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Abstract. Glaciers with extensive surface debris cover respond differently to climate forcing than those without supraglacial

debris. In order to include debris-covered glaciers in projections of glaciogenic runoff and sea-level rise, and to understand the

paleoclimate proxy recorded by such glaciers it is necessary to understand the manner and timescales over which a supraglacial

debris cover develops. Because debris is delivered to the glacier by processes that are heterogeneous in space and time, and

these debris inclusions are altered during englacial transport through the glacier system, correctly determining where, when,5

and how much, debris is delivered to the glacier surface requires knowledge of englacial transport pathways and deformation.

To achieve this, we present a model of englacial debris transport in which we couple an advection scheme to a full-Stokes ice

flow model. The model performs well in numerical benchmark tests, and we present both 2D and 3D glacier test cases that,

for a set of prescribed debris inputs, reproduce the englacial features, deformation thereof, and patterns of surface emergence

predicted by theory and observations of structural glaciology. In a future step, coupling this model to a (i) debris-aware surface10

mass-balance scheme and (ii) supraglacial debris transport scheme will enable the co-evolution of debris-cover and glacier

geometry to be modelled.

1 Introduction

All mountain glaciers carry rock and dust material within the ice. This can originate from gravitational mass movements from

the surrounding valley walls, aeolian deposition, or basal erosion (Benn and Evans, 2010). Rock and dust debris deposited onto15

the surface of a glacier in the accumulation zone is buried by subsequent snowfall and transported englacially with the glacier

ice as it flows downslope. In the ablation zone of a glacier, ice flow transports debris towards the glacier surface and surface ice

ablation leaves behind a residue of rock material (Fig. 1a). If debris supply and ablation is sufficiently high, and transport of

rock material out of the glacier system is inefficient, a debris-covered glacier can develop, where a large portion of the ablation

zone is covered with a continuous layer of rock material (Kirkbride, 2011).20

A surface debris cover more than a few centimeters thick inhibits surface ablation of ice and thus alters glacier runoff,

local water resources and contribution to sea level change. It also affects glacier dynamics and geometry such that low-angled,

stagnating debris-covered ice can survive for longer at lower altitudes than neighbouring clean ice glaciers (Benn et al., 2012;

Anderson and Anderson, 2016). Thus the paleoclimatic signal represented by sediment deposits from a debris covered-glacier

is not the same as one from a clean ice glacier.25
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Figure 1. (a) Debris-covered Kennicott Glacier, Wrangell Mountains, Alaska, USA and (b) deformed englacial bands emerging at the surface

of Skeiðarárjökull, an outlet glacier of Vatnajökull ice cap, Iceland. Source: ESRI basemap DigitalGlobe imagery.

Fluxes of ice and debris change over time in response to climatic variations, and in space due to differences in local site

characteristics. Kirkbride (1989) proposes that variations in ice mass influx serve to unify a process-continuum of deformational

geomorphological features of mixed ice and debris composition. The implication of this process-continuum is that glaciers can

transition between rockglaciers, debris-covered glaciers and clean ice glaciers through space or time as a result of the varying

ice influx (Kirkbride, 1989; Ackert, 1998; Clark et al., 1998). Accordingly, the extent of a debris cover varies inversely with5

the glacier mass balance, whereby the debris cover extent is governed by transport dominant conditions (higher ice velocities

and lower surface ablation) during periods of positive mass balance and ablation dominant conditions (lower ice velocities

and higher ablation) during periods of negative mass balance (Kirkbride, 2000). In addition, debris covers can be formed

instantaneously by isolated events such as ash fall or a large rockfall onto the glacier ablation zone (e.g. Nield et al., 2013;

Hewitt, 2009; Shugar et al., 2012; Reznichenko et al., 2011). The complex interplay between debris supply and ice supply10

and their variation in space and time mean that the thickness and character of the debris cover, and its resultant impact on

the glacier behaviour is also strongly space and time-dependent. In order to resolve this, it is necessary to understand how

the debris co-evolves with the glacier. This requires tackling many component parts to model the full debris-covered glacier

system. To date, existing numerical models of debris-covered glaciers either restrict debris inputs to the ablation zone (Konrad

and Humphrey, 2000; Menounos et al., 2013; Vacco et al., 2010), prescribe an englacial debris concentration (Bozhinskiy15

et al., 1986) or use empirical relationships to describe accumulation of debris on the glacier surface (Jouvet et al., 2011).
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Recent studies apply simplified treatment of englacial transport (Rowan et al., 2015; Anderson and Anderson, 2016), but as

yet, no model explicitly resolves full 3D (three-dimensional), time evolving transport of debris within the ice flow field of the

glacier body. This is a significant omission because, as surface debris mainly originates from localized debris inputs (rockfall

or mixed avalanche events) in the accumulation zone, modelling englacial transport is crucial to predict the location and timing

of surface emergence of debris, as well as its concentration and its spatial extent, all of which are required to constrain the5

nature of the developing debris cover and its resultant impact on glacier behaviour.

Prevailing stress conditions, and the resulting strain and velocity fields, control sediment transport within an ice body.

Individual clasts are considered to be predominantly passively transported by glacier ice, unless within the basal traction zone,

and so their shape remains fundamentally unaltered by transport. For a static velocity field, the pathway of such a feature is

identical to a streamline within the glacier, but with the evolving glacier geometry these will change. However, debris inputs10

from rock, mixed snow/ice avalanches and other gravitational mass movements tend to be deposited as bodies of polymictic

ice-sediment mixtures, which become severely deformed in the course of transport through the glacier, as revealed by studies

of structural glaciology (e.g. Fig. 1b, Jennings et al., 2014; Mackay et al., 2014). Hence, the initial shape of the deposit will

be changed significantly, and this englacial deformation will affect the pattern of debris emergence at the glacier surface (e.g.

Goodsell et al., 2005). In order to numerically model transport and deformation of sediment inclusions, a full representation of15

3D velocity fields resolving all spatial gradients is essential, which calls for a full-Stokes ice flow modelling approach.

Here we present a new model that simulates transport, and resultant deformation, of material within a glacier coupled

to 3D resolved ice flow, and we demonstrate the capabilities and performance of the model through a series of evaluation

simulations. Although dynamics of debris-ice mixtures can differ from clean ice dynamics depending on several parameters

such as concentration of debris, particle size and temperature (Moore, 2014), in this work we assume that sediment inclusions20

within the glacier do not affect ice rheology due to the small total amount of transported material in comparison to overall ice

volume. The model is coded in python and relies on the FEniCS framework, an open-source software for automated solution of

partial differential equations (Alnæs et al., 2015; Logg et al., 2012a). The model employs an existing benchmarked full-Stokes

ice flow model (icetools, Jarosch, 2008, now implemented in FEniCS) to compute 3D velocity fields that govern an advection

algorithm used to describe debris transport.25

Assuming that ice is an incompressible fluid, and consequently that the ice flow fields must be divergence-free, any deforma-

tional patterns inducing horizontal elongation, must, at the same time, cause vertical compression. In the context of englacial

debris transport, this implies that the initial debris concentration is constant for an initial control volume of ice being tracked

(i.e. seen from Lagrangian perspective). The incompressibility assumption demands also the absolute values of concentration to

remain constant during transport when following the initial control volume of ice as it is becoming deformed during transport.30

To solve the transport problem mathematically, we take an Eulerian approach. The accuracy of the results is directly related to

mesh size. If the mesh size was chosen infinitesimally small, the concentration features would recover, over the entire transport

path, their initial values and sharp layers at their boundaries (if initial debris inputs are delineated by sharp boundaries). As a

consequence of a fixed mesh, the bigger the mesh size, the greater the amount of numerical smearing in the simulations which

results in a decrease of maximum and marginal concentration values and a smearing towards the edges of the concentration35
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features. This problem is inherent to the method chosen but can be dealt with by applying an appropriate mesh size, such that

numerical smearing is minimized according to the application of interest.

The model presented here forms part of an envisaged fully-integrated model framework that, by incorporating a (1) free

surface evolution scheme including debris-aware mass balance subroutines and (2) transport model for debris at the glacier

surface interacting with the mass balance subroutines, will be capable of simulating the transient response of debris-covered5

glaciers, with predetermined debris inputs, to a changing climate.

This paper is structured as follows: Sect. 2 provides details about the equations governing ice flow and how the transport

problem is addressed from a mathematical perspective. Sect. 3 describes the numerical schemes employed. Sect. 4 details

the test simulations performed, the results of which are presented in Sect. 5 and discussed in terms of model performance,

limitations and applicability in Sect. 6. Conclusions and outlook are presented in Sect. 7.10

2 Mathematical formulation

2.1 Full-Stokes formulation for ice flow

Ice is treated as an incompressible, non-linear viscous fluid, whose velocity and pressure distribution can be described by the

incompressible stationary Stokes equations on a spatial domain Ω ε R3, representing the ice body:

−∇ · [η(∇u+ (∇u)>)] +∇p= ρiceg in Ω (1a)15

∇ ·u = 0 in Ω. (1b)

Here u is the 3D velocity field, η is the non-linear viscosity, p is the pressure, ρice is the density of ice and g is the acceleration

due to gravity. The density of ice is assumed to be constant in time and space. By including the standard rheology of ice (Glen,

1955; Nye, 1957), its non-linear viscosity can be described by:

η =
1

2
A

−1
n ε̇

(1−n)
n , (2)20

where ε = 1/2(∇u+(∇u)>) is the strain rate tensor and ε̇ =
√

0.5εijεji is the effective strain rate. A represents the Glen rate

factor and n the Glen flow law exponent. The computational domain Ω is confined by a free surface boundary at the ice-air

interface (∂Ωtop) satisfying:

2ηε ·n− pn = 0 on ∂Ωtop, (3)

where n is the outward pointing surface normal. At the ice-bedrock interface (∂Ωbed) either a no-slip (Dirichlet-) boundary25

condition (Eq. 4a) or, for glaciers where basal sliding contributes to total movement, an alternative ice-bedrock (Neumann-)

boundary condition can be applied (Eq. 4b) in conjunction with an appropriate sliding law conditioning the interface parallel

ice velocity components at the glacier base.

u = 0 on ∂Ωbed (4a)

u ·n = 0 on ∂Ωbed (4b)30
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2.2 Advection of material within a glacier

To describe transport and associated deformation of advected material within a glacier, we employ the linear transient advection-

diffusion equation:

∂c

∂t
=∇ · (D∇c)−∇ · (uc) + r in Ω (5a)

c= 0 on ∂Ω0, (5b)5

where c is the concentration of the material, D ≥ 0 is the diffusion coefficient, u is the divergence-free velocity field and r

represents any internal sources or sinks. In the case of transport of debris through a glacier, it is reasonable to assume r = 0

and that material is predominantly transported by advection, therefore we currently neglect diffusion by setting D sufficiently

small. As we focus on englacial transport in this study, we set c= 0 at the domain boundaries except the parts of the boundary

where an input location is assigned (∂Ω0). Based on these assumptions and defining a constant diffusion coefficient D, Eq. 510

becomes:

∂c

∂t
=D∇2c−u · ∇c in Ω (6a)

c= 0 on ∂Ω0. (6b)

At starting time t0, a known initial concentration is given for all grid points on locations (x) by:

c(x, t= t0) = c0(x) in Ω. (7)15

Apart from an initial concentration, material can enter the domain at the boundaries as a single input at time tinput or by a

defined rate as a function of time and location.

3 Numerical schemes and model software

The model consists of three main components, (1) ice deformation (icetools), (2) adaptive mesh refinement according to con-

centration patterns (refine_gl) and (3) debris transport (advect_gl). All model components are individual open-source modules20

coded in python and utilizing the FEniCS framework (Alnæs et al., 2015; Logg et al., 2012a). Computations are performed on

unstructured meshes (triangles in 2D (two-dimensions) and tetrahedrons in 3D), that allow for variable mesh size according to

local requirements in spatial resolution and geometry complexity. Computational meshes are generated with gmsh (Geuzaine

and Remacle, 2009), an open-source finite element mesh generator.

3.1 FEniCS software25

FEniCS is an open-source project designed for automated solution of partial differential equations (PDEs) by finite element

methods (FEM) (https://fenicsproject.org, Alnæs et al., 2015; Logg et al., 2012a). It includes several components such as

DOLFIN (Logg and Wells, 2010; Logg et al., 2012c), FFC (Kirby and Logg, 2006; Logg et al., 2012b; Ølgaard and Wells,
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2010) and FIAT (Kirby, 2004, 2012), which enable automatic solution of linear and non-linear problems once the variational

forms of the PDEs are expressed in the Unified Form Language (UFL, Alnæs et al., 2014; Alnæs, 2012).

3.2 Ice deformation

3D ice velocities are computed using icetools, a parallelized, open-source full-Stokes model for ice flow (Jarosch, 2008) that

solves Eq. 1-4. A mixed function space of continuous piecewise quadratics and linears is used to compute ice velocity and5

pressure. The capability of the model to simulate 3D velocity fields for complex ice bodies has been demonstrated in previ-

ous studies (Jarosch, 2008; Jarosch and Gudmundsson, 2012). Initial versions of icetools accounted for stress-dependent ice

viscosity using a Picard-iteration scheme, but here we employ an updated version, where the non-linear problem of including

stress-dependent viscosity is solved by the Newton-Method.

3.3 Mesh refinement10

Deline et al. (2015) collated statistics of the dimensions of deposits from massive rock slope failures onto glaciers docu-

mented since 1900. For the documented events, they found mean (maximum/minimum) deposit lengths (n = 55) and final

thickness (n = 20) of 6.3 (18.2/1.4) km and 3.5 (22.0/1.0) m respectively. These values represent the upper limits on the

likely dimensions of individual rockfall events onto glaciers, although megaslides could have larger dimensions. In order to

resolve debris or ash deposits covering the range of these observations, computational meshes are required to have a spatial15

resolution in the sub–meter scale. In the case of simulating glaciers several kilometers long, this would lead to immense com-

putational costs. Therefore, we take the approach of refining the mesh locally, i.e. only those areas where concentration is

present. In order to avoid mesh refinement at every computation time step, we increase the area of refinement by a spatial

radius Rcells = umaxdtADVcref surrounding the concentration features, where umax is the maximum velocity in the refined area,

dtADV is the refinement time step (see Sect. 3.5) and cref is a positive defined constant. In this manner, the mesh is refined in an20

area that covers the actual concentration feature and the distance it can possibly be transported within the refinement time step.

For 2D simulations, mesh refinement is implemented entirely in python using the FEniCS software framework (Alnæs et al.,

2015; Logg et al., 2012a). A function representing the coordinates (Fig. 2b) where the concentration exceeds a threshold

(Fig. 2a) and Rcells is defined on the domain-wide coarse mesh (Fig. 2c). Using this function, the cells to be refined can be

marked at any stage of mesh refinement. The marked cells are refined uniformly until all affected cells have an area smaller25

than a threshold cvol (Fig. 2d). In this study, cvol is set to 0.075 m2 (equivalent to an equilateral triangle of edge length 0.416

m), which, according to the findings in Sect. 5.1, is suitable to successfully represent englacial debris features originating from

surface layer deposits of several meters in thickness. For 3D simulations, gmsh (Geuzaine and Remacle, 2009) is used to create

a new refined mesh at every refinement time step. Therefore, a domain-wide coarse mesh is updated with information on the

coordinates where concentration exceeds a threshold. To create the new mesh, the cell size within the radius Rcells of these30

coordinates is set to Lcsize. This parameter is representative of the average cell size within this area. In order to further reduce

the number of required cells, the mesh is primarily refined in streamline direction. Therefore, the coordinate points are first

shifted using the present velocity and a time step of 0.75 dtADV. As the refinement is based on the same domain-wide coarse

6



mesh for each refinement time step, both approaches (2D and 3D mesh refinement) prevent over-refinement and at the same

time, the need for mesh coarsening.

Adaptive mesh refinement strategies often employ a posteriori error estimation (e.g. John, 2000). The PDE is solved and

the assigned error estimators and indicators are used to mark the cells for refinement and potentially coarsening. Subsequently,

the marked cells become modified and the PDE is solved on the newly refined mesh. This process is repeated until the error5

estimators and indicators fall below a user-defined tolerance within every cell. This procedure can require many iterations,

resulting in high computational costs. In the case of debris inclusions within glaciers, we deal with rather smooth concentration

fields, except for sparse areas of high concentration that often, initially or over time, exhibit a band-like shape. Therefore,

rather than focusing only on sharp layers that are the main contributors to high errors on too-coarse meshes, we perform the

refinement on the entire area of high concentration. Instead of using error estimators and indicators to locate the cells for mesh10

refinement, our methods use a concentration-threshold, cell-based refinement indicator. This indicator is computed just once

per refinement time step and all affected cells and those within a velocity-based distance (Rcells) are (a) refined until a problem-

specific mesh size tolerance (cvol) is achieved (2D) or (b) are created with a cells size prescribed by Lcsize (3D) . The results

of the benchmark test in Sect. 5.1 derived with our approach compare well with that derived using adaptive mesh refinement

based on a posteriori error estimation (de Frutos et al., 2014), this demonstrates that our approach is an acceptable balance15

between accuracy and savings in computational costs. The 3D benchmark test in Sect. 5.1, demonstrates the suitability of the

3D mesh refinement approach.

(a) (c) (d)(b)

Figure 2. Illustration of mesh refinement. (a) Initial concentration field where bright colours indicate high concentration values. (b) Coor-

dinate points of grid locations where concentration exceeds a threshold of 0.01. (c) Function that shows high values, indicated by bright

colours, at all cells of the coarse mesh that lie within the radius Rcells of the respective coordinate points in (b). (d) Representation of the final

refined mesh.

3.4 Material transport

The transient advection-diffusion equation is discretized in time by an implicit Euler scheme and a standard continuous

Galerkin FEM is used for the space discretization, separating the temporal and spatial discretizations. The concentration is20

expressed as a scalar function in a continuous piecewise linear function space. In the case of advection-dominated transport,
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solving Eq. 6 via standard continuous Galerkin FEM leads to non-physical spurious oscillations (e.g. Bochev et al., 2004). In

order to inhibit these spurious oscillations and ensure stability, we employ the Streamline-Upwind-Petrov-Galerkin (SUPG)

approach (Hughes and Brooks, 1982). In this method, a residual-based stabilization term is added to the variational form and in

this way introduces artificial diffusion to the system in streamline direction. The stabilization term is based on the the residual

of Eq. 6 including the time derivative and a mesh-size dependent stabilization parameter τ . Following John and Novo (2011)5

and Bochev et al. (2004), in the advection-dominated case (i.e. Peclet numbers greater than 3) we use a stabilisation term of

O(hK) and define it as τ = hK

2||u|| , where hK is a measure of the local cell size and u is the divergence-free velocity field.

3.5 Time stepping

The refinement time step prescribes how often the refinement has to be performed and, in conjunction with the velocity field,

defines the total number of cells in the mesh. For example, for a given englacial debris concentration, the total number of cells10

in the refined mesh increases with increasing refinement time step as the distance the debris inclusions are transported within

this time step also increases. In order to minimize computational effort, the refinement time step has to be chosen according to

the characteristics of the computer system that is used to run the computations.

The computation time step for the advection module is derived using the Courant-Friedrich-Lewy condition, applied on

the smallest cell size and the maximum velocity within the refined region. In this study, we apply Courant numbers ranging15

from 0.5− 1.5. The work of Bochev et al. (2004) combined with the tests in the supplementary material, show that the SUPG

stabilisation scheme coupled to a Crank-Nicholson or an implicit Euler scheme for time-dependent advection-dominated,

advection-diffusion problems is stable for this choice of Courant numbers.

4 Model simulations

Direct evaluation of our advection model against real world glacier cases is not possible at present because (i) comprehensive20

field measurements of englacial debris transport are not available and (ii) simulating the full glacier system would require

further model development as outlined in Sect. 1.

Nevertheless, an evaluation of how well the model (a) performs and (b) reproduces structures observed in glaciers is impor-

tant. To this end, we present results from specific numerical tests that benchmark the advection module, followed by glacier

simulations for a 2D profile of an alpine valley glacier and an idealized 3D glacier geometry. In these glacier simulations the25

flow fields are computed by solving Eq. 1-4 for given geometries and are kept fixed as no mass balance routine is coupled

to the model yet. The benchmark tests were performed to quantitatively ascertain that the numerics of our model adequately

meet the requirements of the task in terms of mass conservation, numerical stability and prevention of non-physical spurious

oscillations and numerical smearing. By comparing the results to those of the published tests, the suitability, stability and gen-

eral performance of the advection module are evaluated. The glacier simulations are used to qualitatively evaluate how well30

the coupled iceflow - advection model reproduces glacial structures related to idealized debris inputs of various dimensions
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illustratively representing rockfall deposits, extensive ash layer or debris avalanche deposits and crevasse-fill in comparison to

the structures predicted by theory or observed in the field.

4.1 Benchmark tests

The numerical Examples 1 and 2 in Bochev et al. (2004) are chosen to demonstrate the effect of the SUPG stabilisation

approach in terms of reducing non-physical spurious oscillations that are a known problem for standard continuous Galerkin5

FEM schemes in the case of advection-dominated problems, and the stability of this stabilisation scheme for a wide range

of Courant numbers that control the time stepping. Details of this set of numerical tests are presented in the supplementary

material and here we present only the results of the most demanding numerical test that we subjected the model to, which is

Example 4 in de Frutos et al. (2014). This test is known as the "rotating three body problem" (LeVeque, 1996; John and Novo,

2011; de Frutos et al., 2014) and is a standard test for computing advection of a scalar quantity in an incompressible flow field10

using the transient advection-diffusion equation in the advection-dominated case. Furthermore, in the study of de Frutos et al.

(2014), the capabilities of a posteriori error-based adaptive mesh refinement are evaluated. By comparing the published results

to those reproduced with our implementation of adaptive mesh refinement, we evaluate our method. In the "rotating three

body problem", a slotted cylinder, a hump and a conical body undergo clockwise rotation in a divergence-free velocity field.

A visualisation of the velocity field is given in Fig. A4a in the supplementary material. In order to reproduce the results with15

our model, we set up the velocity field, initial and boundary conditions as described in Example 4 in de Frutos et al. (2014) for

an advection-dominated case (D = 10−6 m2 s−1). However, we employ the mesh refinement and time stepping described in

Sect. 3 and redefine the model domain as Ω = (0,100)× (0,100) meters. By doing this enlargement, the size of concentration

features becomes comparable to the size of debris inputs in the glacier simulations. Initializing the mesh refinement with the

same cell area threshold as is used in the glacier simulations, allows us to estimate the level of accuracy that we can achieve20

in the glacier cases. Here, we present results of computations using two different refinement time steps, (a) small refinement

time step of 0.01π s and (b) a larger refinement time step of 0.1π s. This results in (a) 200 and respectively for (b), in 20

refinement time steps for a full rotation of 2π s (ttotal). The computation time step is derived using a Courant number of 0.5.

In order to evaluate the chosen cell area threshold, we perform convergence tests where (a) ‖ch− ce‖L2
=

√∑n
k=1(chk − cek)2

the L2 norm of the error between the computed finite element solution ch and the exact solution ce, where n is the number of25

computation locations, and (b) the Root Mean Square (RMS) error between the computed finite element solution and the exact

solution for different cell size thresholds are computed. Therefore, we first compute the exact solution on the same mesh that is

used in the finite element solution. To subject the model to an even more severe test, a second set of simulations is performed

where the velocity field is prescribed as a swirling flow (LeVeque, 1996), but all other settings remain identical. Due to the

swirling flow, the shapes of the three bodies become deformed but at total time (ttotal, at t= 1.5 s), the three bodies recover30

their initial shape. An animation of the swirling flow is included in the supplementary material.

To test the model capabilities in 3D, we reproduce the numerical test described in Christensen (1993), where a sphere

of high concentration undergoes rotation. In this test, the velocity field is constructed in a manner, that the shape of the

sphere is deformed throughout the rotation, but after a full rotation of 2π s (ttotal), the sphere recovers its initial shape. A
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visualisation of the velocity field is given in Fig. A4b in the supplementary material. The model domain is defined as Ω =

(0,32)× (0,32)× (0,40) meters and the mesh refinement is initialized with Lcsize = 0.15 m. The refinement time step is set

to 0.04π s and the Courant number to 0.5. By comparing the results to the analytical solution of the problem presented in

Christensen (1993), model performance and chosen refinement settings can be evaluated.

4.2 Glacier tests5

The purpose of these tests is to demonstrate the characteristics of debris transport within mountain glaciers, not to reproduce

a particular event on a specific glacier. Hence, all velocity computations are initialized with a no-slip condition at the glacier-

bedrock boundary, the flow law exponent n is set to 3 and the Glen rate factor A is set to 2.4× 10−24 s−1Pa−3, a standard

value for temperate ice (Cuffey and Paterson, 2010). The density of ice ρice is set to 917 kg m−3. The transport simulations are

initialized with a debris concentration field c0. X, Y, Z coordinates are used to identify a debris-deposition zone characterizing10

(a) a part of the glacier-atmosphere, glacier-bedrock or glacier-sidewall interface that receives instant, continuous or variable

debris input or (b) a localized debris inclusion as e.g. a remnant of a rockfall event or a crevasse-fill. This is implemented by

assigning desired values of initial concentration at the respective locations to the function c0, which is set to 0 everywhere else

on the entire domain. In the presented glacier simulations, all debris inclusions have been deposited in a single event, hence

they are all initialized as inclusions within the glacier, i.e. the entire glacier-atmosphere boundary belongs to Ω0. In the 3D15

cases, the concentration is initialized with a smoothed function at the boundaries of the feature. This is done to represent it

most efficiently in a continuous function space. Debris concentration that is transported beyond the boundaries of the glacier

domain is removed from the system. The concentration itself is a scalar function able to have arbitrary numbers. It can be

converted into actual debris mass as a function of the actual debris density and concentration of the initial debris deposit, i.e.

the percentage of debris versus ice or snow in the initial volume of the deposit. In this study, we present model simulations20

for initial debris concentrations of the value 100, that can be scaled according to the case-relevant initial proportions of debris

and ice. For example, in the case of an ash layer deposit, the initial ash concentration will likely make up to almost 100 %,

compared to a mixed avalanche deposit that is likely to have much lower initial concentrations of debris versus snow or ice.

4.2.1 2D glacier test

For the 2D glacier test simulation, a 100 m spatial resolution longitudinal profile of bedrock and glacier surface for Haute25

Glacier d’Arolla was downloaded from the Ice Sheet Model Intercomparison Project (ISMIP) website (http://homepages.ulb.

ac.be/~fpattyn/ismip/). These data represent the glacier in 1930, based on digitization of data from (Blatter et al., 1998), further

described in (Pattyn, 2002). The longitudinal profile of 1930 is 5 km long. Haute Glacier d’Arolla is an alpine valley glacier

with supraglacial debris covering approximately 10% of the glacier surface in 2012 (Reid et al., 2012).

In this test, we apply idealized debris inputs in the glacier accumulation area and track the evolution of the internal de-30

bris concentration while being transported in a fixed velocity field. For the 2D glacier profile, horizontal and vertical velocity

components are shown in Fig. 3. In the supplementary material, Fig. A6 shows the surface velocity computed with a Glen

rate factor A= 10−16 a−1Pa−3 as used in ISMIP, demonstrating that our model reproduces the ISMIP results in Pattyn et al.
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(2008). Five debris features of different size and input location are prescribed at varying time intervals (Fig. 4). These debris

deposits of varying size, shape and location of deposition were chosen to facilitate analysis of the interplay between debris

input location, deformation during transport and the zone of emergence. At t= 0, the prescribed initial debris concentration

field consists of a circular debris inclusion centered at x= 500 m and z = 3052 m with a radius of 25 m (C0), a group of three

crevasse-fills of 2−5 m width and 50−75 m length between x= 1800 m and x= 1900 m (CRV) , and a ca. 4 m thick debris5

layer covering the glacier surface between x= 296 m and x= 854 m of its length (D1). Subsequently, further debris layers

are prescribed as follows: after 25 years, a ca. 9.5 m thick layer is deposited on the glacier surface between x= 1000 m and

x= 1600 m (D2), and after 50 years another layer of ca. 5 m thickness is deposited between x= 300 m and x= 1950 m (D3).

The circular inclusion and the debris layer deposits were prescribed to provide tight constraints on the shapes, whereas the

vertical inclusions were initialized having irregular shaped boundaries considered more representative for actual crevasse-fills10

of variably sized debris material. The entire simulation, displayed in the video of the supplementary material, covers 90 years.

The mesh refinement is initialized with cvol = 0.075 m2, the refinement time step is set to 0.2 years and the Courant number

to define the computation time step is set to 0.5.
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Figure 3. Velocity components computed with icetools for the 2D longprofile of Haute Glacier d’Arolla. (a) Horizontal velocity (ma−1) and

(b) vertical velocity (ma−1) and contour line of zero vertical velocity in grey.

4.2.2 Idealized 3D glacier test15

In the 3D glacier test, we perform simulations for an idealized glacier geometry. The geometry represents a valley glacier,

including topographically-induced complexities such as a wide accumulation basin leading to a narrow valley, a bump in the

bedrock geometry, as well as a turn of the valley itself. In this manner, topographic features that control ice flow in an alpine

setting are represented, though idealized to reduce computational effort. The idealized ice geometry and the computed 3D

11



1000 2000

2700

0

distance down-valley [m]

e
le

v
a
ti

o
n
 [

m
 a

.s
.l
.]

3000

3000 4000 5000

50

25

100

0

75

c
o
n
c
e
n

tr
a
ti

o
n

D1
D2

D3 t = 50; L = 1650 m
t = 25; L = 600 m

t = 0; L = 558 m

C0

CRV

D1

→

→

→

Figure 4. Debris concentration at time step t = 0 years, where C0 indicates the circular debris inclusion, D1-D3 the surface debris layer

deposits and CRV the crevasse-fills. The horizontal lines indicate the location of the debris layer deposits including their time of deposition.

L indicates the horizontal distance of the glacier surface where debris is deposited.

velocity field is shown in Fig. 5. In this test, the mesh refinement is initialized with Lcsize = 0.4 m, the refinement time step is

set to 0.4 years and the Courant number to 1.5.

The simulation is initialized with a spherical debris inclusion centered at x= 0 m, y = 0 m and z = 270 m in the accumula-

tion area with a radius of 9.5 m. This initial concentration is chosen to aid visualization of the transport and deformation rather

than to best represent likely en- and supraglacial debris deposits.5

5 Results

5.1 Benchmark tests

Our results of reproducing Examples 1 and 2 in the numerical results in Bochev et al. (2004) are shown in Figs. A2 and A3 in

the supplementary material. These simulations demonstrate the efficiency of our SUPG algorithm implementation for reducing

non-physical spurious oscillations in the solutions and allow us to choose suitable Courant numbers to ensure numerical10

stability.

The results of the "rotating three body problem" (de Frutos et al., 2014) are shown in Fig. 6, for the refinement time step

0.1π s. The results as well as animations for all sets of tests can be found in the supplementary material. In Fig. 6a-c, the

initial condition, the solution after a full rotation of 2π s and the solution on the underlying mesh are shown. The shapes of the

concentration features are well recovered in the case of both refinement time steps (see Fig. 6b for refinement time step 0.1π s15

and Fig. A5b in the supplementary material for refinement time step 0.01π s). Positive and negative oscillations in the solution

are shown in Fig. 6d-e. The highest oscillations occur where the gradients in concentration are strongest, i.e. at the walls of the

slotted cylinder. To measure the magnitude of remaining spurious oscillations in the solution, the difference of the maximum

and minimum value of the solution is given in de Frutos et al. (2014). In our results, for case (a) max(u)−min(u) = 1.2526

with 87773 cells in the final mesh, whereas for case (b)max(u)−min(u) = 1.2524 with 142792 cells in the final mesh. These20

oscillations are slightly higher, but comparable to the values of 1.1010− 1.1301 reported in de Frutos et al. (2014). The total

number of cells in the final meshes is larger in our computations, as the mesh refinement is performed in an interval of (a)

12
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Figure 5. Idealized geometry and computed velocity components (ma−1) for the 3D glacier case. (a) Down-valley direction (along x-axis),

(b) cross-valley direction (along y-axis) and (c) vertical direction (along z-axis), (d) approximate 2D down-valley profile along the central

flowline and (e) glacier bedrock geometry.

0.01π s or (b) 0.1π s and not individually for every computation time step. Mass loss is < 0.009% for both refinement time

steps. Results of the convergence test for decreasing cell area thresholds, that are required to drive the mesh refinement, are

shown in Fig. 6f. The chosen cell area threshold of 0.075 m2 yields acceptable results. A further decrease leads to a drastic

increase in computational costs, with only a small increase in model accuracy. Also, when the initial concentration pattern is

subjected to a more complex, swirling flow (LeVeque, 1996), the results of these more challenging test simulations again show5

satisfactory model performance, as can be seen in Fig. 7 and Fig. A6 in the supplementary material.

The results of the 3D test following Christensen (1993) are illustrated in Fig. 8. An animation of the full rotation is given

in the supplementary material. During the full rotation mass loss/gain is less than 0.01%. The shape of the concentration

feature is in good agreement with the analytical solution as indicated by the isosurfaces of concentration (Fig. 8), just the

highest concentrations (isosurface 90) are not captured well due to numerical smearing. This also causes the maximum value10
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of concentration in the final solution to reduce to 83 (initially 100) and the spreading of very low concentrations (< 5) over a

larger volume compared to the analytical solution.
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Figure 8. Results of 3D rotation test. Isosurfaces of concentration 10, 30, 50, 70, and 90 for the FEM solution (in colour) and the analytical

solution (in solid grey) at (a) ttotal/2 and at (b) ttotal. Note that for the FEM solution the isosurface 90 is missing as the maximum values of

concentration decreased to 87.5 (at ttotal/2) and 83 (at ttotal). (c) Cross profiles parallel to the x-, y- and z-axis for the analytical and the FEM

solution at ttotal.

5.2 2D glacier test

The upper boundary of the circular inclusion is initially located approximately 30 m beneath the glacier surface. During

transport, it becomes severely elongated, as the upper part of the feature is transported faster with the ice flow than its lower5

part (Fig. 9a). After some travel time and sustained elongation, the vertical distance between the initially circular inclusion and

the debris layer deposit D1 (Fig. 4) gradually decreases due to the vertical gradients in velocity (Fig. 9b). The initial surface

emergence of the circular inclusion occurs later and further downglacier than any of the other imposed concentration features.

It travels the longest distance and reaches the greatest depths within the glacier flow field.

The crevasse-fills are initially quasi-perpendicular to the glacier surface. As they are transported through the glacier, the10

vertical inclusions become deformed and exhibit a progressively more arcuate shape (Fig. 9d). These features reach the glacier

surface and emerge first at x= 2715 m. They are removed from the glacier domain over the course of 31 years and over a

distance of 580 m of the glacier surface. As they progressively emerge to the surface, the angle of outcrop rotates from vertical

to upglacier dipping bands (Fig. 9d).

The layer-shaped debris inputs (D1-3 in Fig. 4) do not only have different characteristics such as length and thickness but15

are also deposited at different locations on the glacier surface. D1 first reaches the glacier surface at x= 3450 m and over a

90 year simulation period emerges over 109 m of the glacier surface. D2 first reaches the glacier surface at x= 3190 m and

over a 90 year simulation period emerges over 281 m of the glacier surface. D3 first reaches the glacier surface at x= 2645 m

and over a 90 year simulation period emerges over 645 m of the glacier surface. In comparison to D1 and D3, the upper limit

15



of D2 is located ca. 700 m further downglacier. The zone of emergence is significantly shorter, it becomes less elongated and

is exhumed in a shorter period of time, compared to D1 and D3. Another characteristic, observed in the modelling results, is

a reduction in the distance between the debris bands further downglacier, coinciding with decreasing ice velocities in this part

of the glacier. The dip angle at the point of emergence to the surface differs between the three debris layer deposits and also

changes as each layer feature is advected further downglacier.
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Figure 9. Results of the debris transport simulations for the 2D longprofile of Haute Glacier d’Arolla, where C0 indicates the circular debris

inclusion, D1-D3 the surface debris layer deposits and CRV the crevasse-fills. (a) Debris concentration at 24 years, (b) at 62 years and (c) at

83 years after start of the simulations. Concentrations are displayed in the range of 0 to 100, numerical oscillations as excursions beyond the

initial values of 0 or 100 are of magnitude less than ±17 and are truncated to the data limits. (d) Zoom of the crevasse-fills at 0.2, 4, 8, 20

and 26 years after the start of the simulations.
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5.3 Idealized 3D glacier test

The deformation of englacial features shown in 2D is also represented in the 3D cases. The initially spherical inclusion becomes

severely elongated in downglacier direction, forming a ’comet-like’ tail as it is transported through the glacier. In addition to

the downglacier elongation, where the glacier becomes narrower, the orographically left side of the debris inclusion is tilted

upwards, and the centre of concentration is displaced laterally due to unequal lateral compression in the glacier flow field as it5

rounds the bend in the idealized valley (Fig. 10). When layer-shaped features are introduced (not shown), they are deformed to

form arcuate features that are concave in the vertical and downglacier direction.

6 Discussion

6.1 Model capabilities and applicability

The debris transport and deformation modelled here reproduces structures analogous to those observed in structural glaciology,10

where elongated, sometimes cross-cutting debris layers outcrop with a range of dip angles at the glacier surface (Jennings et al.,

2014; Goodsell et al., 2005). Not only can these structures be reproduced, but the 2D glacier simulations indicate that these

elongated, band-shaped debris layers can form from initially fundamentally different debris deposits. In these simulations,

ash fall or avalanche events that uniformly cover wider portions of the accumulation area are included as layer-shaped debris

deposits at the glacier surface. Rockfall events that result in a locally thick debris deposit are represented by a circular inclusion,15

as a possible remnant thereof. Both distinctly different debris inputs become severely elongated and band-like shaped during

transport. The degree of elongation depends on the input location and, hence, the trajectory through the glacier. In addition to

horizontal stretching, the effect of lateral compressional flow is shown in the 3D glacier simulations.

The work of Kirkbride and Deline (2013) illustrates how both the thickness and angle of emergence of a debris band play

a role in determining the initial thickness of an emergent debris deposit. This, in combination with the location of emergence20

is an essential prerequisite to predict the development and further evolution of debris cover. The simulations highlight that for

spatially restricted debris deposition events, distinct debris bands form within the glacier that will lead to initially delimited

areas of debris cover on the surface. Hence, an assumption of a uniform englacial debris distribution of constant englacial debris

concentration (Naito et al., 2000) that would result in a continuously debris-covered glacier surface where surface ablation

is occurring, might not reflect reality adequately. The model presented here allows us to simulate the advection of debris25

concentration through a glacier in great detail and therefore any resulting local concentration changes (Eulerian perspective),

e.g. the deformation of debris deposit shape (Lagrangian perspective, cf. Fig. 10). Hence, for a given debris deposition event

and glacier geometry, we can quantify the timing and location of its emergence in the ablation zone, and how the location of

maximum debris emergence from a debris band, and its dip angle will change over time. This is all critical information for

determining how the spatial pattern of surface debris thickness will develop and evolve in time.30

These results are also important in the context of the response of debris-covered glaciers to changes in climatic forcing or

debris supply. Debris-covered glaciers are known to show distinctly different behaviour to clean-ice glaciers. This is due to the
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Figure 10. Results of the debris transport simulations for the 3D idealized glacier. Debris concentration isosurfaces of concentration 1, 10-

100 in steps of 10 are displayed for a cut through (a) the x-z plane and (b) the y-z plane, as labelled in the figure. The isosurfaces shown refer

to time 0-50 years after the start of the simulation in an interval of 10 years. Concentrations are displayed in the range of 0 to 100, numerical

oscillations as excursions beyond the initial values of 0 or 100 are of magnitude less than ±4 and are truncated to the data limits.

impact of debris cover on ice melt (Östrem, 1959; Mattson et al., 1993), which mainly depends on its thickness (Nicholson

and Benn, 2006; Reid and Brock, 2010). In the case of negative mass balance-conditions, the emergence of thin debris cover at

the upper end of the ablation zone can lead to locally enhanced melting, lower the surface slope and alter the dynamic regime

18



of the glacier (Benn et al., 2012). When and where those transitions occur is also related to the location and rate of debris

emergence.

The model presented here, which resolves the governing physical processes without parameterization, and is based on a

comprehensive numerical framework, offers a powerful tool with which to examine the validity of assumptions made in simpler

models. For example, this model can be used to explore how the manner of prescribing debris (localized or distributed, spatially5

variable or constant, frequent or rare) affects the manner in, and timescales over, which a surface debris cover develops. This

is valuable in the study of poorly understood earth systems like debris-covered glaciers, which evolve over timescales too long

to allow real world observations to answer these questions. The model presented here can be used to track the passage of any

material through the glacier - under the assumption that the transported material itself is not significantly altering the glacier

flow field. It therefore has potential applications not only for understanding the development of supraglacial debris layers, but10

also for interpreting observed structures in glaciers related to specific tephra deposits or rockfall events, for example. This

model also offers the possibility to test the findings of studies that use patterns of englacial debris distribution on Antarctic

debris-covered glaciers to infer climate information at orbitally-paced time scales (Mackay and Marchant, 2017).

6.2 Model performance and limitations

The numerical accuracy of the presented model is dictated by the refinement and stability thresholds selected and will also vary15

dependent on the dimensions of the debris inputs. Nevertheless, we have demonstrated that the model performs satisfactorily

in comparison to benchmark standards in the literature, and that this performance quality applies to the given model set up and

thresholds used to simulate the glacier cases presented.

The ratio of debris input size versus the total size of the glacier requires very fine mesh sizes to actually resolve the debris

inputs, their transport and associated deformation. For example, for the presented model set up in the 3D glacier example,20

the total number of cells is in the order of 108. This leads to high computational costs and the available computing resources

impose constraints on the size of debris inputs the model is able to adequately simulate. In the case of localized debris inputs,

our mesh refinement approach has the potential to reduce the total number of cells substantially compared to a mesh that is

globally refined. In the simulations presented here, the parameters in the refinement module are chosen to produce a mesh that

is as coarse as possible while guaranteeing mass conservation (> 99 %), numerical stability and limiting numerical oscillations25

and numerical smearing to the levels presented in the Results (Sect. 5). Although numerical instabilities such as non-physical

spurious oscillations and numerical diffusion are reduced efficiently by the approaches described in Sect. 3, numerical smearing

cannot be eliminated completely. It’s magnitude is controlled by the mesh resolution (see Sect. 1). Decreasing cell size reduces

numerical diffusion, but limitations of computing power will in practice impose a lower bound on cell size. Therefore, the

magnitude of numerical diffusion expected for a given model set-up should be taken into account when interpreting model30

results. The 2D benchmark tests show that the chosen cell area threshold of 0.075 m2 (for the 2D simulations) effectively limits

non-physical spurious oscillations and numerical smearing below the levels presented in Sect. 5.1. In 3D, the constraints on

cell size are even more restrictive in terms of numerical stability and numerical diffusion. However, increase in computational

costs in 3D is non-linear. The results we show here in the case of an idealized 3D glacier geometry exhibit some numerical
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smearing, but are still suitable for glaciological applications. Higher accuracy for representing sharp concentration variations

can easily be achieved by changing mesh refinement cell size variables at increased computational cost.

In practice, application details dictate the constraints on model accuracy required to be able to adequately resolve the prob-

lem at hand. In this respect, by performing multiple simulations, the model can also be used to quantify the smearing of

concentration features that arises from the choice of a coarser, but computationally feasible, cell size. Thus the introduced error5

by coarse mesh size choices can be easily quantified.

7 Conclusions and outlook

We developed a model to simulate debris transport within glaciers based on an advection algorithm that is coupled to a full-

Stokes ice flow model. To facilitate computations and provide the spatial resolution required to accurately represent observed

debris inputs, a localized mesh refinement strategy is employed. In this manner, the deformation of debris inputs, arising10

from gradients in the glacier’s velocity field, can be modelled explicitly. This is crucial, as the location of emergence as

well as amount and rate of debris emergence on the glacier surface, depend on the deposition location of debris inputs and

are subsequently controlled by englacial transport and deformation. This is the first model capable of resolving transport and

deformation of debris inputs in this detail. The advection algorithm combined with the full-Stokes approach offers the potential

to model englacial transport of various debris inputs and for complex glacier geometries. In a future step, coupling the englacial15

transport model presented here to a (i) debris-aware surface mass-balance scheme and (ii) supraglacial debris transport scheme

will enable us to fully model the co-evolution of debris cover and glacier geometry, and the behaviour of debris-covered glacier

systems in general. Additionally, this will offer a powerful means by which to evaluate simpler representations of debris cover

development within glacier systems.

8 Code availability20

A development version of the source code of the core components of the model and a test example of Sect. 4 is available under

the GNU General Public License V3 and can be found at https://github.com/awirbel.
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