

Interactive comment on “Water flow in the active layer along an arctic slope – An investigation based on a field campaign and model simulations”

by Sebastian F. Zastruzny et al.

Anonymous Referee #1

Received and published: 28 June 2017

General comments:

This manuscript presents a study of hydrologic transport in the active layer of a slope in a permafrost environment on Disco Island, Greenland. It is based on a vast range of field data, including geophysical measurements, soil water content and electrical conductivity monitoring data, weather data, as well as a tracer experiment and numerical modeling. The objective is to quantify flow and transport mechanisms in the active layer.

The topic is very relevant as our understanding of transport in these systems is limited and our need to quantify these processes is growing as the Arctic warms and

[Printer-friendly version](#)

[Discussion paper](#)

permafrost thaws. The methods are also suitable for achieving this objective.

However, the manuscript (and study) lacks focus. Many methods are applied, but they are not all well motivated and described in the Methods section. This mainly concerns the geophysical methods, which are used to delineate permafrost at the study site. As the thickness of the active layer is monitored by manual probing at the site, it is not clear how the geophysical data add any information for the active layer. There is also no estimate of uncertainty at all for the geophysical data, which also make it impossible to judge if they provide any valuable information for deeper parts of the ground. Finally, as the focus of the study is transport in the active layer, I wonder if there is at all a need for the geophysical data in this study. If the Authors do a more thorough uncertainty analysis of the geophysical data, it could perhaps be used to add some information about hydrologic connectivity through taliks. Otherwise, I think the geophysical data could be removed from the study, yielding a more focused manuscript.

A related concern is the inclusion of the subpermafrost aquifer in the modeling. The configuration of the modeling domain is based on the electrical resistivity tomography data. However, it seems like all the transport results presented in the manuscript regard the active layer, and it is unclear if including the subpermafrost aquifer yielded any additional insights.

To summarize, I believe the manuscript (and study) could be much improved by focusing on its core methods, results and strengths. This might mean excluding some methods and data, but also highlighting more strongly what new insights were gained by this study. I hope that the Authors have the possibility to take the time needed to rework this manuscript and that my comments can be helpful in this endeavor.

Specific comments

Page 1, L19 What does “frost topography” mean? Do you mean the topography of the permafrost table?

TCD

Interactive comment

[Printer-friendly version](#)

[Discussion paper](#)

Page 2, L2 First sentence: add that this regards permafrost areas.

Page 2, L11 Frampton et al. (2011) does not deal with transport times, however Frampton and Destouni 2015 does:

Frampton and Destouni (2015) Impact of degrading permafrost on subsurface solute transport pathways and travel times, Water Resources Research 51(9): 7680–7701.

Page 2, L14 Please specify what lateral means in this context.

Page 2, L14 Atchley et al. (2015) does not observe or study any “complicated flow networks” or lateral flow per se, but acknowledges that this is a potentially important factor to consider when modeling heat and water in permafrost terrains. Perhaps there is a better reference for this (I don't know of any – sorry!) or the sentence could be slightly reformulated?

Page 2, L28 – page 3, L12 This paragraph, focusing on nitrogen transport, takes up a substantial part of the introduction, yet this study does not focus on nitrogen transport per se. I suggest focusing the introduction more on general transport processes in the active layer, as this is the focus of your study. The existing text could easily be rewritten and the same studies could be cited, but with a stronger focus on the transport aspects.

Page 2, L29 – L30 What “surface” did Yano et al. apply nitrogen to? This sentence needs some specifications.

Page 3, L20 Is this study designed to test this hypothesis? As you state that it is an hypothesis, readers will likely expect you to test this in the study, and I cannot see that you test for example ecosystem responses to additional nutrients and water. The idea that water and nutrients can be transported down a hillslope is not debated in our sciences, and your study design is more specific than that. Maybe you can reword a bit – “our underlying assumption”?

Page 4, L8 This sentence needs some rewording to make it clearer.

[Printer-friendly version](#)

[Discussion paper](#)

Interactive
comment

Page 4, L15 The existence of a DEM does not need to be mentioned here. If it was used in some way for the study, it can be mentioned in the Methods section.

Page 4, L28 Was snow depth also measured at 30 minute intervals? (Was it used for this study?)

Page 5, L7 What does the reference to Woo (2012) refer to? The alfa of 1.26 is taken from Preistley and Taylor (1972), right?

Page 5, L9 - L10 Where did you get the values for the wilting point and field capacity?

Page 6, L1-5 These sensors were in addition to the ones at the weather station? Were the sensors calibrated in anyway? What precision and accuracy do you expect?

Page 6, L6 – L25 The idea here, as I read it, is to use ERT and GPR to get some constraint of the distribution of frozen ground, that can be used for the setup of the numerical model. However, to do this, some information on the quality of these data is needed. What is the resolution of the ERT results for this Wenner array with 30 cm spacing, in the active layer as well as deeper in the ground? Does the ERT result give you any information about the AL, given this resolution and inherent uncertainty? What data is used for determining the resistivity boundary of frozen/unfrozen ground? What uncertainty do you have on this boundary value? Generally, the uncertainty of an ERT inversed model increases with depth. There are ways to identify areas of high uncertainty in the image (e.g. Oldenburg and Li, 1999; Marescot et al., 2003; Fortier et al., 2008), which I urge you to use if you want to say something about the thickness of permafrost.

Oldenburg, D. W. and Li, Y. G.: Estimating depth of investigation in dc resistivity and IP surveys, *Geophysics*, 64, 403–416, doi:10.1190/1.1444545, 1999.

Marescot, L., Loke, M. H., Chapellier, D., Delaloye, R., Lambiel, C., and Reynard, E.: Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method, *Near Surf. Geophys.*, 1, 57–67, 2003.

Printer-friendly version

Discussion paper

Fortier, R., LeBlanc, A. M., Allard, M., Buteau, S., and Calmels, F.: Internal structure and conditions of permafrost mounds at Umiujaq in Nunavik, Canada, inferred from field investigation and electrical resistivity tomography, Can. J. Earth Sci., 45, 367–387, doi:10.1139/e08-004, 2008.

Page 6, L7 Add that these are Electrical Resistivity Tomography (ERT) measurements.

Page 6, L26 – L27 A lot of information is missing on the GPR measurements. What antennas were used (frequency, shielding)? Were the measurements done in a common offset approach? What was the antenna distance? What was the sampling time window? Were traces stacked? How were the measurements done along the transect, every X cm or every X s, or other method?

How did you convert travel times to depth? What were the uncertainties, and the resolution? What uncertainties will stem from an assumption of homogenous velocities in the active layer, considering your observed variability in water content?

How was the GPR data processed? What software was used? Did you use any filters on the data, or time-zero correction?

Finally, considering the inherent uncertainties in GPR results and the fact that you have observations of active layer thickness from probing, what do these GPR measurements add to your studies? If you get the same information but with higher accuracy from probing, I would recommend excluding the GPR data from the manuscript.

Page 7, L8 What was the area of the grid?

Page 7, L14 - Page 8, L15 Please add a description of your model experimental setup, including information about the mesh, boundary conditions, initial conditions, hydraulic properties, simulated time, time stepping. Most of this information appears in the results section, but it should be here instead.

Figure 4 The organic layer thickness line varies also in places where there were no soil samples, but should be an interpolation between soil sample points (based on organic

Interactive comment

Printer-friendly version

Discussion paper

carbon content). Can you explain this? I can find no mention that the active layer thickness was measured, in the methods section. I assume this was done manually with a probe (?). Please specify this in the methods section. The active layer also seems to be thicker on August 4th than on August 21st, which seems odd.

Page 9, L18 What is the uncertainty around this estimate? From just looking at figure 6, it seems that you could have a rather large range of resistivity values at the bottom of the active layer. You could perhaps provide a standard deviation as well as the 1000 Ohmm value. Do you expect the permafrost boundary to be at the same resistivity value also deeper in the ground, based on what you know about the ground substrate? What do you base this assumption on?

Page 9, L19 - When I look at figure A2 (the GPR image) I don't see any interpretation of the permafrost table that is based on the actual image, and I therefore cannot see how this image supports the frost probing depths. The frost probing seems to be the better data set here, and I cannot see how you need the GPR at all for what you do.

Page 10, L1 Does the active layer probing support this? Again, without any constraint on the uncertainty you cannot draw much conclusion here – but if you do some analysis of the uncertainty in ERT results you could actually say something about this potential talik.

Page 10, L2 How do observations of palsas and a lake suggest that there is a talik at the top (bottom?) of the studied moraine?

Page 10, L7 Where is higher, in relation to the talik (or taliks?) that is mentioned earlier in the paragraph?

Page 10, L7-11 What do you actually know about the sub-permafrost aquifer? If this is all based on the ERT data, then you have a much stronger case if you do an uncertainty analysis on those results. However, this study is interesting enough if it focuses on only active layer transport. That could make a more focused paper and reduce some of the

[Printer-friendly version](#)

[Discussion paper](#)

uncertainty that stem from assumptions based on geophysical measurements.

TCD

Page 10 L21 Which location is this velocity for?

Page 11 This is text that should go in the methods section.

Figure 6 Is not a good figure for showing the model domain, as the actual domain is difficult to see behind the ERT model.

Page 11, L1-3 I wonder if you need the sub-permafrost aquifer in your model. What are the important information that you gain from including it? I believe you need to motivate better why it should be included in the model. It would be very cool if you could say something about exchange between supra- and sub-permafrost aquifers with your modeling.

Page 11, L15 What does it mean that the mesh ranges from 0.1 to 2 m? Is this a resolution of the mesh? Please specify this more clearly.

Equation 8 Explain this equation in the text.

Page 11, L22 Which soil moisture sensors were used for the calibration? Maybe I misunderstand something here, but you have sensors west and east of the transect which show rather different values for water content. Did you calibrate against a mean for those sensors?

Page 12, L11-13 Just a thought: Is RMS the best or only meaningful measure here? Would it be helpful to include something like the Nash-Sutcliffe model efficiency to evaluate the model fit? Just something to think about.

Page 12, L27 – Page 13, L7 This would fit better in the methods section.

Page 13, L9 “arrival correct times” should be “correct arrival times”?

Page 13, L15 – L23 As the results did not show very strong evidence (or focus) on the distribution of taliks, this does not feel like the most motivated issue to start the discuss-

Interactive comment

Printer-friendly version

Discussion paper

sion section with. Connection and exchange between sub- and supra-permafrost taliks are very interesting research topics, but, as I read this manuscript, this study focuses more on the active layer. I suggest to start this section with a discussion on that.

Page 15, L15 – Page 16, L13 The Conclusions section could be streamlined by moving some parts to the Discussions section. For example, the discussion on nitrate is more in depth here than in the Discussion section. I suggest you look through this section and make sure to move new lines of discussion to the Discussion section.

Finally, for inspiration - A couple of studies that I didn't see in your reference list but that might be of interest to You, came to my mind when I read Your manuscript:

Johansson, E., S. Berglund, T. Lindborg, J. Petrone, D. van As, L.-G. Gustafsson, J.-O. Näslund, and H. Laudon, 2015, Hydrological and meteorological investigations in a periglacial lake catchment near Kangerlussuaq, west Greenland – presentation of a new multi-parameter data set, *Earth Syst. Sci. Data*, 7, 93-108, doi:10.5194/essd-7-93-2015

Bosson, E., Sabel, U., Gustafsson, L. G., Sassner, M., and Destouni, G.: Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology, *J. Geophys. Res.*, 117, D05120, doi:10.1029/2011JD016429, 2012.

Technical corrections

Throughout the text the phrasing “active layer depth” occurs. As the active layer is a layer, it has a thickness rather than a depth. I suggest you change the wording from depth to thickness throughout the manuscript.

Page 2, L14 “a complicated flow networks”

Page 9, L23 “This reflection is found a greater depth...”

Page 14, L15 Perhaps both of the two occurring “generic” are not needed in this sentence?

[Printer-friendly version](#)

[Discussion paper](#)

Interactive
comment

[Printer-friendly version](#)

[Discussion paper](#)

