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August 7, 2017

Dear Editor,

I reviewed the paper ”Evaluation of Different Methods to Model Near-
Surface Turbulent Fluxes for an Alpine Glacier in the Cariboo Mountains,
BC, Canada” Ice by Radic and others.

The paper discusses the often neglected topic of the accuracy of turbu-
lent fluxes in mountain environments. The calculations of turbulent fluxes
are addressed using data as well as a range of relevant parameterisations
and the results are well worth publishing. I look forward to seeing this im-
portant work published.

Generally the paper is well written, but I did find it cumbersome to
read, because it includes many different parameterisations that are not eas-
ily distinguishable in the text. So I suggest that the authors consider a
restructuring of the methods to clarify the difference between the model
runs they performed and maybe ”cluster” the methods that are similar.

I discuss my other suggestions to the authors in the comments below.

Sincerely,
Ruzica Dadic
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General comments

• My main concern with the paper is that it neglects the very stable
conditions by only looking at conditions where wind speed is ¿3m/s or
(the moisture/temperature gradients are large enough). I appreciate
that the measurement of turbulent fluxes under very stable condi-
tions are harder to obtain because the mean flow is non-stationary
and characterised by brief episodes of intermittent turbulence Mahrt
[1989]; Beljaars and Holtslag [1991]; Mahrt [1998]; Cheng et al. [2005]
. Considering the significant amount of the periods where low wind
speeds occur (Figure 4 in the submitted manuscript), those periods
should not be neglected when trying to improve the turbulent fluxes
parameterisations over glaciers. A number of studies have been ded-
icated to finding valid flux-profile relationships for very stable condi-
tions, such as are often found over snow and ice surfaces [e.g. Webb,
1970; Kondo et al., 1978; Lettau, 1979; Brutsaert, 1982; Holtslag and
de Bruin, 1988; Beljaars and Holtslag, 1991; Cheng and Brutsaert,
2005; Grachev et al., 2007] and those studies have also been applied
to snow and ice surfaces [Pomeroy et al., 1998; Jordan et al., 1999;
Sharan, 2009; Dadic et al., 2011].

• All bulk methods assume a logarithmic profile, and they only differ
in what stability correction they use. This should be clarified in the
manuscript.

• Figures 1, 2, and some of Figure 4 (radiation, precipitation, wind
direction) are not needed in this paper and can be removed.

• Figure 5: It is of no surprise that pretty much all 4 methods in this
Figure have the same results, considering they all use he bulk method
at almost neutral conditions. By neglecting the stable conditions, they
don’t have much reason not to vary. I am therefore not sure what the
point of his comparison is.

• P18–19: It is not surprising that the ”parameterisations” which use
measured u∗ as input lead to an increase in fit with the data. u∗ goes
into the QE equation by the power of 4, it’s proportional to QH . It
changes L with the power of 3, so will disproportionally decrease z/L.
Some of this discussion (why u∗ has more influence on the turbulent
fluxes calculation than z/L) might be easier to understand by just
looking at the equations and the relevance of the different parameters.

Furthermore, I the observation on page 18 (L1–3) that the Clog and
CSR methods are not justified in table 3, where the difference between
the u∗ models in the correlation coefficient r is between 0.94 and 0.95
for QE and between 0.82 and 0.85 for QH , which is not exactly sig-
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nificant. I am not sure how to address this problem, but I’m sure the
authors can come up with more robust conclusions than that.

• p 29, L1-2: Considering that the authors have most SEB components
to actually calculate the surface temperature, and that the surface
temperature is an important feedback for the TF, the authors should
consider calculating the surface temperature and including it in their
calculations using the different paramaeerizations. It would be in-
teresting what effect the different parameterizations have on surface
temperature. I do not expect the authors to change all their results
now, but maybe it’s worth a discussion in the paper.

• p 30, L26-30: Considering that only near-neutral conditions are used
for this study, I am not surprised that the stability corrections show
very little difference when modelling the fluxes.

• P31, L11-13: As far as I remember, the reason why the turbulent fluxes
are suppressed in Conway and Cullen (2013) is that they assumed the
log-linear relationship to be valid under very stable conditions. The
log-linear relations, however, do not allow for significant fluxes to occur
at very strong stability[Monin and Yaglom, 1971; Mahrt, 1998; Pleim,
2006] and underestimate the turbulent fluxes over these conditions
[e.g. Deardorff, 1968; Webb, 1970; Kondo et al., 1978; Louis, 1979;
Hogstrom, 1988; Launiainen, 1995; Mahrt, 1998; Jordan et al., 1999;
Stössel et al., 2010].

The Figure below is unpublished, but it shows how the log-linear profile
behaves under very stable conditions (ζ > 1 or low wind speeds) for
different climatic conditions.
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Figure 1: Turbulent fluxes as function of wind speed (1–5 ms−1) for 9 differ-
ent climatic conditions calculated with 5 different flux-profile relationships
for the stability correction. The Basinger-Dyer parameterisations is purely
log-linear and surpasses turbulent fluxes when ζ > 1.
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