., 2001) com-

pared the evolution of ice thickness distributions followed by the development of an operational ice dynamics model for CIS5

(Sayed et al., 2002). The CIS used the model developed by (Sayed et al., 1999, 2002) was used to study the ice thickness dis-

tribution in the Gulf of St. Lawrence (Kubat et al., 2010) These modeling works were also improved by the data assimilation

methods (Caya et al., 2006, 2010). The Community Ice Ocean Model (CIOM) by Caya et al. (2006) used the Princeton Ocean

Model for the simulation of ocean parameters and a multi-category ice model. The total ice fraction retrieved from the Special

Sensor Microwave/Imager (SSM/I) was assimilated into CDOM using 3D variational (3DVAR) technique (Caya et al., 2006)10

to estimate the ice concentration. The ice concentration estimates were further improved by assimilating information from both

daily ice charts and RADARSAT (Caya et al., 2010). Assimilation studies by Lindsay (Lindsay and Zhang, 2006) showed

significant improvement in assimilated ice concentration but with a large bias in the ice thickness pattern.

Karvonen et al. (2012) presented a method for ice concentration and thickness analysis by combining the modeling of sea

ice thermodynamics and the detection of ice motion by space-borne Synthetic Aperture Radar (SAR) data from RADARSAT-15

1 and RADARSAT-2. The method showed promising results for sea ice concentration and ice thickness estimates. In another

study, Ocean and Sea Ice Satellite Application Facility (OSI SAF) data were assimilated into Regional Ocean Modeling System

(ROMS) for simulating sea ice concentration and produced better results than the simulation without assimilation (Wang et al.,

2013). Ice concentration and extent were overestimated in the assimilated model, probably due to the bias in atmospheric

forcing, underestimation of heat flux and over/under estimation of sea ice growth/melt processes.20

Sea ice models can be coupled to ocean and atmosphere models, but they can also be run in a standalone mode by prescribing

the atmospheric and ocean conditions. The literature does not provide details and discussion on regional implementation and

results for stand-alone models. The 3D-CEMBS is an eco-hydrodynamic model that includes a coupled POP-CICE model

for operational forecasting implementation of CICE on a regional scale. The implementation on the regional scale of the ice

component and the validation work is still ongoing (Dzierzbicka-Głowacka et al., 2013). The advantage of the sea ice model,25

CICE version 5.1.2 (Hunke et al., 2015) is the standalone capability. Here we use a combination of modeling using the stand

alone sea ice model, CICE, and the combination of optimal interpolation and nudging methods (Lindsay and Zhang, 2006;

Wang et al., 2013) to assimilate ice concentration. The optimal interpolation and nudging method is also used to assimilate

SST estimated by a slab ocean parametrization in the sea ice model. The optimal interpolation method is computationally

inexpensive and was shown to provide better estimates than non-assimilated model (Wang et al., 2013). The simulated sea30

ice parameters are then validated with the observations in the region of the Baffin Bay and the Labrador Sea. This work uses

a high-resolution model configuration which was previously described in the work of (Prasad et al., 2015). The changes in

ice concentration were taken into account to estimate the changes in the ice volume and thereby thickness estimates. The

ice prediction models such as Regional Ice Prediction System (RIPS) (Lemieux et al., 2016) limits the discussion on ice

concentration estimates from the model. In this work, in addition to validation of the ice concentration we also discuss the35
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effect of the assimilation on ice thickness, freeboard, draft and keel depth. Since freeboard, draft and keel are functions of ice

concentration and ice volume it is reasonable to compare the model values with corresponded observations. The work suggests

a methodology to extract the level ice draft and keel depth information from ULS measurements, which was then used to

describe the relationship between ridge and keel.

2 Model domain and forcing data5

The sea ice model was implemented on a regional scale of about 10 km orthogonal curvilinear grids with a slab ocean mixed

layer parameterization. Density-based criteria were used as in (Prasad et al., 2015) to compute the mixed-layer depth and

thereby compute the SST and the potential to grow or melt sea ice. The assessment of the non-assimilated model of the sea

ice concentration and its seasonal means showed that the error associated with the model mostly spread across the area of the

North Water polynya and the Davis Strait where the interaction of cold and warm water is frequent. In the present study, a data10

assimilation module is also introduced.

The surface atmospheric forcing is from high-resolution North American Regional Reanalysis (NARR) data (Mesinger et al.,

2006). The ocean forcing is from various sources: currents from Climate Forecast System Reanalysis (CFSR), salinity from

World Ocean Atlas, WOA-2013 (Levitus et al., 2013) and Mixed Layer Depth (MLD) computed from WOA-2013 (Prasad

et al., 2015). (Prasad et al., 2015) used a density criteria of 0.2 Kg/m3 at 10m depth, the other models such as RIPS by CIS15

(Lemieux et al., 2016) uses a density criteria of 0.01 Kg/m3 from the ocean surface. Atmospheric and ocean forcing were

used as inputs to the model. For Sea Surface Temperature (SST), a monthly climatology data derived from high-resolution

NOAA were used as an input for the initial and boundary conditions. The net heat flux from the atmosphere is the upper

boundary condition for ice thermodynamics. The heat flux from the ocean to the ice is the lower boundary condition. Based

on temperature profile and boundary conditions the melt and growth of ice is computed. The open boundaries are configured20

in the same way as in (Hunke et al., 2015; Prasad et al., 2015). For the ice concentration and thickness, the initial condition is

assumed as a no-ice state at the beginning of September 2004. The data assimilation starts from January 2005 and continually

assimilated whenever data was available.

3 Remote Sensing Data for Assimilation and Validation

Ice concentration derived from AMSRE of resolution 6× 4 km (Spreen et al., 2008) were used for the assimilation of ice25

concentration. AMSRE was developed by JAXA, and it is deployed on Aqua satellite. AMSRE and AMSR2 are passive

sensors that look at the emitted or reflected radiation from the earth’s surface with multiple frequency bands. The vertical

(V) and horizontal (H) polarization channels near 89 GHz were used to compute the ice concentration from AMSRE (Spreen

et al., 2008). The Arctic Radiation and Turbulence Interaction STudy (ARTIST) sea ice algorithm used to determine ice

concentration from AMSRE show excellent results above 65% ice concentration where the error does not exceed 10%. With30

low ice concentrations, substantial deviations can occur depending on atmospheric conditions. The parameters of the sensor
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are provided in Table 1. AMSRE ice concentration were available from January 2005 to September 2011, after which it

stopped functioning. From August 2012 AMSR2 had been used for data collection. The same frequency (89 GHz) as that of

the AMSRE instrument was used to derive information from AMSR2. The spatial resolutions also remain the same for both

AMSRE and AMSR2. The same algorithm was applied to derive ice concentrations from both AMSRE and AMSR2. The

original AMSRE/AMSR2 data with 6× 4 km resolution scale were interpolated to the model grid before assimilation.5

Table 1. Specifications of microwave radiometers used to estimate ice concentration.

Specifications AMSR-E AMSR2 SSMIS

Center Frequency, GHz 89 89 19 37

Mean Spatial resolution, km 6× 4 5× 3 69× 43 37× 28

Polarization HV HV V HV

Incidence angle, deg 55 55 50

Swath, km 1445 1450 1700

Data availability, month/year 08/2002− 10/2011 08/2012-Present 03/2005−Present

The assimilated model results of ice concentration were compared with the OSI SAF data. The details of the sensors are

given in Table 1. The OSI SAF product is derived from Special Sensor Microwave Imager Sounder (SSMIS) (Tonboe et al.,

2016; Bell, 2006). The data is available on a 10 km polar stereographic grid and are derived from 19 V, 37 VH channels.

The erroneous data, were the ice concentration error was 100% or retrieval algorithm has failed were filtered out before the

comparison. Measurements derived from AVHRR-only OISST analysis (Reynolds et al., 2007; Smith, 2016) were used for10

SST assimilation. SST data products are generated using a combination of satellite and in situ observations from buoy and ship

observations and is available on a 0.25◦×0.25◦ resolution. The analysis product estimates SST from ice concentration only in

regions where ice concentration is greater than 50%, otherwise uses satellite data to retrieve SST values.

Freeboard measurements from CryoSat-2 altimeter were used to compare the freeboard estimates by the model. CryoSat-2

altimeter operating in the SAR mode, SIRAL has the accuracy of about 1 cm with the spatial sampling about 45 cm (Bouzinac,15

2014). The pulse limited footprint width in the across track direction is about 1.65 km and beam limited footprint width in

the along-track direction is about 305 m (Scagliola, 2013), that corresponds to an along-track resolution about 401 m (assum-

ing flat-Earth approximation). Therefore, the pulse-Doppler-limited footprint for SAR mode is about 0.6 km2. The CryoSat-2

freeboard and the ice-concentration products were generated at Alfred Wegener InstInstitute (AWI) (Ricker et al., 2014). The

products are available in a spherical Lambert azimuthal equal-area projection of 25 km resolution cell. The uncertainty of free-20

board measurements can arise from speckle noise, lack of leads which causes the estimation of sea surface height unreliable,

and snow cover. The uncertainty up to 40 cm can be observed in the region of Baffin Bay and Labrador Sea (Ricker et al., 2014).

For ice thickness, data product derived from the SMOS Microwave Imaging Radiometer with Aperture Synthesis (MIRAS)

instrument (1.4-GHz channel) (Kaleschke et al., 2012) on a grid resolution of 12.5x12.5km is used. The ice thickness is25
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retrieved from observation of the L-band microwave sensor of SMOS. Horizontal and vertical polarized brightness temperatures

in the incidence range of < 40◦ are averaged. The ice thickness is then inferred from a three layer (ocean-ice-atmosphere)

dielectric slab model. SMOS data are available from 15 October 2010. The presence of snow accumulated over months also

can increase the uncertainty. The uncertainty of SMOS ice thickness (observations) shown in Table 2 (Tian-Kunze et al.,

2014; Ricker et al., 2016; Tietsche et al., 2017, 2018) includes the error contributions, which are caused by the brightness5

temperature, ice temperature and ice salinity. The insufficient knowledge of the snow cover also introduces a large uncertainty in

ice thickness estimates. Snow depth uncertainity can be 50−70% of mean value (Zhou et al., 2018). In general, the uncertainty

of thickness observation increases with increasing ice thickness, increasing snow cover and the onset of melt (Kaleschke et al.,

2013). The SMOS ice thickness retrieval produces large uncertainty during the melt season and hence retrieval is not conducted

during the melt season. Table 3 shows the details on SMOS sensor (Kerr et al., 2001; Barré et al., 2008).10

ice thickness (observations) shown in Table 2 include.

Table 2. SMOS uncertainty

Ice thickness Uncertainty caused by a standard deviation of

0.5 K temperature brightness 1 K ice tempearture 1 g/Kg ice salinity

0 -10 cm < 1 cm < 1cm < 1cm

10-30 cm < 1 cm 1-5 cm 1- 13 cm

30-50 cm 1-4 cm 2-10 cm 2-22 cm

> 50 cm > 4cm > 7cm ≤ 40 cm

Table 3. SMOS sensor specifications.

Polarization HV

Incidence angle 0− 55◦

Swath, km 900

Center Frequency (GHz) 1.4 (L-band)

Mean Spatial resolution (km) 35− 50

Radiometric sensitivity over ocean, K 2.5 and 4.1

Ice draft measurements from an ULS instrument (Ross et al., 2014) located on the Makkovik Bank, see Figure1, at 58.0652◦

W and 55.412◦ N, were used to analyze the ridge keel and the level ice draft in the region.
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Figure 1. The location of ULS instrument.

The ULS data measured at an interval of approximately 5.5 seconds is available from the beginning of January to end of May

during 2005, 2007 and 2009. The frequency histogram of the data yields a uni-modal, bi-modal or multi-modal distribution. A

sample histogram is provided in Figure 2, for 10 February 2007. We assume that the first mode in the histogram corresponds

to the level draft ice and the second mode corresponds to the ridge keel measurement. The first mode of the distribution is

selected by finding a minimum between two peaks. The histogram was analyzed to derive daily averages of ice draft and keel5

measurements (Prasad et al., 2016).

Figure 2. The histogram of the ULS measurement, 10 February 2007 for the estimation of draft and keel (meters).
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4 Data Assimilation

The assimilation module uses a combined optimal interpolation and nudging technique for ice concentration (Lindsay and

Zhang, 2006; Wang et al., 2013). The method can be represented generally as equation (1) (Deutch, 1965; Lindsay and Zhang,

2006).

Xa =Xb+ dt
K

τ
(Xo−Xb), (1)5

where Xa is the final analysis of the variable, Xo is the observed quantity (for ice concentration this is AMSR-E/AMSR2, for

SST this is AVHRR-only OISST), Xb is the background estimate of the variable (for ice concentration and SST this is model

estimate), dt is the model time step, τ is the basic nudging time scale as in (Wang et al., 2013), and K is the nudging weight

with the optimal interpolation value. K is computed as

K =
σαb

σαb +σ2
o

, (2)10

where σb and and σo are the error standard deviation of the model estimate (Deutch, 1965) and the observations (Deutch, 1965)

respectively The parameters in the weighing factor given in equation (2) is defined according to (Lindsay and Zhang, 2006) as

σb = |Xo−Xb|; σo = 0.08 (parameter may vary spatially), α= 6.

When assimilation of ice concentration, σo = 0.08 is calculated from a long-term standard deviation to 0.08 since the AMSR-

E/AMSR2 ice concentration error is depends on various atmospheric conditions for values less than 65%. The parameter α= 6,15

is used for the present study to ensure that the coefficients for assimilation are heavily weighted only when there is large

variation between the model and the observation (Lindsay and Zhang, 2006).

SST is also assimilated using the nudging and optimal interpolation scheme. For SST assimilation, σo is fixed as 0.05 to

compensate for the assumption of zero mixed layer heat flux. A value α equal to 6 (Lindsay and Zhang, 2006) was also used

for the assimilation of SST to ensure that only large differences between the model and observation are weighted heavily20

The assimilation of ice concentration is then followed by a re-computation of the estimated sea ice volume. The ice volume is

subtracted or added by including the increments or decrements with specified ice thickness. Since a variable drag coefficient has

been used for the friction associated with an effective sea ice surface roughness at the ice-atmosphere and ice-ocean interfaces

and to compute the ice to ocean heat transfer the level ice area is updated by assuming the model deformed ice area and volume

represents the realistic values.25

5 Results and validation

Three model results are discussed here: model ‘M0’, the non-assimilated model; ‘M1’, the model assimilated with ice concen-

tration from AMSR-E/AMSR2; and ‘M2’, the model assimilated with ice concentration from AMSR-E/AMSR2 and SST from

AVHRR-only OISST. ‘M2’assimilates only SST whenever there is a data gap in ice concentration from AMSR-E (e.g. from 24
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March 2005 to 31 March 2005), AMSR-E data are not available and, in that case, ‘M2’assimilates SST instead of ice in data

gaps. The AMSR-E instrument stopped producing data since October 2011, and AMSRE2 data has been used for assimilation

beginning August 2012. The model was spin up for 3 months before assimilation, since no coupling with ocean model is done,

the spinup time of 3 months is enough to estimate the ice conditions.

5.1 Ice concentration5

Figure 3 column 1 shows the absolute mean difference of ice concentration between the non-assimilated model and the OSI

SAF data, column 2 shows the absolute mean difference of ice concentration of the model assimilated only with ice concentra-

tion and OSI SAF data, and column 3 shows absolute mean difference of ice concentration of the model assimilated with both

ice concentration and SST and OSI SAF data. Model M2 shows improvement in the ice concentration for January and March,

but little improvement between M1 and M2 for May 2010.10
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Figure 3. The absolute mean difference of ice concentration of ice concentration from non-assimilated, assimilated models and OSI SAF

data for Jaunary 2010, March 2010 and May 2010.
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Figure 4. The absolute mean difference of ice concentration for models M0, M1 and M2 from January 2010 to September 2011 is shown in

row 1 and from August 2012 to December 2015 is shown in row 2.

Figure 4 shows the absolute mean difference of ice concentration of the model assimilated with AMSR-E/AMSR2 and

OSI SAF (SSMIS) data from January 2010 to September 2011 and the absolute mean difference of ice concentration from

August 2012 to December 2015. The assimilation of SST and ice concentration decreases the error between the model and the

OSI SAF ice concentration. In 2010, the non-assimilated model error of 4.624% was reduced to 1.939% by assimilating ice

concentration. The assimilation of SST and ice concentration decreased the error to about 1.118% in 2010.5

From October 2011 to July 2012, AMSR-E data are not available for a more extended period, and model M2 was assimilated

only with SST, see Figure 5. During this period, the SST assimilation decreases the error between the model and the observation

by almost 3%.

Figure 5. The absolute mean difference of ice concentration from October 2011 to July 2012, ice concentration was not available for

assimilation and hence model M2 will be only assimilated with SST during the period.
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5.2 Ice thickness

In this section, we perform the comparison of ice thickness from the model with the observation. The large unacceptable

uncertainties in observation data derived from SMOS create difficulties for the analysis. Also, it is strictly recommended not

to use the SMOS data with an uncertainty greater than one meter (Tian-Kunze and Kaleschke, 2016) for practical applications.

For comparison and validation, ice thickness data from both the model and observation where the observed ice thickness has5

an uncertainty less than or equal to 100 cm are selected.The SMOS thickness has less uncertainty for thinner ice and higher

uncertainty for thicker ice, see Table 2 for the uncertainty of SMOS ice thickness. In the case of SMOS derived thickness, the

uncertainties would increase with the snow accumulation and melt onset.

Figures 6, 7, 8 shows the mean values of the thickness estimated from models M0, M1, M2 and SMOS with the uncertainty

limits of the SMOS ice thickness (shaded gray)As ice thickness increases through the season, so do the uncertainty limits. The10

values of Model M2 are within the uncertainty limits of SMOS ice thickness from October until the end of February (except

for 2014) end. From the comparison, during March, the model results exceed the uncertainty limits. Figure 8 shows the results

for the period October 2011 to April 2012 where AMSR-E data were missing during which M1 was not assimilated with ice

concentration but used the initial conditions from the assimilated result. Model M2 used the initial conditions assimilated with

both ice concentration and SST but assimilates only SST during the period. Both models, M1 and M2, with the improved initial15

conditions show better forecasts in the long-term analysis. One of the reasons why the model values exceed the uncertainty

limits during March is the choice of α= 6, which considers only large differences while weighing the coefficient K. Since the

assimilation shows improvement in ice thickness, using a value of α= 2, it is expected to impose the model values within the

uncertainty limits.
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Figure 6. The ice thickness from the models M0, M1, M2, and observation (SMOS ice thickness) from October 2010 to April 2011 and

October 2012 to April 2013 . The uncertainty of observation (SMOS ice thickness) is shaded in gray.

Figure 7. The ice thickness from the models M0, M1, M2, and observation (SMOS ice thickness) from October 2013 to April 2014 and

October 2014 to April 2015. The uncertainty of observation (SMOS ice thickness) is shaded in gray.
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Figure 8. The ice thickness from models M0, M1(not assimilating ice concentration as there were no AMSRE data available, but used

the initial conditions from the model assimilated with ice concentration), M2 (assimilated only with SST and used model initial conditions

derived from assimilating both ice concentration and SST) and observations (SMOS ice thickness) from October 2011 to April 2012. The

uncertainty of observation (SMOS ice thickness) is shaded in gray.

The Model M2 thickness, SMOS derived ice thickness, and the uncertainty of the SMOS derived measurement for 15

December 2010, 15 January 2011 and 15 March 2011 are shown in Figure 9, and includes regions where observed uncertainties

are larger than one meter.
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Figure 9. The model ’M2’ estimated ice thickness, SMOS-MIRAS derived ice thickness, and the observation uncertainty for 15th December

2010, 15th January 2011 and 15th March 2011.

The thickness results for thin ice categories (< 30 cm)from the model with SMOS are shown in Figures 10, 11, and 12, the

shaded region shows the uncertainty of the thin ice from SMOS data. The thin ice category thicknesses are overestimated from

October to November end but the values are within the uncertainty limits of SMOS from December to March.
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Figure 10. The ice thickness from the models M0, M1, M2, and observation (SMOS ice thickness) and the observation uncertainty (shaded

gray) for SMOS ice thickness less than 30 cm (2010 - 2012).

Figure 11. The ice thickness from the models M0, M1, M2, and observation (SMOS ice thickness) and the observation uncertainty (shaded

gray) for SMOS ice thickness less than 30 cm (2012 - 2014).
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Figure 12. The ice thickness from the models M0, M1, M2, and observation (SMOS ice thickness) and the observation uncertainty (shaded

gray) for SMOS ice thickness less than 30 cm (2014 - 2015).

Figure 13, shows the SST from AVHRR-only OISST analysis with the shaded regions representing the observation un-

certainty, SST from models M0, M1 and M2. In general, the SST from AVHRR-only OISST assimilation improves the ice

concentration and ice thickness results for the model M2. The assimilated model M2 still has systematic bias during the sum-

mer and winter, which may be improved by decreasing choice of α (=6, presently) and by decreasing the nudging time scale

(presently for SST nudging scale is 30 days). Decreasing the nudging time scale can result in the late formation and early5

melt of ice (not shown here). The results can be improved with a choice of nudging time scale to be less frequent during the

formation and more frequent during the winter till beginning or mid of March. Frequent nudging is also found to produce blow

up for the thermodynamic model. Choice of the parameters in the assimilation has to be selected so that balance is maintained

not to cause late formation and earlier melt and maintain the stability of the model thermodynamics and dynamics. For M0,

non-assimilated model the results may be improved by including the mixed layer heat flux with a parametrization similar to10

(Petty et al., 2014). Also, note that the model still assumes a fixed salinity profile and mixed layer profile.

Figure 13. The SST from AVHRR-only OISST analysis with the shaded region represents the uncertainty of AVHRR-only OISST analysis,

and SST from models M0, M1, M2.
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5.3 Draft and keel depth

The ULS measurements were separated into level ice draft and keel depth measurement as described in Prasad et al. (2016)

and also in Section 3. The level ice draft, D is computed using equation (3) (Tsamados et al., 2014). The results are shown in

Figure 14.

D = (ρivice+ ρsvsno)/(Aρw) (3)5

Where ρi = 917kg/m3 is the density of ice, vice is the volume of ice, ρs = 330.0kg/m3 is the density of snow, vsno is the

volume of snow, A is ice concentration, ρw = 1026kg/m3 is the density of sea water.

Some deviations are noticed in the comparison of level ice draft. The estimated absolute error is about 10 cm for 2005, 2007,

2009. The error of 10cm on draft of 20 cm can be accepted considering large difference in spatial resolution between the ULS

and Model. Also, the analysis was done only for 2005, 2007, 2009 as this was when data was available.The discrepancy occurs10

due to the fact that ULS gives values at a particular location with high resolution (within the footprint of several meters), while

the model is of 10 km resolution gives an averaged result close to the location of the ULS. Moreover, the analysis of histogram

from ULS shows multi-modal distribution at certain time points which indicates the presence of rafted ice. In the present study,

the rafted ice is also included and considered as the ridges which contribute towards the results achieved in this section.

Figure 14. The level ice draft computed from the ULS measurement and the "M2" model estimated values at Makkovik Bank for 2005,2007

and 2009.
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The keel is computed using idealized sea ice floe comprising a system of two triangular sails and keels and a single melt

pond (Tsamados et al., 2014). The ridge height is given by equation (4) and the correlation between the ridge height and keel

depth is given by equation (5)

Hr = 2
Vrdg
Ardg

(αDkmk +βCmr)

(φrmkDk +φkmrC2)
(4)

WhereHr is the ridge height,mr = tan(αr) = 0.4, αr = 21.8◦ is the slope of the sail andmk = tan(αk) = 0.5, αk = 26.5◦5

is the slope of the keel, φr is the porosity of the ridges, φk = 0.14+0.73φr (Shokr and Sinha, 2015) is the porosity of the

keels. Dk = 5 is the ratio distance between ridge to distance between the keels. Vrdg is the volume of the ridged ice, Ardg is

the ridged ice area fraction, α and β are the weight functions for area of ridged ice, C is the coefficient that relates ridge to keel

and

Hk = CHr (5)10

gives the keel depth Hk. The Makkovik Bank where the keel measurements are estimated from ULS has high variability

of ice thickness, and frequency of the formation of keels are high due to the combined effect of the Labrador currents and

winds, rafted ice are common in this region (Peterson I.K., 2013). Here the model and the observation of keel depth are used

to estimate the parameter C.

The coefficient, C estimated for 2005, 2007 and 2009 shows that a value between 3.00 and 4.50 gives a good estimate of15

keel measurement for January and February while a value between 7.00 and 8.00 gives a good estimate for keel during March,

April, and May. In Figure 15 the values of the coefficientC that relates ridge to keel for January and February is 3 andC = 7.00

for March, April and May, see equation (5). These values are derived under the assumptions in equation (4). The sensitivity

of parameters has to be further explored to determine the characteristics of each parameter and its effect on the ridge, keel

relationship which may result in a different conclusion. Since the interest lies in deriving this relationship from the assimilated20

model, so only results from M2 is presented. For non-assimilated model, the choice of parameters vary.

During January to February the formation of ice and ridges occurs, and during March the thick ice may be contributing

towards the ridging thus increasing the value of C.

5.4 Freeboard

The uncertainty of freeboard measurements can arise due to the lack of leads. The presence of leads was ensured by selecting25

the regions where lead fraction derived from CryoSat-2 (Ricker et al., 2014) was greater than zero. In the model, freeboard is

computed using equation (6) (Tsamados et al., 2014). For the region, the uncertainty of the freeboad measurements is below

40 cm (Ricker et al., 2014).

Df = (vice+ vsno)/A−D (6)
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Figure 15. The keel depth computed from the ULS measurement and the "M2" model estimated values in cm for 2005,2007 and 2009.

Where vice is the volume of ice, vsno is the volume of snow, A is the ice concentration, D is the draft, see equation (3).

The absolute mean difference between the model and the observation for January, February and March 2011 is shown in

the Figure 16. M2 freeboard measurements are close to the observed freeboard. Figure 17 shows the RMSE of freeboard

from model M2 and CryoSat-2 in the areas where the lead fraction was greater than zero. The RMSE is below the maximum

uncertainty of 40 cm for the region of interest and was found to range between 4.5 cm and 11 cm. Figure 18 demonstrates the5

spatial estimates with M2, observation and uncertainty.
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Figure 16. The absolute mean difference between the model freeboard for M0, M1 and M2 and CryoSat-2 for January, February and March

2011.
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Figure 17. The RMSE of freeboard measure for the regions where the lead fraction is above 0%.

Figure 18. The Freeboard from model M2, CryoSat-2 and the uncertainty of the observations for January, February and Match 2011.
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Figure 19 shows the observed freeboard from CryoSat-2, the uncertainty of observation, and the model M2. Only the model

results from M2 are given since there are only slight deviations for M0 and M1 from the observation. Moreover, we are

interested in the results of the assimilated model and how well it performs in the estimation of freeboard. The model values

are within the uncertainty limits of the observation. Also, note that the model results are monthly averaged, while CryoSat-2 is

a mosaic of daily measurements within a month. The spatial average of freeboard for the region, the observed value, and the5

uncertainty is shown in Figure 18. The average freeboard from the model lies within the uncertainty limits of the observation.

Figure 19. The freeboard from CryoSat-2, uncertainty of the observation and the model M2,

6 Conclusions

The assimilated models in the literature, and those implemented in forecasting centres use a constant drag formulation and lack

the details on deriving the parameters other than ice concentration, and ice thickness (Lemieux et al., 2016; Rae et al., 2015).

In this work a variable drag formulation is used for the friction associated with an effective sea ice surface roughness at the10

ice-atmosphere and ice-ocean interfaces and to compute the ice to ocean heat transfer. The results from the updated model were

compared with satellite derived measurements to validate the model estimates of ice concentration, ice thickness, freeboard.

Moreover, the model results were used to estimate relationship between sail and keel depth.

The modeled ice thickness demonstrated a good correspondence with the estimates from SMOS-MIRAS, except during the

period of maximum ice extent. The deviation in the results of ice thickness during March have to be further explored by tuning15

the parameters that contribute to the ice thickness in the non assimilated model as well as the assimilation parameters. The

thin ice category thicknesses are overestimated from October to November end but the values are within the uncertainty limits

of SMOS from December to March. Also, the SMOS estimates are influenced by the presence of snow and also during the

melt seasons the uncertainties of SMOS estimated ice thickness might increase in which case comparison with more reliable

data would be required. The model freeboard are compared with estimates from CryoSat-2, and the RMSE was found to range20

between 4.5 cm and 11 cm. The estimates of freeboard from the model are within the uncertainty values of the CryoSat-2

(below 40 cm).

The level ice draft and keel values derived from ULS were compared with the modeled values. The coefficient that related the

sail height and keel depth for the Makkovick region lies in a range 3−8 depending on the period of the year. Since the variable
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drag formulation depends on the assimilation methodology further sensitivity studies has to be conduted for the optimisation

of the model. The model will be made operational after further sensitivity studies.
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