Supplement of

The first luminescence dating of Tibetan glacier basal sediment

Zhu Zhang, Shugui Hou, Shuangwen Yi

School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093, China

5 Correspondence to: Shugui Hou (shugui@nju.edu.cn)

Figure S1: Map showing part of the Chongce ice cap where our ice cores were recovered. Inset shows the close bottom section of Core 2.

10

Figure S2: Natural OSL decay curves and their relative components for the fine grain quartz aliquots. Sum, F, M and S represent natural OSL signal, fast, medium and slow components, respectively. Fitting curve is matched with "Luminescence Analyst" program.

 Spectrum processing: Peaks possibly omitted: 0.260, 2.144, 9.690 keV Processing option: Oxygen by stoichiometry (Normalized) Number of iterations = 2 Standard:

Si SiO2 1-Jun-1999 12:00 AM

Element	Weight	Atomic	Formula
	%	%	
Si K	46.74	33.33	SiO2
0	53.26	66.67	
Totals	100.00		

Figure S3: Example photograph of Scanning Electron Microscope coupled with an energy dispersive X-ray

5 microanalyzer.

Figure S4: Recycling ratio and recuperation for fine grain quartz of the sample. Dose recuperation is expressed as the zero-dose corrected OSL in percent. The filled symbol represents the aliquots that were excluded in the final
age calculation.

Table S1. Summary of dosimetric determined by gamma spectrometry analysis.

Sample	²³⁸ U(Bq kg ⁻¹)	²²⁶ Ra(Bq kg ⁻¹)	²¹⁰ Pb(Bq kg ⁻¹)	²³² Th(Bq kg ⁻¹)	40 K(Bq kg ⁻¹)
CCICE	53 ± 11	45.5 ± 1.8	64 ± 13	45.5 ± 1.7	1096 ± 32