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Abstract. The Antarctic Peninsula is one of the world`s regions most affected by climate change. Several ice shelves 

retreated, thinned or completely disintegrated during recent decades, leading to acceleration and increased calving of their 

tributary glaciers. Wordie Ice Shelf, located in Marguerite Bay at the south-western side of the Antarctic Peninsula, 10 

completely disintegrated in a series of events between the 1960s and the late 1990s. We investigate the long-term dynamics 

(1994–2016) of Fleming Glacier after the disintegration of Wordie Ice Shelf by analysing various multi-sensor remote 

sensing datasets. We present a dense time series of Synthetic Aperture Radar (SAR) surface velocities that reveals a rapid 

acceleration of Fleming Glacier in 2008 and a phase of further gradual acceleration and upstream propagation of high 

velocities in 2010–2011.The timing in acceleration correlates with strong upwelling events of warm Circumpolar Deep 15 

Water (CDW) into Wordie Bay, most likely leading to increased submarine melt. This, together with continuous dynamic 

thinning and a deep subglacial trough with a retrograde bed slope close to the terminus probably has induced unpinning of 

the glacier tongue in 2008 and gradual grounding line retreat between 2010 and 2011. Our data suggest that the glacier`s 

grounding line had retreated by ~6–9 km between 1996 and 2011, which caused ~56 km2 of the glacier tongue to go afloat. 

The resulting reduction in buttressing explains a remarkable median speedup of ~1.3 m d-1 (~30 %) between 2007 and 2011, 20 

which we observed along a centreline extending between the grounding line in 1996 and ~16 km upstream. Current median 

ice thinning rates (2011–2014) along profiles in areas below 1000 m altitude range between ~2.6 to 3.2 m a-1 and are ~70 % 

higher than between 2004 and 2008. Our study shows that Fleming Glacier is far away from approaching a new equilibrium 

and that the glacier dynamics are not primarily controlled by the loss of the ice shelf anymore. Currently, the tongue of 

Fleming Glacier is grounded in a zone of bedrock elevation between ~-400 and -500 m. However, about 3–4 km upstream 25 

modelled bedrock topography indicates a retrograde bed which transitions into a deep trough of up to ~-1100 m at ~10 km 

upstream. Hence, this endangers upstream ice masses, which can significantly increase the contribution of Fleming Glacier 

to sea level rise in the future.  
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1 Introduction 

Recent studies have shown that the Antarctic Peninsula ice masses are strong contributors to sea level rise. In a consolidated 

effort Shepherd et al. (2012) estimated the contribution between 2005 and 2010 to 36 ± 10 Gt a-1 corresponding to 0.1 ± 0.03 

mm a-1 SLE (sea level equivalent). This is considerably higher than their reported ice mass loss for the period from 1992 to 

2000 of 8 ± 17 Gt a-1 (Shepherd et al., 2012). Huss and Farinotti (2014) computed from their ice thickness reconstruction of 5 

the northern and central Antarctic Peninsula a maximum potential sea level rise contribution of 69 ± 5 mm. 

Rott et al. (2014) estimated the total dynamic ice mass loss for the glaciers along the Nordenskjöld Coast and the Sjögren-

Boydell glaciers after ice shelf disintegration to be 4.21 ± 0.37 Gt a-1 between 2011–2013. Seehaus et al. (2015; 2016) 

revealed similar values for tributary glaciers of the former Larsen-A and Prince-Gustav-Channel ice shelves. On the western 

Antarctic Peninsula south of -70° increased ice discharge and considerable thinning rates have been reported for various ice 10 

shelf tributaries (Wouters et al., 2015).  

The main cause for the current increased ice discharge on the Antarctic Peninsula is the dynamic response of tributary 

glaciers to the disintegration and basal thinning of several ice shelves (e.g. Angelis and Skvarca, 2003; Pritchard et al., 2012; 

Rignot, 2006; Wouters et al., 2015; Wuite et al., 2015). With the reduction or loss of the buttressing effect of the ice shelves 

(Fürst et al., 2016; Mercer, 1978) due to thinning or disintegration, the tributary glaciers accelerate and show imbalance 15 

(Rignot et al., 2005; Rott et al., 2014; Scambos et al., 2004). 

For the south-western Antarctic Peninsula Rignot et al. (2013) demonstrated that basal melt of George VI, Wilkins, Bach and 

Stange Ice Shelves exceeded the ablation induced by calving. For Wordie Ice Shelf high basal melt rates of 23.6 ± 10 m a-1 

and 14.79 ± 5.26 m a-1 have been reported by Rignot et al. (2013) and Depoorter et al. (2013) respectively. However, the 

presented melt ratios (i.e. the ratio between basal melt and the sum of calving flux and basal melt) differ between 46 % 20 

(Rignot et al., 2013) and 82 % (Depoorter et al., 2013).  

Wilkins Ice Shelf experienced amplified basal thinning controlled by small-scale coastal atmospheric and oceanic processes 

that assist ventilation of the sub-ice-shelf cavity by upper-ocean water masses (e.g. variations in wind stress or reduced 

freshwater fluxes from runoff and ice-shelf basal melt) until ~8 years before break-up events took place in 2008 and 2009 

(Braun and Humbert, 2009; Padman et al., 2012). Subsequent changes in ice dynamics and stresses leading to break-up have 25 

been observed (Rankl et al., 2016). On George VI Ice Shelf, surface lowering is linked to enhanced basal melt caused by an 

increased circulation of warmed Circumpolar Deep Water (CDW) (Holt et al., 2013) and a 13 % increase in ice flow was 

observed between 1992 and 2015 for its tributary glaciers (Hogg et al., 2017).  

However, how the dynamic response after ice shelf loss progresses and how long this process lasts, is frequently unknown. 

Seehaus et al. (2016; 2017) showed that significant temporal differences in the adaptation of glacier dynamics in response to 30 

ice shelf decay can occur and that those can only be resolved, if dense time series of satellite-based measurements are 

available. Wendt et al. (2010) also concluded for Wordie Ice Shelf that its former tributaries were still far from reaching a 

new equilibrium after retreat and collapse of the ice shelf starting in the 1960's. However, given the limited data used in 
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previous studies, Wendt et al. (2010) pointed out that a much closer monitoring is required to verify this. A recent 

comparison of stacked surface velocities of Fleming Glacier derived from InSAR in 2008 with velocities obtained from 

Landsat 8 feature tracking in 2014and 2015 revealed that the glacier had sped up by ~400–500 m a-1, which is the largest 

acceleration in ice flow recorded across all of Antarctica (Walker and Gardner, 2017; Zhao et al., 2017). However, the 

question why the magnitude of change was much higher than recorded elsewhere at the western Antarctic Peninsula over a 5 

similar time period remained unanswered so far. In this study we investigate the glacier dynamics of Fleming Glacier after 

the disintegration of Wordie Ice Shelf on the south-western Antarctic Peninsula. Our study ties in with previous works in the 

region, but covers a much longer time period at a much higher temporal resolution. We provide a dense time series of ice 

velocity measurements from Synthetic Aperture Radar (SAR) satellite data for the time period 1994–2016 for Fleming 

Glacier. In order to investigate the observed changes in ice dynamics, we conducted an in-depth analysis of other 10 

geophysical and geodetic remote sensing data such as airborne Light Detection and Ranging (LiDAR) and satellite-borne 

laser altimetry, radio echo sounding for ice thickness, bistatic and monostatic SAR data as well as optical satellite images. 

We derive frontal retreat, surface velocity changes, ice elevation changes, grounding line positions and estimate the area of 

freely floating ice from hydrostatic equilibrium. 

2 Study site  15 

The former Wordie Ice Shelf was located in Marguerite Bay on the south-western Antarctic Peninsula. The ice shelf was 

originally fed by several major input units (Fig. 1). Among these, Fleming Glacier is the biggest. It has a current length of 

approx. 80 km and is up to 10 km wide at its tongue. With a speed of more than 8 m d-1 close to its calving front (Fig. 1), 

Fleming Glacier is also the fastest flowing glacier in Wordie Bay. Fleming Glacier merges with Seller and Airy Glacier ~8 

km upstream of their joint calving front. Together with Rotz Glacier, which merges with Seller Glacier ~28 km upstream of 20 

the front, all four glaciers form the Airy-Rotz-Seller-Fleming glacier system, spanning a total catchment area of about 7000 

km2 (Cook et al., 2014).  

Starting in the 1960s, Wordie Ice Shelf ran through a stepwise disintegration process (Fig. 1), which was controlled by 

pinning points (i.e. ice rises/rumples). Analyses of satellite imagery suggest that the ice shelf was temporarily grounded and 

stabilized at these pining points until one of the next rapid break-up events took place (Doake and Vaughan, 1991; Reynolds, 25 

1988; Vaughan, 1993; Vaughan and Doake, 1996). However, during phases of ice front retreat, instead of protecting the ice 

shelf against decay, ice rises that were embedded in the ice shelf appeared to behave as indenting wedges, contributing to 

weakening the ice shelf and accelerating break-up (Doake and Vaughan, 1991; Vaughan, 1993). It is likely that the collapse 

of Wordie Ice Shelf was triggered by a combination of amplified ablation due to rising air temperatures (Doake and 

Vaughan, 1991), enhanced tidal action as a consequence of relaxed sea-ice conditions in Marguerite Bay (Reynolds, 1988) 30 

and increased basal melt rates on ice shelves in the Bellingshausen Sea due to rising ocean temperatures (Depoorter et al., 

2013; Holland et al., 2010; Pritchard et al., 2012; Rignot et al., 2013).  
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After the last big disintegration event in 1989, the ice shelf was split into a northern and a southern part (Doake and 

Vaughan, 1991). In the early 1990s most of the remaining floating ice in Wordie Bay consisted only of the protruding, 

unconfined tongues of the disconnected tributary glaciers. These tongues disappeared between 1998 and 1999, so that in 

1999 Fleming Glacier was already calving near its 1996 grounding line (Rignot et al., 2005). Wendt et al. (2010) found the 

remaining area of floating ice to be only 96 km2 in 2009. At this time there was virtually no contiguous ice shelf left and only 5 

the glaciers of the Prospect unit and Hariot`s unnamed neighbouring glacier still possessed floating glacier tongues (Wendt 

et al., 2010). years (2010–2015) the fronts of the glaciers in Wordie Bay remained quite stable, except at the Prospect system 

where the once interconnected floating ice tongues of the three glaciers disconnected and some floating ice was lost. This 

resulted in an total area of 84 km2 of ice shelf in Wordie Bay in 2015, if taking the grounding line of 1996 as a baseline 

(Rignot et al., 2005; Rignot et al., 2011a) and ignoring any grounding line migration.  10 

While in the early 1990's an acceleration was not yet observed from the visual inspection of optical satellite imagery (Doake 

and Vaughan, 1991; Vaughan, 1993), Rignot et al. (2005) found substantial dynamic thinning and an increase of surface 

velocities by 40–50 % in 1996 against 3 point measurements by Doake (1975) in 1974 on Fleming Glacier (Fig. 1). The 

higher velocities as well as further thinning were also confirmed through Global Navigation Satellite System (GNSS) 

measurements in 2008 and airborne LiDAR surveys in 2004 and 2008 respectively (Wendt et al., 2010). Then, an Antarctic-15 

wide unprecedented acceleration of ~ 400–500 m a-1 was recorded between 2008 and 2014/2015 (Walker and Gardner, 2017; 

Zhao et al., 2017).  

3 Data 

We used a broad remote sensing data set in order to investigate the changes in ice dynamics at Fleming Glacier between 

1994 and 2016 after the disintegration of Wordie Ice Shelf. Tab. 1 gives an overview of the specifications and the time 20 

coverages of the sensors used. The Bedmap2 digital elevation model (DEM) of Antarctica (Fretwell et al., 2013), resampled 

to 100 m resolution, was taken as a topographic reference for orthorectification of the surface velocity fields and for the 

derivation of local incidence angles required for the conversion from slant to ground range displacement. Over the Antarctic 

Peninsula the Bedmap2 DEM provides a seamless compilation of data from the improved ASTER GDEM (from ASTER 

stereo images acquired between 2000 and 2009) (Cook et al., 2012), the SPIRIT DEM (from SPOT stereo images acquired 25 

in 2007 and 2008) and the NSIDC DEM (from ICESat data acquired between 2003 and 2005) (DiMarzio et al., 2007).  

Calibrated and multi-looked SAR intensity images, Landsat 7 imagery and an existing dataset of ice shelf outlines (Ferrigno, 

2008) were taken as a reference for the delineation of the ice shelf/glacier front (Tab. S1).  

Calculations of elevation change rates were based on airborne LiDAR measurements, satellite-borne laser altimeter 

measurements and two DEMs derived from SAR interferometry (Tab. 1). The two DEMs covering the Airy-Rotz-Seller-30 

Fleming glacier system were calculated from bistatic TerraSAR-X/TanDEM-X (TSX/TDX) Coregistered Single look Slant 

range Complex (CoSSC) strip map (SM) acquisitions on 2011-11-21 and monostatic TSX/TDX CoSSC SM acquisitions on 
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2014-11-03 (Fritz et al., 2012; Krieger et al., 2013). The TSX/TDX data were selected as close as possible to the dates of 

two NASA Operation IceBridge (OIB) Airborne Topographic Mapper (ATM) flights in 2011 and 2014, in order to be able to 

correct for radar penetration depth biases.  

A simulated phase from a subset of the TanDEM-X global DEM with a spatial resolution of 12 m (Rizzoli et al., 2017) was 

used to facilitate phase unwrapping during the generation of the two TSX/TDX DEMs. The TanDEM-X global DEM was 5 

also used as a reference for the absolute height adjustment of the TSX/TDX DEMs. 

For the determination of the floating area on the tongue of Fleming Glacier, we used information on ice thickness and 

surface elevation from several Pre-IceBridge (PIB) and OIB flight lines across the Airy-Rotz-Seller-Fleming glacier system 

between 2002-11-26 and 2014-11-16 (Tab. 1). Depending on the date of acquisition, ice thickness data was recorded by 

different versions of the Coherent Radar Depth Sounder (CoRDS) (Tab. 1). 10 

Our estimation of the recent grounding line of Fleming Glacier was based on a combination of the information on 

hydrostatic equilibrium with bedrock topography data, profiles of surface velocities and elevation change rate patterns 

inferred from the 2011–2014 TSX/TDX data. Information on bedrock topography was taken from the modelled bedrock grid 

of Huss and Farinotti (2014), which represents the most detailed dataset on bedrock topography available for the Antarctic 

Peninsula. The dataset was generated by subtracting modelled ice thickness from the improved ASTER GDEM by Cook et 15 

al. (2012). Ice thickness was derived by constraining a simple model based on the shallow ice approximation for ice 

dynamics with observational data of ice thickness (OIB) and surface velocity (Rignot et al., 2011b). Where available the 

modelled ice thickness was corrected with OIB ice thickness data, leading to more precise ice thickness values in such areas. 

On average, the local uncertainty in ice thickness of the dataset is ±95m, but values can reach ±500m for deep troughs 

without nearby OIB measurements. Since OIB coverage is fairly good across Fleming Glacier, uncertainties in modelled ice 20 

thickness are relatively low in this area. However, a comparison of bedrock elevations from Huss and Farinotti (2014) with 

bottom elevations calculated from OIB ATM and CoRDS measurements shows that although the modelled bedrock reflects 

the general subglacial topography well, the absolute difference in bottom elevation can be even more than 100 m (Fig. S5). 
One possible reason for this is a difference between ATM heights and the refined ASTER GDEM, which transfers to 

bedrock elevation.  25 

4 Methods 

4.1 Surface velocities  

For each sensor consecutive pairs of coregistered single look complex SAR images were processed using an intensity offset 

tracking algorithm (Strozzi et al., 2002). A moving window was used to calculate surface displacements in azimuth and slant 

range direction between two SAR intensity images by localizing the peaks of an intensity-cross correlation function. The 30 

technique requires the definition of a tracking patch size and a step size (i.e. the distances in range and azimuth between the 
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centres of two consecutive moving windows, Tab. 1). The parameters were chosen according to the sensor specifications, the 

temporal baseline between the acquisitions and the expected displacement.  

During the tracking procedure the implementation of a cross correlation threshold of 0.05 assured the removal of low quality 

offset estimates. Post-processing of the velocity fields comprises an additional filtering (Burgess et al., 2012) based on the 

comparison of the orientation and magnitude of the displacement vectors relative to their surrounding vectors. This 5 

algorithm discards over 99 % of unreasonable tracking results. The filtered displacement fields were then transferred from 

slant range geometry into ground range geometry, geocoded and orthorectified. The procedure to determine the error of the 

velocity measurements is described in the Supplemental material, Sect. S2. The errors for each velocity field and the 

proportion of velocity vectors removed by the filter are listed in Tab. S3.  

4.2 Elevation change 10 

We derived ice thinning rates on Fleming Glacier for 2004–2008 and 2011–2014 by comparing ellipsoid heights of the PIB 

(ATM, 2004), the Centro de Estudios Científicos Airborne Mapping System (CAMS, 2008) and the OIB (ATM, 2011, 2014) 

airborne LiDAR datasets. The vertical accuracy of the ATM elevation data is estimated to be better than 0.1 m (Krabill et al., 

2002; Martin et al., 2012). For the CAMS data, vertical accuracy is 0.2 m (Wendt et al. 2010). Before subtraction, 

overlapping data of the originally closely spaced measurements were condensed to a common set of median surface 15 

elevations with an equal spacing of 50 m in along and across track direction. The locations of the resulting points of 

differential elevation measurements are shown in Fig. 4.  

Additionally to the airborne LiDAR measurements ice elevation change rates for the period 2004–2008 were calculated from 

ellipsoid heights measured by the Ice, Cloud and Land Elevation Satellite (ICESat). Saturation of the 1064 nm Geoscience 

Laser Altimeter System (GLAS) detector can occur over ice, leading to a distorted echo waveform (Schutz et al., 2005). 20 

Hence we applied a saturation elevation correction provided on the GLA12 product prior to subtracting both tracks and 

excluded elevation measurements with flagged invalid saturation correction values from our analyses. Since both repeat 

tracks are not overlapping but separated by ~150 m in across track direction, we linearly interpolated the elevation data of 

the 2004 track onto the latitude values of the 2008 data prior to subtraction, as described in Fricker and Padman (2006). In 

order to keep the error induced by interpolation low, elevation values were only allowed to be interpolated between two 25 

footprint centre locations with an along track spacing of ~170 m. This assured that existing gaps in the real data were 

preserved. Shuman et al. (2006) report a relative accuracy of ± 0.25 m for ICESat elevations measured on surface slopes 

between 1.5 and 2.0°. The mean surface slopes along the two ICESat elevation profiles were 1.9°. Hence, taking into account 

further possible inaccuracies of ± 0.15 m due to interpolation, we estimated the accuracy of the ICESat ice elevations to be ± 

0.4 m.  30 

A map of elevation change rates between 2011 and 2014 was calculated by differencing two TSX/TDX-DEMs. Both DEMs 

have a spatial resolution of 10 m. To generate the DEMs we applied a differential interferometric approach, which facilitates 
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phase unwrapping by incorporating the topographic information of a reference DEM (Vijay and Braun, 2016). A subset of 

the TanDEM-X global DEM, covering the two TSX/TDX-DEMs, was chosen to be the reference DEM. 

Before differencing, the TSX/TDX-DEMs must be vertically referenced. For this purpose the median vertical offset between 

the DEMs and the TanDEM-X global DEM was measured over stable areas (i.e. tops of nunataks and rock outcrops, which 

were not affected by image distortions) at altitudes between 150 m and 1000 m (Fig. S1), before both DEMs were adjusted 5 

accordingly. After subtracting the vertically registered DEMs, the elevation differences were converted into yearly elevation 

change rates. We assessed the accuracy of the vertical registration over another set of stable areas at altitudes between 150 m 

and 1300 m (Fig. S1). The absolute median value of the extracted change rates was 0.37 m a-1 which primarily accounts for 

errors related to the vertical registration.  

However, since radar signals can penetrate several meters into snow and ice, depending on the radar frequency and the 10 

dielectricity of the medium (Mätzler, 1987; Rignot et al., 2001), an additional bias is induced on glaciated areas when 

differencing interferometric DEMs from different times and/or frequencies (Berthier et al., 2016; Seehaus et al., 2015; Vijay 

and Braun, 2016). Since the TSX/TDX data was acquired only 4–7 days apart from the ATM data, differences in elevation 

change rates between the two datasets can be primarily attributed to differences in penetration depth at the TSX/TDX 

acquisitions in 2011 and 2014 and remaining vertical registration errors. In order to compare the TSX/TDX data with the 15 

ATM data, we extracted the TSX/TDX elevation change rates at the locations of the differential OIB ATM measurements 

using a buffer with a radius of 25 m and calculated the median for each point. Hypsometric reference values were taken from 

the resampled Bedmap2 DEM which we converted to ellipsoidal heights using the included geoid correction layer. The 

comparison between elevation change rates obtained from the 2011–2014 OIB ATM flights and the 2011–2014 TSX/TDX 

data after the vertical registration of the DEMs showed a maximum overestimation of ice thinning of 1.25 m a-1 for the 20 

TSX/TDX measurements (Fig. S4 a, b). However, the general trend of the elevation change rates fits well to those calculated 

from the LiDAR data and significant differences in elevation change were only measured in the lower areas of the glacier 

tongue. In the upper areas (above 600 m altitude) the difference between ATM and TSX/TDX elevation change rates was 

close to 0 m. Here the snow volume was likely completely frozen on both dates of acquisition, so that the penetration bias 

cancelled out. A backscatter comparison showed lower values in 2014 than in 2011 in areas below 600 m altitude, whereas 25 

the backscatter in the upper areas above 600 m altitude was similar for both dates (Fig. S4 d). We corrected the TSX/TDX 

data with a local polynomial model based on the elevation change rate differences between the ATM and the TSX/TDX data 

(Fig. S4 b). We applied this correction to all glaciated areas below 1000 m and clipped the TSX/TDX elevation change rate 

map accordingly. The RMSE between the cubic fits of the ATM elevation change rates and the extracted values from the 

corrected TSX/TDX map was 0.02 m (Fig. S4 c). However, by taking into account unknown errors due to the extrapolation 30 

of the correction factors to the entire glacier area, we assumed a remaining error of ± 0.2 m a-1 related to penetration depth 

differences. Together with the error of vertical registration, this resulted in a total error of ± 0.57 m a-1 for the TSX/TDX ice 

thinning rates.  
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For our analyses of elevation change we compared ice thinning rates from the PIB and the CAMS airborne laser altimeter 

data (2004–2008) with rates obtained from the OIB data (2011–2014) as well as elevation change rates from the TSX/TDX 

data (2011–2014) with those derived from ICESat in 2004 and 2008. For the comparison between the TSX/TDX and the 

ICESat data, ice thinning rates were extracted from the TSX/TDX map at the GLAS centre locations of the 2008-10-04 

track. To take into account the 70 m footprint of the GLAS instrument, we applied a buffer with a radius of 35 m and 5 

calculated the median from the extracted values at each point.  

4.3 Floating area (hydrostatic height anomalies) and estimation of recent grounding line  

In order to determine the floating area on the tongue of the Airy-Rotz-Seller-Fleming glacier system at different points in 

time, we derived hydrostatic height anomalies ∆𝑒𝑒 from the PIB and OIB elevation and ice thickness measurements between 

2002 and 2014. For every measuring point of ice thickness, ∆𝑒𝑒 was calculated similar to Fricker (2002) by subtracting a 10 

theoretical freeboard height in hydrostatic equilibrium 𝑒𝑒ℎ𝑒𝑒 from a measured orthometric ATM ice surface elevation 𝑒𝑒: 

∆𝑒𝑒 = 𝑒𝑒 − 𝑒𝑒ℎ𝑒𝑒            (1) 

Regions on the glacier tongue where ∆𝑒𝑒 ≈ 0  were considered as freely floating. Before deriving hydrostatic height 

anomalies, we merged simultaneously acquired ice thickness and ATM data by calculating the median elevation within a 

buffer of 50 m at each ice thickness measurement. As the ATM heights were originally measured relative to the WGS84 15 

ellipsoid, we converted the ellipsoidal ATM values to orthometric heights prior to the buoyancy calculations. For the 

conversion we used kriged geoid values calculated for a mean tide system with the EIGEN-6C4 global gravity field model 

(Förste et al., 2014). We calculated 𝑒𝑒ℎ𝑒𝑒 by applying a modified formula after Griggs and Bamber (2011): 

𝑒𝑒ℎ𝑒𝑒 = (𝐻𝐻𝑖𝑖 + 𝛿𝛿) − 𝐻𝐻𝑖𝑖∙𝜌𝜌𝑖𝑖
𝜌𝜌𝑤𝑤

           (2) 

where 𝐻𝐻𝑖𝑖  is the measured PIB or OIB ice thickness, i.e. the ice thickness derived under the assumption that all ice is 20 

homogeneous and firn free, 𝜌𝜌𝑖𝑖  is the ice density of pure ice, 𝜌𝜌𝑤𝑤 is the density of sea water and δ is the firn density correction 

factor, i.e. the difference between the actual thickness of the firn layer above the glacier ice and the thickness that the firn 

would have if it were at the density of pure ice (Griggs and Bamber, 2011). Details on the uncertainties of all variables used 

for the calculations as well as the assessment of error propagation are provided in the Supplemental material, Sect. S3.  

The buoyancy calculations provided information on the limit of hydrostatic equilibrium between 2002 and 2014 at several 25 

locations on the glacier system. As demonstrated in Seehaus et al. (2015), clear patterns of low or positive ice thinning rates 

in dh/dt maps reveal areas of floating ice, since buoyancy can cause originally grounded ice to bounce and/or decreases the 

effect of ice thinning on ice surface elevation to ~10 %.  

Moreover, the grounding line marks the transition between two fundamentally different flow regimes of grounded and freely 

floating ice. Whereas the flow dynamics of grounded ice are dominated by vertical shear and controlled by basal drag, flow 30 

of floating ice is drag free and dominated by longitudinal stretching and lateral shear (Schoof, 2007). The difference in flow 
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dynamics of grounded and floating ice can result in pronounced changes in surface velocity close to the grounding line 

(Stearns, 2007; Stearns, 2011). Furthermore, Rignot et al. (2002) demonstrated that if ungrounding occurs, the resulting flow 

acceleration usually affects both the floating and the grounded part of the glacier, but is largest near the grounding zone. 

Thus, velocity profiles can serve as additional information for locating the grounding line (Stearns, 2007; Stearns, 2011). 

Bedrock elevation data can reveal subglacial topographic features which act as pinning points for the glacier. Hence, our 5 

estimations of recent and previous grounding line positions were based on information on hydrostatic equilibrium from the 

hydrostatic height anomaly calculations as well as maps and profiles of TDX/TSX 2011–2014 elevation change rates, 

modelled bedrock topography (Huss and Farinotti, 2014) and surface velocities. Wherever possible, we gave preference to 

information on hydrostatic equilibrium for the final decision of the recent grounding line location. For selected profiles 

across the glacier, recent and previous (2008) grounding line positions were estimated by combining evidence from elevation 10 

change, bedrock topography and surface velocity. In the remaining areas, the recent grounding line was deduced from 

combining information on elevation change rate patterns in the TDX/TSX 2011–2014 dh/dt map with information on 

bedrock topography.  

5 Results 

5.1 Surface velocities 15 

Figure 2 shows the multi sensor time series (1994–2016) of SAR intensity tracking derived velocities along a centreline 

profile on Fleming Glacier (Fig. 1). The profile extends from the grounding line location in 1996 to 16 km upstream. The 

relative distance of the glacier front to the 1996 grounding line is shown on the left side of the plot. Distances in the 

subsequent text are given in reference to the grounding line of 1996. Positive values relate to positions on the glacier 

upstream of (behind) the former grounding line, while negative values refer to locations seawards of the 1996 grounding 20 

line.  

After 1999 the glacier front remained comparatively steady close to the grounding line location in 1996 for almost 10 years.  

Figure 2 shows that glacier velocities were rather stable between 1994 and 2007. The normalised median absolution 

deviation (NMAD) of the median velocities during this time was 0.06 m d-1. A comparison of the velocities on 1995-10-27 

and 2007-10-23 (Fig. 3a) along the centreline profile reveals that the median velocity difference between 1995 and 2007 was 25 

just 0.04 m d-1.  

Between January and April 2008 a rapid acceleration of Fleming Glacier was noticeable along the centreline, which 

propagated ~8 km inland. Simultaneously, the front of Fleming Glacier retreated behind the 1996 grounding line for the first 

time. The velocity pattern persisted until March 2010, when a second phase of acceleration began. Our velocity time series 

shows that the acceleration gradually propagated further inland within one year, until it reached its final extension ~12 km 30 

upstream in early 2011. Fig. 3a, b show absolute and relative velocity changes along the centreline profile for the periods 

1995–2007, 2007–2011 and 2011–2015. In 2011 the location of the glacier front reached its most inland position. 
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Consequently velocities measured on sea ice or ice mélange in 2011 (seaward of the 2011 front) were excluded from our 

analyses. Large changes in surface velocity close to the 2011 front in the periods 2007–2011 and 2011–2015 do not represent 

real dynamic change, but result from comparing the inherently higher frontal velocities in 2011 with lower velocities of the 

floating glacier tongue in 2007 and 2015. Between 2007-10-23 and 2011-10-02 the increase in median surface velocity along 

the profile was ~1.3 m d-1 or ~30 % (Fig. 3a, b). If ignoring velocity change in the vicinity of the 2011 glacier front, the 5 

highest relative acceleration values (~32–35 %) were recorded between ~7 and ~11 km upstream of the 1996 grounding line 

(Fig. 3b). The amount of relative acceleration rises significantly at ~7 km and abruptly drops at ~11 km. Peak absolute 

acceleration values of ~1.6 m d-1 were found at ~8 km. If excluding measurements at the 2011 front, no further marked 

changes in velocities were detected along our centreline profile after 2011 (Fig. 3 a, b, Fig. 1). Surface velocities on 2013-

12-24 at the three measuring sites of Doake (1975) ~50 km upstream (Fig. 1) were very similar to those measured in 1996 10 

and 2008. Furthermore, the flow directions in 2013 were like those in 2008 and 1974. However, surface velocities derived 

from Landsat 8 feature tracking suggest that in 2015 velocities at the three measuring sites had increased by ~20% in 

comparison to 2008 (Walker and Gardner, 2017; Zhao et al., 2017) (Tab. 2).  

5.2 Elevation change  

Figure 4 shows elevation change rates on the Airy-Rotz-Seller-Fleming glacier system for the period between 2011 and 15 

2014. The entire area undergoes a considerable drawdown. On Fleming Glacier the highest ice thinning rates with peak 

values of more than ~6 m a-1 were recorded in a zone extending from ~8 to ~14 km upstream. On Seller Glacier the ice loss 

exceeds ~6 m a-1 at about 7 km upstream. In general, ice thinning decreases towards higher altitudes. A tendency to lower 

negative or even positive elevation change rates was observed on the lower parts of the joint Fleming and Seller glacier 

tongue between 0 and up to ~9 km upstream. The pattern was not as clear as on Airy Glacier, where a distinct area of low ice 20 

thinning rates was detected between 0 and ~4 km upstream.  

Figures 5 a) and b) show comparisons of elevation change rates for the times prior to (2004–2008) and after the glacier 

acceleration (2011–2014).The location of the data is shown in Fig. 4. In Fig. 5 a) elevation change rates from PIB ATM-

CAMS measurements (2004–2008) are plotted together with rates from ATM measurements in 2011 and 2014. The large 

scattering of the data is due to the highly crevassed surface of the glacier tongue, where a purely horizontal displacement of 25 

crevasses can cause apparent positive and negative elevation differences. Therefore, a median filter was applied to the data 

before adjustment of a cubic function. Fig. 5 b) shows ice thinning rates from ICESat tracks in 2004 and 2008 together with 

rates calculated from 2011–2014 TSX/TDX data. Note that the ATM data in Fig. 5 a) and the ICESat data in Fig. 5 b) refer 

to different profiles. 

Figure 5 shows that prior to the speedup in 2008, Fleming Glacier has already been affected by pronounced surface 30 

lowering. A clear trend of increasing ice thinning rates towards the glacier front is visible for 2004–2008 on both profiles. 

During this period the maximum negative elevation change rates were found close to the 1996 grounding line. Here the cubic 

regression functions imply that the ice surface lowered at a maximum of ~3.8 m a-1 for the CAMS-ATM measurements and 
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at ~4.6 m a-1 for the ICESat data. For all median elevation change rates presented below, we calculated the NMAD in order 

to account for the statistical dispersion of the input data. The median ice thinning rates measured during 2004–2008 for the 

cubic fits were 1.5 ± 0.6 m a-1 on the CAMS-ATM flightpath and 1.9 ± 1 m a-1 on the ICESat track. The OIB ATM and the 

TSX/TDX elevation change rates between 2011 and 2014 reveal a significant change in pattern for the time after the glacier 

flow acceleration. A tendency to lower ice thinning rates is present towards the glacier front and high negative elevation 5 

change rates can be found in a zone 10–15 km upstream, with maximum ice losses of ~3.7 m a-1 for the ATM, and ~4.1 m a-1 

for the TSX/TDX cubic regression functions. The median elevation change rates were -3.2 ± 0.8 m a-1 and -2.6 ± 1.2 m a-1 for 

the cubic fits of the 2011–2014 TSX/TDX data (Fig. 5 b) and the 2011–2014 ATM data (Fig. 5 a), respectively. Despite of 

lower ice thinning rates measured towards the ice front in 2011–2014, our data show an overall median increase of ice 

thinning rates along the profiles of ~1.1–1.3 m a-1 or ~70 % between the periods from 2004 to 2008 and from 2011 to 2014. 10 

However, in some areas 10–15 km upstream, ice thinning rates even doubled in the latter period. 

5.3 Floating area (hydrostatic height anomalies) and estimation of recent grounding line  

Figure 6 depicts the results of the hydrostatic height anomaly calculations from PIB and OIB elevation and ice thickness data 

acquired before (2002–2004) and after the speedup of Fleming Glacier (2011–2014). Detailed plots showing the results of 

the hydrostatic height anomaly calculations along PIB and OIB flight lines can be found in the Supplemental Material, Fig. 15 

S5 a–e.  

The hydrostatic height anomaly data of 2002 and 2004 (Fig. 6, Track 1 and 2) clearly reveal that the ice inland of the 1996 

grounding line was not floating at these times. However, the same calculations for data acquired in 2011 and 2014 (Fig. 6, 

Track 3–5) as well as patterns of low and positive elevation change rates in the TSX/TDX 2011–2014 dh/dt map (Fig. 4, S7) 

suggest that after the final stage of glacier acceleration in 2011 an area of about 56 km2 (referring to the front in 2014) of the 20 

formerly grounded glacier tongue of the Airy Rotz Seller Fleming system had been afloat.  

The bedrock elevation model of Huss and Farinotti (2014) exhibits, that the boundary of the area showing flotation follows 

bedrock ridges (Fig. 6). Those confine a subglacial trough underneath the Airy-Rotz-Seller-Fleming glacier system. The 

ridges reach up to ~9 km upstream of the 1996 grounding line. For most regions of the glacier tongue we estimate the current 

grounding line to coincide with these ridges at an elevation between ~-400 and -500 m. On Fleming and Seller Glacier our 25 

estimation of the recent grounding line also largely coincides with the extent of lower ice elevation change rates apparent in 

the TSX/TDX 2011–2014 dh/dt map (Fig. S7). However, on Airy Glacier a distinct area of low ice thinning rates on the 

lower part of the glacier tongue indicates floatation (Fig. 4, S7), whereas hydrostatic equilibrium in 2011 suggests that the 

glacier is grounded on a hump which reaches to the subglacial trough (Fig. 6).  

We extracted data of surface velocities, TDX/TSX 2011–2014 elevation change rates and bedrock topography along four 30 

profiles on Airy and Fleming Glacier in order to estimate recent grounding line positions and those in 2008 after the first 

acceleration phase (Fig. S6 a–d). The locations of the profiles as well as the deduced grounding line locations are shown in 

Fig. 6. After the first acceleration phase in 2008 the front of Fleming Glacier had retreated behind the 1996 grounding line 
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for the first time. Hence, on Fleming Glacier the grounding line must have been situated upstream of the 1996 position at this 

time. The profile plots in Fig. S6 b, c suggest that after the first acceleration phase in 2008 the grounding line was not located 

as far upstream as after the second acceleration phase between 2010 and 2011. However, since the estimation of the 2008 

grounding line positions was based on surface velocities and modelled bedrock topography only, their precise locations 

remain unclear. Hence, the 2008 grounding line positions indicated in Fig. 6 are just a best guess based on the data we have 5 

in hand. A more detailed discussion on how the grounding line positions were finally decided from the profiles is provided in 

the Supplemental Material, Fig. S6 a–d. All in all, we estimated the current grounding line of Fleming Glacier to be located 

~6–9 km upstream of its 1996 position. Its likely recent location is consistent with the maximum extent of upstream 

propagation of high velocities in 2008 on the centreline profile (Fig. 6).  

6 Discussion 10 

Our results confirm the previously detected acceleration of Fleming Glacier in response to the stepwise break-up and 

disintegration of Wordie Ice Shelf (Rignot et al. 2005). Median elevation change rates of -1.5 m a-1 and -1.9 m a-1 between 

2004 and 2008 may suggest that Fleming Glacier had not reached a new equilibrium even almost 20 years after the partial 

disintegration of the ice shelf in 1989. Nevertheless, our dense velocity time series shows that surface velocities remained 

fairly stable between 1994 and 2007.  15 

Between January and April 2008 the glacier had abruptly accelerated and high velocities had propagated upstream. Between 

March 2010 and early 2011 a second phase of acceleration was detected during which the speedup gradually propagated 

further upstream. The remarkable median speedup of ~1.3 m d-1 which we recorded between 2007 and 2011 is in good 

agreement with an acceleration of ~ 400–500 m a-1 reported by Walker and Gardner (2017) and Zhao et al. (2017) for the 

period 2008–2014/2015. However, a comparison of our velocities in 2013 with their velocities in 2015 at the three 20 

measuring sites of Doake (1975) ~50 km upstream suggests that the recent speedup had not propagated up to these locations 

prior to 2015.  

Abrupt speedups of tributary glaciers are often recorded as a direct consequence of loss of the buttressing force or major 

calving events (e.g. Seehaus et al., 2015). However, we did not observe any major calving event, which could have been 

responsible for the observed acceleration in 2008 or afterwards. In Greenland seasonal velocity fluctuations have been linked 25 

to both enhanced basal sliding due to the penetration of surface melt water to the ice-bedrock interface and inter-annual 

differences in drainage efficiency (Moon et al., 2014; Sundal et al., 2011; Zwally et al., 2002). However, the meltwater 

production on Fleming Glacier is considered to be generally not sufficient to percolate to the glacier bed (Rignot et al., 

2005). Furthermore, a trend of cooling air temperatures is reported for the Antarctic Peninsula since the end of the 1990s 

(e.g. Turner et al., 2016). Although decadal mean surface temperatures in the period 2006–2015 were 0.2 °C higher than in 30 

1996–2005 at San Martin station (~120 km north of Wordie Ice Shelf), warming rates have decreased markedly since the 

decade 1996–2005 and show a cooling trend in 2006–2015 (Oliva et al., 2017). This may have further reduced surface melt 
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during recent years. All in all, enhanced basal sliding due to percolating meltwater is likely not the explanation for the 

observed increase in flow velocities. However, we do not rule out that as a consequence of the acceleration, basal sliding 

increased in grounded areas by meltwater generated from greater basal fricational heat. Hydrostatic height anomalies 

calculated from OIB ice thickness and surface elevation data, TSX/TDX elevation change rates, surface velocities and 

modelled bedrock topography suggest that the current grounding line of Fleming Glacier is located ~6-9 km upstream of its 5 

1996 position, following the edges of a subglacial trough. When ungrounding causes parts of the glacier tongue to go afloat, 

buttressing and basal friction is reduced. This in turn provokes the glacier to speed up and to dynamically thin. We propose 

that unpinning and grounding line retreat are the main causes of the observed strong acceleration of Fleming Glacier.  

Fairly stable velocities between 1994 and 2007 as well as hydrostatic height anomalies in 2002 and 2004 do not indicate that 

ungrounding from the 1996 grounding line position had happened prior to 2008. Although we were not able to give a precise 10 

estimate of the grounding line in 2008, the fact that during the acceleration phase in 2008 the glacier front had retreated 

behind the 1996 grounding line for the first time, shows that the 2008 grounding line must have been located upstream of the 

1996 position. However, our data suggest that in 2008 the grounding line had not retreated to the edge of the subglacial 

trough at ~6–9 km upstream, yet. The rapidity of the acceleration in 2008 indicates that resistance to glacier flow must have 

abruptly been reduced. This is characteristic of a response to sudden unpinning rather than to gradual grounding line retreat. 15 

We hence propose that in 2008 the frontal part of the glacier abruptly detached from a pinning point (likely a sill) located at 

the 1996 grounding line. A cavity underneath the ice has probably already existed. Between 2008 and early 2010 Fleming 

Glacier was possibly grounded and stabilized on a gentle hill ~2.5 – 4 km upstream of the 1996 grounding line. The second 

phase of gradual acceleration and upstream propagation of high velocities between March 2010 and early 2011 is likely a 

response to further gradual grounding line retreat to the recent position.  20 

Furthermore, 70 % higher median ice thinning rates in the period between 2011 and 2014 in comparison to the period 2004–

2008 point to increased dynamic thinning and mass loss after grounding line retreat. The highest negative elevation change 

rates migrated upstream and can now be found in the vicinity of the estimated current grounding line. A tendency of lower 

ice thinning rates towards the glacier front, which was detected along the 2011–2014 OIB ATM profiles and in the 2011–

2014 TSX/TDX dh/dt map, indicates floatation of the glacier tongue. This is in contrast to Walker and Gardner (2017), who 25 

do not see the positive trend of elevation change for the same OIB ATM dataset. Their approach of averaging elevation 

change in 5 km intervals probably filtered out the positive trend that is most prominent on the lowest 3 km of the profile.  

Rignot et al. (2013) and Depoorter et al. (2013) reported high basal melt rates of 23.6 ± 10 m a-1 and 14.79 ± 5.26 m a-1 for 

the remaining parts of Wordie Ice Shelf, respectively. The magnitude of basal thinning is comparable to those found for ice 

shelves in the Amundsen Sea sector, where the influx of relatively warm CDW onto the continental shelf is thought to be the 30 

dominant driver for recent substantial grounding line retreat, acceleration and dynamic thinning of several glaciers (Turner et 

al., 2017). Periodical pulses of warm CDW are also known to flood onto the continental shelf of Marguerite Bay (Holland et 

al., 2010). Significant warming of Antarctic Continental Shelf Bottom Water (ASBW) of 0.1° to 0.3°C decade-1 since the 

1990s were recorded in the Bellingshausen Sea region and linked to increased warming and shoaling of CDW (Schmidtko et 
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al., 2014). Cook et al. (2016) proposed that oceanic melt induced by an increased shoaling of relatively warm CDW is 

responsible for an accelerated frontal retreat of tidewater glaciers in the south-western Antarctic Peninsula since the 1990s. 

Other studies reported considerable thinning of the nearby George VI Ice Shelf (Hogg et al., 2017; Holt et al., 2013) and 

other ice shelves on the south-western Antarctic Peninsula (e.g. Rignot et al., 2013) due to increased basal melt. The onset of 

Fleming Glacier`s speedup between January–April 2008 corresponds well with observations of Wouters et al. (2015). They 5 

reported first signs of a near simultaneous increase of ice mass loss for glaciers all across the western Antarctic Peninsula 

south of -70° since 2008 and an unabated rapid ice loss since 2009. For the glaciers on Western Palmer Land Hogg et al. 

(2017) showed that ~35% of the ice loss after 2009 can be attributed to dynamic thinning triggered by ocean driven melt.  

Walker and Gardner (2017) found that in 2008/2009 and 2010/2011exceptional warm water intrusions into Wordie Bay 

occurred due to upwelling CDW in response to phases of anomalously strong north-westerly winds during strong La Niña 10 

and positive SAM (Southern Annular Mode) events. Highest temperatures were not only recorded at depths between 100–

200 m but also below 400 m, where Fleming Glacier is grounded. The coincident timing with the two phases of glacier 

acceleration substantiates the link between ocean warming and our observed dynamic changes. It is very likely that 

submarine ice melting was increased during phases of strong CDW upwelling and that this has triggered unpinning from the 

1996 grounding line position in 2008 as well as further gradual grounding line retreat in 2010–2011.  15 

The strong basal melt rates proposed by Rignot et al. (2013) and Depoorter et al. (2013) further suggest that basal melt 

probably has already occurred prior to 2008. This, together with increased dynamic thinning towards the ice front between 

2004 and 2008 has likely weakened the ice at the pinning point, which may have fostered unpinning in 2008. Furthermore, 

the bed topography reveals that the trough underneath the joint Airy-Rotz-Seller-Fleming glacier tongue has a retrograde 

slope. Such a bed topography is known to be an unstable configuration for the glacier (e.g. DeConto and Pollard, 2016; 20 

Favier et al., 2014; Rignot et al., 2014; Schoof, 2012), which may have promoted gradual grounding line retreat between 

2010 and 2011. Figure S8 summarizes our interpretation of grounding line retreat at Fleming Glacier. 

The bedrock topography of Fleming Glacier also shows a retrograde bed slope starting at ~3–4 km upstream of the current 

grounding line, which transitions into a pronounced deep trough (up to 1100 m below sea level) at about 10 km upstream. 

Hence, if grounding line retreat exceeds the edge of this trough, destabilisation like on Thwaites Glacier and in the Pine 25 

Island Bay region is possible, which would involve further rapid grounding line retreat and amplified mass loss in the future 

(Favier et al., 2014; Rignot et al., 2014).  

7 Conclusions  

We present a detailed history of the glacier dynamics of Fleming Glacier after the retreat and disintegration of Wordie Ice 

Shelf by analysing glacier extent, surfaces velocities, elevation change rates and hydrostatic equilibrium. Especially our 30 

dense SAR time series enables us to precisely date events of velocity change jointly with glacier retreat, elevation changes 

and grounding line retreat.  
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Our results show that until 2008 the dynamics of Fleming Glacier were primarily controlled by the impacts of break-up 

events of Wordie Ice Shelf before the early 1990s. The retreat of the ice shelf reduced glacier buttressing and led to an 

increase in surface velocities (Rignot et al., 2005), which in turn caused the glacier to dynamically thin. The last floating ice 

shelf parts were lost between 1998 and 1999, but this showed no detectable effects on glacier flow dynamics. 

After two decades of rather stable velocities, the glacier abruptly accelerated between January and April 2008. Our 5 

interpretation is that this happened due to the detachment of the glacier tongue from a pinning point located at the 1996 

grounding line position. The unpinning was likely fostered by weakening of the ice due to basal melt and dynamic thinning 

prior to 2008. Further gradual retreat of the grounding line between 2010 and 2011, an increase in surface velocities of ~30 

% as well as ~70 % higher ice thinning rates show that ungrounding in 2008 has initiated a new phase of dynamic imbalance. 

The unfavourable retrograde bed slope underneath Fleming Glacier probably amplified the grounding line retreat. The 10 

coincident timing of reported strong upwelling events of warm CDW with the two phases of acceleration and grounding line 

retreat shows that enhanced basal melt due to increased shoaling of warm CDW most likely played a major role for the 

recent changes at Fleming Glacier. The reduction in buttressing due to unpinning and grounding line retreat is able to explain 

why the magnitude of velocity change was much higher than in other places at the western Antarctic Peninsula during this 

time.  15 

Today Fleming Glacier and the other glaciers of the Airy-Rotz-Seller-Fleming glacier system are far away from reaching a 

new equilibrium. The modelled subglacial topography of Fleming Glacier upstream of the recent grounding line is 

characterized by some smaller landward deepening troughs which are separated by chains of gentle hills. Pronounced 

oceanic forcing will presumably continue, since the SAM is forecasted to be shifted further poleward, which will foster 

conditions like those during the strong La Niña/+SAM events in 2008/2009 and 2010/2011 (Abram et al., 2014; Fogt et al., 20 

2011; Walker and Gardner, 2017). Thus, further retreat of the grounding line and more dynamic thinning are expected on 

Fleming Glacier. If the ungrounding would reach upstream to the retrograde bed slope at about ~3–4 km from the current 

grounding line and further to the deep subglacial trough, this can trigger a positive feedback loop of rapid grounding line 

retreat, flow acceleration, dynamic thinning, increased calving and mass loss. However, on Airy and Seller glaciers the more 

favourable subglacial geometry of a landward steepening slope may slow down or prevent further grounding line retreat in 25 

the near future 
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Figures 

 
Figure 1: (a) Location of Wordie Bay at the Antarctic Peninsula. Map base: SCAR Antarctic Digital Database, version 6.0. (b) Surface 
velocity field and frontal positions of Wordie Ice Shelf between 1966 and 2015. Surface velocities were derived from Sentinel-1 
acquisitions acquired on 28-08-2015 and 09-09-2015. Front positions (blue and green lines) were taken from existing datasets or manually 5 
mapped from calibrated and multi-looked SAR intensity images. For detailed information on the data sources used for the frontal 
delineation see Supplemental material Tab. S1. The grounding line in 1996 (brown line) was derived from ERS-1/2 double difference 
interferometry (Rignot et al., 2005; Rignot et al., 2011a). Black line: Extraction profile for the velocity time series presented in Sect. 5. 
Orange Line: Glacier system catchment boundaries from the SCAR Antarctic Digital Database, version 6.0. Pink dots: Sites of the velocity 
measurements undertaken by Doake, 1975 in 1974. Background: Mosaic of two Landsat-8 „Natural Colour“ images, acquired on 2015-09-10 
16 ©USGS. 
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Figure 2: Left side (blue line): relative distance of the glacier front to the grounding line position in 1996. See Tab. S1 for data used for 
front mapping. Right side: velocity time series and smoothed median velocities (black line) derived from multi sensor SAR intensity 
tracking along a centreline profile on Fleming Glacier starting at the 1996 grounding line (Fig. 1).  
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Figure 3: Absolute (a) and relative (b) velocity change along the centreline profile on Fleming Glacier (Fig. 1) for 1995-10-27 to 2007-
10-23, 2007-10-23 to 2011-10-02 and 2011-10-02 to 2015-10-21. Coloured lines show cubic functions fitted to the data. F11: front 
position in 2011. F15: Front position in 2015. See Tab. S1 for data used for front mapping.  5 
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Figure 4: Glacier surface elevation change on Fleming Glacier between 2011 and 2014 derived from TSX/TDX bistatic and monostatic 
acquisitions. Red dots: ICESat track on 2008-10-04 taken as reference for ICESat 2004-2008 dh/dt calculations. Purple dots: common 
locations of PIB ATM and CAMS LiDAR measurements in 2004 and 2008. Grey dots: common locations of OIB ATM LiDAR 
measurements in 2011 and 2014. Brown line: grounding line in 1996 from Rignot et al. (2005) and Rignot et al. (2011a). Numbers indicate 5 
distances to the 1996 grounding line. Background: Mosaic of two Landsat-8 „Natural Color” images, acquired on 2015-09-16 ©USGS. 
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Figure 5: (a) Elevation change rates on Fleming Glacier 2004–2008 and 2011–2014 plotted against distance from the 1996 grounding 5 
line. Light purple dots: change rates from PIB ATM and CAMS LiDAR measurements in 2004 and 2008. Purple dots: median filtered 
elevation change rates 2004–2008. Light grey dots: change rates from OIB ATM LiDAR measurements in 2011 and 2014. Dark grey dots: 
median filtered elevation change rates 2004–2008. See Fig. 4 for flight path locations. Purple and black lines: Cubic functions fitted to the 
median filtered elevation change rates. (b) Elevation change rates on Fleming Glacier 2004–2008 and 2011–2014 plotted against distance 
from the 1996 grounding line. Light red dots: change rates from ICESat measurements in 2004 and 2008. Light blue dots: change rates 10 
between 2011 and 2014, extracted from the TSX/TDX dh/dt map along the 2008 ICESat track (see Fig. 4 for location). Red and blue lines: 
Cubic functions fitted to both datasets. 
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Figure 6: Floating area of Fleming Glacier and estimation of the recent grounding line. Black lines 1–4: Profiles for extraction of modeled 
bedrock elevations, surface velocities and elevation change rates (see Fig. S6 a–d). Elevation contours are shown at an interval of 100 m. 
Light blue and cyan lines: glacier fronts on 2007-02-02 and 2011-11-23. Brown line: grounding line in 1996 (Rignot et al., 2005; Rignot et 5 
al., 2011a).Orange dots: Grounded ice before acceleration as derived from PIB LiDAR and ice thickness data.. Dates of PIB flights: 1) 
2002-11-26, 2) 2004-11-18. Background: bedrock elevation from Huss and Farinotti (2014). Blue and red dots: Freely floating and 
grounded ice after acceleration as derived from OIB laser altimeter and ice thickness data. Dates of OIB flights: 3) 2011-11-17, 4) 2014-
11-16, 5) 2014-11-10. Purple pentagon: Location of the limit of high acceleration on the velocity time series profile in 2008 (Fig. 1 and 2). 
Purple circle: likely grounding line location in 2008. Purple circles with cross: possible grounding line locations in 2008. Pink pentagon: 10 
Location of the limit of acceleration on the velocity time series profile in 2015 (Fig. 1 and 2). Pink circles: Estimated positions of the 
recent grounding line obtained from buoyancy calculations, surface velocities, elevation change rate patterns and/or modeled bedrock 
elevations on profiles a–d. Pink line: Final solution of the likely recent grounding line location. 
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Tables  

Table 1: Sensors and data used in this study and their main specifications. Intensity tracking parameters are provided in pixels [p] in slant 
range geometry. 

SAR sensors 

Platform Sensor Mode SAR band 
Repetition cycle 

[d] 

Time interval 

[yyyy-mm-dd] 
– 

[yyyy-mm-dd] 

Tracking patch 

sizes 

[p x p] 

Tracking step 

size 

[p x p] 

ERS-1/2 AMI SAR IM C band 35/3/1 
1994-01-26 

– 
2011-06-29 

64x320 5x25 

RADARSAT 1 SAR ST C band 24 
2000-09-07 

– 
2008-01-17 

128x512 5x20 

Envisat ASAR IM C band 35 
2006-02-15 

– 
2010-10-10 

64x320 5x25 

ALOS PALSAR FBS L band 46 
2006-06-25 

– 
2010-11-23 

128x384 10x30 

TerraSAR-X/ 

TanDEM-X 
SAR SM X band 11 

2008-10-14 
– 

2015-01-30 
512x512 25x25 

Sentinel-1a SAR IW C band 12 
2015-08-28 

– 
2016-08-22 

640x128 50x10 

LiDAR/Laser Altimeter 

Mission Sensor Type Wavelength 

[nm] 

Footprint 

[m] 

Dates 

[yyyy-mm-dd] 

Estimated 

accuracy 

Reference 

Pre-IceBridge 

(PIB) 
ATM LIDAR 532 1 

2002-11-26 

2004-11-18 
0.20 m Krabill (2012) 

ICESat GLAS Laser Altimeter 1064 70 
2004-05-18 

2008-10-04 
0.20 m Zwally et al. (2014) 

CECS/FACH CAMS LiDAR 900 1 2008-12-07 0.25 m Wendt et al. (2010) 

Operation 

IceBridge (OIB) 
ATM LiDAR 532 1 

2011-11-17 

2014-11-10 

2014-11-16 

0.20 m 
Krabill (2010, 

updated 2016) 

Ice Thickness 

Mission Sensor Type 
Bandwidth 

[MHz] 

Sample spacing 

[m] 

Dates 

[yyyy-mm-dd] 

Pre-IceBridge (PIB) ICoRDS-2 Radar 141.5-158.5 ~130 2002-11-26 

Pre-IceBridge (PIB) ACoRDS Radar 140-160 ~30 2004-11-18 

Operation IceBridge 

(OIB) 
MCoRDS Radar 180-210 ~15 2011-11-17 

Operation IceBridge 

(OIB) 
MCoRDS 2 Radar 165-215 ~15 

2014-11-10 

2014-11-16 
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Table 2: Comparison of surface velocities and flow directions at Fleming Glacier obtained by an optical survey in 1974 (Doake, 1975), 
SAR interferometry in 1996 (Rignot et al., 2005),GPS measurements in 2008 (Wendt et al., 2010) and SAR intensity tracking in 2013. 
Velocities and flow directions in 2013 were derived from intensity tracking applied on two TSX/TDX acquisitions on 2013-12-19 and 
2013-12-30. Velocities in 2015 are from (Zhao et al., 2017). For the locations of the measuring sites see Fig. 1.  5 

 

Location 1974 1996 2008 2013 2015 

 Magnitude Direction Magnitude Direction Magnitude Direction Magnitude Direction Magnitude Direction 

 m a-1 ° m a-1 ° m a-1 ° m a-1 ° m a-1 ° 

A (69.505° S, 

66.049° W) 
146 ± 4 277 ± 5 244 ± 10 285 205.5 ± 0.02 275.8 ± 0.1 205 ± 22 272 271 ± 20 NA 

B (69.502° S, 

66.123° W) 
175 ± 4 272 ± 5 271 ± 10 287 NA NA 244 ± 22 271 299 ± 20 NA 

C (69.500° S, 

66.267° W) 
201 ± 4 283 ± 5 306 ± 10 300 312.8 ± 0.04 286.3 ± 0.1 323 ± 22 284 356 ± 20 NA 
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