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Abstract. Soils on the Qinghai-Tibetan Plateau (QTP) have distinct physical properties from 31 

agricultural soils due to weak weathering and strong erosion. These properties might affect 32 

permafrost dynamics. However, few studies have investigated both quantitatively. In this 33 

study, we selected a permafrost site on the central region of the QTP and excavated soil 34 
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samples down, to 200 cm. We measured soil porosity, thermal conductivity, saturated 1 

hydraulic conductivity, and matric potential in the laboratory. Finally, we ran a simulation 2 

model replacing default sand or loam parameters with different combinations of these 3 

measured parameters. Our results from the soil profile showed that the mass of coarse 4 

fragments in the soils samples (diameter >2 mm) were was ~55% on average, soil porosity 5 

was less than 0.3 m
3
 m

-3
, saturated hydraulic conductivity ranged from 0.004-0.03 mm s

-1
, 6 

and saturated matric potential ranged from -14 to -604 mm. When default sand or loam 7 

parameters in the model were substituted with these measured values, the model errors of soil 8 

temperature, soil liquid water content, active layer depth, and permafrost lower boundary 9 

depth were reduced (e.g., . The the root mean squared errors of active layer depths simulated 10 

using measured parameters versus the default sand and or loam parameters were about 0.28, 11 

1.06, and 1.83 m, respectively). Among these measured parameters, porositiesy played a 12 

dominant role in reducing model errors and were was tyipically much smaller than for soil 13 

textures used in land surface models. We also demonstrated that soil water dynamic processes 14 

should be considered, rather than using static properties under frozen and unfrozen soil states 15 

as in most permafrost models. We conclude that it is necessary to consider the distinct 16 

physical properties of coarse -fragment soils and water dynamics on the QTP when simulating 17 

permafrost dynamics of permafrost of the QTP. Thus it is important to develop methods for 18 

systematic measurement of physical properties of coarse fragment soils and to develop a 19 

related spatial dataset for porosity. 20 

Key words: Terrestrial Ecosystem Model; Active layer; Sensitivity test; Soil temperature; 21 

Soil water content; Porosity; Coarse fragment soils 22 

1 Introduction 23 

Permafrost underlies 25% of Earth’s surface. Degradation of permafrost has been reported 24 

extensively in Alaska, Siberia and the Qinghai-Tibetan Plateau (QTP; Boike et al., 2013; 25 

Jorgenson et al., 2006; Wu and Zhang, 2010). Permafrost thaw has global impacts by 26 

releasing large quantities of soil carbon previously preserved in a frozen state and enhancing 27 

concentrations of atmospheric greenhouse gases, which will promote further atmospheric 28 

warming and degradation of permafrost (Anisimov, 2007; McGuire et al., 2009). Permafrost 29 

dynamics also have local to regional impacts on ecosystems by altering soil thermal and 30 

hydrological regimes (Salmon et al., 2015; Wang et al., 2008; Wright et al., 2009; Ye et al., 31 
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2009; Yi et al., 2014a). In addition, degradation of permafrost affects infrastructure, such as 1 

QTP railways and roads (Wu et al., 2004) or the Trans-Alaska Pipeline System in Alaska 2 

(Nelson et al., 2001). Therefore, it is critical to develop mitigation and adaptation strategies in 3 

permafrost regions for ongoing climate change. Accurate projection of the degree of 4 

permafrost degradation is a prerequisite for developing these strategies.  5 

Significant effort has been made to improve modeling accuracy and efficiency of 6 

permafrost dynamics along two primary lines of inquiry. One is to create suitable freezing and 7 

thawing algorithms for different applications, including land surface models (Chen et al., 8 

2015; Oleson et al., 2010; Wang et al., 2017), permafrost models (Goodrich, 1978; Langer et 9 

al., 2013; Qin et al., 2017), and other related models (Fox, 1992; Woo et al., 2004). The other 10 

line of inquiry is focused on schemes of soil physical properties (Chen et al., 2012; Zhang et 11 

al., 2011), which play a critical role in permafrost dynamics. For example, porosity 12 

determines the maximum amount of water that can be contained in a soil layer, thermal 13 

properties determine the heat conduction within soil layers, and hydraulic properties 14 

determine the exchange of soil water between soil layers. The soil water content also 15 

determines the large amount of latent heat lost or gained by freezing or thawing, respectively. 16 

On the QTP, soil is coarse due to weak weathering and strong erosion (Arocena et al., 2012). 17 

Soils with gravel content (particle diameter >2 mm) have been reported in several studies 18 

(Chen et al., 2017; Du et al., 2017; Qin et al., 2015; Wang et al., 2011; Wu et al., 2016; Yang 19 

et al., 2009). These soil properties are likely different from those used in current modeling 20 

studies (Wang et al., 2013). For example, soil properties in Community Land Model are 21 

calculated from fractions of sand, silt and clay based on measurements of agriculture soils 22 

(Oleson et al., 2010). However, the physical properties of coarse- fragment soils on within the 23 

QTP and their effects on permafrost dynamics are under studied (Pan et al., 2017).  24 

 In this case study we investigated the characteristics of soil physical properties at a site on 25 

the central QTP and their effects on permafrost dynamics. We first measured soil physical 26 

properties of excavated soil samples in a laboratory. We then conducted a sensitivity analysis 27 

with an ecosystem model by substituting the default soil physical properties with those that 28 

we measured. We aimed to emphasize the effects of coarse fragment content on soil physical 29 

properties and on permafrost dynamics, rather than develop general schemes of soil physical 30 

properties for using in modeling studies on the QTP. 31 
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2 Methods 1 

2.1 Site description 2 

The site (34
o
49’46.2” N, 92

o
55’56.58” E, 4,628 m a.s.l.) is located in the Beiluhe basin, in the 3 

continuous permafrost region of the central QTP (Figure 1a, Zou et al. 2017). Based on the 4 

map of Li et al. (2015), soils of this region belong to Gelisols and Inceptisols, which occupy 5 

34% and 28% of the total area of permafrost region of the QTP, respectively. Land surface 6 

types include alpine meadow, alpine steppe, barren surface, and thermokarst lakes (Figure 1b; 7 

Lin et al., 2011).  8 

The site is on top of upland plain landforms, which are formed from fluvial and deluvial 9 

sediments. The surficial sediments are dominated by fine to gravelly sands and stones (Figure 10 

2; Yin et al., 2017). Soils at this site are Inceptisols (Dr. Wangping Li, Lanzhou University of 11 

Technology, personal communication) that are commonly underlain by mudstone. The plant 12 

community type is mainly alpine meadow which is dominated by monocotyledonous species, 13 

primarily Poaceae and Cyperaceae. The dominant species are Kobresia pygmaea, 14 

accompanyied by Elymus nutans, Carex moorcroftii, Oxytropis pusilla, Tibetia himalaica, 15 

Leontopodium nanum, and Androsace tapete (Figure 2c-e). 16 

A weather station was set up in 2002 (Figure 2a) to measure air temperature and relative 17 

humidity (2.2m, HMP45C-L11 /L36, Campbell Scientific Inc., USA), solar radiation (MS-18 

102, EKO, Japan), and precipitation (QMR102, Vaisala Company, FINLANDFinland). Soil 19 

temperatures were measured at depths of 5, 10, 20, 40, 80, and 160 cm using a PT-100 (EKO, 20 

Japan); soil moistures were measured at depths of 20, 40, 80, and 160 cm using a CS616-L50 21 

(EKO, Japan). A CR3000 data logger (Campbell Scientific Inc., USA) was used to store these 22 

data at  30 minute intervals. These readings were averaged or summed (e.g. precipitation) into 23 

monthly values to drive and validate the model. Based on measurements, multi-year mean 24 

annual air temperature, precipitation, downward solar radiation and relative humidity were -25 

3.61 
o
C, 365.7 mm, 206.3 W m

-2
 and 51.1%, respectively (Figure 3). The multi-year mean 26 

summer (June to August) air temperature and precipitation were 5.27 
o
C and 248.3 mm, 27 

respectively. The multi-year mean winter (December to February) air temperature and 28 

precipitation were -12.44 
o
C and 5.3 mm, respectively. The multi-year mean annual, summer, 29 

and winter soil temperatures at 40 cm were 0.17, 6.65, and -7.15 
o
C, respectively. Those at 80 30 

cm were  0.11, 4.32, and -4.86 
o
C, respectively 31 

A borehole was drilled in 2002, and thermistors made by the State Key Laboratory of 32 
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Frozen Soil Engineering, Chinese Academy of Sciences were installed at 0.5 m intervals from 1 

0.5 to 10 m, at 2 m intervals from 12 to 30 m, at 4 m intervals from 34 to 50 m,, and at 55 and 2 

60 m. Temperature accuracy of this type of thermistor is ±0.05 
o
C (Wu et al., 2016). The 3 

temperatures were recorded on the 5th and 20th days of each month using CR3000 data 4 

logger (Campbell Scientific Inc., USA). Based on our measurements, active layer depth is 5 

~3.3 m, depth of zero annual amplitude is ~6.2 m, and the lower boundary depth of 6 

permafrost is at a depth of ~20 m. The multi-year mean ground temperatures at 0.5, 6, and 60 7 

m are about -0.52, -0.30, and 1.81 
o
C, respectively.  8 

2.2 Soil sampling and measurement  9 

Permafrost dynamics are affected by atmosphere, vegetation, and soil textures, therefore, we 10 

excavated soil close to the weather station and borehole (Figure 2a) down to 2 m (Figure 2b) in 11 

August 2014. We used cut rings (10 cm diameter, 6.37 cm height and 500 cm
3
) to take soil 12 

samples at depth ranges of 0-10, 10-20, 20-30, 40-50, 70-80, 110-120, 150-160, and 190-200 13 

cm. Three replicates were sampled from the top of each depth range and sealed for analysis in 14 

the laboratory. Above 120 cm in the soil pit, coarse soil material was small enough in the cut 15 

rings. Below 150 cm, the material is weathered mudstone, which could also be sampled with 16 

our cut rings. Based on the excavated soil pit and measured soil temperature, this site belongs to 17 

Inceptisols with suborder of Gelept (soil taxonomy, ST, Soil Survey Staff, 2014). The soil pit 18 

consists of A horizon (~20 cm), Bw horizon (~20-80 cm) and C material dominated by 19 

fractured bedrock. 20 

We used the KD2 Pro (Decagon, US) to measure thermal conductivity of soil samples. The 21 

steps we took to determine soil properties for each sample were as follows: 1) the soil sample 22 

was dried in an oven and weighed (0.001g precision) to calculate bulk density; then 2) the soil 23 

sample was exposed to a constant temperature (20
o
C) for 24 h, after which a certain volume of 24 

water was injected into the soil sampless, and a KD2 Pro (Decagon, USA) was used to measure 25 

the thermal conductivity; next 3) the sample and the KD2 probe were put into a refrigerator at -26 

15
o
C for 12 h and thermal conductivity was measured again; 4) steps 2 and 3 were repeated at 27 

increasing levels of soil volumetric water content until soil samples were up to the point of 28 

saturation; finally, 5), the soil sample was saturated by immersed immersion in water under 29 

atmospheric pressure for 24 h and then it was weighed to calculate porosity, and the saturated 30 

unfrozen and frozen thermal conductivity were then measured, accordingly. The bulk density 31 
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(ρb, g cm
-3

), porosity (φm, m
3 

m
-3

) and volumetric water content (θliq, m
3 

m
-3

) were 1 

calculated with the following equations. :  2 

𝜌𝑏 =
𝑚𝑑𝑟𝑦−𝑚𝑐𝑟

𝑉𝑐𝑟
 (1) 3 

∅𝑚 =
𝑚𝑠𝑎𝑡−𝑚𝑑𝑟𝑦

𝑉𝑐𝑟
/𝜌𝑤  (2) 4 

𝜃𝑙𝑖𝑞 =
𝑊𝑚𝑎𝑙𝑙−𝑚𝑑𝑟𝑦

𝑉𝑐𝑟
/𝜌𝑤  (3) 5 

Wwhere mdry, msat, mall, mcr are mass of oven dried sample, saturated sample, sample with 6 

some water with cut ring, and empty cut ring (g), respectively. Vcr is the volume of cut ring 7 

(cm
3
). 𝜌𝑤 is the density of water (1 g cm

-3
). We also calculated porosity from bulk density (φ8 

c, g m
-3

): 9 

∅𝑐 = 1 −
𝜌𝑏

𝜌𝑝
  (4) 10 

Where where ρp is particle density (2.65 g cm
-3

). 11 

We used pressure membrane instruments (1500F1, Soilmoisture Equipment Corp, US) to 12 

measure the matric potential of soil samples (Azam et al., 2014; Wang et al., 2007), using both 13 

15 bar and 5 bar pressure chambers. Pressure values were set at 0, 10, 20, 40, 60, 80, 100, 150, 14 

200, 300, and 400 kpa. It usually took 3-4 days to finish one measurement at one pressure level. 15 

We used a soil permeability meter (TST-70, Nanjing T-Bota Scietech Instruments & Equipment 16 

Co., Ltd. China) to measure saturated hydraulic conductivity of soil samples (Gwenzi et al., 17 

2011). Finally, soil samples were sieved through a 2.0 mm mesh, and soil particle size 18 

distribution was determined with a laser diffraction analyzer (Malvern-2000, Worcestershire, 19 

UK). 20 

2.3 Model description 21 

To simulate soil temperatures, soil liquid water content, temperature in rock layers, active 22 

layer depth (ALD) and permafrost low boundary depth (PLB) dynamics we used a dynamic 23 

organic soil version of Terrestrial Ecosystem Model (DOS-TEM). Models from the TEM 24 

family simulate the carbon and nitrogen pools of vegetation and soil, and their fluxes among 25 

atmosphere, vegetation, and soil (McGuire et al., 1992). They have been widely used in 26 

studies of cold region ecosystems (e.g. McGuire et al., 2000; Yuan et al., 2012; Zhuang et al., 27 
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2004; 2010). The DOS-TEM consists of four modules, environmental, ecological, fire 1 

disturbance, and dynamic organic soil (Yi et al., 2010). The environmental module operates 2 

on a daily time interval using mean daily air temperature, surface solar radiation, precipitation, 3 

and vapor pressure, which are downscaled from monthly input data (Yi et al., 2009a). The 4 

module takes into account radiation and water fluxes among the atmosphere, canopy, snow 5 

pack, and soil.  6 

2.3.1 Implementation of soil thermal processes 7 

Earlier versions of TEM did not simulate soil temperature (McGuire et al., 1992). Zhuang et 8 

al. (2001) incorporated Goodrich (1978) permafrost model into TEM. Yi et al. (2009b) 9 

incorporated a two-directional Stefan algorithm to simulate soil freezing and thawing for 10 

complex soils with changes in soil organic and moisture content. Temperatures of all soil 11 

layers in the DOS-TEM are updated daily. Phase change is calculated first before heat 12 

conduction. A two-directional Stefan algorithm is used to predict the depths of freezing or 13 

thawing fronts within the soil (Woo et al., 2004). It first simulates the depth of the front in the 14 

soil column from the top downward, using soil surface temperature as the driving temperature. 15 

It then simulates the front from the bottom upward using the soil temperature at a specified 16 

depth beneath a front as the driving temperature (bottom-up forcing). The latent heat used for 17 

phase change is recorded for each soil layer. If a layer contains n freezing or thawing fronts, 18 

this layer is then explicitly divided into n+1 soil layers. All soil layers are grouped into 3 parts: 19 

1) those above the uppermost freezing or thawing front; 2) those below the lowermost 20 

freezing or thawing front; and 3) those between the uppermost and lowermost fronts. Soil 21 

temperatures are then updated by solving finite difference equations of each part with latent 22 

heat from phase change as an energy source or sink (Yi et al., 2014a). Soil surface 23 

temperature, which is used as a boundary condition, is calculated using daily air maximum, 24 

air minimum, radiation, and leaf area index (Yi et al., 2013).   25 

The version of the DOS-TEM in this study uses the Côté and Konrad (2005) scheme to 26 

calculate thermal conductivity (Yi et al., 2013; Pan et al., 2017), which is also been used by 27 

other studies on the QTP (e.g. Chen et al., 2012, Luo et al., 2009), and is as follows: 28 

 = {
       (1 −   )              1 

− 

                                                1 
−                                                                               (5) 29 
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where λ, λsat, λdry are soil thermal conductivity, saturated soil thermal conductivity, and dry 1 

soil thermal conductivity (W m
-1

 K
-1

), respectively, and ke is the Kersten number (Côté and 2 

Konrad, 2005). Dry thermal conductivity varies with soil properties according to: 3 

    =  1 
−                                                                                                                        (6) 4 

where χ (W m
-1

 K
-1

) and η (no unit) are parameters accounting for particle shape effects, 5 

which are specified for gravel, fine mineral and organic soil (Côté and Konrad, 2005), and φ6 

is porosity. Saturated thermal conductivity varies with water content and phase state 7 

according to: 8 

    = {
  
 − 

 𝑙𝑖𝑞
 
                          

  
 − 

 𝑖𝑐 
 
                        

                                                                                          (7) 9 

where λliq, λice, λs are thermal conductivities of liquid water, ice, and soil solid (W m
-1

 K
-1

), 10 

which are all constant values. T is soil temperature of soil (
o
C) and Tf is a constantthe soil 11 

freezing point temperature of soil (0 
o
C). In DOS-TEM, freezing or thawing processes are that 12 

is assumed to happen at Tfbe 0
 o

C in DOS-TEM, which is consistent with what happens in 13 

most land surface models (e.g. Oleson et al. 2010). 14 

2.3.2 Implementation of soil hydrological processes 15 

Surface runoff, infiltration, and water redistribution among soil layers are simulated in a 16 

similar way as Community Land Model 4 (Oleson et al., 2010). Soil matric potential (Ψ) 17 

determines the direction of water movement, and hydraulic conductivity describes the ease 18 

with which water can move through the soil. 19 

 =     (
 𝑙  

 
)−                                                                                                                        (8) 20 

where Ψsat is the saturated soil matric potential (mm H2O, hereafter mm), and B is the pore 21 

size distribution parameter. The soil hydraulic conductivity (K, mm s
-1

) is a function of the 22 

saturated soil hydraulic conductivity (Ksat) as follows: 23 

 =     (
 𝑙  

 
)                                                                                                                        (9) 24 

Several important features relating to permafrost have been considered in the DOS-TEM 25 

(see Yi et al., 2014b), including runoff from a perched saturated zone or exchanges of water 26 
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between the soil and a water reservoir. Runoff from a perched saturated zone above 1 

permafrost is implemented following Swenson et al. (2013): 2 

    𝑐 =    (      −     𝑐   )    (
 

   
 )                                                                               3 

(10) 4 

where αis an adjustable parameter (0.6 m
-1

), Kp is the mean saturated hydraulic conductivity 5 

within the perched saturated zone (mm s
-1

), zfrost and zperched are the depths to the permafrost 6 

table and the perched water table (m), respectively, and   is slope (
o
). 7 

The DOS-TEM has been verified against the Neumann Equation for water, mineral and 8 

organic soil under an idealized condition (Yi et al., 2014b), and validated against field 9 

measurements for various locations in Alaska, the Arctic, and the QTP (Yi et al., 2009b, Yi et 10 

al., 2013, Yi et al., 2014a). 11 

2.4 Model inputs and initialization 12 

We used the monthly averaged air temperature, downward radiation, precipitation and 13 

humidity as input to drive the DOS-TEM. Leaf area index (LAI), leaf area per unit ground 14 

surface area, was specified to be 0.6 m
2
m

-2
 in July and August, 0.1 m

2
m

-2 
in April and 15 

October, 0 m
2 

m
-2

 between November and March, and interpolated linearly in other months. It 16 

is used in the DOS-TEM to calculate ground surface temperature in combination with other 17 

meteorological variables (Yi et al., 2013). Its value is unchanged within each month. 18 

 Soil temperature and moisture were initialized at -1 
o
C and saturation. The temperature 19 

gradient at the bottom of bedrock was set to be 0.06 
o
C cm

-1
 based on borehole observations. 20 

Volumetric unfrozen liquid water in winter was set to be 0.1 based on observations. Multi-21 

year (2003-2012) mean monthly driving data were used to spin up the model for 100 yr. In 22 

this way, suitable initial values of soil moisture, temperature and rock temperature of each 23 

layer are generated before driving DOS-TEM with monthly data over the period of 2003-2012. 24 

2.5 Sensitivity analyses 25 

The soil textures on the QTP mainly consist of loam, sand, and coarse fragment soils (Wu and 26 

Nan, 2016). We used a uniform sand or loam soil profile to represent coarse and fine soil 27 

textures, respectively. Sands are the coarsest texture considered in most the modeling studies 28 
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(e.g. Oleson et al., 2010). Therefore, we used our measured parameters to substitute the 1 

parameters of sand and loam to investigate the effects of coarse-fragment soil parameters on 2 

permafrost dynamics. We first ran DOS-TEM using the default porosity, soil thermal 3 

conductivity (Equation 5), hydraulic conductivity (Equation 9), and matric potential schemes 4 

of these two default soil textures (Equation 8). The default parameters φ,Ψsat, Ksat and B were 5 

calculated based on soil texture used in Community Land Model 4 (Equations 8 and 9; Oleson 6 

et al., 2010). We then substituted the default values of φ,Ψsat, Ksat and B based on our 7 

laboratory measurements and calibration. Parameters Ψsat and B were fitted with measured 8 

matric potential data using Isqucurvefit tools of Matlab. We did not calibrate soil thermal 9 

conductivity to retrieve parameters of Equations 6 and 7. Instead, we interpolated measured 10 

thermal conductivities over a range of degrees of saturation (0 to 1), which was used as a 11 

lookup table by the DOS-TEM. Therefore, our sensitivity analyses considered a set of 4 12 

factors, i.e. porosity, matric potential (Ψsat and B), hydraulic conductivity (Ksat and B) and 13 

thermal conductivity. We also analyzed 3 different slopes slope gradients (0, 5, and 10
o
) and 3 14 

different soil thicknesses (3.25, 4.25, and 5.25 m) above 56 m of bed rock. There were 11 soil 15 

layers with the top 9 layers being 0.05, 0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, and 0.3 m thick. The 16 

thicknesses of the bottom 2 soil layers were 0.5 and 1 m, 0.5 and 2 m, and 1.5, and 2 m for the 17 

3.25, 4.25, and 5.25 m soil-thickness cases, respectively. There were 6 rock layers with 18 

thicknesses of 2, 2, 4, 8, 16, and 20 m. Since the site is on the top of an upland plain 19 

landforms, we did not further test the effects of aspect on radiation on ground surfacevariation. 20 

We instead considered the effects of slope on surface runoff. In summary, our sensitivity 21 

analyses with the DOS-TEM involved 288 different combinations of parameter values.  22 

We did not measure the heat capacity. The maximum and minimum heat capacities of 23 

mineral soil types considered in land surface model are 2.355 and 2.136 MJ m
-3

, respectively, 24 

giving a relative difference less than 10%. Therefore, in this study, we did not make 25 

sensitivity tests using thermal diffusivity (the ratio between thermal conductivity and heat 26 

capacity). 27 
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3 Results 1 

3.1 Soil physical properties  2 

3.1.1 Soil porosity, particle size and bulk density 3 

Results from laboratory analysis of the soil samples are shown in Table 1 and 2. The mean 4 

mass ratio of the coarse soil fraction (particle size diameter > 2 mm) of different soil layers 5 

ranged from 0.38 to 0.65 with a mean of 0.55. According to the USDA classification system 6 

(clay (<2 μm), silt (2 –50 μm, in this study 2-63 μm)  and sand (50μm -2.0 mm, in this 7 

study 63μm -2.0 mm)), the major soil texture of this site was loamy sand, with the exception 8 

of sandy loam at 20-30 cm depth. The default porosities of sand and loam were 37.3% and 9 

43.5%, respectively. The φm of samples down to 2 m depth ranged from 21% to 30% with a 10 

mean of 27%, and the mean ρb ranged from 1.61 to 1.86 g cm
-3 

with a mean of 1.74 g cm
-3

. 11 

The φc (Equation 4) ranged from 29.8% to 39.2%. No significant relationships were found 12 

among φm, ρb , and the coarse soil fraction (p>0.05).  13 

3.1.2 Thermal conductivity 14 

The results of the thermal conductivity determinations are shown in Table 3. The unfrozen 15 

λdry of different soil layers ranged from 0.24 to 0.40 W m
-1

 K
-1

 with a mean of 0.36 W m
-1

 K
-1

 , 16 

and the frozen λdry ranged from 0.25 to 0.41 W m
-1

 K
-1

 with a mean of 0.35 W m
-1

 K
-1

. The 17 

difference of λdry between frozen and unfrozen states was small. The unfrozen λsat of different 18 

soil layers ranged from 2.15 to 2.74 W m
-1

 K
-1

 with a mean of 2.48 W m
-1

 K
-1

. The frozen λsat 19 

ranged from 3.06 to 3.72 W m
-1

 K
-1

 with a mean of 3.33 W m
-1

 K
-1

. The difference of λsat 20 

between frozen and unfrozen states was about 0.85 W m
-1

 K
-1

. There existed a threshold of 21 

soil saturation (i.e. ~0.28 m
3
 m

-3
), below which frozen soil thermal conductivity was slightly 22 

smaller than unfrozen soil (Figure 4a).  23 

Results from determining thermal conductivities using the Côté and Konrad (2005) scheme 24 

are shown in Figure 4b. The default frozen and unfrozen λdry for sand and loam were about 25 

0.42 and 0.24 W m
-1

 K
-1

, respectively. The frozen and unfrozen λsat of sand were 3.11 and 26 

1.90 W m
-1

 K
-1

, respectively. Those of loam were about 2.36 and 1.33 W m
-1

 K
-1

, respectively. 27 

Results from determining thermal conductivities using the Farouki (1986) scheme are shown 28 
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in Figure 4c. The default frozen and unfrozen λdry for sand and loam were about 0.97 and 0.63 1 

W m
-1

 K
-1

, respectively. The frozen and unfrozen λsat of sand were 5.21 and 3.18 W m
-1

 K
-1

, 2 

respectively. Those of loam were about 4.49 and 2.52 W m
-1

 K
-1

, respectively.  3 

3.1.3 Saturated hydraulic conductivity 4 

The mean Ksat of soil layers, shown in Table 4, ranged from 0.0036 to 0.0315 mm s
-1

. The 5 

maximum Ksat was about 8.7 times larger than the minimum. The Ksat tended to be larger with 6 

increasing proportion of coarse fragment in the soil samples (Figure 5a), and was about 0.03-7 

0.06 mm s
-1

 for some samples with coarse fragment greater than 70%. The default Ksat of sand 8 

and loam were 0.024 and 0.0042 mm s
-1

, respectively.   9 

3.1.4 Matric potential 10 

The correlation coefficients between calculated and fitted Ψmatric potential, shown in Table 4, 11 

were all greater than 0.96. The mean absolute value of Ψsat of soil layers ranged from 14.47 to 12 

603.7 mm, and those of B ranged from 1.89 to 5.22 (Table 4 and Figure 5b). The default 13 

absolute value of Ψsat of sand and loam were 47.29 and 207.34 mm, respectively, and the B 14 

values 3.39 and 5.77, respectively.  15 

3.2 Comparisons between simulations using default vs. measured parameters 16 

3.2.1 Soil temperature 17 

The mean root mean squared errors (RMSEs) between monthly measured soil temperatures 18 

and model runs with measured parameters using different combination of soil thicknesses 19 

(3.25, 4.25, and 5.25 m) and slopes (0, 5, and 10
o
) were about 1.07 

o
C at 20 cm (Figure 6c). 20 

The mean RMSEs for all model runs with default sand and loam parameters were about 0.97 21 

and 1.18 
o
C, respectively. For other soil layers, the RMSEs of model runs with measured 22 

parameters were much smaller than those with default sand and loam parameters (Figures 6d-23 

l). The simulated soil temperatures using default sand and loam parameters were all lower 24 

than measured ones in summer at 100 and 200 cm, and in winter at 400 cm. The RMSEs can 25 

be as large as 2.53 
o
C (Figure 6e). 26 

   The standard deviations of soil temperatures among different slopes and soil thicknesses 27 

using measured parameters were larger than those using the default parameters (Figure 6); and 28 
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they increased from 0.40 
o
C at 100 cm to 0.61 

o
C at 200 cm (Figure 6f and i). The standard 1 

deviations using default loam parameters were smaller (<0.15 
o
C at all depths) than those 2 

using default sand parameters.  3 

3.2.2 Soil liquid water 4 

The mean RMSEs between monthly measured θliq and model simulations with measured 5 

parameters ranged from 0.03 to 0.09, which were smaller than RMSEs for sand and loam 6 

parameters (Figure 7). The model simulations for loam parameters have larger RMSEs than 7 

those for sand parameters. θliq was always overestimated in warm seasons at depths of 10, 40 8 

and 80 cm. θliq was underestimated at a depth of 160 cm, where the simulated soil was 9 

frozen. All model simulations overestimated θliq at 40 cm, where the maximum measured θ10 

liq were about 0.1 (Figure 7d-f).   11 

The standard deviations of θliq among different slopes and soil thicknesses using sand 12 

parameters were about 0.077, which were larger than those using measured parameters 13 

(~0.062). The standard deviations of θliq using loam parameters (<0.032) were less than 14 

those using measured parameters. 15 

3.2.3 Active layer depth (ALD) 16 

The mean RMSEs between measured ALDs (derived from linear interpolation of soil 17 

temperatures) and modelled ALDs (simulated explicitly) were about 1.06, 1.72, and 0.28 m 18 

for model runs with sand, loam, and measured parameters (Figure 8a). The mean standard 19 

deviations were about 0.088, 0.026, and 0.28 m. All simulations using sand and loam 20 

parameters underestimated ALDs. When φm was replaced withφc, the mean RMSEs and 21 

standard deviations were about 0.55 m and 0.12 m, respectively. 22 

3.2.4 Permafrost lower boundary (PLB) 23 

The mean RMSEs between measured PLBs (derived from linear interpolation of temperatures) 24 

and modelled PLBs (derived from linear interpolation of simulated bed rock temperatures) 25 

were about 10.25, 10.23, and 6.71 m for model runs with sand, loam, and measured 26 

parameters (Figure 8b). The mean standard deviations were about 1.89, 1.51, and 6.62 m. All 27 

simulations using sand and loam parameters overestimated PLBs. When φm was replaced 28 
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with φ c, the mean RMSEs and standard deviations were about 4.78 m and 2.82 m, 1 

respectively.  2 

3.3 Model sensitivity analyses 3 

Deep soil layers used in models are usually specified as being thick. For example, a 1 m thick 4 

soil layer was used in our simulations starting around 3 m soil depth. Soil temperatures at this 5 

depth are usually close to 0 
o
C. Therefore, the RMSEs of deep soil layers were small and did 6 

not facilitate evaluation of model sensitivities. In the following subsections, we used 20 and 7 

100 cm soil temperatures, ALDs and PLBs for sensitivity analysis. 8 

3.3.1 Effects of single parameter sensitivity analyses 9 

Porosity 10 

Replacing default sand or loam porosity withφm changed mean RMSEs of soil temperatures 11 

(model runs with 3 different slopes and 3 different soil thicknesses at 2 different soil depths) 12 

from 1.18 or 1.84 
o
C to 1.25 or 1.09 

o
C, respectively (Figure 9 and 10). Mean RMSEs of ALD 13 

were reduced from 1.06 or 1.72 m to 0.22 or 0.85 m, respectively. Mean RMSEs of PLB were 14 

changed from 10.26 or 10.24 m to 6.61 or 10.97 m.  Mean RMSEs of θliq were reduced from 15 

0.074 or 0.14 to 0.06 or 0.062 whenφm were used for replacing default sand or loam porosity, 16 

respectively (Figure 11 and 12).  17 

Thermal conductivity 18 

Replacing default sand or loam thermal conductivity with measured parameters reduced mean 19 

RMSEs of soil temperatures from 1.18 or 1.84
o
C to 1.02 or 1.15

o
C, respectively (Figure 9 and 20 

10). Mean RMSEs of ALD were reduced from 1.06 or 1.72 m to 0.56 or 1.04 m, respectively. 21 

Mean RMSEs of PLB were changed from 10.26 or 10.24 m to 4.18 or 1.27 m, respectively. 22 

Mean RMSEs of θliq changed very slightly (Figure 11 and 12).  23 

Hydraulic conductivity and matric potential 24 

Replacing default sand or loam hydraulic conductivity with measured parameters had very 25 

small effects on mean RMSEs of soil temperatures and ALDs (Figure 9 and 10). The same 26 

was true for matric potential. When hydraulic conductivity of default sand or loam was 27 

substituted, mean RMSEs of PLB decreased or increased, respectively. However, when 28 
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matric potential was substituted, mean RMSEs of PLBs increased or decreased, respectively. 1 

When hydraulic conductivity or matric potential parameters were substituted in default sand 2 

or loam parameters, mean RMSEs of θliq changed slightly (Figure 11 and 12).  3 

3.3.2 Effects of combined parameters 4 

We compared model simulations with different combinations of measured parameters 5 

(porosity, thermal conductivity, hydraulic conductivity and matric potential) to those with one 6 

substituted measured parameter. We ranked those model runs with less RMSEs than the best 7 

of the model runs with one parameter substituted with a measurement-derived value (Table 5 8 

and 6). We didn’t consider the 10 cm soil temperature, which were similar among all model 9 

runs.  10 

For sand, model simulations with porosity and thermal conductivity and/or hydraulic 11 

conductivity substituted had 4 outcomes with lower RMSEs (Table 5 and Figures 9 and 11). 12 

Only 2 out of 7 outcomes had lower RMSEs with all 4 parameters substituted. Among all the 13 

18 cases with RMSEs less than the individual "best" RMSE, porosity was included 18 times, 14 

and thermal conductivity and hydraulic conductivity were included 10 times. 15 

For loam, model simulations with porosity and thermal conductivity substituted had 5 16 

outcomes with lower RMSEs (Table 6 and Figures 10 and 12). Among all the 27 cases with 17 

RMSEs less than the individual “best” RMSE, porosity was included 27 times, and thermal 18 

conductivity was included16 times, and matric potential 14 times. 19 

3.3.3 Effects of slope and soil thickness 20 

Changes of slope alone had small effects on simulated soil temperatures and ALDs (Figures 9 21 

and 10). An increase of slope generally reduced RMSEs of θliq (Figures 11 and 12). Model 22 

simulations with porosity substituted had smaller differences in θliq RMSE between different 23 

cases of slopes. For example, the mean RMSEs of model simulations with slopes of 0
o
 or 5

o
 24 

and sand parameters substituted with φm were 0.078 or 0.048, respectively. While those with 25 

porosity not substituted were 0.141 or 0.055, respectively. Similarly, the mean RMSEs of 26 

model simulations using default loam parameters with porosity substituted were 0.08 or 0.05 27 

for slope of 0
o
 or 5

o
, respectively. The mean RMSEs were 0.18 or 0.1 with porosity not 28 
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substituted, respectively. For a further increase of slope to 10
o
, changes of RMSEs of θliq at 1 

depths of 10-160 cm were small. 2 

Soil thickness had small effects on 20 and 100 cm soil temperatures and 10-160 cm θliq, 3 

and it had prominent effects on PLB for a few cases only with a slope of 10
o
 (Figures 9 and 4 

10). 5 

4 Discussion 6 

4.1 Characteristics of soil physical properties  7 

Although the effects of coarse fragment soils on permafrost dynamics have been considered 8 

in a few modelling studies, the thermal and hydraulic properties of coarse fragment soils were 9 

calculated without validation or calibration (Pan et al., 2017; Wu et al., 2018). To our 10 

knowledge, this is the first study measuring physical properties of coarse fragment soil 11 

samples from permafrost region of the QTP. 12 

The weight fraction of coarse fragment (diameter > 2mm, including gravel) in the soil 13 

samples we analysed was greater than 55% on average. While the typical soil types 14 

considered in land surface models and other models usually have much smaller diameter. For 15 

comparison, the fractions of gravel considered in Pan et al. (2017) ranges from 5% to 33% 16 

and from 10% to 28% for the Madoi and Naqu sites, respectively. The Beiluhe site and the 17 

aforementioned sites are located in regions with Gelisols and Inceptisols, which occupy ~62% 18 

of the permafrost regions of the QTP (Li et al., 2015). It is possible that coarse fragment soils 19 

commonly exist on the QTP. The dataset of Wu and Nan (2016) indicated that gravel content 20 

widely exists on the middle and western part of the QTP. The saturated hydraulic conductivity 21 

and matric potential of soil samples measured in this study were more similar to sand than to 22 

loam (see Section 3.1). It is consistent with the study of Wang et al. (2013) that coarse soil 23 

material has poor water holding capability. 24 

The measured thermal conductivities of saturated soil samples were relatively close to 25 

those estimated by the Côté and Konrad (2005) scheme. But they were much less than those 26 

estimated by the Farouki scheme (Figure 4). Several other studies also found that Farouki 27 

scheme overestimated soil thermal conductivity (Chen et al. 2012; Luo et al., 2009).  28 
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One important finding of this study is the relatively small value of porosity. Theφm ranged 1 

from 0.206 to 0.302, which is less than those of soil types considered in land surface models. 2 

For example, the porosities of mineral soil types considered in Community Land Model range 3 

from 0.37 to 0.48 (Oleson et al., 2010). Porosity determines the maximum water stored in a 4 

soil layer, and affects soil thermal conductivity, hydraulic conductivity and matric potential 5 

(Equation 6-9). It plays a more important role than other parameters in simulated soil thermal 6 

and hydrological dynamics (Table 5 and 6; Figure 9-12). It is noteworthy that it is easy and 7 

efficient to measure porosity. 8 

4.2 Effects of soil water on permafrost dynamics 9 

Soil water not only affects soil thermal properties (e.g. thermal conductivity and heat 10 

capacity), but also affects the amount of latent heat lost or gained, for freezing or thawing, 11 

respectively (Goodrich, 1978; Farouki, 1986). Soil water is determined by infiltration, 12 

evapotranspiration, water movement among soil layers, subsurface runoff and exchange with 13 

a water reservoir. Therefore, processes or parameters that affect soil water dynamics will also 14 

affect permafrost dynamics. This study quantitatively assessed the effects of soil water on 15 

permafrost dynamics. For example, when default loam parameters with high porosity and low 16 

saturated hydraulic conductivity were used, soil layers were almost saturated (Figure 7). The 17 

simulated ALDs were about 1.58 m, which was less than half of measured ALDs (Figure 8a). 18 

When the slope was 0
o
, subsurface runoff didn’t occur in the saturated zone above the bottom 19 

of the active layer. The simulatedθliq was generally higher in the active layer. However, 20 

when the slope was 5
o
, the simulatedθliq was less and the RMSE was smaller (Figure 11 and 21 

12). These patterns were especially obvious when both porosity and saturated hydraulic 22 

conductivity were large (Equation 10; Figure 11 and 12). Other studies have also emphasized 23 

the importance of subsurface runoff above the bottom of the active layer (Frey and 24 

McClelland, 2009; Walvoord and Striegl, 2007). The effects of soil water content on soil 25 

thermal dynamics increased with soil and rock depth (Figure 9 and 10). The biggest effects 26 

were on PLB, which became manifest during long-term spinup procedures.  27 

Land surface models generally represent soil water dynamics (e.g. Chen et al., 2015; 28 

Oleson et al., 2010; Wang et al., 2017). However, the thermal processes in permafrost models 29 

usually use specified thermal properties, which were static during model simulations (Li et al., 30 

2009; Nan et al., 2005; Qin et al., 2017; Zou et al., 2017). As shown in this study, variation of 31 
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soil water content in coarse- fragment soils strongly affects the thermal and hydrological 1 

properties, thus it is critical to simulate soil water dynamics to properly project permafrost 2 

dynamics in the future. 3 

4.3 Limitations and Outlook 4 

4.3.1 Sampling and laboratory measurement 5 

We used cut rings with 10 cm diameter to sample soil and weathered mudstones. However, it 6 

is very likely that there could have been much bigger coarse fragment soils. Therefore, larger 7 

containers should be used to take samples for further laboratory analysis in the future.  8 

During our laboratory work, we found two phenomena. First, we originally used the QL-9 

30 thermophysical instrument (Anter Corporation, US) to measure thermal conductivity. It 10 

worked properly under unfrozen condition. However, when frozen, the surface of the soil 11 

sample was usually uneven due to frost heave, which reduces the contact between the QL-30 12 

plate and the soil sample surface. The measured frozen thermal conductivities were smaller 13 

than unfrozen thermal conductivity even for the case of saturation, which were definitely 14 

wrong, thus we used the KD2 pro Pro to determine thermal conductivities. The second 15 

phenomenon was that there seems to be a threshold of soil saturation, below which unfrozen 16 

soil thermal conductivity is greater than frozen soil thermal conductivity (Figure 4a). This 17 

pattern was somewhat exhibited in estimates of the Côté and Konrad (2005) scheme (Figure 18 

4b), but not in the estimates of the Farouki scheme (Figure 4c). More measurements using 19 

instruments with higher accuracy should be made in the future.  20 

The measured porosities are generally smaller than those calculated from bulk density. 21 

We made additional model simulations using porosities calculated from bulk density in 22 

combination with other measured parameters. Our results showed that the RMSEs of ALD 23 

and PLB were 0.55 m and 4.78 m, respectively (Figures not shown), whereas those calculated 24 

using φm were 0.28 m and 6.71 m, respectively.  There is a variety of methods for measuring 25 

soil porosity (Stephens et al., 1998). The method used in this study is widely used for its 26 

simplicity (e.g. Chen et al., 2012), and only requires measuring weights of samples under 27 

saturation and dry conditions (Equation 2). Though Soil soil samples were immersed in water 28 

under atmospheric pressure for 24 h to research saturation. , It it is possible that some air still 29 

remained in soil after 24 h immersion under atmospheric pressure, although but most of our 30 
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soil samples contained coarse fragments. It is ideal to immerse soil samples in water under a 1 

vacuum condition to draw air out of soil samples completely in future studies. and we 2 

assumed the volume of any remaining air to be negligible. 3 

4.3.2 Model simulation 4 

Although the DOS-TEM using measured parameters provided satisfactory results, there are 5 

some aspects requiring further improvement in the future. For example, the measured soil 6 

moistures at 40 cm depth were less than 0.1 m
3
 m

-3
. However, the simulated soil moistures 7 

were always much greater (Figure 7f). There were also spikes in measured soil moistures at 8 

80 and 160 cm depths, which were not presented in the simulation (Figure 7 i and l). In the 9 

DOS-TEM, the unfrozen soil water content, or supercold water, was prescribed to be 0.1 m
3
 10 

m
-3

. When soil is freezing, if soil liquid water content is less than this value, no phase change 11 

will happen (Figure 7k). Therefore, model results would improve with the capability to 12 

simulate the dynamics of unfrozen soil water content (Romanovsky and Osterkamp, 2000).  13 

The TEM family models use monthly atmospheric data as driving for both site and 14 

regional applications. In this study, 30 min and daily driving data are available. Although it is 15 

possible to lose fidelity after daily interpolations, we still decided to use monthly driving data 16 

for the following reasons: 1) Zhuang et al. (2001) performed a test with daily and monthly 17 

driving datasets. , and the The results showed that the RMSEs of ALD were about 3 cm; and 2) 18 

we will intend to apply the model over large regions where reliable daily datasets might not 19 

be available.  20 

4.3.3 Regional applications 21 

The Coarse coarse fragment content of soils affects its soil physical properties. For example, 22 

soil porosity and saturated hydraulic conductivity are determined by the fraction of gravel, 23 

diameter, and degree of mixture (Zhang et al., 2011). Thus soil texture plays an important role 24 

in permafrost dynamics (Figure 8). The dominant soil texture on the QTP from Wu and Nan 25 

(2016) are loam, sand, and gravel. The specification of loam in simulations results in 26 

estimates of ALD that are much smaller than measurements (Yi et al., 2014a). To properly 27 

simulate the distribution and dynamics of permafrost on the QTP under climate change 28 

scenarios, it is important to develop proper schemes of soil physical properties in relation to 29 
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coarse fragment content (including gravel) and to develop regional datasets of soil texture for 1 

input.  2 

Organic soil carbon content in mineral soil on the QTP affects soil porosity and thermal 3 

conductivity (Chen et al., 2012). However, in the site considered in this study, the amount of 4 

organic soil carbon in soil was small (Figure 2), and we did not explicitly consider the effects 5 

of organic soil carbon on soil properties. Alpine swamp meadow, alpine meadow, alpine 6 

steppe and alpine desert are the major vegetation types on the QTP (Wang et al., 2016; see 7 

also Figure 1b). Alpine swamp meadow and alpine meadow usually contain fine soil particles 8 

and high organic carbon density; while the other two types usually contain coarse soil particle 9 

and low organic carbon density (Qin et al., 2015). More laboratory work is needed to develop 10 

proper schemes for representing mixed soil with fine mineral, coarse fragment (including 11 

gravel), and organic carbon in permafrost models. It is the first priority to develop schemes 12 

that make use of porosity data sets, due to its importance and simplicity of measurement. 13 

The development of a spatially explicit dataset of soil texture is also required for regional 14 

projections of permafrost changes on the QTP. Currently, a preliminary dataset considering 15 

gravel exists (Wu and Nan, 2016), though gravel soil has only been mentioned in a few papers 16 

on the QTP (Chen et al., 2015; Wang et al., 2011; Yang et al., 2009). One way to improve the 17 

regional dataset is to collect relevant data through extensive field campaigns (e.g. Li et al., 18 

2015). Ground penetrating radar is a feasible tool to retrieve soil thickness above the coarse 19 

fragment soil layer (Han et al., 2016), and coarse fragment soils can be identified in aerial 20 

photos taken with unmanned aerial vehicles (Chen et al., 2017; Yi 2017). In combination with 21 

ancillary datasets (e.g. geomorphology, topography, vegetation), it is possible to improve the 22 

accuracy of spatial datasets of soil texture on the QTP (Li et al., 2015; Wu et al., 2016). 23 

Another way is to retrieve soil physical properties using data assimilation technology, such as 24 

Yang et al. (2016) who assimilated porosity using a land surface model and microwave data.  25 

5 Conclusions 26 

In this study, we excavated soil samples from a permafrost site on the central QTP and 27 

measured soil physical properties in laboratory. Coarse fragments were common in the soil 28 

profile (up to 65% of soil mass) and porosity was much smaller than the typical soil types 29 

used in land surface models. We then performed a sensitivity analysis of these parameters on 30 
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soil thermal and hydrological processes within a terrestrial ecosystem model. When default 1 

sand or loam parameters were substituted with measured soil properties, the model errors of 2 

active layer depth were reduced by 74% or 84%, respectively. Those, whereas those of 3 

permafrost low boundary were reduced 35% or 34%, respectively. Our Sensitivity sensitivity 4 

analyses showed that porosity played a more important role in reducing model errors than  the 5 

other soil properties examined. Though it is unclear how representative this soil is in the QTP, 6 

it is clear that soil physical properties specific to the QTP should be used to properly project 7 

permafrost dynamics into the future.  8 
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Table 1. The mean (standard deviation in brackets) of measured soil bulk density (ρb, g cm
-

1 

3
), calculated porosity calculated from bulk density (φc, m

3
 m

-3
), and measured porosity  (φm, 2 

m
3
 m

-3
) of different layers based on soil samples in this study. 3 

 4 

Layer 

(cm) 

 ρb 

φc  

φm 

 

0—10 1.74（0.21） 34.4（0.08） 28.4（0.03） 

10—20 1.81（0.11） 31.8（0.04） 27.7（0.02） 

20—30 1.86（0.32） 29.7（0.12） 30.2（0.05） 

40—50 1.61（0.23） 39.4（0.09） 29.6（0.02） 

70—80 1.62（0.20） 38.8（0.08） 20.6（0.11） 

110—120 1.75（0.09） 33.9（0.04） 27.7（0.01） 

150—160 1.70（0.15） 36.0（0.06） 26.3（0.02） 

190—200 1.81（0.09） 31.6（0.03） 27.1（0.02） 

  5 



 29 

Table 2. The particle size diameter fractions (for >2 mm this is the mass ratio between soil 1 

particles greater than 2 mm and total soil sample, while for the other fractions this is the ratio 2 

between mass of the soil in the size range and the mass of  all particles < 2mm）and soil 3 

texture (based on USDA classification) of different layers based on soil samples in this study. 4 

 5 

Layer 

(cm) 
>2 mm 

2mm  

-  

63μm 

63-2μm <2μm Texture 

0—10 
0.38

（0.07） 

0.77 

（0.07） 

0.18 

（0.04） 

0.05

（0.02） 

Loamy 

sand 

10—20 
0.52 

（0.14） 

0.72 

（0.11） 

0.20 

（0.05） 

0.07

（0.05） 

Loamy 

sand 

20—30 
0.55

（0.17） 

0.69 

（0.09） 

0.24 

（0.08） 

0.07 

（0.01） 

Sandy 

loam 

40—50 
0.55 

（0.19） 

0.70 

（0.13） 

0.26 

（0.11） 

0.04

（0.02） 

Loamy 

sand 

70—80 
0.65

（0.16） 

0.71 

（0.09） 

0.25 

（0.07） 

0.04

（0.02） 

Loamy 

sand 

110—120 
0.63

（0.05） 

0.79 

（0.09） 

0.19 

（0.08） 

0.03

（0.02） 

Loamy 

sand 

150—160 
0.63 

（0.09） 

0.85 

（0.04） 

0.13 

（0.03） 

0.02 

（0.01） 

Loamy 

sand 

190—200 
0.50

（0.19） 

0.71 

（0.19） 

0.24 

（0.14） 

0.05

（0.05） 

Loamy 

sand 

 6 

  7 

  8 
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Table 3. The mean (standard deviation in brackets) of the measured frozen and unfrozen dry 1 

and saturated soil thermal conductivity (W m
-1

 K
-1

) of different soil layers. 2 

 3 

 Dry Saturated 

Layer (cm) Unfrozen Frozen Unfrozen Frozen 

0-10 0.238 (0.09) 0.414 (0.09) 2.322 (0.17) 3.122 (0.48) 

10~20 0.340 (0.04) 0.365 (0.23) 2.147 (0.47) 3.193 (0.55) 

20-30 0.395 (0.07) 0.420 (0.11) 2.743 (0.38) 3.059 (0.29) 

40-50 0.346 (0.00) 0.388 (0.14) 2.539 (0.30) 3.184 (0.33) 

70-80 0.340 (0.03) 0.289 (0.12) 2.589 (0.16) 3.362 (0.38) 

110-120 0.400 (0.06) 0.271 (0.07) 2.616 (0.11) 3.721 (0.05) 

150-160 0.401 (0.01) 0.248 (0.07) 2.246 (0.19) 3.647 (0.48) 

190-200 0.399 (0.26) 0.392 (0.14) 2.609 (0.12) 3.329 (0.19) 

 4 

  5 



 31 

Table 4. The mean (standard deviation) of measured saturated hydraulic conductivity (Ksat; 1 

mm s
-1

) and fitted absolute value of saturated matric potential (    ; mm), fitted pore size 2 

distribution parameter (B) and the correlation coefficients (R
2
) between calculated matric 3 

potential using fitted equations and measured. 4 

 5 

 Ksat Matric potential 

Layer (cm)      B R
2
 

0-10 0.0285 (0.0274) 49.14 4.03 0.991 

10~20 0.0056 (0.0036) 70.66 4.49 0.996 

20-30 0.0047 (0.0027) 27.02 5.22 0.994 

40-50 0.0078 (0.0043) 143.4 3.59 0.994 

70-80 0.0072 (0.0054) 179.6 3.22 0.993 

110-120 0.0315 (0.0054) 603.7 1.89 0.969 

150-160 0.0053 (0.0028) 49.17 2.97 0.993 

190-200 0.0036 (0.0023) 14.47 4.565 0.989 

 6 

  7 
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Table 5. Model performance when default sand parameters are substituted with combinations 1 

of measured porosity (I), thermal conductivity (II), hydraulic conductivity (III) and matric 2 

potential (IV). 3 

 Best I 

II 

I  

III 

II 

V 

II 

III 

II 

IV 

I 

III 

V 

I 

II 

III 

I 

II 

IV 

I 

III 

IV 

II 

III 

IV 

All 

100 cm ST II            

ALD I  1          

PLB II 1 2          

10 cm SM I 7 2 4    1 5 6  3 

40 cm SM I            

80 cm SM I 7 1 4    2 6 5  3 

160 cm CM I 1           

Note: Best column shows the model simulations (individual parameter substitution) with the 4 

smallest root mean squared error (RMSE) for 100 cm soil temperature (ST, 
o
C), active layer 5 

depth (ALD, m), permafrost low boundary (PLB, m), 10, 40, 80 and 160 cm soil liquid water 6 

content (SM, -);  Numbers indicate the combination of parameters that have smaller RMSE 7 

than the best model run using individual parameter substitution. “All” indicates the 8 

combination of all 4 parameters. The smallest number indicates the smallest RMSE. 9 

 10 

 11 

 12 

  13 
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Table 6 Model performance when default loam parameters are substituted with combinations 1 

of measured porosity (I), thermal conductivity (II), hydraulic conductivity (III) and matric 2 

potential (IV) . 3 

 4 

 Best I 

II 

I 

III 

I 

IV 

II 

III 

II 

IV 

I 

III 

V 

I 

II 

III 

I 

II 

IV 

I 

III 

IV 

II 

III 

IV 

All 

100 cm ST I 1  2     3    

ALD I 3 5     1 2 6  4 

PLB II            

10 cm SM I 7 6 1    5 2 4  3 

40 cm SM I 5 7 1    6 3 4  2 

80 cm SM I            

160 cm SM I 1 3     2     

 5 
Note: Best column shows the model simulations (individual parameter substitution) with the 6 

smallest root mean squared error (RMSE) for 100 cm soil temperature (ST, 
o
C), active layer 7 

depth (ALD, m), permafrost low boundary (PLB, m), 10, 40, 80 and 160 cm soil liquid water 8 

content (SM, -);  Numbers indicate the combination of parameters that have smaller RMSE 9 

than the best model run using individual parameter substitution. “All” indicates the 10 

combination of all 4 parameters. The smallest number indicates the smallest RMSE.11 



 34 

Figure 1. Locations of a) Beiluhe permafrost station on the Qinghai-Tibetan Plateau, and b) 1 

the weather station and the surrounding environment (Map data: Google, DigitalGlobe). 2 

 3 

  4 
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Figure 2. Images of site conditions: a) the aerial view of the weather station and the 1 

excavated soil pit (the borehole is located in the lower left corner of white fence); b) the 2 

detailed view of the excavated soil pit; and c)-e) examples of vegetation, gravel and stones 3 

(iron frame is about 0.5 m×0.5 m). 4 

 5 

 6 

 7 

  8 
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Figure 3. Time series of data measured at the Beiluhe weather station, Qinghai-Tibetan 1 

Plateau, 2003 to 2011: a) air temperature (TA, 
o
C); b) downward solar radiation (R, W m

-2
); c) 2 

precipitation (PREC, mm); and d) relative humidity (RH, %). 3 

  4 



 37 

Figure 4. The relationship between soil saturation (solid and dotted lines represent frozen and 1 

unfrozen cases) and soil thermal conductivity (λ, W m
-1

K
-1

) from: a) measured values 2 

(Measured; dots and empty diamonds represent measured frozen and unfrozen soil thermal 3 

conductivities, respectively); b)  using the Côté and Konrad (2005) scheme (CK); and c) 4 

using the Farouki (1986) scheme (Farouki).  5 

 6 

 7 
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Figure 5. The relations between: a) saturated hydraulic conductivity (Ksat, mm s
-1

) and coarse 1 

fragment fraction (Solid dots represent measured value; empty circle and empty triangle 2 

represent the corresponding values of sand and loam used in Community Land Model, 3 

respectively), and b) soil saturation (m
3
 m

-3
, lines) and absolute value of matric potential ( , 4 

mm H2O) at three representative depths (solid and dashed lines represent default values 5 

(Oleson et al., 2010) of sand and loam, respectively). 6 

 7 

 8 

 9 

  10 



 39 

Figure 6. Comparisons of soil temperatures (T, 
o
C) simulated using default parameters for 1 

sand, loam, and our measured parameters (lines) with measured soil temperatures (dots) at 20, 2 

100, 200, and 400 cm depths. Error bars show the standard deviations calculated based on 9 3 

simulations with 3 different slopes and 3 different soil thicknesses (Measured measured 4 

porosities were used in the simulation). 5 

 6 

 7 

  8 
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Figure 7. Comparisons of soil volumetric liquid water content (θliq, m
3
 m

-3
) simulated using 1 

default parameters sand, default loam, and measured parameters (lines) with measured soil 2 

moistures (dots) at 10, 40, 80, and 160 cm depths. Error bars showed the standard deviation 3 

calculated based on 9 simulations with 3 different slopes and 3 different soil thicknesses 4 

(Measured measured  porosities were used in the simulation). 5 

 6 

 7 

  8 



 41 

Figure 8. Contour plots showing a) soil temperature (
o
C) from borehole measurements down 1 

to 5 m superimposed with simulated active layer depths over the period of 2003-2011; and b) 2 

ground temperature down to 50 m superimposed with the simulated permafrost low boundary. 3 

Black, blue and magenta represent simulations with loam, sand, and measured parameters, 4 

respectively. Error bars show the standard deviation calculated based on 9 simulations with 3 5 

different slopes and 3 different soil thicknesses (Measured measured porosities were used in 6 

the simulation. ; White white zones in the contour plots indicate missing borehole data).  7 

 8 

 9 

 10 

 11 

  12 
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Figure 9. Root mean squared errors between measurements and model simulations (with 1 

different combinations of measured porosity (I), thermal conductivity (II), hydraulic 2 

conductivity (III), and matric potential (IV) substituted for default sand parameters) for 20 3 

and 100 cm soil temperatures (
o
C), active layer depth (ALD, m), and permafrost low 4 

boundary (PLB, m). O and All represent model runs without substitution of default 5 

parameters and with all 4 parameters substituted, respectively. Mean and standard deviation 6 

of model simulations with 3 different soil thicknesses at each slope (0
o
, 5

o
, and 10

o
) are shown.  7 

  8 

 9 

  10 
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Figure 10. Root mean squared errors between measurements and model simulations (with 1 

different combinations of measured porosity (I), thermal conductivity (II), hydraulic 2 

conductivity (III), and matric potential (IV) substituted for default loam parameters) for 20 3 

and 100 cm soil temperatures (
o
C), active layer depth (ALD, m), and permafrost low 4 

boundary (PLB, m). O and All represent model runs without substitution of default 5 

parameters and with all 4 parameters substituted, respectively. Mean and standard deviation 6 

of model simulations with 3 different soil thicknesses at each slope (0
o
, 5

o
, and 10

o
) are shown. 7 

 8 

 9 

 10 

 11 

 12 

  13 
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Figure 11.  Root mean squared errors between measurements and model simulations (with 1 

different combinations of measured porosity (I), thermal conductivity (II), hydraulic 2 

conductivity (III), and matric potential (IV) substituted for default sand parameters) for 10 cm, 3 

40 cm, 80 cm, and 160 cm soil volumetric liquid water content. O and All represent model 4 

runs without substitution of default parameters and with all 4 parameters substituted, 5 

respectively. Mean and standard deviation of model simulations with 3 different soil 6 

thicknesses at each slope (0
o
, 5

o
, and 10

o
) are shown.  7 

 8 

 9 

   10 
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Figure 12.  Root mean squared errors between measurements and model simulations (with 1 

different combinations of measured porosity (I), thermal conductivity (II), hydraulic 2 

conductivity (III), and matric potential (IV) substituted for default loam parameters) for 10 cm, 3 

40 cm, 80 cm, and 160 cm soil volumetric liquid water content. O and All represent model 4 

runs without substitution of default parameters and with all 4 parameters substituted, 5 

respectively. Mean and standard deviation of model simulations with 3 different soil 6 

thicknesses at each slope (0
o
, 5

o
, and 10

o
) are shown.   7 

 8 

 9 

 10 


