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Abstract 24 

Accurate forecast of Sea Ice Thickness (SIT) represents a major challenge for 25 

Arctic forecasting systems. The new CS2SMOS SIT measurements merges 26 

measurements from the CryoSat-2 and SMOS satellites and are available 27 

weekly during the winter months since October 2010. The impact of assimilating 28 

CS2SMOS is tested for the TOPAZ4 system - the Arctic component of the 29 

Copernicus Marine Environment Monitoring Service (CMEMS). TOPAZ4 30 

currently assimilates a large set of ocean and sea ice observations with the 31 

Deterministic Ensemble Kalman Filter (DEnKF). 32 

Two parallel reanalyses are conducted without (Official run) and with (Test run) 33 

assimilation of the previously weekly CS2SMOS for the period from 19th March 34 

2014 to 31st March 2015. The raw observation error is underestimated. An 35 

additional term was added to compensate for the underestimation, but it was 36 

found a posteriori too large in our analysis. The SIT bias (too thin) is reduced 37 

from 16 cm to 5 cm and the RMSD decreases from 53 cm to 38 cm (reduction 38 

by 28%) when compared to the simultaneous SIT from CS2SMOS. When 39 

compared to independent SIT observations, the errors are reduced by 24% 40 

against the Ice Mass Balance (IMB) buoy 2013F and by 12.5% against SIT data 41 

from the IceBridge campaigns. When compared to the satellite ice drift product, 42 

the RMSDs around the North pole are reduced by about 8-9% in December 43 

2014 and February 2015 relative to that in the Official. There is good 44 

improvement for the sea ice volume that extends outside of the assimilation 45 

period. Finally, using the Degrees of Freedom for Signal (DFS), we find that 46 

CS2SMOS is the main source of observations in the central Arctic and in the 47 

Kara Sea. These results suggest that C2SMOS observations should be 48 

included in Arctic reanalyses in order to improve the ice thickness and the ice 49 

drift. 50 

Keywords: Sea ice thickness; Arctic reanalysis; CS2SMOS; EnKF; Innovation; 51 

Impact evaluation; 52 

 53 
  54 
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1. Introduction 55 

Sea ice plays an important role in the Arctic climate system because it prevents 56 

the rapid exchange of heat flux between ocean and atmosphere. A decline and 57 

a thinning of the sea ice cover has occurred in the past decades (e.g. 58 

Johannessen et al., 1999; Comiso et al., 2008; Stroeve et al., 2012). It is 59 

expected that this change will have significant impacts on the Arctic Ocean 60 

Circulation (e.g. Levermann et al., 2007; Budikova, 2009; Kinnard et al., 2011) 61 

and on the future human living environment (Schofield et al., 2011; Bathiany et 62 

al., 2016). The interpretation of such changes is severely hampered by the 63 

sparseness of the observations and the use of reanalyses that can provide 64 

continuous spatio-temporal reconstruction by assimilating existing observations 65 

into dynamical models has become increasingly popular tools. 66 

Satellite observation for sea ice concentration (SIC) is available since the 67 

1980s, and has allowed an accurate monitoring of sea ice extent (SIE) during 68 

that period. Data assimilation of SIC has been used to improve the evolutions 69 

about the sea ice edge (Lisæter et al., 2003; Stark et al., 2008; Posey et al., 70 

2015), but large uncertainty (e.g., Uotila et al, 2018) remains in the estimation 71 

of sea ice volume as observations of sea ice thickness (SIT) are very sparse. 72 

In addition, recent studies (Day et al. 2014; Guemas et al., 2014; Melia et al. 73 

2015) have shown that SIT anomalies play an important role for the Arctic 74 

predictability up to seasonal time scale. 75 

Up to the 1990s, the availability of SIT measurement was limited to sparse in 76 

situ measurements and submarines data. With the emergence of satellite, 77 

continuous estimates of SIT on basin scale have been achieved using radar 78 

and laser altimeters from the satellites: European Remote Sensing (ERS), 79 

Envisat and the NASA Ice, Cloud and land Elevation Satellite (ICESat). These 80 

were used to document the rapid thinning of sea ice in Arctic (Laxon et al., 2003; 81 

Kwok and Rothrock, 2009).    82 

CryoSat-2 launched in April 2010 has been the first satellite dedicated to 83 

measure with high accuracy the sea ice freeboard, from which the sea-ice 84 

thickness can be derived (Ricker et al., 2014; Tilling et al., 2016). The retrieved 85 

SIT still contains considerable uncertainty because of approximations made for 86 

example when estimating the snow depth (using climatology), snow penetration 87 

and sea ice density (Kern et al, 2015; Khvorostovsky and Rampal, 2016). These 88 
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uncertainties are comparatively large for thin ice (<1 m). Satellite 89 

measurements derived from passive microwave radiometer have allowed 90 

retrieval of thin sea ice thickness (Martin et al., 2004; Heygster et al., 2009). 91 

The Soil Moisture and Ocean Salinity (SMOS) satellite, measures the 92 

brightness temperature in a L-Band microwave frequency (1.4 GHz) that can 93 

be used for estimating very thin sea ice thickness (Kaleschke et al., 2010; Tian-94 

Kunze et al., 2014), typically bellow 0.5 m. Although the consistency between 95 

the SMOS and CryoSat-2 estimates is still poor (Wang et al., 2016), a recent 96 

initiative has combined the two data sets (e.g. Kaleschke et al., 2015; Ricker et 97 

al., 2017). A merged product of weekly SIT measurements in Arctic from the 98 

CryoSat-2 altimeter and SMOS radiometer (referred to as CS2SMOS) is now 99 

available online at http://www.meereisportal.de (Ricker et al., 2017). There is a 100 

need to test assimilation of this data set and assess its potential for reanalysis 101 

and operational forecasting. 102 

In this study, the CS2SMOS will be assimilated into the TOPAZ4 forecast 103 

system, which is a coupled ocean-sea ice data assimilation system using the 104 

Deterministic Ensemble Kalman Filter (DEnKF; Sakov and Oke, 2008). The 105 

Ensemble Kalman Filter has previously been demonstrated for assimilation of 106 

SIT data (Lisæter et al., 2007) or freeboard data (Mathiot et al., 2012) or 107 

CS2SMOS data (Mu et al., 2018). TOPAZ4 is the main Arctic Marine 108 

Forecasting system in the Copernicus Marine Environment Monitoring Services 109 

(CMEMS, http://marine.copernicus.eu). Every day, it provides a 10-day forecast 110 

of the ocean and biogeochemistry in the Arctic region through the CMEMS 111 

portal for the public. It also provides a long reanalysis from 1990 to present – 112 

currently 2016 - that is extended every year. By default, SIT products are not 113 

assimilated into the TOPAZ4 reanalysis. This reanalysis has been widely used 114 

and validated (Ferreira et al., 2015; Johannessen et al., 2014; Xie et al., 2017). 115 

Although the Arctic SIT distribution in TOPAZ4 shows some degree of spatial 116 

coherency with that of ICESat in spring and autumn of 2003-2008, it 117 

underestimates SIT (up to 1 m) north of Canadian Arctic Archipelago and 118 

Greenland and overestimates it by approximately 0.2 m in the Beaufort Sea 119 

(Xie et al., 2017). Even though the SIT from ICESat has been reported too thick 120 

by about 0.5 m (Lindsay and Schweiger, 2015), the SIT from TOPAZ4 121 

undoubtedly has spatial biases. Similar biases for SIT have been reported for 122 
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other Arctic coupled ocean-ice models (Stark et al., 2008; Johnson et al., 2012; 123 

Schweiger et al., 2012; Yang et al., 2014; Smith et al., 2015) and even 124 

reanalyses (Uotila et al, 2018). Xie et al. (2016) have tested assimilation of thin 125 

SIT (<0.4 m) from SMOS, and show that the assimilation slightly reduced SIT 126 

overestimation near the sea ice edge. The recent availability of the weekly SIT 127 

from CS2SMOS provides an opportunity for the TOPAZ4 to constrain the SIT 128 

error in the Arctic. This study aims at identifying a suitable practical 129 

implementation for assimilating C2SMOS data set and assess its usefulness 130 

for the Arctic reanalysis. Although it is expected that a better initialisation of SIT 131 

anomalies will enhance the predictability of the system, this is beyond the scope 132 

of this paper. A similar assessment over the same time frame has been carried 133 

out in the Arctic Cap Nowcast/Forecast System (ACNFS) by Allard et al. (2018) 134 

revealing significant improvements of bias and RMSD but little changes in ice 135 

velocity except in marginal seas. The proposed study in somewhat 136 

complementary to Allard et al. (2018) because TOPAZ4 prediction system uses 137 

comparatively a more rudimentary sea ice thermodynamics (no explicit ice 138 

thickness distribution) but a more advanced ensemble-based data assimilation 139 

method – TOPAZ4 uses strongly coupled data assimilation of ocean and sea 140 

ice - Meaning that sea ice observation will impact also the ocean and vice versa 141 

(Penny et al., 2017; Kimmritz et al., 2018) - with a flow dependent assimilation 142 

method.  143 

Section 2 describes the TOPAZ4 system: namely the coupled ocean and sea 144 

ice model, the implementation of EnKF and the observations used for data 145 

assimilation and validation. In section 3, we carry an Observing System 146 

Experiment (OSE) comparing the two reanalyses: one using the standard 147 

observation types used in operational setting and another assimilating the 148 

CS2SMOS in addition. Then the performance of the two runs against 149 

assimilated and no-assimilated measurements are presented. Section 4 150 

presents the impacts of assimilating the CS2SMOS on sea ice drift and the 151 

integrated quantities for sea ice, and quantifies its relative impacts compared 152 

to the other observation variables. A summary and discussion are provided in 153 

the last Section. 154 

 155 

2. TOPAZ4 system descriptions and observations 156 
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2.1 The coupled ocean and sea-ice model  157 

TOPAZ4 is a forecasting ocean and sea-ice system developed for the Arctic, 158 

having been operational since early of the 2000s (Bertino and Lisæter, 2008). 159 

It uses the Hybrid Coordinate Ocean Model (HYCOM: version 2.2) developed 160 

initially at University of Miami, which has been successfully applied in global 161 

and regional oceans (Chassignet et al., 2003; Counillon and Bertino, 2009; 162 

Metzger et al 2014; Xie et al., 2018). The model grids are constructed using 163 

conformal mapping (Bentsen et al., 1999; Bertino and Lisæter, 2008) with a 12-164 

16 km resolution shown in Fig. 1 (left). The model uses 28 hybrid layers with 165 

reference potential densities selected specifically for the North Atlantic and the 166 

Arctic regions (Sakov et al. 2012). A barotropic inflow of Pacific Water is 167 

imposed through the Bering Strait, which is balanced by outflowing through the 168 

southern model boundary. It has an averaged transport of 0.8 Sv, and 169 

seasonally varies with a minimum (0.4 Sv) in January and a maximum (1.3 Sv) 170 

in June consistent with the observations proposed in Woodgate et al. (2005). 171 

The model account for river discharge for which the seasonal climatology is 172 

estimated by feeding the run off from ERA-interim (Dee et al., 2011) to the Total 173 

Runoff Integrating Pathways (TRIP, Oki and Sud, 1998) over the period 1989–174 

2009.  175 

A simple sea ice model using a one thickness category has been integrated at 176 

NERSC into HYCOM. As such, the sea ice and the ocean are coupled every 3 177 

hours and exchange momentum, salt and heat on the ocean’s Arakawa C-grid. 178 

The sea ice thermodynamics described in Drange and Simonsen (1996) treat 179 

precipitations on ice as snow whenever surface air temperature is below zero.  180 

The ice dynamics uses the elastic-viscous-plastic rheology (Hunke and 181 

Dukowicz, 1997) with the modification suggested by Bouillon et al. (2013). 182 

There is a 0.1 m limit in the model for the minimum thickness of both new ice 183 

and melting ice.  184 

 185 

2.2  Implementation of the EnKF in the TOPAZ4 system 186 

The TOPAZ4 system uses a deterministic Ensemble Kalman Filter (DEnKF, 187 

Sakov and Oke, 2008), which solves the analysis without the need to perturb 188 

the observations and is regarded as a square-root filter implementation of EnKF. 189 

In the DEnKF, if the model state is represented by x, the ensemble mean is 190 
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updated by equation: 191 

𝐱"# = 𝐱"% + 𝐊(𝐲 − 𝐇𝐱"%),                                                           (1) 192 

where the superscripts “f” and “a” respectively refer to the forecast and the 193 

analysis. Following Xie et al. (2017), the model state vector x contains 3-194 

dimensional ocean variables in the native hybrid coordinates (u- and v-195 

components of the current velocities, temperature, salinity and model layer 196 

thickness), the 2-dimentional ocean variables (u- and v-components of the 197 

barotropic velocities, barotropic pressure, and mixed layer depth) and two sea 198 

ice variables ice concentration and ice thickness. The assimilated observations 199 

are represented by the vector of y without perturbation, and the observation 200 

operator H projects the model variables on the observation space. The misfit 201 

between the model and the observation - the bracket term in Eq. (1), is named 202 

as innovation. The Kalman gain K is calculated by: 203 

𝐊 = 𝐏𝐟𝐇/[𝐇𝐏𝐟𝐇/ + 𝐑]3𝟏                                               (2). 204 

Where Pf is the matrix of background error covariance, R is the matrix of 205 

observation error covariance, and the superscript “T” denotes a matrix 206 

transpose. The background error covariance is approximated from the 207 

ensemble anomalies A (where 𝐀 = 𝐗 − 𝐱"I8 , I8 = [1, … ,1] , N being the 208 

ensemble size) as follows 𝐏 = 𝐀𝐀<

83=
. Here, 𝐗 denotes the ensemble of model 209 

states, the observation errors are assumed being uncorrelated (i.e. the matrix 210 

R is diagonal). While this assumption is not always corrected for some types of 211 

observations, it requires the sufficient knowledge about the covariance 212 

structure for the observation errors if considering the correlations in R. 213 

Otherwise, an approximation of the correlated observation error can yield a 214 

poor analysis so a diagonal approximation combined with an inflation of the 215 

observation error is a reasonable approximation (Stonebridge 2018).  216 

To ensure that the sampling error remains small, a localization is used (local 217 

framework analysis) with a radius of 300 km and Gaussian tapering. More 218 

details about the practical implementation of the model and perturbations can 219 

be found in Sakov et al. (2012). The model errors include joint perturbations of 220 

winds, heat fluxes as originally recommended by Lisæter et al. (2007). The 221 

precipitation perturbation was increased from 30% to 100%, following a log-222 

normal probability distribution of errors (Finck et al. 2013).  223 
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 224 

2.3 Observations for assimilation and validation  225 

The following observations are assimilated sequentially every week in the 226 

TOPAZ4 system (Xie et al. 2017): along-track Sea Level Anomaly; in situ 227 

profiles of temperature and salinity; gridded Operational Sea Surface 228 

Temperature and Sea Ice Analysis (OSTIA) SST; Ocean and Sea Ice Satellite 229 

Application Facility (OSI-SAF) sea ice concentration and sea ice drift from 230 

satellite observation (Lavergne et al., 2010). All measurements are retrieved 231 

from http://marine.copernicus.eu, and are quality controlled and superobed – 232 

i.e. all observations falling within the same grid cell are averaged and the 233 

observation uncertainty is reduced accordingly (Sakov et al., 2012). For SST 234 

and ice concentration, we only retain the analysis at the last day of the 235 

assimilation cycle. Similarly, the sea ice drifts during the last 2 days of the 236 

assimilation cycle are assimilated from OSI-SAF.  237 

The weekly SITs of CS2SMOS were retrieved from 238 

http://data.meereisportal.de/maps/cs2smos/version3.0/n for the period from 239 

March 2014 to March 2015. This product is gridded with a resolution of 240 

approximate 25 km. The provider uses optimal interpolation to blend the 241 

measurements of CryoSat-2 and SMOS based on the best estimate, their 242 

uncertainties and their spatial covariance. An estimate of the observation error 243 

is provided with the data set but it only accounts for the errors related to the 244 

merging and interpolation (Ricker et al., 2017). As such, we expect that this 245 

observation error is only accounting for a part of the real error and misses both 246 

the sensor errors and the model-related representation errors. In particular the 247 

mapping error is based on a no-bias assumption and does not account for 248 

inconsistencies between the two satellites, like those reported by Ricker et al. 249 

(2017). With an EnKF assimilation system, underestimating the observation 250 

error leads to an underestimation of the ensemble spread and makes the 251 

system suboptimal. In the worst case, the ensemble spread collapses and the 252 

system diverges. Underestimating the errors of one data type also lessens the 253 

impact of the other assimilated observations since they compete for the control 254 

of a finite number of degrees of freedom. This issue will be addressed in Section 255 

4.3. On the other hand, Oke and Sakov (2008) showed that the performance of 256 

the EnKF does not degrade much when observation error is overestimated. It 257 
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is therefore necessary to increase the observation error to a level at least as 258 

high as the optimal value for the performance of the filter (Desroziers et al., 259 

2005; Karspeck, 2016).  260 

In order to estimate the representation error for the SIT observation, we have 261 

performed a preliminary sensitivity assimilation experiment for November 2014. 262 

We used the diagnostics by Desroziers et al. (2005) as an indicative lower limit 263 

for the observation error in the TOPAZ4 system based on the misfits to the 264 

CS2SMOS data. Desroziers et al. (2005) estimate the optimal observation error 265 

as the following matrix: 266 

                                         (3) 267 

where p is number of data assimilation steps in the sensitivity run (here 4), and 268 

yj represents the observed SIT from CS2SMOS at the jth assimilation time. 269 

Here, the terms 𝐱"# and 𝐱"% represent the ensemble mean of the analysis and 270 

forecast states. In Fig. 2, the diagnosed observation errors from Desroziers et 271 

al. (2005) are larger than the mapping error included in CS2SMOS, but still do 272 

not account for biases in the CryoSAT2 and SMOS observations. The 273 

CS2SMOS mapping error is particularly low for sea ice below 0.5 m: about 4 274 

times lower than the uncertainties obtained by error propagation in the SMOS 275 

processing chain (used in Xie et al. 2016), which would make the assimilation 276 

of SMOS SIT too strong. The Desroziers diagnosed errors gradually increase 277 

with ice thickness, although they vary unrealistically for SITs above 3 m, 278 

possibly due to low counts of either modelled or observed ice thickness in 279 

certain thickness ranges. In view of the above considerations, we have added 280 

a cautious correction term to the CS2SMOS mapping error estimate, which 281 

simply increases linearly with the observed SIT. 282 

                                          (4), 283 

where dSIT is the observed sea ice thickness. At low SIT, the resulting values 284 

are slightly higher than those used in Xie et al. (2016) and comparable to the 285 

Desroziers diagnostics. At SITs of 1.5 m, for which SMOS and CS2SMOS 286 

overlap, the added correction is comparable to reported differences between 287 

the two satellites: about 20 cm in the Beaufort Sea and 1 meter in the Barents 288 

Sea, see Table 3 in Ricker et al. (2017). Tilling et al., (2018) show that the 289 

!σSIT
o =

1
p

(yj −Hx
a
)

j=1

p

∑ (yj −Hx
f
)

εOffset =min(0.5, 0.1+ 0.15*dSIT )
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standard deviations between the CryoSat-2 and independent measurements 290 

are between 30 and 70 cm depending of the source of observation and increase 291 

with ice thickness (their Figure 16). It should be noted however that the 292 

processing of CryoSat2 data differs in CPOM and AWI’s algorithms. The total 293 

observation error including the added term is shown with blue-squared line in 294 

Fig. 2. In the following, we will only use the corrected observation error for the 295 

CS2SMOS SIT. 296 

 297 

3. Observing system experiment runs and validations 298 

3.1 Experiment and independent observations for validation 299 

A parallel OSE is conducted from 19th March 2014 until end of March 2015. The 300 

two assimilation runs cover two special time periods: at the onset of ice melting 301 

in March-April 2014 following by a free data period of CS2MSOS, and a whole 302 

cold season from October 2014 to March 2015. Both runs are forced by 303 

atmosphere forcing from ERA-Interim. The control run named the Official run 304 

uses the standard observational network in the TOPAZ4 system (Xie et al. 305 

2017), which assimilates on a weekly cycle the SLA, SST, in situ profiles of 306 

temperature and salinity, SIC and sea ice drift (SID) data. Another assimilation 307 

run named the Test run involves the SIT from CS2SMOS as a type of additional 308 

observation into the system.  309 

The CS2SMOS ice thickness data are weekly averages and provided on a grid 310 

with a 25 km resolution. We discard the SIT closer than 30 km from the coast 311 

to account for different coastlines between the model and observations. The 312 

innovation of SIT in Eq. (1) is calculated in terms of sea ice volume: 313 

               ∆𝐒𝐈𝐓 = 𝐝CD/ − 𝐇(𝐡̅G × 𝐟G̅),                                  (5) 314 

where dSIT is the observed SIT from CS2SMOS as in Eq. (4), 𝐟G̅  is the 315 

ensemble mean SIC, and 𝐡̅G is the ensemble mean ice thickness within the 316 

grid cell. We assume the observation error to be uncorrelated (R in Eq. (2) is 317 

diagonal). While it is clear that this approximation is incorrect, it was shown in 318 

Stonebridge et al. (2018) that when the structure of the correlation is unknown, 319 

it was best to assume R diagonal and to tune the inflation. Although the minimal 320 

thickness in the model is set to 0.1 m, the ensemble mean from 100 model 321 

members can be as thin as 1 mm, so that we reject the observed SIT for 322 
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CS2SMOS only if equal to 0. Every week, the SITs from CS2SMOS are 323 

considered to be at the analysis time, neglecting the time delay. However, the 324 

associated errors due to the sea ice motions or thermodynamic growth/melt of 325 

sea ice remain small within one week compared to the large SIT biases targeted 326 

in the present exercise.  327 

In the following, we will investigate the misfits of the forecasted model states by 328 

evaluating the bias and the root mean square difference (RMSD): 329 

 Bias = 𝟏
𝐋
∑ (𝐇𝐢𝐱"𝐢𝐟 − 𝐲𝐢)𝐋
𝐢P𝟏                                                  (6) 330 

RMSD = U𝟏
𝐋
∑ (𝐇𝐢𝐱"𝐢𝐟 − 𝐲𝐢)𝟐𝐋
𝐢P𝟏                                          (7). 331 

Where L is the total number of assimilation cycle over the study period,	𝐱"X% is the 332 

mean of the model state at the ith time, which is comparable to the observations 333 

yi.  334 

Three types of independent observations for SIT are involved for validation. 335 

First, the SIT measurements from drifting Ice Mass Balance (IMB: http://imb-336 

crrel-dartmouth.org/imb.crrel/buoysum.htm) buoys (Perovich and Richter-337 

Menge, 2006). Four IMB buoys (2013F, 2014B, 2014C, and 2014F) are 338 

available during the experimental time period and their trajectories are shown 339 

in Fig.1 (left). Second, three upward looking sonar (ULS) buoys funded by the 340 

Beaufort Gyre Exploration Project (BGEP, see 341 

http://www.whoi.edu/beaufortgyre)  have been moored in the Beaufort Sea. 342 

Their locations are shown with the red squares in Fig. 1 (left). They estimate 343 

the sea ice drafts since October 2014. Third, the NASA IceBridge Sea Ice 344 

Thickness Quick Look data (https://nsidc.org/data/icebridge) collected in aerial 345 

campaigns estimates the sea ice thickness in spring (Kurtz et al., 2013) with a 346 

better spatial coverage. The locations of the quality-controlled observations of 347 

SIT from IceBridge for March and April of 2014 and 2015, are shown with the 348 

yellow squares in Fig. 1 (left).   349 

 350 

3.2  Validation against CS2SMOS and innovation diagnostics 351 

The first assimilation time is on the 19th March 2014 and the last is on the 25th 352 

March 2015. The monthly SITs for the two OSE runs are compared to 353 

CS2SMOS in Fig. 3. The SITs in April 2014 are presented for comparison in 354 
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the upper panels of Fig. 3. In the Official run, the thick sea ice to the north of 355 

the CAA is underestimated but thickens slightly in the Test run: the 3 m SIT 356 

isoline covers a wider area, in better agreement with the observations. The 357 

areas of thinner sea ice north of the Barents Sea, west of the Kara Sea, and 358 

the coast of the Beaufort Sea, which were too thick in the Official run, have all 359 

been improved also shown by reduced area delimited by the isolines of 1 m or 360 

2 m SIT in the Test run. 361 

After summer of 2014, measurements of SIT from CS2SMOS restart at the end 362 

of October. Results are presented for November 2014 in Fig. 3: the thick sea 363 

ice in the central Arctic has been further improved in the Test run. The thickest 364 

sea ice (> 3 m) is located near the northern coast of Canada instead of north of 365 

Greenland in the Official run. The averaged SIT in the Test run around the North 366 

pole (>80°N), is increased from 1.3 m in the Official run to 1.6 m, which is closer 367 

to CS2SMOS by 43%. In the marginal zones of the East Siberian Sea, the 368 

Laptev Sea, and the Kara Sea, the SITs in the Official run is too thin, but is 369 

thickened in the Test run. Improvements in marginal seas are due to the 370 

contribution of SMOS, while improvements in the ice pack are mainly due to 371 

CryoSat-2.  372 

In the last month of the experimental period (March 2015), the thick sea ice 373 

pattern in the Test run, shown as the 2 m isoline, is more similar to that of 374 

CS2SMOS. The maximal SIT denoted by the 4 m isoline is located north of the 375 

CAA in the Test run and in CS2SMOS, while the Official run spreads it out from 376 

the northern coast of Canada to north of Greenland. In addition, the SIT north 377 

of the Fram Strait is thicker than in the Official run. The SIT is similarly improved 378 

near the coast of the Beaufort Sea and to the northwest of Svalbard. As 379 

expected with data assimilation, the Test run improves clearly the agreement 380 

with the assimilated product. Those improvements are largest in the ice pack 381 

and in the marginal Seas, where the model has a considerable deviation 382 

compared to the CS2SMOS SITs. On the contrary, the thickness near the sea 383 

ice edge is not strongly impacted by the assimilation. 384 

The continuous agreement is confirmed quantitatively: misfits of weekly SIT 385 

from the two runs are compared with the corresponding CS2SMOS 386 

observations. Time series of bias and RMSD (calculated weekly as in Eq. (6-7) 387 

are shown in the top panel of Fig. 4. At the beginning of the period, the SIT 388 
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RMSD in the Test run decreases quickly from 0.6 m to 0.4 m before the 389 

observations are interrupted. The bias of the two runs are similarly reduced. 390 

After the observations resume in the end of October 2014, the SIT RMSD is 391 

comparable between the two runs but the bias is slightly lower in the Test run. 392 

There is large spike in the bias and RMSD for both systems that relates to an 393 

inaccuracy of the CS2SMOS observations (see Section 4.2). After the spike, 394 

the RMSD and bias in the Test run are lower than in the Official run. The bias 395 

in the Test run converges to 0 and fluctuates around that level but this is likely 396 

not the influence from the assimilation as the bias in the Official run also 397 

converges to 0 during that time. This is rather due to the compensation of 398 

seasonal and regional errors. On average, the bias of SIT (too thin) is 399 

decreased from 15 cm to 5 cm by the assimilation of CS2SMOS. The RMSD of 400 

SIT is 38 cm in the Test run, which corresponds to a reduction of 28.3% relative 401 

to the error in the Official run.  402 

The innovation statistics taken at each assimilation time are used to evaluate 403 

how well our data assimilation system is calibrated. In the reliability budget of 404 

Rodwell et al. (2016), the total uncertainty of an ensemble data assimilation 405 

system is calculated as follow: 406 

𝜎ZX[\ = ]𝐵𝑖𝑎𝑠b + σdeb + σfb    ,                                      (8). 407 

where the Bias term – i.e. the innovation mean (shown as blue-circled lines) - 408 

is calculated as in Eq. (6) at a given assimilation time step, and 𝜎de	and 409 

𝜎f	represent respectively the ensemble spread and the standard deviation of 410 

the observation errors at the same assimilation time. If the data assimilation 411 

system is reliable, the diagnosed total uncertainty should be close to the RMSD, 412 

formulated in Eq. (7). In Fig. 4 we can see that the pink and red lines are 413 

evolving reasonably in phase but that the diagnosed error 𝜎diag is much larger 414 

than the RMSD, meaning that our system is overdispersive. The error budget 415 

shows that the observation error (𝜎o) is too large, suggesting that the offset term 416 

in Eq. (4) is overestimated, which we do not expect as a serious problem as 417 

explained above. 418 

The innovation statistics for SIC are mostly identical in the two runs (not shown), 419 

the mean misfits for SIC vary around ±4% and are most of the time lower than 420 

12%, which is consistent with the evaluation of the TOPAZ4 reanalysis in Xie 421 
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et al. (2017). It is somewhat disappointing that improvements of ice thickness 422 

do not yield visible benefit to ice concentration, but on the other hand a 423 

degradation could also have been possible if the thermodynamical model had 424 

been over-tuned to an incorrect simulated thickness. It should also be noted 425 

that the innovation statistics of SST and SLA are also indiscernible in the two 426 

runs and not shown either. 427 

 428 

3.3 Validation against independent SIT observations 429 

3.3.1 Ice Mass Balance Buoys 430 

Four IMB buoys are available as independent validation of the impact of the 431 

assimilation of CS2SMOS. The buoys are drifting in the Canada Basin (Fig. 1), 432 

and only one buoy (2013F) lasted during the whole experimental time period 433 

shown (upper panel of Fig. 5). This buoy depicts the seasonal variability of SIT: 434 

it reaches 1.5 m in spring 2014, decreases down to 1.0 m in September and 435 

rises again to 2 m in March 2015. The seasonal SIT cycle of the Official run 436 

shows excessive seasonal variability, with a thin bias in summer 2014 and a 437 

thick bias during the winters. In the Test run (shown as the red-dashed line) the 438 

seasonal cycle is dampened and more consistent with the observations. The 439 

bias is still quite large around March-April and that even at the end of the study 440 

period. It should be noted that the impact of CS2SMOS seems largest in 441 

summer, when no observations are available. This indicates the persistent 442 

effects of winter thickness to improve the predictability of the summer Arctic sea 443 

ice (as in Mathiot et al. (2012)). When CS2SMOS is assimilated again in the fall 444 

2014, the Test run initially overestimates slightly the SIT measured at the buoy 445 

compared to that in the Official run but is slowly improving as data is assimilated. 446 

The time-averaged SIT RMSD for 2013F is reduced from 0.33 m in the Official 447 

run down to 0.25 m in the Test run, a reduction of 24.2%. 448 

Two other buoys (2014B and 2014C) cover the early months of the 449 

experimental period. At the beginning, the two runs are biased with a too thick 450 

of 0.5 m and 0.2 m compared to 2014B and 2014C. For 2014B, there is a slight 451 

reduction of the error during the assimilation period that continue to reduce 452 

beyond the assimilation window as for 2013F. For 2014C although the error is 453 

reduced during the analysis period, the error increases beyond the analysis as 454 

the error in the official run reduces. For these three buoys the assimilation 455 
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corrects the mean SIT values and the amplitude of the seasonal cycle but have 456 

little influence on the phase of the seasonal cycle.  457 

The buoy 2014F covers the last 6 months of the experimental period. For that 458 

buoy, the assimilation seems to be increasing the error. Initially and as for 459 

2013F at the same time, the initial value of SIT is too large in Test while it is 460 

quite reasonable in the Official run. For 2013F it was the consequence of curing 461 

the too low bias in September and having a too vigorous SIT increase 462 

November. At the start of assimilation, Test shows a clear – albeit too weak –463 

decrease and a slower growth of the ice thickness compared to the Official Run. 464 

It should be noted that the SIT growth in 2014F is unlikely weak the area and 465 

very different from the buoy 2013F, with an increase from 1.5 m to only 1.6 m 466 

in the whole winter. However, the Test Run shows a pronounced decrease of 467 

SIT at the start of assimilation, and afterward shows a slower growth of the SIT 468 

compared to the Official Run.  469 

3.3.2 The BGEP mooring buoys 470 

In order to convert the sea ice draft measured by ULS from the BGEP buoys to 471 

SIT, we used the equation introduced in Tilling et al. (2018): 472 

𝐝ghi =
Zjkl3mnkn

kj
                                                              (9) 473 

where dSIT is the sea ice thickness, di is sea ice draft, hs is snow depth, ρi is sea 474 

ice density, ρs is snow density and ρw is seawater density. The three densities 475 

are constant of 900, 300, and 1000 kg/m3 used as in the model. di is the sea 476 

ice draft measured by ULS at the fixed locations (see Fig. 1). The snow depth 477 

is estimated by the daily snow depths averaged of the two runs interpolated to 478 

the buoy locations.  479 

The SIT time series of the measurement and of the two runs are shown on Fig. 480 

9, from October 2014. The gray error bars depict the daily standard deviation. 481 

The data indicates a SIT increasing from around 0.5 m in October 2014 to close 482 

to 2 m in March 2015. The observed SIT at 14D shows a very large daily 483 

variability from end of October to November 2014, especially compared with 484 

that of 14A and 14B.  485 

The weekly SIT from CS2SMOS matches well the data set with a RMSDs of 15, 486 

19 and 39 cm during the 6 months, which is lower than in the two model runs. 487 

Still, the SIT from CS2SMOS overestimates SIT from October 2014 to middle 488 
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January 2015 compared to that of BGEP for buoy 14B, and between in Oct and 489 

Nov of 2014 for buoy of 14A. The SITs in the Official run are overestimated in 490 

all three locations. The SIT RMSDs are 41, 23 and 51 cm respectively 491 

compared to SIT measurement from BGEP buoys. The SITs in the Test run is 492 

closer to the observed mooring estimate, thanks to the data assimilation of the 493 

SIT from CS2SMOS. The SID RMSDs in the Test run are respective 25, 33 and 494 

36 cm for Buoys 14A, B, D. Error is nicely reduced for 14A and 14D compared 495 

to the Official run but increased for 14B mostly caused by the initial mismatch 496 

between CS2SMOS and BGEP initially. Similarly to what was found to IMB 497 

measurements, it suggests that error of SIT in the Beaufort Sea is reduced by 498 

assimilation of CS2SMOS.   499 

    500 

3.3.3 IceBridge Quick Look 501 

Another independent observation of SIT with better spatial coverage is the SIT 502 

Quick Look data from airborne instruments during NASA’s Operation IceBridge 503 

campaign (Kurtz et al., 2013). They are available via the National Snow and Ice 504 

Data Center (NSIDC), albeit for months of March and April only. Note that the 505 

airborne SITs have been reported to be slightly low-biased by about 5 cm 506 

compared to in situ measurements (King et al., 2015). Figure 7 shows all 507 

observed SITs (upper-left panel) from IceBridge, collected during March and 508 

April of 2014-2015. All observed SITs are located in the Canadian Basin and 509 

north of Greenland and covers most of the area where sea ice is thicker than 3 510 

m. Sea ice with a thickness between 1~3 m is measured in the Beaufort Sea. 511 

The two simulated SITs in the two model runs show systematic differences of 512 

SIT (see upper-right panel of Fig. 7) - SIT in the Test has been thinned in the 513 

Beaufort Sea and thicken near the North pole. On average, the SIT in the Test 514 

run is increased by 0.1 m and by 0.27 m north of 80°N. Fig. 10b shows that the 515 

distributions of SITs at the location of the buoys (shown in right of Fig. 1) from 516 

the International Arctic Buoy Program (IABP) have been significantly adjusted 517 

between the two runs: The thick sea ice (>2.2 m) becomes more abundant in 518 

the Test run and the relatively thin sea ice (0.5-1.7 m) more abundant in the 519 

Official run. The averaged SIT thus increases from 1.52 m to 1.62 m in the Test 520 

run.  521 
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The SIT deviations of the two OSE runs compared to IceBridge data are 522 

presented in the bottom panels. The sea ice in the Official run is too thin north 523 

of the CAA and north of Greenland, with a deviation larger than 1.5 m. In the 524 

Beaufort Sea on the contrary, the model is too thick by 0.5 to 1 m. This bias is 525 

consistent with that reported in Xie et al. (2017), where the TOPAZ4 reanalysis 526 

(Official run) was compared to ICESat observation for the period of 2003-2008. 527 

In the Test run, the biases are slightly reduced by SIT assimilation, mainly in 528 

the Beaufort Sea and north of Greenland, but the reduction is smaller than the 529 

remaining error. On average, the SIT RMSD is 1.05 m, which corresponds to a 530 

reduction of 12.5% compared to that in the Official run.   531 

The regression of the SIT observations from IceBridge to the two OSE runs is 532 

shown in Fig. 8. The Test run shows improved linear correlations to the 533 

observation. The offset at the origin is reduced (0.52 m instead of 0.93 m) and 534 

the slope is closer to 1 m than in the Official run. The linear correlation in the 535 

Test run is slightly increased as indicated with the correlation squared R2. There 536 

is still a lot of spread that explains why the correlation is on the low side. 537 

However, the model still underestimates the thickest ice observed in IceBridge, 538 

with a bias as high as 2 m.  539 

 540 

4. Impact of CS2SMOS in the data assimilation system 541 

The above results and assimilation diagnostics confirm that the SIT misfits can 542 

be controlled - to some degree - by assimilation of the CS2SMOS data, without 543 

visible degradation of other assimilated variables. To better understand the 544 

advantages and the limits of assimilating the merged SIT product, we further 545 

evaluate the impact of CS2SMOS in the assimilation system: first the 546 

repercussions on other sea ice variables and integrated quantities, and then 547 

through a quantitative impact analysis of CS2SMOS relatively to other 548 

assimilated observation types. 549 

4.1. Impact on the sea ice drift  550 

The EnKF implemented in TOPAZ4 updates all the variables in the model state 551 

vector using flow-dependent multivariate covariances from the ensemble 552 

members (Eqs. 1 and 2). The direct assimilation update of ice drift is however 553 

short-lived: the ice drift vectors quickly readjust to wind forcing after assimilation, 554 

so the ice drift changes are mostly caused by dynamical readjustments, related 555 
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to the updated ice thickness and ice concentrations. By the first order 556 

approximation of the two-dimentional momentum equation (e.g., Hibler 1986; 557 

Hunke and Dukowicz, 1997), the drift velocity of sea ice is mainly controlled by 558 

1) the interactions of atmosphere-sea ice, 2) the interactions of ocean-sea ice 559 

and 3) the internal sea ice forces which can be represented by the stress tensor 560 

𝜎X.  The work of Olason and Notz (2014, thereafter called ON14) shows from 561 

observations that ice thickness is the main driver changes of ice drift in winter 562 

(December to March), while the concentration is the main driver in summer 563 

(June to November) and ice drift may increase independently from 564 

concentration of thickness in transition periods due to increasing fracturing. 565 

Following the EVP rheology in Hibler (1979), the stress tensor 𝜎X is forced by a 566 

pressure term Q which takes a function of the sea ice thickness and 567 

concentration only.     568 

Q = P∗dCD/exp(−Cw(1 − ACDy)),                                 (10) 569 

Where C0 and P* are empirical constants, dSIT is SIT, and ASIC is sea ice 570 

concentration.  ON14 thus show that this type of rheology is able to reproduce 571 

the changes of ice drift whenever they are related to changes of concentration 572 

and thickness, although not the changes during the transition periods. The 573 

sensitivity of ice drift to ice thickness can be directly adjusted by tuning the value 574 

of P* in Eq. (10) (see for example Docquier et al., 2017).  In the TOPAZ4 model, 575 

the sea ice dynamics assume a viscous-plastic material with an adjustment 576 

mechanism at short timescales by elastic waves (called EVP, Hunke and 577 

Dukowicz, 1997). The ice thickness does as well have an influence on the ice 578 

concentrations in the summer due to melting, but this influence is limited in 579 

TOPAZ4 by the assimilation of ice concentrations. The winter months in the 580 

seasonal cycle (see Figure 6 in ON14) indicate that a 10% increase of ice 581 

thickness can reduce the ice drift by 9%. Areas of thinner ice are much more 582 

sensitive (see Figure 5 in ON14) and therefore the above numbers are subject 583 

to possible biases of ice thickness. The sensitivity on seasonal time scales may 584 

also differ from the sensitivity on a weekly time scale (that of the TOPAZ4 585 

assimilation cycle).   586 

The evaluation in Xie et al. (2017) shows the model drift of sea ice is 587 

overestimated by 2 km d-1 on average on the Arctic with an uncertainty of 5 km 588 
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d-1. The thickness of thick ice is also too thin, consistently with the too fast drift 589 

(Figures 14 and 17 in Xie et al., 2017). So, the assimilation of ice thickness is 590 

expected to improve the ice drift by dynamical model adjustment. Figure 9 591 

shows monthly differences of the 2-day sea ice drift (SID) compared to the OSI-592 

SAF estimates based on passive microwave data in April 2014, December 2014 593 

and February 2015. The SID in the Official run is too fast in the central Arctic 594 

where the SIT was found too thin in Fig. 3. Despite of the relatively small 595 

assimilation impact of CS2SMOS on the SID, there are improvements across 596 

the Arctic in all winter months.  597 

The RMSD of sea ice drift speed in two-days trajectories is reduced by about 598 

0.1-0.2 km in April 2014 and February 2015 for the whole Arctic, which 599 

corresponds to a reduction of less than 5% of the RMSD. However, near the 600 

North Pole (north of 80°N), the reduction of drift RMSDs is more important, by 601 

about 0.4-0.5 km. In December 2014 and February 2015 it is about 8-9% of the 602 

error in the Official run. Near the North Pole the averaged SIT in March 2015 603 

(Fig. 3) is about 10% thicker in the Test run than in the Official run.  The impact 604 

is more important there than in the rest of the Arctic and well in line with the 605 

sensitivity found in ON14. Additionally, there is a small reduction of the fast SID 606 

bias but in the case of TOPAZ4, such biases are dependent on the tuning of 607 

the drag coefficients between sea ice and the air or the ocean, which has been 608 

optimized for the SIT distribution of the TOPAZ free run. The tuning of the drag 609 

coefficient adopted by Rampal et al. (2016) is independent from SIT values 610 

since it only uses free-drifting ice for tuning.  611 

To evaluate the potential impact of assimilating the SIT from CS2SMOS on the 612 

sea ice motion, we further utilize the data set from the IABP buoys which began 613 

in 1990s to monitor ice motion throughout the Arctic Ocean. Only trajectories 614 

longer than 30 days and reporting more than 5 times per day are used to 615 

estimate the daily drift speed of sea ice. To avoid buoys in open water, the 616 

observations are selected based on sea ice concentration (>0.15) and ice 617 

thickness (>5 cm) at the nearest model grid cell in both runs. Furthermore, the 618 

dataset is restricted in the central Arctic, (delimited by a red line in Fig. 1), where 619 

water is deeper than 30 m and further away from the coast than 50 km. A total 620 

of 151 buoys are left from this selection, which provide 21,793 daily estimates 621 

of drift speed. 622 
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The speed distribution for daily drift of sea ice from IABP is shown by a 623 

histogram in Fig. 10a. In the central Arctic, the averaged drift speed is about 624 

10.6 km d-1 (consistently with Allard et al., 2018) and most speeds (95%) are 625 

slower than 24 km d-1. The difference of drift distributions between the two runs 626 

is minor compared to the difference to the IABP data. Restricting the analysis 627 

to the area North of 80 degrees, the two runs show larger differences in SIT 628 

with a Test run about 30 cm thicker (Fig. 10d), the resulting difference in SID in 629 

that area is small (0.2 km d-1) and tends to degrade slightly the performance by 630 

slowing down the drift speed (Fig. 10c). This is somewhat contradictory to the 631 

analysis with OSI-SAF data which indicated a too fast model drift and smaller 632 

errors in the Test run. This inconsistency may be due to the poor spatial 633 

coverage of the IABP buoys. In Fig. 1 we can see that buoys north of 80°N are 634 

mainly found in the Eurasian Basin and sample poorly the region between the 635 

Transpolar Drift Stream and the Beaufort Gyre (Sumata et al., 2014), where the 636 

SID misfits are largest and where the model drift is too fast. This poor coverage 637 

of IABP buoys may as well explain why the SID comparisons in Allard et al. 638 

(2018) were inconclusive.    639 

 640 

4.2 Impact on the sea ice extent and volume in the central Arctic  641 

In Fig. 3, we show that the Arctic SIT has been improved everywhere, the 642 

assessment of the sea ice drift is less conclusive but tends to suggest a slight 643 

improvement localized in the central Arctic. However, improving the quantitative 644 

match with available observations does necessarily warrant the physical 645 

consistency of basin-scale integrated quantities. The impact of CS2SMOS on 646 

the Arctic-wide sea ice extent (SIE) and the sea ice volume (SIV) are 647 

investigated for the two runs and compared with the estimates from CS2SMOS 648 

and OSI-SAF respectively. Due to differences of resolution and land mask 649 

(especially important in the Canadian Archipelago), we focus on the central 650 

Arctic domain shown as the red line in the right panel of Fig. 1, excluding parts 651 

of the marginal seas.  652 

Figure 11 shows the time evolutions of SIE and SIV in the two Official and Test 653 

runs. Both are calculated by daily averages in the two model runs. The SIE is 654 

classically calculated in the area where the SIC is not less than 15% in the 655 

Central Arctic. The SIE shows the expected seasonal cycle with the minimum 656 
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(close to 3x106 km2) in September 2014 and saturates at a maximum value 657 

corresponding to the area of the Central Arctic region (around 6x106 km2) from 658 

January to March. The timing of the minimum and maximum from the two model 659 

runs agree very well with the observed in OSI-SAF and CS2SMOS (using the 660 

weekly concentration from the CS2SMOS product). We can also notice the 661 

impact of the weekly assimilation cycle that causes some “sawtooth” 662 

discontinuity and indicates that the model tends to both melt too fast in August 663 

and freeze too fast in September-October. Overall the SIE differences between 664 

the two runs (about 8,000 km2) are indiscernible during the experimental time 665 

period. 666 

The time evolutions of the SIV in the two runs show larger differences in the 667 

lower panel of Fig. 11. The maximum in the Test run is close to 12x103 km3 in 668 

April-May of 2014 and again end of March 2015, and the minimum is close to 669 

5x103 km3 in September 2014. On average, the SIV difference in the two OSE 670 

runs is about 1,000 km3, with lower volume in the Official run. Assimilation of 671 

the CS2SMOS data yields an annual increase of the SIV by about 8% relative 672 

to that in the Official run. The signature of the assimilation cycle is generally 673 

less pronounced than on SIE, except in August 2014 due to the SIC updates 674 

that are positively correlated to SIT in the summer (as noted in Lisæter et al., 675 

2003). Compared to the observed SIV from the weekly CS2SMOS, the 676 

underestimation is significant at beginning of the runs (about 3x103 km3), but 677 

corrected by one third through the first month of assimilation of CS2SMOS. 678 

When the CS2SMOS data are missing, the gap between the two runs remains 679 

constant throughout the summer due to the long memory of winter ice, as 680 

previously noted with the assimilation work of ICESat SIT data in Mathiot et al. 681 

(2012). After the end of the summer during which no data of CS2SMOS are 682 

available， the SIV from the Test run is in better agreement with the first 683 

observed SIV from CS2SMOS. This indicates that the TOPAZ4 Official run has 684 

underestimated SIV due to the history of the reanalysis but not as a systematic 685 

tendency towards a bias state. The SIV estimates from observations 686 

occasionally present sudden discontinuities that seem unrealistic for a large 687 

integrated quantity such as the SIV of the central Arctic area. These 688 

discontinuities are larger than what the data assimilation system would expect 689 
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based on the assumed observation error statistics given above. But the time 690 

series indicate that the EnKF does, as the name indicates, filter out part of the 691 

discontinuities so that only the major spike in early November 2014 causes a 692 

discontinuity in the Test run. Fig. 12 shows that the spike corresponds to a large 693 

homogeneous increase of SIT in all marginal seas between 26th Oct and 2nd 694 

Nov 2014, followed by a large decrease in the subsequent week. The weekly 695 

SIT innovation on the 2nd Nov reveals that the increase is largest south of the 696 

Eurasian Basin and around the Fram Strait. There, the SIT is thinner than 0.3 697 

m on the 26th Oct which may suggest that the problem comes from the SIT 698 

measurement from SMOS. Until such inconsistencies are resolved in the 699 

dataset, we would recommend to either discard the first weeks of observations 700 

or increase the observation error during that period. 701 

 702 

4.3 Quantitative impact for the observational network 703 

 The value of the Degrees of Freedom for Signal (DFS) is commonly used to 704 

monitor the relative impact of different observations in a data assimilation 705 

system (ref. Cardinali et al, 2004; Rodgers 2000; Xie et al, 2018), and is 706 

calculated as follows: 707 

DFS = 𝑡𝑟 }~𝐲�
~𝐲
� = 𝑡𝑟 �~[𝐇(𝐱"

�)]
~𝐲

� = 𝑡𝑟(𝐊𝐇)                         (11). 708 

Where 𝐲�	is the analyzed observation vector, the observation operator H is same 709 

in Eq. (1), and the term tr is the trace operator. The DFS is easily calculated 710 

and stored while performing the analysis with ensemble data assimilation (see 711 

Sakov et al. (2012) for an application to the TOPAZ4 system with the EnKF). It 712 

measures the reduction of uncertainty caused by a given observation type 713 

expressed as a number of equivalent degrees of freedom. Note that the DFS 714 

depend on the observation error statistics but not on the actual observation 715 

values (see equation 11). A DFS of 0 indicates that the observation has no 716 

impact at all, and a DFS equals to the total number of degrees of freedom 717 

indicates that the observation has so much impact that it has collapsed the 718 

ensemble to a single value. As the analysis is solved either in observational 719 

space or in ensemble space (depending on which is computationally cheapest), 720 

the DFS cannot exceed the smaller of the ensemble size and the number of 721 

observations used for the local assimilation. The DFS quantity is linear and can 722 
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be split by observation types and accumulated in time periods. The averaged 723 

DFS for the kth type of observation can then be noted by DFS�""""""", and thus a 724 

corresponding Impact Factor (IF) is defined as: 725 

IF� =
��C�""""""""

∑ ��C�"""""""�
���

× 100%                                               (12). 726 

Where o represents the number of different observation types assimilated in 727 

this time period. IFk represents the relative impact of the kth type of observations 728 

with respect to the whole observation network. 729 

Figures 13 and 14 show the IFk for different observations assimilated in the Test 730 

run averaged in two typical months: in November 2014 and in March 2015. The 731 

SIC impacts are dominant close to the sea ice edge and in the CAA region in 732 

the November, with an average IF of 22.7% in the whole Arctic. The SIT impact 733 

from CS2SMOS is largest in the central Arctic in November 2014. A relatively 734 

smaller impact (>20%) is also noticeable in north of the Barents Sea and west 735 

of the Kara Sea. In the open ocean, the SST and SLA have the largest impact. 736 

Temperature and salinity profiles have locally an important effect in the ice-737 

covered Arctic, where a few of ice-tethered profilers (ITP) are available and the 738 

uncertainty is large. Xie et al. (2016) applied the same DFS method to evaluate 739 

the impact of thin SIT from SMOS only. The present results reveal, as expected, 740 

much larger impacts of CS2SMOS SITs in the central Arctic, with only a few 741 

isolated dips where the ITP profiles are available. The IF is higher where the 742 

ice is thicker, even though the observation error increases as a function of ice 743 

thickness. It indicates that the ensemble background errors increase even more 744 

than the observation errors in thick ice by temporal accumulation of model 745 

errors. For example, errors in precipitation grow as the snow accumulates in 746 

the Fall, and the resulting inter-member variability of snow cover causes inter-747 

member variability of SIT due to the thermal isolation effect of snow. 748 

In March 2015, CS2SMOS has again a large impact in the central Arctic relative 749 

to other assimilated observations even though previous literature indicates a 750 

lower impact in the midst of winter than when the ice is growing (Mathiot et al., 751 

2012). The relative IF of SIT indeed remains high even though the absolute 752 

DFS is decreasing, due to the lower impact of other assimilated observations, 753 

in particular SIC (Lisæter et al., 2003). On average, the IF value of CS2SMOS 754 

is about 40%. The high values (>40%) are clearly separated into two areas: one 755 
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is to the north of the CAA and Greenland; another following the inner side of 756 

the sea-ice edge in marginal ice zones. The former is primarily a CryoSat-2 757 

contribution, while the latter corresponds to the thin SITs from SMOS.  The high 758 

IF in the polar hole is probably undesirable since the observations there are 759 

merely extrapolated, so in the future applications we would recommend 760 

discarding these data, in order to leave the polar hole filled instead with sea ice 761 

advected from areas where trustworthy SIT observations have been 762 

assimilated. 763 

 764 

5. Conclusions and discussions 765 

CS2SMOS is the first product to monitor the complete pan-Arctic SIT in a 766 

systematic way, although only for the winter months. It is a combination of two 767 

very different, yet very advanced, technologies onboard the SMOS and 768 

CryoSat-2 satellites, calibrated against very few in-situ observations of SIT, 769 

freeboard and snow depths. Altogether, the issue of measurements 770 

uncertainties is particularly delicate for the assimilation of CS2SMOS data. On 771 

the other hand, defining proper model background errors for SIT is just as 772 

delicate, when considering that the simulated SIT accumulates errors both in 773 

the sea ice dynamics (in particular the rheological model) and in the 774 

thermodynamics. The Bayesian approach to confront these two uncertainties is 775 

by Monte Carlo propagation of uncertainties, which is what is practiced in the 776 

present study for the model background error, although not for the observation 777 

error.  778 

This study assesses the impact of assimilating the new SIT product from 19th 779 

March 2014 to 31st March 2015. Compared to the assimilated SIT CS2SMOS, 780 

the thin bias is reduced from 15 cm to 5 cm, and the RMSD also decreased 781 

from 58 cm to 38 cm, a reduction by 28.3%. Other innovation diagnostics show 782 

no degradation towards other assimilated variables –namely SIC, SSH, SST 783 

and TS profiles.  784 

The SIT is also improved when compared to four independent drifting IMB 785 

buoys and three BGEP mooring buoys. The benefits persist throughout the 786 

summer although no SIT observations are available then, consistently with the 787 

experiments from Mathiot et al. (2012). This is important because it suggests 788 

that the model is not attracted to his bias solution. The assimilation reduces the 789 
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low SIT biases north of the CAA and north of Greenland and the high bias in 790 

the Beaufort Sea compared to independent observations from Operation 791 

IceBridge. Both the thick pack ice in central Arctic and the thin ice in marginal 792 

seas are corrected. On average, the SIT errors in March- April of 2014 and 793 

2015 are reduced by 15 cm, a reduction by 12.5% compared to the Official run.  794 

The dynamical adjustment following the assimilation of SIT has partially 795 

improved the sea ice drift speeds in the Test run where the SIT has thickened: 796 

the monthly averaged drift speed errors north of 80°N are reduced by 0.4-0.5 797 

km per two days in December 2014 and February 2015 (8-9% reduction of the 798 

error). This has been revealed by satellite products but not IABP in situ buoys 799 

for which the spatial coverage is very poor. However, it should also be reminded 800 

that the drag coefficient used in the Test run were tuned for the Official run 801 

which has a biased SIT. One would expect some improvement with a retuned 802 

drag coefficient value. At term, we consider doing an online parameter 803 

estimation of key parameter such as the drag coefficient as tested in Massonnet 804 

et al. (2014). 805 

In this study, the DFS information in the ensemble data assimilation system has 806 

been applied to quantitatively evaluate the relative contributions of all 807 

assimilated observation types. CS2SMOS has the highest impact near the 808 

northern coast of Canada, north of Greenland, and on the inner side of the sea 809 

ice edge, where the contributions from CryoSat-2 and SMOS SIT were 810 

expected. The results, compared to assimilating SMOS only in Xie et al. (2016), 811 

show the importance of CryoSat-2, particularly in the winter months to constrain 812 

the SIT offsets (also shown by Mu et al. 2018, in a coupled MITgcm model 813 

system) and motivate the assimilation of CS2SMOS in the following reanalysis 814 

of TOPAZ4. However, the impact of SIT observations may vary with the 815 

evaluation of the modelling and observing system. Firstly, the SIC may have 816 

been underestimated in central Arctic due to the simplicity of the present sea 817 

ice model. Further planned developments of TOPAZ include a new model 818 

rheology that is able to resolve the scaling laws of deformation of sea ice 819 

(Rampal et al., 2016) and should therefore improve the background errors of 820 

ice concentration in winter months and sea ice drift, increase the impact of SIC 821 

and SID within the ice pack and reduce the estimated SIT impact accordingly. 822 

Other planned changes such as the simulation of melt ponds are not expected 823 



	 	 	
	

	 26	

to influence these results directly since there are no melt ponds when the SIT 824 

data is available. Lastly, if a large number of in situ profiles were available below 825 

the sea ice, they would also compete with the SIT observations.  826 

The above OSE results, like others, are necessarily contingent on adequate 827 

specifications of observation errors. Those are very much simplified in the case 828 

of CS2SMOS, which is not an uncommon case for remote sensing observations: 829 

due to the complexity of the physics involved, the specified observation errors 830 

are reflecting interpolation errors rather than a nonlinear propagation of errors 831 

from their sources (Ricker et al., 2017). In the present study, an offset has been 832 

added to account for this difference in Eq. (4), which results in a conservative 833 

error estimate with respect to the classical Desroziers optimality criterion and a 834 

suboptimal performance in the reliability budget analysis. In the one hand, 835 

reducing the observation would have accelerate the convergence to observed 836 

SIT and converge to a more accurate solution. On the other hand, this would 837 

have made the EnKF less robust to the sudden inconsistencies in the 838 

observations as seen in Fig. 11. Further versions of the CS2SMOS data will 839 

hopefully improve their temporal continuity and the impact of the data can be 840 

increased accordingly. 841 

An alternative to using the scheme CS2SMOS data would have been to 842 

assimilate the two data sets CryoSat-2 and SMOS SIT separately and let the 843 

EnKF merge them together rather than relying on optimal interpolation, as 844 

successfully demonstrated by Mu et al (2018). This would for instance avoid 845 

assimilating observations in places where they are the pure result of 846 

interpolation/extrapolation but would not resolve the offset between the two 847 

satellites, which is arguably the most worrying issue as of the present state of 848 

the SMOS and CryoSat-2 data. The assimilation of the separate datasets will 849 

be attempted in the future when their consistency is further improved. 850 

The current TOPAZ reanalysis is currently reaching 2016 and extended by one 851 

year every year. The current study clearly shows the added value of 852 

assimilating SIT. In 2020, a new TOPAZ reanalysis will be provided with the 853 

upgraded version of TOPAZ5 which will include SIT assimilation from 2010 854 

onwards.  855 

  856 
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Figures:  1104 

 1105 

 1106 

  1107 

 1108 
Fig. 1 Left: Horizontal resolution (km) of the model grid in the Arctic (>60°N). The 1109 

small yellow squares are the locations of IceBridge campaigns during the 1110 

experimental period. The marginal seas are: Beaufort Sea (BS, ; also shown with 1111 

the blue line), Chukchi Sea (CS), East Siberian Sea (ESS), Laptev Sea (LS), Kara 1112 

Sea (KS) and the other regions: Canadian Arctic Archipelago (CAA), Svalbard Island 1113 

(SI), and Fram Strait (FM). The four purple markers (pentagram, circle, triangle and 1114 

diamond) are the deployment location of IMB buoys (2013F, 2014B, 2014C, and 1115 

2014F respectively) with the following trajectory shown as black solid curves. The 1116 

three red squares are the fixed locations of the BGEP moorings (14A, 14B, and 14D 1117 

respectively). Right: Trajectories of International Arctic Buoy Program buoys drift 1118 

during the experimental period. The solid red line delimits the coastal areas 1119 

excluded in the analysis. 1120 

 1121 

 1122 

 1123 

 1124 

 1125 



	 	 	
	

	 36	

 1126 

  1127 
Fig. 2 Observation error uncertainties as a function of sea ice thickness for the 1128 

original CS2SMOS data set (black line), the estimated observation error using the 1129 

Desroziers diagnostics with red-triangle line (see Eq. (3)) and the one used in the 1130 

TOPAZ Test run with blue-square, with an additional error term as Eq. (4) to the 1131 

original uncertainty.  1132 
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 1144 
 1145 

Fig. 3 Monthly SIT from CS2SMOS (left), Official run (middle) and Test run (right) in 1146 

April 2014, November 2014, and March 2015. The mean SIT estimated for the area 1147 

north of 80N is indicated in brackets (unit: m). The dashed lines are isolines of 1, 2, 1148 

3, and 4 meters SIT respectively.  1149 
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 1157 

 1158 
Fig. 4 Top: Bias (dotted line) and RMSD (solid line) of SIT in the two runs - Official 1159 

(blue) and Test (red) – based on weekly averaged reanalysis and CS2SMOS 1160 

observations. The time-averaged bias and RMSD are indicated (Official/Test). 1161 

Bottom: SIT innovation statistics in the Test run in the Arctic region (>60°N) from 1162 

19th March 2014 to end of March 2015. The blue-squared (resp. red reverted-triangle) 1163 

line represents the mean (RMSD) of the innovation. The green squared line 1164 

represents the ensemble spread and the purple reverted-triangle line is the 1165 

diagnosed total uncertainty (see Eq. (8)). The gray-crossed (gray-circled) line is the 1166 

number (RMSD observation error) of assimilated observations. 1167 
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 1177 
 1178 

Fig. 5 Time series of SIT along the trajectories of IMB buoys (upper: 2013F; bottom: 1179 

2014B, 2014C, and 2014F). Measured SIT (green), daily averages from the Official 1180 

run (blue line) and the Test run (red line). The vertical cyan-dashed lines indicate 1181 

the winter period when C2SMOS is assimilated in the Test run. 1182 
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 1193 
Fig. 6 Daily series of SIT (black line) at the BGEP mooring (14A, 14B, and 14D) 1194 

compared with the two model runs - Official (blue line) and Test (red line) - and 1195 

the weekly observed by CS2SMOS (green line). The black line represents the 1196 

daily average at the mooring location with the standard deviation shown as the 1197 

error bar. The RMSDs of the Official run, Test run and CS2SMOS are 1198 

respectively indicated on the bottom of each panels. 1199 
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 1205 
Fig. 7 Top: IceBridge SIT in 2014 and 2015 (left) and the SIT differences in the two 1206 

model runs according to the observational locations and times (right). Bottom: SIT 1207 

deviations from the Official run (left) and Test run (right) using model daily average 1208 

at observations time.  1209 
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 1218 

 1219 
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 1223 
 1224 

Fig. 8 Scatterplots of SIT daily averaged of Official (blue) and Test (red) runs 1225 

compared to IceBridge data. The dashed lines are the respective linear regression, 1226 

the coefficient R2 is the squared correlation to represent how strong of the linear 1227 

relationship in Official/Test run. The black line is y=x.   1228 
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 1239 

 1240 
Fig. 9 Sea ice drift misfits (model minus observation, in km per two days) in the 1241 

Official run (left column) and Test run (right column) compared against the OSI-SAF 1242 

sea ice drift in April 2014 (top line), December 2014 (middle line), and February 2015 1243 

(bottom line).  The black dashed delimits the area of fastest drift (drift > 3km per 2 1244 

days), and the RMSD relative to the monthly observations is indicated when 1245 

calculated for the whole domain and at for the region north of 80°N.  1246 
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 1250 

 1251 

 1252 
Fig. 10 (a) Histogram of sea ice drift speeds calculated from IABP buoys in the 1253 

central Arctic for the period 2014-2015. (b) histogram of the simulated SIT at buoys 1254 

locations in the central Arctic from the two runs. (c) histogram of the drift speed 1255 

restricted near the North pole (>80N) in the Official (blue) and Test (red) runs; the 1256 

mean speed and the standard deviation are indicated; (d) histogram of the simulated 1257 

SIT near the North pole from the two runs; 1258 
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 1262 
Fig. 11 SIE and SIV in the official run (blue) and the test run (red) in the Central 1263 

Arctic. The black stars are the corresponding weekly SIE (or SIV) estimated from 1264 

CS2SMOS. The green dash-dotted line is the daily SIE from OSI-SAF. The 1265 

averaged differences of the two runs (Offi-Test) are reported. The vertical cyan-1266 

dashes delimits the periods when C2SMOS data is assimilated. 1267 
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 1274 
Fig. 12 Left: First three weekly SITs (20th-26th Oct; 27th Oct-2nd Nov; 3rd-9th Nov) 1275 

from CS2SMOS in the beginning of fall 2014. The dashed white lines denote 1276 

the 1, 2, 3, and 4 m isolines. Right: The associated time increments of SIT 1277 

relative to the last weekly SIT. The dashed lines denote the -1 and 1 m isolines. 1278 
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 1284 
Fig. 13 Relative DFS contributions (IF) of each observation data types in November 1285 

2014. (a) SIC from OSI-SAF; (b) SIT from CS2SMOS; (c) temperature profiles; (d) 1286 

salinity profiles; (e) SST; (f) along-track sea level anomaly (SLA). The black line is 1287 

the 20% isoline, and the monthly IF (see Eq. 15) is reported between parenthesis. 1288 
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 1294 
Fig. 14 Same as the above but for March 2015. 1295 
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